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PrefaceThis book is intended to introduce the reader to the important practicalproblem of solving large systems of sparse linear equations on a computer.The problem has many facets, from fundamental questions about the in-herent complexity of certain problems, to less precisely speci�ed questionsabout the design of e�cient data structures and computer programs. In or-der to limit the size of the book, and yet consider the problems in detail, wehave restricted our attention to symmetric positive de�nite systems of equa-tions. Such problems are very common, arising in numerous �elds of scienceand engineering. For similar reasons, we have limited our treatment to onespeci�c method for each general approach to solving large sparse positivede�nite systems. For example, among the numerous methods for approxi-mately minimizing the bandwidth of a matrix, we have selected only one,which through our experience has appeared to perform well. Our objectiveis to expose the reader to the important ideas, rather than the method whichis necessarily best for his particular problem. Our hope is that someone fa-miliar with the contents of the book could make sound judgements about theapplicability and appropriateness of proposed ideas and methods for solvingsparse systems.The quality of the computer implementation of sparse matrix algorithmscan have a profound e�ect on their performance, and the di�culty of imple-mentation varies a great deal from one algorithm to another. Thus, while\paper and pencil" analyses of sparse matrix algorithms are useful and im-portant, they are not enough. Our view is that studying and using sub-routines which implement these algorithms is an essential component in agood introduction to this important area of scienti�c computation. To thisend, we provide listings of Fortran subroutines, and discuss them in detail.The procedure for obtaining machine readable copies of these is provided inAppendix A.We are grateful to Mary Wang for doing a superb job of typing the orig-xv
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Chapter 1Introduction1.1 About the BookThis book deals with e�cient computer methods for solving large sparsesystems of linear algebraic equations. The reader is assumed to have a basicknowledge of linear algebra, and should be familiar with standard matrixnotation and manipulation. Some basic knowledge of graph theory notationwould be helpful, but it is not required since all the relevant notions andnotations are introduced as they are needed.This is a book about computing , and it contains numerous Fortran sub-routines which are to be studied and used. Thus, the reader should haveat least a basic understanding of Fortran, and ideally one should have ac-cess to a computer to execute programs using the subroutines in the book.The success of algorithms for sparse matrix computations, perhaps morethan in any other area of numerical computation, depends on the qualityof their computer implementation; i.e., the computer program which exe-cutes the algorithm. Implementations of these algorithms characteristicallyinvolve fairly complicated storage schemes, and the degree of complicationvaries substantially for di�erent algorithms. Some algorithms which appearextremely attractive \on paper" may be much less so in practice becausetheir implementation is complicated and ine�cient. Other less theoreticallyattractive algorithms may be more desirable in practical terms because theirimplementation is simple and incurs very little \overhead."For these and other reasons which will be apparent later, we have in-cluded Fortran subroutines which implement many of the important algo-rithms discussed in the book. We have also included some numerical exper-1



2 CHAPTER 1. INTRODUCTIONiments which illustrate the implementation issues noted above, and whichprovide the reader with some information about the absolute time and stor-age that sparse matrix computations require on a typical computer. Thesubroutines have been carefully tested, and are written in a portable subsetof Fortran (Ryder [46]). Thus, they should execute correctly on most com-puter systems without any changes. They would be a useful addition to thelibrary of any computer center which does scienti�c computing. Machinereadable copies of the subroutines, along with the test problems describedand used in Chapter 9, are available from the authors.Our hope is that this book will be valuable in at least two capacities.First, it can serve as a text for senior or graduate students in computer sci-ence or engineering. The exercises at the end of each chapter are designed totest the reader's understanding of the material, to provide avenues for furtherinvestigation, and to suggest some important research problems. Some ofthe exercises involve using and/or changing the programs we provide, so it isdesirable to have access to a computer which supports the Fortran language,and to have the programs available in a computer library.This book should also serve as a useful reference for all scientists andengineers involved in solving large sparse positive de�nite matrix problems.Although this class of problems is special, a substantial fraction (perhapsthe majority) of linear equation problems arising in science and engineeringhave this property. It is a large enough class to warrant separate treatment.In addition, as we shall see later, the solution of sparse problems with thisproperty is fundamentally di�erent from that for the general case.1.2 Cholesky's Method and the Ordering ProblemAll the methods we discuss in this book are based on a single numericalalgorithm known as Cholesky's method , a symmetric variant of Gaussianelimination tailored to symmetric positive de�nite matrices. We shall de-�ne this class of matrices and describe the method in detail in Section 2.2.Suppose the given system of equations to be solved isAx = b; (1.2.1)where A is an n � n, symmetric, positive de�nite coe�cient matrix , b is avector of length n, called the right hand side, and x is the solution vectorof length n, whose components are to be computed. Applying Cholesky's



1.2. CHOLESKY'S METHOD AND THE ORDERING PROBLEM 3method to A yields the triangular factorizationA = LLT ; (1.2.2)where L is lower triangular with positive diagonal elements. A matrix Mis lower  lupper triangular if mij = 0 for i < j fi > jg. The superscriptT indicates the transpose operation. In Section 2.2 we show that such afactorization always exists when A is symmetric and positive de�nite.Using (1.2.2) in (1.2.1) we haveLLTx = b; (1.2.3)and by substituting y = LTx, it is clear we can obtain x by solving thetriangular systems Ly = b; (1.2.4)and LTx = y: (1.2.5)As an example, consider the problem0BBBBB@ 4 1 2 12 21 12 0 0 02 0 3 0 012 0 0 58 02 0 0 0 16 1CCCCCA0BBBBB@ x1x2x3x4x5 1CCCCCA = 0BBBBB@ 737�4�4 1CCCCCA : (1.2.6)The Cholesky factor of the coe�cient matrix of (1.2.6) is given byL = 0BBBBB@ 20:5 0:51 �1 1:25 �:25 �:5 0:51 �1 �2 �3 1 1CCCCCA : (1.2.7)Solving Ly = b, we obtain y = 0BBBBB@ 3:52:56�2:5�0:50 1CCCCCA ;



4 CHAPTER 1. INTRODUCTIONand then solving LTx = y yieldsx = 0BBBBB@ 221�8�0:50 1CCCCCA :The example above illustrates the most important fact about applyingCholesky's method to a sparse matrix A: the matrix usually su�ers �ll-in.That is, L has nonzeros in positions which are zero in the lower triangularpart of A.Now suppose we relabel the variables xi according to the recipe xi !~x5�i+1, i = 1; 2; � � � ; 5, and rearrange the equations so that the last onebecomes the �rst, the second last becomes the second, and so on, with the�rst equation �nally becoming the last one. We then obtain the equivalentsystem of equations (1.2.8).0BBBBB@ 16 0 0 0 20 58 0 0 120 0 3 0 20 0 0 12 12 12 2 1 4 1CCCCCA0BBBBB@ ~x1~x2~x3~x4~x5 1CCCCCA = 0BBBBB@ �4�4737 1CCCCCA : (1.2.8)It should be clear that this relabelling of the variables and reordering of theequations amounts to a symmetric permutation of the rows and columns ofA, with the same permutation applied to b. We refer to this new system as~A~x = ~b. Using Cholesky's method on this new system as before, we factor~A into ~L~LT , obtaining (to three signi�cant �gures)~L = 0BBBBB@ 40 0:7910 0 1:730 0 0:7070:500 0:632 1:15 1:41 1:29 1CCCCCA :Solving ~L~y = ~b and ~LT ~x = ~y yields the solution ~x, which is simply a rear-ranged form of x. The crucial point is that our reordering of the equationsand variables provided a triangular factor ~L which is now just as sparse asthe lower triangle ofA. Although it is rarely possible in practice to achieve



1.3. POSITIVE DEFINITE VS. INDEFINITE MATRIX PROBLEMS 5this, for most sparse matrix problems a judicious reordering of the rows andcolumns of the coe�cient matrix can lead to enormous reductions in �ll-in, and hence savings in computer execution time and storage (assuming ofcourse that sparsity is exploited.) The study of algorithms which automati-cally perform this reordering process is one of the major topics of this book,along with a study of e�ective computational and storage schemes for thesparse factors ~L that these reorderings provide.The 5 by 5 matrix example above illustrates the basic characteristics ofsparse elimination and the e�ect of reordering. To emphasize these points,we consider a somewhat larger example, the zero-nonzero pattern of whichis given in Figure 1.2.1. On factoring this matrix into LLT , we obtain thestructure shown in Figure 1.2.2. Evidently the matrix in its present orderingis not good for sparse elimination, since it has su�ered a lot of �ll.Figures 1.2.3 and 1.2.5 display the structure of two symmetric permuta-tions A0 and A00 of the matrix A whose structure is shown in Figure 1.2.1.The structure of their Cholesky factors L0 and L00 is shown in Figures 1.2.4and 1.2.6 respectively. The matrix A0 has been permuted into so-calledband form, to be discussed in Chapter 4. The matrix A00 has been orderedto reduce �ll-in; a method for obtaining this type of ordering is the topic ofChapter 5. The number of nonzeros in L, L0 and L00 is 369, 189, and 177respectively.As our example shows, some orderings can lead to dramatic reductionsin the amount of �ll, or con�ne it to certain speci�c parts of L which canbe easily stored. This task of �nding a \good" ordering, which we refer toas the \ordering problem," is central to the study of the solution of sparsepositive de�nite systems.1.3 Positive De�nite Versus Inde�nite Matrix Prob-lemsIn this book we deal exclusively with the case when A is symmetric andpositive de�nite. As we noted earlier, a substantial portion of linear equa-tion problems arising in science and engineering have this property, and theordering problem is both di�erent from and easier than that for generalsparse A. For a general inde�nite sparse matrix A, some form of pivoting(row and/or column interchanges) is necessary to ensure numerical stabilityThus given A, one normally obtains a factorization of PA or PAQ, whereP and Q are permutation matrices of the appropriate size. (note that the



6 CHAPTER 1. INTRODUCTION..... ..... .......... .......... ..... .......... .......... ..... .......... ......... .
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1.3. POSITIVE DEFINITE VS. INDEFINITE MATRIX PROBLEMS 7....... ........ ....... ..... .......... ........ ..... .......... ........ ..... .......... ........ ..... .......... .... ......... .......... .... ....... ........ ...Figure 1.2.3: The structure of A0, a symmetric permutation of the matrixA, whose structure is shown in Figure 1.2.1.... .... ........... ............ ...... ............ ............ ...... ............ ............ ...... ............ ............ ...... ............ ...... ............ ............ ...... ......... ..... .Figure 1.2.4: The structure of L0, the Cholesky factor of A0, whose structureis shown in Figure 1.2.3.
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1.3. POSITIVE DEFINITE VS. INDEFINITE MATRIX PROBLEMS 9application of P on the left permutes the rows of A, and the applicationof Q on the right permutes the columns of A.) These permutations are de-termined during the factorization by a combination of (usually competing)numerical stability and sparsity requirements (Du� [12]). Di�erent matrices,even though they may have the same zero/nonzero pattern, will normallyyield di�erent P and Q, and therefore have factors with di�erent sparsitypatterns. In other words, it is in general not possible to predict where �ll-inwill occur for general sparse matrices before the computation begins. Thus,we are obliged to use some form of dynamic storage scheme which allocatesstorage for �ll-in as the computation proceeds.On the other hand, symmetric Gaussian elimination (Cholesky's method,or one of its variants, described in Chapter 2) applied to a symmetric pos-itive de�nite matrix does not require interchanges (pivoting) to maintainnumerical stability. Since PAP T is also symmetric and positive de�nite forany permutation matrix P , this means we can choose to reorder A sym-metrically i) without regard to numerical stability and ii) before the actualnumerical factorization begins.These options, which are normally not available to us when A is a generalinde�nite matrix , have enormous practical implications. Since the orderingcan be determined before the factorization begins, the locations of the �ll-insu�ered during the factorization can also be determined. Thus, the datastructure used to store L can be constructed before the actual numericalfactorization, and spaces for �ll components can be reserved. The computa-tion then proceeds with the storage structure remaining static (unaltered).Thus, the three problems of i) �nding a suitable ordering, ii) setting upthe appropriate storage scheme, and iii) the actual numerical computation,can be isolated as separate objects of study, as well as separate computersoftware modules, as depicted in Figure 1.3.1.This independence of tasks has a number of distinct advantages. It en-courages software modularity, and, in particular, allows us to tailor storagemethods to the given task at hand. For example, the use of lists to storematrix subscripts may be quite appropriate for an implementation of anordering algorithm, but decidedly inappropriate in connection with actuallystoring the matrix or its factors. In the same vein, knowing that we can use astorage scheme in a static manner during the factorization sometimes allowsus to select a method which is very e�cient in terms of storage require-ments, but would be a disaster in terms of bookkeeping overhead if it had tobe altered during the factorization. Finally, in many engineering design ap-plications, numerous di�erent positive de�nite matrix problems having the



10 CHAPTER 1. INTRODUCTIONFind thepermutation P Set up thedata structurefor L wherePAP T = LLT Perform thenumericalcomputation- -Figure 1.3.1: Sequence of tasks for sparse Cholesky factorization.same structure must be solved. Obviously, the ordering and storage schemeset-up only needs to be performed once, so it is desirable to have these tasksisolated from the actual numerical computation.In numerous practical situations matrix problems arise which are unsym-metric but have symmetric structure, and for which it can be shown thatpivoting for numerical stability is not required when Gaussian elimination isapplied. Almost all the ideas and algorithms described in this book extendimmediately to this class of problems. Some hints on how this can be doneare provided in Exercise 4.6.1 on page 103, Chapter 4.1.4 Iterative Versus Direct MethodsNumerical methods for solving systems of linear equations fall into two gen-eral classes, iterative and direct . A typical iterative method involves theinitial selection of an approximation x(1) to x, and the determination of asequence x(2), x(3); � � � such that limi!1x(i) = x. Usually the calculationof x(i+1) involves only A, b, and one or two of the previous iterates. Intheory, when we use an iterative method we must perform an in�nite num-ber of arithmetic operations in order to obtain x, but in practice we stopthe iteration when we believe our current approximation is acceptably closeto x. On the other hand, in the absence of rounding errors, direct methodsprovide the solution after a �nite number of arithmetic operations have beenperformed.Which class of method is better? The question cannot be answered ingeneral since it depends upon how we de�ne \better," and also upon theparticular problem or class of problems to be solved. Iterative methods are



1.4. ITERATIVE VERSUS DIRECT METHODS 11attractive in terms of computer storage requirements since their implemen-tations typically require only A, b, x(i) and perhaps one or two other vectorsto be stored. On the other hand, when A is factored, it typically su�ers some�ll-in, so that the �lled matrix F = L+LT has nonzeros in positions whichare zero in A. Thus, it is often true that direct methods for sparse systemsrequire more storage than implementations of iterative methods. The ac-tual ratio depends very much on the problem being solved, and also on theordering used.A comparison of iterative and direct methods in terms of computationalrequirements is even more complicated. As we have seen, the ordering usedcan dramatically a�ect the amount of arithmetic performed using Gaussianelimination. The number of iterations performed by an iterative schemedepends very much on the characteristics ofA, and on the sometimes delicateproblem of determining, on the basis of computable quantities, when x(i) is\close enough" to x.In some situations, such as in the design of some mechanical devices, orthe simulation of some time-dependent phenomena, many systems of equa-tions having the same coe�cient matrix must be solved. In this case, thecost of the direct scheme may be essentially that of solving the triangularsystem given the factorization, since the factorization cost amortized overall solutions may be negligible. In these situations it is also often the casethat the number of iterations required by an iterative scheme is quite small,since a good starting vector x(1) is often available.The above remarks should make it clear that unless the question of whichclass of method should be used is posed in a quite narrow and well de�nedcontext, it is either very complicated or impossible to answer. Our justi�ca-tion for considering only direct methods in this book is that several excellentreferences dealing with iterative methods are already available (Varga [4],Young [57]), while there is no such comparable reference known to the au-thors for direct methods for large sparse systems. In addition, there aresituations where it can be shown quite convincingly that direct methods arefar more desirable than any conceivable iterative scheme.
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Chapter 2Fundamentals2.1 IntroductionIn this chapter we examine the basic numerical algorithm used through-out the book to solve symmetric positive de�nite matrix problems. Themethod, known as Cholesky's method, was discussed brie
y in Section 1.2.In what follows we prove that the factorization always exists for positivede�nite matrices, and examine several ways in which the computation canbe performed. Although these are mathematically and (usually) numericallyequivalent, they di�er in the order in which the numbers are computed andused. These di�erences are important with respect to computer implementa-tion of the method. We also derive expressions for the amount of arithmeticperformed by the method.As we indicated in Section 1.2, when Cholesky's method is applied to asparse matrix A, it generally su�ers some �ll-in, so that its Cholesky factorL has nonzeros in positions which are zero in A. For some permutationmatrix P , we can instead factor PAP T into ~L~LT , and ~L may be muchmore attractive than L, according to some criterion. In Section 2.4 wediscuss some of these criteria, and indicate how practical implementationfactors complicate the comparison of di�erent methods.2.1.1 NotationsThe reader is assumed to be familiar with the elementary theory and prop-erties of matrices as presented in (Stewart [50]). In this section, we shalldescribe the matrix notations used throughout the book.13



14 CHAPTER 2. FUNDAMENTALSWe shall use bold face capital italic letters for matrices. The entries ofa matrix will be represented by lower case italic letters with two subscripts.For example, let A be an n by n matrix. Its (i; j)-th element is denoted byaij. The number n is called the order of the matrix A.A vector will be denoted by a lower case bold italic letter and its elementsby lower case letters with a single subscript. Thus, we havev = 0BBBB@ v1v2...vn 1CCCCA ;a vector of length n.For a given matrixA, its i-th row and i-th column are denoted byAi� andA�i respectively. When A is symmetric, we have Ai� = AT�i for i = 1; � � � ; n.We shall use In to represent the identity matrix of order n; that is, thematrix with all entries zero except for ones on the diagonal.In sparse matrix analysis, we often need to count the number of nonze-ros in a vector or matrix. We use �(2) to denote the number of nonzerocomponents in 2, where 2 stands for a vector or a matrix. Obviously,�(In) = n:We also often need to refer to the number of members in a set S ; we denotethis number by jSj.Let f(n) and g(n) be functions of the independent variable n. We usethe notation f(n) = O(g(n))if for some constant K and all su�ciently large n,����f(n)g(n) ���� � K:We say that f(n) has at most the order of magnitude of g(n). This is auseful notation in the analysis of sparse matrix algorithms, since often weare only interested in the dominant term in arithmetic and nonzero counts.For example, if f(n) = 16n3 + 12n2 � 23n, we can writef(n) = O(n3):



2.1. INTRODUCTION 15For large enough n, the relative contribution from the terms 12n2 and �23nis negligible.Expressions such as f(n) above arise in counting arithmetic operationsor numbers of nonzeros, and are often the result of some fairly complicatedsummations. Since we are usually only concerned with the dominant term,a very common device used to simplify the computation is to replace thesummation by an integral sign. For example, for large n,nXk=1(2n + k)(n� k) � Z n0 (2n + k)(n� k)dk:Exercises2.1.1) Compute directly the sum Pni=1 i2(n � i), and also approximate itusing an integral, as described at the end of this section.2.1.2) Compute directly the sum Pni=1Pn�i+1j=1 (i+ j), and also approximateit using a double integral.2.1.3) Let A and B be two n by n sparse matrices. Show that the numberof multiplications required to compute C = AB is given bynXi=1 �(A�i)�(Bi�):2.1.4) Let B be a given m by n sparse matrix. Show that the product BTBcan be computed using12 mXi=1 �(Bi�)(�(Bi�) + 1)multiplications.2.1.5) A common scheme to store a sparse vector has a main storage arraywhich contains all the nonzero entries in the vector, and an accom-panying vector which gives the subscripts of the nonzeros. Let u andv be two sparse vectors of size n stored in this format. Consider thecomputation of the inner product w = uTv.a) If the subscript vectors are in ascending (or descending) order,show that the inner product can be done using only O(�(u) +�(v)) comparisons.



16 CHAPTER 2. FUNDAMENTALSb) What if the subscripts are in random order?c) How would you perform the computation if the subscripts are inrandom order and a temporary real array of size n with all zeroentries is provided?2.2 The Factorization Algorithm2.2.1 Existence and Uniqueness of the FactorizationA symmetric matrixA is positive de�nite if xTAx > 0 for all nonzero vectorsx. Such matrices arise in many applications; typically xTAx represents theenergy of some physical system which is positive for any con�guration x. Ina positive de�nite matrix A the diagonal entries are always positive sinceeTi Aej = aij;where ei is the i-th characteristic vector , the components of which are allzeros except for a one in the i-th position. This observation will be used inproving the following factorization theorem due to Cholesky (Stewart [50]).Theorem 2.2.1 If A is an n by n symmetric positive de�nite matrix, it hasa unique triangular factorization LLT , where L is a lower triangular matrixwith positive diagonal entries.Proof: The proof is by induction on the order of the matrix A. The resultis certainly true for one by one matrices since a11 is positive.Suppose the assertion is true for matrices of order n � 1. Let A be asymmetric positive de�nite matrix of order n. It can be partitioned into theform A =  d vTv �H ! ;where d is a positive scalar and �H is an n � 1 by n � 1 submatrix. Thepartitioned matrix can be written as the product pd 0vpd In�1 ! 1 00 H ! pd vTpd0 In�1 ! ;where H = �H� vvTd . Clearly the matrixH is symmetric. It is also positivede�nite since for any nonzero vector x of length n� 1,� �xTvd xT � d vTv �H ! �xTvdx ! = xT  �H � vvTd !x



2.2. THE FACTORIZATION ALGORITHM 17= xTHx;which implies xTHx > 0. By the induction assumption, H has a triangularfactorization LHLTH with positive diagonals. Thus, A can be expressed as pd 0vpd In�1 ! 1 00 LH ! 1 00 LTH ! pd vTpd0 In�1 !=  pd 0vpd LH ! pd vTpd0 LTH != LLT :It is left to the reader to show that the factor L is unique. 2If we apply the result to the matrix example 4 88 25 ! ;we obtain the factors  2 04 3 ! 2 40 3 ! :It is appropriate here to point out that there is a closely related fac-torization of a symmetric positive de�nite matrix (Martin [40]). Since theCholesky factor L has positive diagonal elements, one can factor out a diag-onal matrix D1=2 from L, yielding L = ~LD1=2 whence we haveA = ~LD ~LT : (2.2.1)In the above matrix example, this alternative factorization is 1 02 1 ! 4 00 9 ! 1 20 1 ! :This factorization is as easy to compute as the original, and can be obtainedwithout square root calculation (see Exercise 2.2.4 on page 25). We donot use it in our book because in some circumstances it leads to certaindisagreeable asymmetries in calculations involving partitioned matrices.



18 CHAPTER 2. FUNDAMENTALS2.2.2 Computing the FactorizationTheorem 2.2.1 guarantees the existence and uniqueness of the Cholesky fac-tor for a symmetric positive de�nite matrix, but the order and the way inwhich the components of the factor L are actually computed can vary. Inthis section, we examine some di�erent ways in which L can be computed;these options are important because they provide us with 
exibility in thedesign of storage schemes for the sparse matrix factor L.The constructive proof of Theorem 2.2.1 suggests a computational schemeto determine the factor L. It is the so-called outer product form of the algo-rithm. The scheme can be described step by step in matrix terms as follows.A = A0 = H0 =  d1 vT1v1 �H1 ! (2.2.2)=  pd1 0v1pd1 In�1 ! 1 00 �H1 � v1vT1d1 ! pd1 vT1pd10 In�1 != L1 1 00 H1 !LT1= L1A1LT1 ;A1 =  1 00 H1 ! = 0B@ 1 0 00 d2 vT20 v2 �H2 1CA= 0B@ 1 0 00 pd2 00 v2pd2 In�2 1CA0B@ 1 0 00 1 00 0 �H2 � vvTd2 1CA0B@ 1 0 00 pd2 vT2pd20 0 In�2 1CA= L2A2LT2 ;...An�1 = LnInLTn :Here, for 1 � i � n, di is a positive scalar, vi is a vector of length n� i,and H i is an n� i by n � i positive de�nite symmetric matrix.After n steps of the algorithm, we haveA = L1L2 � � �LnLTn � � �LT2LT1 = LLT ;



2.2. THE FACTORIZATION ALGORITHM 19where it can be shown (see Exercise 2.2.6 on page 26 ) thatL = L1 +L2 + � � �+ Ln � (n� 1)In: (2.2.3)Thus, the i-th column of L is precisely the i-th column of Li.In this scheme, the columns of L are computed one by one. At the sametime, each step involves the modi�cation of the submatrix �Hi by the outerproduct vivTi =di to give H i, which is simply the submatrix remaining tobe factored. The access to the components of A during the factorization isdepicted as follows.
6 -@@@@@@@@@@@@@@@ modi�edno longer accessedfactoring columnFigure 2.2.1: Access pattern in the outer product formulation of the Choleskyfactorization algorithm.An alternative formulation of the factorization process is the borderingmethod . Suppose the matrix A is partitioned asA =  M uuT s ! ;where the symmetric factorization LMLTM of the n � 1 by n � 1 leadingprincipal submatrix M has already been obtained. (Why is M positivede�nite?) Then the factorization of A is given byA =  LM 0wT t ! LTM w0 t ! ; (2.2.4)



20 CHAPTER 2. FUNDAMENTALSwhere w = L�1Mu (2.2.5)and t = (s�wTw)1=2:(Why is s �wTw positive?)Note that the factorizationLMLTM of the submatrixM is also obtainedby the bordering technique. So, the scheme can be described as follows.For i = 1; 2; � � � ; n,Solve 0B@ l1;1 O... . . .li�1;1 � � � li�1;i�1 1CA0B@ li;1...li;i�1 1CA = 0B@ ai;1...ai;i�1 1CA.Compute li;i =  ai;i � i�1Xk=1 l2i;k!1=2.In this scheme, the rows of L are computed one at a time; the part ofthe matrix remaining to be factored is not accessed until the correspondingpart of L is to be computed. The sequence of computations can be depictedas follows. �?@@@@@@@@@@@@@@@ accessed and modi�ednot yet accessedcomputed and accessedFigure 2.2.2: Access pattern in the bordering method.The �nal scheme for computing the components of L is the inner productform of the algorithm. It can be described as follows.



2.2. THE FACTORIZATION ALGORITHM 21For j = 1; 2; � � � ; nCompute lj;j =  aj;j � j�1Xk=1 l2j;k!1=2.For i = j + 1; j + 2; � � � ; nCompute li;j =  ai;j � j�1Xk=1 li;klj;k! =lj;j.These formulae can be derived directly by equating the elements of A to thecorresponding elements of the product LLT .Like the outer product version of the algorithm, the columns of L arecomputed one by one, but the part of the matrix remaining to be factoredis not accessed during the scheme. The sequence of computations and therelevant access to the components of A (or L) is depicted as follows.
-6

@@@@@@@@@@@@@@@ not accessedaccessed and modi�ed computed and accessedFigure 2.2.3: Access pattern in the inner product formulation of the Choleskyfactorization algorithm.The latter two formulations can be organized so that only inner productsare involved. This can be used to improve the accuracy of the numericalfactorization by accumulating the inner products in double precision. Onsome computers, this can be done at little extra cost.



22 CHAPTER 2. FUNDAMENTALS2.2.3 Sparse Matrix FactorizationAs we have seen in Chapter 1, when a sparse matrix is factored, it usuallysu�ers some �ll-in; that is, the lower triangular factor L has nonzero compo-nents in positions which are zero in the original matrix. Recall in Section 1.2the factorization of the matrix exampleA = 0BBBBB@ 4 1 2 12 21 12 0 0 02 0 3 0 012 0 0 58 02 0 0 0 16 1CCCCCA :Its triangular factor L is given byL = 0BBBBB@ 2 0 0 0 00:5 0:5 0 0 01 �1 1 0 00:25 �0:25 �0:5 0:5 01 �1 �2 �3 1 1CCCCCAso that the matrix A su�ers �ll at a32, a42, a43, a52, a53 and a54. Thisphenomenon of �ll-in, which is usually ignored in solving dense systems,plays a crucial role in sparse elimination.The creation of nonzero entries can be best understood using the outer-product formulation of the factorization process. At the i-th step, the sub-matrix �Hi is modi�ed by the matrix vivTi =di to give Hi. As a result, thesubmatrix H i may have nonzeros in locations which are zero in �Hi. In theexample above, �H1 = 0BBB@ 12 0 0 00 3 0 00 0 58 00 0 0 16 1CCCAand it is modi�ed at step 1 to give (to three signi�cant �gures)H1 = �H1 � 14 0BBB@ 12122 1CCCA� 1 2 12 2 �



2.2. THE FACTORIZATION ALGORITHM 23= 0BBB@ :25 �:5 �:125 �:5�:5 2 �:25 �1�:125 �:25 :563 �:25�:5 �1 �:25 15 1CCCA :If zeros are exploited in solving a sparse system, �ll-in a�ects both thestorage and computation requirements. Recall that �(2) is the number ofnonzero components in 2, where 2 stands for a vector or a matrix. Clearly,from (2.2.2) and (2.2.3), the number of nonzeros in L is given by�(L) = n + n�1Xi=1 �(vi): (2.2.6)In the following theorem, and throughout the book, we measure arith-metic requirements by the number of multiplicative operations (multiplica-tions and divisions), which we simply refer to as \operations." The majorityof the arithmetic performed in matrix operations involves sequences of arith-metic operations which occur in multiply-add pairs, so the number of addi-tive operations is about equal to the number of multiplicative operations.Theorem 2.2.2 The number of operations required to compute the triangu-lar factor L of the matrix A is given by12 n�1Xi=1 �(vi)(�(vi) + 3) = 12 n�1Xi=1(�(L�i)� 1)(�(L�i) + 2): (2.2.7)Proof: The three formulations of the factorization di�er only in the order inwhich operations are performed. For the purpose of counting operations, theouter-product formulation (2.2.2) is used. At the i-th step, �(vi) operationsare required to compute vi=pdi, and 12�(vi)(�(vi)+1) operations are neededto form the symmetric matrixvivTidi = � vipdi�� vipdi�T :The result follows from summing over all the steps. 2For the dense case, the number of nonzeros in L is12n(n + 1) (2.2.8)



24 CHAPTER 2. FUNDAMENTALSand the arithmetic cost is12 n�1Xi=1 i(i+ 3) = 16n3 + 12n2 � 23n: (2.2.9)Consider also the Cholesky factorization of a symmetric positive de�nitetridiagonal matrix, an example of a sparse matrix. It can be shown (seeChapter 5) that if L is its factor,�(L�i) = 2; for i = 1; � � � ; n� 1:In this case, the number of nonzeros in L is�(L) = 2n� 1;and the arithmetic cost of computing L is12 n�1Xi=1 1(4) = 2(n� 1):Comparing these results with the counts for the dense case, we see adramatic di�erence in storage and computational costs.The costs for solving equivalent sparse systems with di�erent orderingscan also be very di�erent. As illustrated in Section 1.2, the matrix exampleA at the beginning of this section can be ordered so that it does not su�erany �ll-in at all! The permutation matrix used isP = 0BBBBB@ 0 0 0 0 10 0 0 1 00 0 1 0 00 1 0 0 01 0 0 0 0 1CCCCCAwhich reverses the ordering of A when applied. We obtain the permutedmatrix PAP T = 0BBBBB@ 16 0 0 0 20 58 0 0 120 0 3 0 20 0 0 12 12 12 2 1 4 1CCCCCA



2.2. THE FACTORIZATION ALGORITHM 25This simple example illustrates that a judicious choice of P can resultin dramatic reductions in �ll-in and arithmetic requirements. Therefore, insolving a given linear equation problemAx = b;the general procedure involves �rst �nding a permutation or ordering P ofthe given problem. Then the system is expressed as(PAP T )(Px) = Pband Cholesky's method is applied to the symmetric positive de�nite matrixPAP T yielding the triangular factorization LLT . By solving the equivalentpermuted system, we can often achieve a reduction in the computer storageand execution time requirements.Exercises2.2.1) Show that the Cholesky factorization for a symmetric positive de�-nite matrix is unique.2.2.2) Let A be an n by n symmetric positive de�nite matrix. Show thata) any principal submatrix of A is positive de�nite,b) A is nonsingular and A�1 is also positive de�nite,c) max1�i�n aii = max1�i;j�n jaijj.2.2.3) Let A be a symmetric positive de�nite matrix. Show thata) BTAB is positive de�nite if and only if B is non-singular,b) the augmented matrix  A uuT s !is positive de�nite if and only if s > uTA�1u.2.2.4) Write out equations similar to those in (2.2.2) and (2.2.3) which yieldthe factorization LDLT , where L is now lower triangular with oneson the diagonal, and D is a diagonal matrix with positive diagonalelements.



26 CHAPTER 2. FUNDAMENTALS2.2.5) Let E and F be two n by n lower triangular matrices which for somek (1 � k � n) satisfyejj = 1 for j > keij = 0 for i > j and j > kfjj = 1 for j � kfij = 0 for i > j and j � k:The case when n = 6 and k = 3 is depicted below.E = 0BBBBBBB@ �� � O� � �� � � 1� � � 0 1� � � 0 0 1 1CCCCCCCA F = 0BBBBBBB@ 10 1 O0 0 10 0 0 �0 0 0 � �0 0 0 � � � 1CCCCCCCAShow that EF = E + F � I , and hence prove that (2.2.3) holds.2.2.6) Give an example of a symmetric matrix which does not have a tri-angular factorization LLT and one which has more than one factor-ization.2.3 Solving Triangular Systems2.3.1 Computing the SolutionOnce we have computed the factorization, we must solve the triangular sys-tems Ly = b and LTx = y. In this section, we consider the numericalsolution of triangular systems.Consider the n by n linear systemTx = bwhere T is nonsingular and triangular. Without loss of generality, we assumethat T is lower triangular. There are two common ways of solving the system,which di�er only in the order in which the operations are performed.The �rst one involves the use of inner-products and the de�ning equationsare given by:



2.3. SOLVING TRIANGULAR SYSTEMS 27For i = 1; 2; � � � ; n, xi =  bi � i�1Xk=1 ti;kxk! =ti;i: (2.3.1)The sequence of computations is depicted by the diagram in Figure 2.3.1.������������................................................................. ��.......................... ........................................................................................................ .......................... .................................................... ..........................�@@@@@@@@@@@@@@@ ..........................��..........................�����..........................@@..........................@@@@@.............� - ? accessednot yetcomputedbeingaccessedcomputed andaccessedno longer
Figure 2.3.1: Access pattern in the inner product formulation of the trian-gular solution algorithm.The second method uses the matrix components of T in the same wayas the outer-product version of the factorization. The de�ning equations areas follows.For i = 1; 2; � � � ; n, xi = bi=ti;i0B@ bi+1...bn 1CA 0B@ bi+1...bn 1CA� xi0B@ ti+1;i...tn;i 1CA (2.3.2)Note that this scheme lends itself to exploiting sparsity in the solution x.If bi turns out to be zero at the beginning of the i-th step, xi is zero andthe entire step can be skipped. The access to components of the system isshown as follows.



28 CHAPTER 2. FUNDAMENTALS@@@@@@@@@@@@@@@.......................... .......................... ....................................... .......................... .......................... ..........................��..........................�����..........................@@.................................................... @@@
.......................... -.......................... .......................... � @@?.......................... ..........................@@@@@@@@@@@@@@.......................... ............. accessednot yetcomputedbeingaccessedcomputed andaccessedno longer
Figure 2.3.2: Access pattern in the outer product formulation of the trian-gular solution algorithm.The former solution method accesses the components of the lower tri-angular matrix row by row and therefore lends itself to row-wise storageschemes. If the matrix is stored column by column, the latter method ismore appropriate. It is interesting to note that this column oriented methodis often used to solve the upper triangular systemLTx = y;where L is a lower triangular matrix stored using a row-wise scheme.2.3.2 Operation CountsWe now establish some simple results about solving triangular systems. Theywill be helpful later in obtaining operation counts.Consider the solution of Tx = b;where T is nonsingular and lower triangular.Lemma 2.3.1 The number of operations required to solve for x isXi f�(T �i) j xi 6= 0g



2.3. SOLVING TRIANGULAR SYSTEMS 29Proof: It follows from (2.3.2) that if xi 6= 0, the i-th step requires �(T �i)operations. 2Corollary 2.3.2 If the sparsity of the solution vector x is not exploited(that is, x is assumed to be full), then the number of operations required tocompute x is �(T ).Thus, it follows that the operation count for solving Tx = b, when Tand x are full, is 12n(n + 1): (2.3.3)The following results give some relationships between the structure ofthe right hand side b and the solution x of a lower triangular system.Lemma 2.3.3 and Corollary 2.3.5 appeal to a no-cancellation assumption;that is, whenever two nonzero quantities are added or subtracted, the re-sult is nonzero. This means that in the analysis we ignore any zeros whichmight be created through exact cancellation. Such cancellation rarely oc-curs, and in order to predict such cancellation we would have to know thenumerical values of T and b. Such a prediction would be di�cult in general,particularly in 
oating point arithmetic which is subject to rounding error.Lemma 2.3.3 With the no-cancellation assumption, if bi 6= 0 then xi 6= 0.Proof: Since T is non-singular, tii 6= 0 for 1 � i � n. The result then followsfrom the no-cancellation assumption and the de�ning equation (2.3.1) for xi.2Lemma 2.3.4 Let x be the solution to Tx = b. If bi = 0 for 1 � i � k,then xi = 0 for 1 � i � k.Corollary 2.3.5 With the no-cancellation assumption, �(b) � �(x).Exercises2.3.1) Use Lemma 2.3.1 to show that factorization by the bordering schemerequires 12 n�1Xi=1(�(L�i)� 1)(�(L�i) + 2)operations.2.3.2) Show that the inverse of a nonsingular lower triangular matrix islower triangular (use Lemma 2.3.4).



30 CHAPTER 2. FUNDAMENTALS2.3.3) Let T be a nonsingular lower triangular matrix with the propagationproperty , that is, ti;i�1 6= 0 for 2 � i � n.a) Show that in solving Tx = b, if bi 6= 0 then xj 6= 0 for i � j � n.b) Show that T�1 is a full lower triangular matrix.2.3.4) Does Lemma 2.3.1 depend upon the no-cancellation assumption? Ex-plain. What about Theorem 2.2.2 and Lemma 2.3.4?2.3.5) Prove a result analogous to Lemma 2.3.4 for upper triangular matri-ces.2.3.6) Suppose you have numerous n by n lower triangular systems of theform Ly = b to solve, where L and b are both sparse. It is knownthat the solution y is also sparse for these problems. You have achoice of two storage schemes for L, as illustrated by the 5 by 5example in Figure 2.3.3; one is column oriented and one is row ori-ented. Which one would you choose, and why would you choose it?If you wrote a Fortran program to solve such systems using yourchoice of data structures, would the execution time be proportionalto the number of operations performed? Explain. (Assume that thenumber of operations performed is at least O(n).)2.3.7) Let L and W be n by n non-sparse lower triangular matrices, withnonzero diagonal elements. Approximately how many operations arerequired to compute L�1W ? How many operations are required tocompute W TW ?2.3.8) Suppose that n = 1 + k(p � 1) for some positive integer k, andthat W is an n by p full (pseudo) lower triangular matrix. That is,W has zeros above position 1 + (i � 1)k in column i of W , and isnonzero otherwise. An example with n = 7 and p = 4 appears below.Roughly how many operations are required to compute W TW , interms of n and p ? 0BBBBBBBBBB@ �� O� �� �� � �� � �� � � � 1CCCCCCCCCCA



2.3. SOLVING TRIANGULAR SYSTEMS 31L = 0BBBBB@ 30 2 O2 0 40 3 9 50 0 7 0 7 1CCCCCAScheme 13 2 2 4 3 9 5 7 7 numerical values1 2 1 3 2 3 4 3 5 column subscripts1 2 3 5 8 10 index vector6 6 6 6 6 6Scheme 23 2 2 3 4 9 7 5 7 numerical values1 3 2 4 3 4 5 4 5 row subscripts1 3 5 8 9 10 index vector6 6 6 6 6 6Figure 2.3.3: Two storage schemes for a 5 by 5 lower triangular matrix L.



32 CHAPTER 2. FUNDAMENTALS2.3.9) Suppose L is a nonsingular n by n lower triangular matrix, and W isas described in Exercise 2.3.8. Approximately how many operationsare required to compute L�1W , as a function of n and p?2.3.10) a) Suppose A = LLT , where L is as in Exercise 2.3.9 and �(L�i) �2; 1 � i � n. Assuming the no-cancellation assumption, showthat computingA�1 by solving LW = I and LTZ = W yieldsa full matrix.b) Suppose A is unsymmetric with triangular factorization LU ,where L is unit lower triangular and U is upper triangular.State the conditions and results analogous to those in a) above.2.4 Some Practical ConsiderationsThe objective of studying sparse matrix techniques for solving linear systemsis to reduce cost by exploiting sparsity of the given system. We have seenin Section 2.2.3 that it is possible to achieve drastic reductions in storageand arithmetic requirements, when the solutions of dense and tridiagonalsystems are compared.There are various kinds of sparse storage schemes, which di�er in the wayzeros are exploited. Some might store some zeros in exchange for a simplerstorage scheme; others exploit all the zeros in the system. In Chapters 4 to8, we discuss the commonly used sparse schemes for solving linear systems.The choice of a storage method naturally a�ects the storage require-ment, and the use of ordering strategies (choice of permutation matrix P ).Moreover, it has signi�cant impact on the implementation of the factoriza-tion and solution, and hence on the complexity of the programs and theexecution time.However, irrespective of what sparse storage scheme is used, there arefour distinct phases that can be identi�ed in the entire computational pro-cess.Step 1 (Ordering) Find a \good" ordering (permutation P ) for the givenmatrix A, with respect to the chosen storage method.Step 2 (Storage allocation) Determine the necessary information about theCholesky factor L of PAP T to set up the storage scheme.Step 3 (Factorization) Factor the permuted matrix PAP T into LLT .



2.4. SOME PRACTICAL CONSIDERATIONS 33Step 4 (Triangular solution) Solve Ly = b and LTz = y. Then set x =P Tz.Even with a prescribed storage method, there are many ways for �nd-ing orderings, determining the corresponding storage structure of L, andperforming the actual numerical computation. We shall refer to a sparsestorage scheme and an associated ordering-allocation-factorization-solutioncombination collectively as a solution method .The most commonly cited objectives for choosing a solution method areto a) reduce computer storage, b) reduce computer execution time or c)reduce some combination of storage and execution which re
ects the waycharges are assessed to the user of the computer system. Although there areother criteria which sometimes govern the choice of method, these are themain ones and serve to illustrate the complications involved in evaluating astrategy.In order to be able to declare that one method is better than anotherwith respect to one of the measures cited above, we must be able to evaluateprecisely that measure for each method, and this evaluation is substantiallymore complicated than one would expect. We deal �rst with the computerstorage criterion.2.4.1 Storage RequirementsComputer storage used for sparse matrices typically consists of two parts,primary storage used to hold the numerical values, and overhead storage,used for pointers, subscripts and other information needed to record thestructure of the matrix and to facilitate access to the numerical values. Sincewe must pay for computer storage regardless of how it is used, any evaluationof storage requirements for a solution method must include a description ofthe way the matrix or matrices involved are to be stored, so that the storageoverhead can be included along with the primary storage in the storagerequirement. The comparison of two di�erent strategies with respect to thestorage criterion may involve basically di�erent data structures, having verydi�erent storage overheads. Thus, a method which is superior in terms ofreducing primary storage may be inferior when overhead storage is includedin the comparison. This point is illustrated pictorially in Figure 2.4.1.As a simple example, consider the two orderings of a matrix problem inFigure 2.4.2, along with their corresponding factors L and ~L. The elementsof the lower triangle of L (excluding the diagonal) are stored row by row in



34 CHAPTER 2. FUNDAMENTALS
Primary OverheadPrimary OverheadFigure 2.4.1: Primary/Overhead storage for two di�erent methods.a single array, with a parallel array holding their column subscripts. A thirdarray indicates the position of each row, and a fourth array contains thediagonal elements of L. The matrix ~L is stored using the so-called envelopestorage scheme, described in Chapter 4. Nonzeros in A are denoted by �,with � denoting �ll-in components in L or ~L.The examples in Figures 2.4.2 and 2.4.3 illustrate some important pointsabout orderings and storage schemes. On the surface, ordering 1, corre-sponding to A appears to be better than ordering 2 since it yields no �ll-inat all, whereas the latter ordering causes two �ll components. Moreover,the storage scheme used for ~L appears to be inferior to that used for L,since the latter actually ignores some sparsity, while all the sparsity in Lis exploited. However, because of di�erences in overhead, the second or-dering/storage combination yields the lower total storage requirement. Ofcourse the di�erences here are trivial, but the point is valid. As we increasethe sophistication of our storage scheme, exploiting more and more zeros, theprimary storage decreases, but the overhead usually increases. There is usu-ally a point where it pays to ignore some zeros, because the overhead storagerequired to exploit them is more than the decrease in primary storage.To summarize, the main points in this section are:1. Storage schemes for sparse matrices involve two components: primarystorage and overhead storage.2. Comparisons of ordering strategies must take into account the storagescheme to be used, if the comparison is to be practically relevant.



2.4. SOME PRACTICAL CONSIDERATIONS 35
A = 266666666666666664 � �� �� �� �� �� �� � � �� � � �� � � �� � � � �

377777777777777775 =) 266666666666666664 � � � � � �� � �� � �� � �� � � �
377777777777777775 = L

~A = 266666666666666664 � �� �� � � �� �� � � �� � �� � �� � � �� �� �
377777777777777775 =) 266666666666666664 � �� � � �� �� �� � �� g� �� �� g� �

377777777777777775 = ~LFigure 2.4.2: Two di�erent orderings for a sparse matrix A, along with thesparsity patterns of their respective triangular factors L and ~L.



36 CHAPTER 2. FUNDAMENTALSStorage scheme for L111111135710
l71l74l83l86l92l95l10;7l10;8l10;8numericalvalues

143625789sub-scripts
l11l22l33l44l55l66l77l88l99l10;10diagonalelements

-----
primary storage 19overhead storage 20total storage 39

Storage scheme for ~L11133579121315
~l31~l32~l530~l640~l75~l76~l850~l87~l98~l10;8~l10;9numericalvalues

~l11~l22~l33~l44~l55~l66~l77~l88~l99~l10;10diagonalelements
--------primary storage 24overhead storage 11total storage 35Figure 2.4.3: Storage schemes for the matrices L and ~L of Figure 2.4.2.



2.4. SOME PRACTICAL CONSIDERATIONS 372.4.2 Execution TimeWe now turn to computer execution time as a criterion. It is helpful inthe discussion to consider the four steps in the entire computation process:ordering, allocation, factorization and solution.As we shall see in Chapter 9, the execution times required to �nd dif-ferent orderings can vary dramatically. But even after we have found theordering, there is much left to do before we can actually begin the numer-ical computation. We must set up the appropriate storage scheme for L,and in order to do this we must determine its structure. This allocationstep also varies in cost, depending on the ordering and storage scheme used.Finally, as we shall see through the numerous experiments supplied in Chap-ter 9, di�erences in storage schemes can lead to substantial di�erences in thearithmetic operations-per-second output of the factorization and triangularsolution subroutines. Normally, the execution of a sparse matrix programwill be (or should be) roughly proportional to the amount of arithmetic per-formed. However, di�erences in orderings and data structures can lead tolarge di�erences in the constant of proportionality. Thus, arithmetic op-eration counts may not be a very reliable measure for comparing solutionmethods, or at best must be used with care. The constant of proportionalityis a�ected not only by the data structure used, but also by the computerarchitecture, compiler, and operating system.In addition to the variation in the respective costs of executing eachof the steps above, comparisons of di�erent strategies often depend on theparticular context in which a problem is being solved. If the given matrixproblem is to be solved only once, a comparison of strategies should surelyinclude the execution time required to produce the ordering and set up thestorage scheme.However, sometimes many di�erent problems having the same structuremust be solved, and it may be reasonable to ignore this initialization costin comparing methods, since the bulk of the execution time involves thefactorization and triangular solutions. In still other circumstances, manysystems di�ering only in their right hand sides must be solved. In thiscase, it may be reasonable to compare strategies simply on the basis of theirrespective triangular solution times.To summarize, the main points of the section are:1. The overall solution of Ax = b involves four basic steps. Their relativeexecution times in general vary substantially over di�erent orderingsand storage schemes.



38 CHAPTER 2. FUNDAMENTALS2. Depending on the problem context, the execution times of some of thesteps mentioned above may be practically irrelevant when comparingmethods.Exercises2.4.1) Suppose you have a choice of two methods (method 1 and method2) for solving a sparse system of equations Ax = b and the crite-rion for the choice of method is execution time. The ordering andallocation steps for method 1 require a total of 20 seconds, while thecorresponding time for method 2 is only 2 seconds. The factorizationtime for method 1 is 6 seconds and the solve time is .5 seconds, whilefor method 2 the corresponding execution times are 10 seconds and1.5 seconds.a) What method would you choose if the system is to be solved onlyonce?b) What method would you choose if twelve systems Ax = b, hav-ing the same sparsity structure but di�erent numerical valuesin A and b are to be solved?c) What is your answer to b) if only the numerical values of theright side b di�er among the di�erent systems?2.4.2) Suppose for a given class of sparse positive de�nite matrix problemsyou have a choice between two orderings, \turtle" and \hare." Yourfriend P.C.P. (Pure Complexity Pete, Esq.), shows that the turtle or-dering yields triangular factors having �t(n) � n3=2+n�pn nonzeros,where n is the size of the problem. He also shows that the corre-sponding function for the hare ordering is �h(n) � 7:75n log2(pn +1)� 24n+ 11:5pn log2(pn+ 1) + 11pn+ :75 log2(pn+ 1). Anotherfriend, C.H.H. (Computer Hack Harold), implements linear equa-tion solvers which use storage schemes appropriate for each ordering.Harold �nds that for the hare implementation he needs one integerdata item (a subscript) for each nonzero element of L, together with3 pointer arrays of length n. For the turtle implementation, theoverhead storage is only n pointers.a) Suppose your choice of methods is based strictly on the totalcomputer storage used to hold L, and that integers and 
oating



2.4. SOME PRACTICAL CONSIDERATIONS 39point numbers each require one computer word. For what valuesof n would you use the hare implementation?b) What is your answer if Harold changes his programs so thatintegers are packed three to a computer word?
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Chapter 3Some Graph TheoryNotation and Its Use in theStudy of Sparse SymmetricMatrices3.1 IntroductionIn this chapter we introduce a few basic graph theory notions, and estab-lish their correspondence to matrix concepts. Although rather few resultsfrom graph theory have found direct application to the analysis of sparsematrix computations, the notation and concepts are convenient and helpfulin describing algorithms and identifying or characterizing matrix structure.Nevertheless, it is easy to become over-committed to the use of graph theoryin such analyses, and the result is often to obscure some basically simpleideas in exchange for notational elegance. Thus, although we may sacri-�ce uniformity, where it is appropriate and aids the presentation, we willgive de�nitions and results in both graph theory and matrix terms. In thesame spirit, our intention is to introduce most graph theory notions only asthey are required, rather than introducing them all in this section and thenreferring to them later. 41



42 CHAPTER 3. GRAPH THEORY NOTATION3.2 Basic Terminology and Some De�nitionsFor our purposes, a graph G = (X;E) consists of a �nite set of nodes orvertices together with a set E of edges , which are unordered pairs of vertices.An ordering flabellingg � of G = (X;E) is simply a mapping of f1; 2; : : : ; ngonto X , where n denotes the number of nodes of G. Unless we speci�callystate otherwise, a graph will be unordered; the graph G labelled by � willbe denoted by G� = (X�; E).Since our objective in introducing graphs is to facilitate the study ofsparse matrices, we now establish the relationship between graphs and ma-trices. Let A be an n by n symmetric matrix. The ordered graph of A,denoted by GA = (XA; EA) is one for which the n vertices of GA arenumbered from 1 to n, and fxi; xjg 2 EA if and only if aij = aji 6= 0; i 6= j.Here xi denotes the node of XA with label i. Figure 3.2.1 illustrates thestructure of a matrix and its labelled graph. We denote the i-th diagonalelement of a matrix by circle i to emphasize its correspondence with node iof the corresponding graph. O�-diagonal nonzeros are depicted by �.266666664 g1 � �� g2 � �� g3 �� g4� g5 �� � g6 377777775 �
���
�� �
�� �
���
�� �
��BBBBB �����61 2 34 5Matrix A Graph GAFigure 3.2.1: A matrix and its labelled graph, with � denoting a nonzeroentry of A.For any n by n permutation matrix P 6= I , the unlabelled graphs of Aand PAP T are the same but the associated labellings are di�erent. Thus,the unlabelled graph of A represents the structure of A without suggest-ing any particular ordering. It represents the equivalence class of matricesPAP T , where P is any n by n permutation matrix. Finding a \good" per-mutation for A can be regarded as �nding a good labelling for its graph.



3.2. BASIC TERMINOLOGY AND SOME DEFINITIONS 43Figure 3.2.2 illustrates these points.266666664 g1 �� g2 � �� g3 �� g4 �� g5 �� � g6 377777775 �
���
�� �
�� �
���
�� �
��BBBBB �����56 2 31 4QAQT GQAQT266666664 g1 � �g2 � �� g3 �� � g4 �� � g5� g6 377777775 �
���
�� �
�� �
���
�� �
��BBBBB �����52 4 36 1PAP T GPAP TFigure 3.2.2: Graph of Figure 3.2.1 with di�erent labellings, and the corre-sponding matrix structures. Here P amd Q denote permutation matrices.Some graph theory de�nitions involve unlabelled graphs. In order tointerpret these de�nitions in matrix terms, we must have a matrix to referto, and this immediately implies an ordering on the graph. Although thisshould not cause confusion, the reader should be careful not to attach anysigni�cance to the particular ordering chosen in our matrix examples andinterpretations. When we refer to \the matrix corresponding to G," wemust either specify some ordering � of G, or understand that some arbitraryordering is assumed.Two nodes x and y in G are adjacent if fx; yg 2 E. For Y � X , theadjacent set of Y , denoted by Adj(Y ), isAdj(Y ) = fx 2 X � Y j fx; yg 2 E; y 2 Y g : (3.2.1)



44 CHAPTER 3. GRAPH THEORY NOTATIONHere and elsewhere in this book, the notation Y � X means that Y maybe equal to X . When Y is intended to be a proper subset of X , we willexplicitly indicate so. In words, Adj(Y ) is simply the set of nodes in Gwhich are not in Y but are adjacent to at least one node in Y . Figure 3.2.3illustrates the matrix interpretation of Adj(Y ). For convenience, the set Yhas been labelled consecutively. When Y is the single node y, we will writeAdj(y) rather than the formally correct Adj(fyg).0BBBBBBB@ g1 � �� g2 � �� g3 �� g4� g5 �� � g6 1CCCCCCCA��� �
���
�� �
�� �
���
�� �
��BBBBB �����61 2 34 5Matrix A Graph GAY = fx1; x2g; Adj(Y ) = fx3; x4; x6gFigure 3.2.3: An illustration of the adjacent set of a set Y � X .For Y � X , the degree of Y , denoted by Deg(Y ), is simply the numberjAdj(Y )j, where jSj denotes the number of members in the set S. Again,when Y is a single node y we write Deg(y) rather than Deg(fyg). Forexample, in Figure 3.2.3, Deg(x2) = 3.A subgraph G0 = (X 0; E 0) of G is a graph for which X 0 � X and E 0 � E.For Y � X , the section graph G(Y ) is the subgraph (Y;E(Y )), whereE(Y ) = ffx; yg 2 E j x 2 Y; y 2 Y g : (3.2.2)In matrix terms, the section graph G(Y ) is the graph of the matrix obtainedby deleting all rows and columns from the matrix of G except those corre-sponding to Y . This is illustrated in Figure 3.2.4.A section graph is said to be a clique if the nodes in the subgraph arepairwise adjacent. In matrix terms, a clique corresponds to a full submatrix.For example G(fx2; x4g) is a clique.



3.2. BASIC TERMINOLOGY AND SOME DEFINITIONS 45264 g2 �� g3 g6 375 �
���
�� �
��62 3Matrix of G(Y ) G(Y )Y = fx2; x3; x6gFigure 3.2.4: Example of a section graph G(Y ) and the matrix correspon-dence. The original graph G is that of Figure 3.2.1.The example in Figure 3.2.4 illustrates a concept we now explore, namelythat of the connectedness of a graph. For distinct nodes x and y in G, apath from x to y of length l � 1 is an ordered set of l + 1 distinct nodes(v1; v2; : : : ; vl+1) such that vi+1 2 Adj(vi), i = 1, 2; : : : ; l with v1 = x andvl+1 = y. A graph is connected if every pair of distinct nodes is joinedby at least one path. Otherwise G is disconnected, and consists of two ormore connected components . In matrix terms, it should be clear that if G isdisconnected and consists of k connected components and each component islabelled consecutively, the corresponding matrix will be block diagonal , witheach diagonal block corresponding to a connected component. The graphG(Y ) in Figure 3.2.4 is so ordered, and the corresponding matrix is blockdiagonal. Figure 3.2.5 shows a path in a graph and its interpretation inmatrix terms.Finally, the set Y � X is a separator of the connected graph G if the sec-tion graph G(X�Y ) is disconnected. Thus, for example, Y = fx3; x4; x5g is aseparator of the graph of Figure 3.2.5, since G(X�Y ) has three componentshaving node sets fx1g, fx2g, and fx6; x7g.Exercises3.2.1) A symmetric matrix A is said to be reducible if there exists a per-mutation matrix P such thatP TAP =  A11 OO A22 ! :



46 CHAPTER 3. GRAPH THEORY NOTATION266666666664 g1 � �g2 � �� g3 � � �� � � g4 �� � g5 �� � g6 �� � g7 377777777775 ����7����3����2����4 ����6����5����1 AAAAA ������@@R6 ��������9 AA��\\\ ���6�?- ? - 6�Path: fx4; x2; x3; x5; x1g GAFigure 3.2.5: A path in a graph and the corresponding matrix interpretation.Otherwise,A is said to be irreducible. Show that a symmetric matrixA is irreducible if and only if its associated graph GA is connected.3.2.2) Let A be a symmetric matrix. Show that the matrix A has thepropagation property (see Exercise 2.3.3 on page 30 ) if and only ifthere exists the path (x1; x2; : : : ; xn) in the associated graph GA.3.2.3) Characterize the graphs associated with the matrices in Figure 3.2.6.3.3 Computer Representation of GraphsIn general, the performances of graph algorithms are quite sensitive to theway the graphs are represented. For our purposes, the basic operation usedis that of retrieving adjacency relations between nodes. So, we need a rep-resentation which provides the adjacency properties of the graph and whichis economical in storage.Let G = (X;E) be a graph with n nodes. An adjacency list for x 2 X is alist containing all the nodes in Adj(x). An adjacency structure for G is simplythe set of adjacency lists for all x 2 X . Such a structure can be implementedquite simply and economically by storing the adjacency lists sequentially in
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a)266666666666666664 � � � � � � � � � �� � �� � �� � �� � �� � �� � �� � �� � �� � � � � � � � � �
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377777777777777775Figure 3.2.6: Examples of matrices with very di�erent graphs.



48 CHAPTER 3. GRAPH THEORY NOTATIONa one-dimensional array ADJNCY along with an index array XADJ of lengthn+ 1 containing pointers to the beginning of each adjacency list in ADJNCY.An example is shown in Figure 3.3.1. It is often convenient for programmingpurposes to have an extra entry in XADJ such that XADJ(n+ 1) points to thenext available storage location in ADJNCY, as shown in Figure 3.3.1. Clearlythe total storage requirement for this storage scheme is then jX j+ 2jEj+ 1.�
���
�� �
�� �
���
�� �
��BBBBB �����61 2 34 5 node number 1 2 3 4 5 6XADJ 1 3 6 8 9 11136 6 6 66 6 6ADJNCY 2 6 1 3 4 2 5 2 3 6 1 5Figure 3.3.1: Example of an adjacency structure.To examine all the neighbors of a node, the following program segmentcan be used.NBRBEG = XADJ(NODE)NBREND = XADJ(NODE + 1) - 1IF (NBREND .LT. NBRBEG) GO TO 200DO 100 I = NBRBEG, NBRENDNABOR = ADJNCY(I)100 CONTINUE200Although our implementations involving graphs use the storage schemedescribed above, several others are often used. A common storage schemeis a simple connection table, having n rows and m columns, where m =maxfDeg(x) j x 2 Xg. The adjacency list for node i is stored in row i. Thisstorage scheme may be quite ine�cient if a substantial number of the nodeshave degrees less than m. An example of a connection table for the graphof Figure 3.3.1 is given in Figure 3.3.2.The �rst two schemes described have a distinct disadvantage. Unless thedegrees of the nodes are known a priori , it is di�cult to construct the storagescheme when the graph is provided as a list of edges because we do not know



3.4. GENERAL INFORMATION ON THE GRAPH SUBROUTINES 49Node Neighbours1 2 6 �2 1 3 43 2 5 �4 2 � �5 3 6 �6 1 5 �Figure 3.3.2: Connection table for the graph of Figure 3.3.1. Unused posi-tions in the table are indicated by �.the ultimate size of the adjacency lists. We can overcome this di�culty byintroducing a link �eld . Figure 3.3.3 illustrates an example of such a schemefor the graph of Figure 3.3.1. The pointer HEAD(i) starts the adjacency listfor node i, with NBRS containing a neighbor of node i and LINK containingthe pointer to the location of the next neighbor of node i. For example, toretrieve the neighbors of node 5, we retrieve HEAD(5) which is 8. We thenexamine NBRS(8) which yields 3, one of the neighbors of node 5. We thenretrieve LINK(8), which is 2, implying that the next neighbor of node 5 isNBRS(2), which is 6. Finally, we discover that LINK(2) = �5, which indicatesthe end of the adjacency list for node 5. (In general, a negative link of �iindicates the end of the adjacency list for node i.) The storage requirementfor this graph representation is jX j+ 4jEj, which is substantially more thanthe adjacency list scheme we use in our programs.Provided there is enough space in the arrays NBRS and LINK, new edgescan be added with ease. For example, to add the edge f3; 6g to the adjacencystructure, we would adjust the adjacency list of node 3 by setting LINK(13)to 1, NBRS(13) to 6, and HEAD(3) to 13. The adjacency list of node 6 wouldbe similarly changed by setting LINK(14) to 5, NBRS(14) to 3, and HEAD(6)to 14.3.4 Some General Information on the Subroutineswhich Operate on GraphsNumerous subroutines that operate on graphs are described in subsequentchapters. In all these subroutines, the graph G = (X;E) is stored using theinteger array pair (XADJ, ADJNCY), as described in Section 3.3. In addition,
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58121610654321 123456789101112

262311435652
11-5-1794-22-63-3-4--

HEAD NBRS LINK
Figure 3.3.3: Adjacency linked lists for the graphs of Figure 3.3.1.



3.4. GENERAL INFORMATION ON THE GRAPH SUBROUTINES 51many of the subroutines share other common parameters. In order to avoidrepeatedly describing these parameters in subsequent chapters, we discusstheir role here, and refer to them later as required.It should be clear that the mere fact that a graph is stored using the(XADJ, ADJNCY) array pair implies a particular labelling of the graph. Thisordering will be referred to as the original numbering, and when we referto \node i," it is this numbering we mean. When a subroutine �nds a newordering, the ordering is stored in an array PERM, where PERM(i) = k meansthe original node number k is the i-th node in the new ordering. We oftenuse a related permutation vector INVP of length n (the inverse permutation)which satis�es INVP(PERM(i)) = i. That is, INVP(k) gives the position inPERM where the node originally numbered k resides.It is necessary in many of our algorithms to perform operations only oncertain section subgraphs of the graph G. To implement these operations,many of our subroutines have an integer array MASK, of length n, which isused to prescribe such a subgraph. The subroutines only consider thosenodes i for which MASK(i) 6= 0. Figure 3.4.1 contains an example illustratingthe role of the integer array MASK.kk k kk kBBBB ����61 2 34 5Graph G, labelledas in Figure 3.3.1. i MASK(i)1 12 13 04 15 16 0 k kk k1 24 5Subgraph of Gprescribed by MASKFigure 3.4.1: An example showing how the array MASK can be used to pre-scribe a subgraph of G.Finally, some of our subroutines have a single node number, usually calledROOT, as an argument, with MASK(ROOT)6= 0. These subroutines typicallyoperate on the connected component of the section subgraph prescribed byMASK which contains the node ROOT. That is, the combination of ROOT andMASK determine the connected subgraph of G to be processed. We will oftenuse the phrase \the component prescribed by ROOT and MASK" to refer to thisconnected subgraph. For example, the combination of ROOT= 2 along withthe array MASK and graph G in Figure 3.4.1 would specify the graph shown



52 CHAPTER 3. GRAPH THEORY NOTATIONin Figure 3.4.2. ���� ��������1 24Figure 3.4.2: The subgraph of the graph in Figure 3.4.1 prescribed byROOT = 2 and MASK.To summarize, some frequently used parameters in our subroutines, alongwith their contents are listed as follows:(XADJ, ADJNCY) the array pair which stores the graph in its original order-ing. The original labels of the nodes adjacent to node i are found inADJNCY(k), XADJ(i) � k < XADJ(i+ 1), with XADJ(n + 1) = 2jEj+ 1.PERM an integer array of length n containing a new ordering.INVP an integer array of length n containing the inverse of the permutation.MASK an integer array of length n used to prescribe a section subgraph of G.Subroutines ignore nodes for which MASK(i) = 0.ROOT a node number for which MASK(ROOT)6= 0. The subroutine usuallyoperates on the component of the subgraph speci�ed by MASK whichcontains the node ROOT.Exercises3.4.1) Suppose we represent a graph G = (X;E) using a lower adjacencystructure. That is, instead of storing the entire Adj(x) for each nodex, we only store those nodes in Adj(x) with labels larger than thatof x. For example, the graph of Figure 3.3.1 could be represented asshown in Figure 3.4.3, using the pair of arrays LADJ and XLADJ.Design a subroutine that transforms a lower adjacency structure tothe entire adjacency structure. Assume you have an array LADJ of



3.4. GENERAL INFORMATION ON THE GRAPH SUBROUTINES 532 6 3 4 5 61 3 5 6 6 7 71 2 3 4 5 66 6 6 6 6node numberXLADJLADJ
Figure 3.4.3: The lower adjacency structure of the graph of Figure 3.3.1.length 2jEj containing the lower adjacency structure in its �rst jEjpositions, and the array XLADJ. In addition, you have a temporaryarray of length jX j. When the subroutine completes execution, thearrays XLADJ and LADJ should contain the elements of XADJ andADJNCY as described in Section 3.3.3.4.2) Suppose a disconnected graph G = (X;E) is stored in the pair ofarrays XADJ and ADJNCY, as described in Section 3.3. Design a sub-routine which accepts as input a node x 2 X , and returns the nodesin the connected component of G which contains x. Be sure to de-scribe the parameters of the subroutine, and any auxiliary storageyou require.3.4.3) Suppose a (possibly disconnected) graph G = (X;E) is stored in thepair of arrays XADJ and ADJNCY as described in Section 3.2. Supposea subset Y � X is speci�ed by an integer array MASK of length nas described in Section 3.4. Design and implement a subroutinewhich accepts as input the number n, the arrays XADJ, ADJNCY, andMASK, and returns the number of connected components in the sectionsubgraph G(Y ). You may need a temporary array of length n in orderto make your implementation simple and easy to understand.3.4.4) Suppose the graph of the matrixA is stored in the array pair (XADJ,



54 CHAPTER 3. GRAPH THEORY NOTATIONADJNCY), as described in Section 3.3, and suppose the arrays PERMand INVP correspond to the permutation matrices P and P T , asdescribed in Section 3.4. Write a subroutine to list the column sub-script of the �rst nonzero element in each row of the matrix PAP T .Your subroutine should also print the number of nonzeros to the leftof the diagonal in each row of PAP T .3.4.5) Design a subroutine as described in Exercise 3.4.4 on page 53, withthe additional feature that it only operates on the submatrix ofPAP T speci�ed by the array MASK.3.4.6) Suppose a graph is to be input as a sequence of edges (pairs of nodenumbers), and the size of the adjacency lists is not known before-hand. Design and implement a subroutine called INSERT which couldbe used to construct the linked data structure as exempli�ed by Fig-ure 3.3.3. Be sure to describe the parameter list carefully, and con-sider how the arrays are to be initialized. You should not assumethat jX j and jEj are known beforehand. Be sure to handle abnormalconditions, such as when the arrays are not large enough to accom-modate all the edges, repeated input of the same edge, etc.3.4.7) Suppose the graph of a matrix A is stored in the array pair (XADJ,ADJNCY), as described in Section 3.3. Design and implement a sub-routine which accepts as input this array pair, along with two nodenumbers i and j, and determines whether there is a path joining themin the graph. If there is, then the subroutine returns the length of ashortest such path; otherwise it returns zero. Describe any tempo-rary arrays you need.3.4.8) Design and implement a subroutine as described in Exercise 3.4.7on page 54, with the additional feature that it only operates on thesubgraph speci�ed by the array MASK.



Chapter 4Band and Envelope Methods4.1 IntroductionIn this chapter we consider one of the simplest methods for solving sparse sys-tems, the band schemes and the closely related envelope or pro�le methods.Loosely speaking, the objective is to order the matrix so that the nonzerosin PAP T are clustered \near" the main diagonal. Since this property isretained in the corresponding Cholesky factor L, such orderings appear tobe attractive in reducing �ll, and are widely used in practice (Cuthill [9],Felippa [15], Melosh and Bamford [41]).Although these orderings are often far from optimal in the least-arith-metic or least-�ll senses, they are often an attractive practical compromise.In general the programs and data structures needed to exploit the spar-sity that these orderings provide are relatively simple; that is, the storageand computational overhead involved in using the orderings tends to besmall compared to more sophisticated orderings. (Recall our remarks inSection 2.4.) The orderings themselves also tend to be much cheaper to ob-tain than more (theoretically) e�cient orderings. For small problems, andeven moderate size problems which are to be solved only a few times, themethods described in this chapter should be seriously considered.4.2 The Band MethodLet A be an n by n symmetric positive de�nite matrix, with entries aij. Forthe i-th row of A, i = 1; 2; � � � ; n, letfi(A) = minfj j aij 6= 0g;55



56 CHAPTER 4. BAND AND ENVELOPE METHODSand �i(A) = i� fi(A):The number fi(A) is simply the column subscript of the �rst nonzero com-ponent in row i of A. Since the diagonal entries aii are positive, we havefi(A) � i and �i(A) � 0:Following Cuthill and McKee, we de�ne the bandwidth of A by 1�(A) = maxf�i(A) j 1 � i � ng= maxfji� jj j aij 6= 0g:The number �i(A) is called the i-th bandwidth of A. We de�ne the band ofA as Band(A) = ffi; jg j 0 < i� j � �(A)g ; (4.2.1)which is the region within �(A) locations of the main diagonal. Unorderedpairs fi; jg are used in (4.2.1) instead of ordered pairs because A is sym-metric. The matrix example in Figure 4.2.1 has a bandwidth of 3. Matriceswith a bandwidth of one are called tridiagonal matrices.A = 266666666664 � � �� �0 0 � � �� 0 0 � �0 � � � �� 0 0 � �0 � � � 377777777775 i fi(A) �i(A)1 1 02 1 13 3 04 1 35 3 26 3 37 5 2| {z }�(A)Figure 4.2.1: Example showing fi(A) and �i(A).Implicit in the use of the band method is that zeros outside Band(A) areignored; zeros inside the band are usually stored, although often exploited1Other authors de�ne the bandwidth of A to be 2�(A) + 1.



4.2. THE BAND METHOD 57as far as the actual computation is concerned. This exploitation of zeros ispossible in the direct solution becauseBand(A) = Band(L+ LT );a relation that will be proved in Section 4.3 when the envelope method isconsidered.A common method for storing a symmetric band matrix A is the so-called diagonal storage scheme (Martin [40]). The �(A) sub-diagonals ofthe lower triangle of A which comprise Band(A) and the main diagonalof A are stored as the columns of an n by (�(A) + 1) rectangular array,as shown in Figure 4.2.2. This storage scheme is very simple, and is quitee�cient as long as �i(A) does not vary too much with i.Matrix A = 0BBBBBBBBBB@ a11a21 a22 symmetric0 0 a33a41 0 0 a440 a53 a54 a55a63 0 0 a660 a75 a76 a77 1CCCCCCCCCCAStorage Array 266666666664 � � � a11� � a21 a22� 0 0 a33a41 0 0 a440 a53 a54 a55a63 0 0 a660 a75 a76 a77 377777777775Figure 4.2.2: The diagonal storage scheme.Theorem 4.2.1 The number of operations required to factor the matrix Ahaving bandwidth �, assuming Band(L+ LT ) is full, is12�(� + 3)n� �33 � �2 � 23�:



58 CHAPTER 4. BAND AND ENVELOPE METHODSProof: The result follows from Theorem 2.2.2 and the observation that�(L�i) = ( � + 1 for 1 � i � n � �n� i+ 1 for n� � < i � n 2Theorem 4.2.2 Let A be as in Theorem 4.2.1. Then the number of opera-tions required to solve the matrix problem Ax = b, given the Cholesky factorL of A, is 2(� + 1)n� �(� + 1):Proof: The result follows from Theorem 2.2.2 and the de�nition of �(L�i)given in the proof of Theorem 4.2.1. 2As mentioned above, the attraction of this approach is its simplicity.However, it has some potentially serious weaknesses. First, if �i(A) varieswidely with i, the diagonal storage scheme illustrated in Figure 4.2.2 willbe ine�cient. Moreover, as we shall see later, there are some very sparseproblems which can be solved very e�ciently, but which cannot be orderedto have a small bandwidth (see Figure 4.3.3). Thus, there are problems forwhich band methods are simply inappropriate. Perhaps the most persua-sive reason for not being very enthusiastic about band schemes is that theenvelope schemes discussed in the next section share all the advantages ofsimplicity enjoyed by band schemes, with very few of the disadvantages.Exercises4.2.1) Suppose A is an n by n symmetric positive de�nite matrix withbandwidth �. You have two sets of numerical subroutines for solvingAx = b. One set stores A (over-written by L during the factor-ization) as a full lower triangular matrix by storing the rows of thelower triangular part row by row in a one dimensional array, in thesequence a11, a21, a22, a31, � � �, an;n�1, an;n. The other set of sub-routines stores A (again over-written by L during the factorization)using the diagonal storage scheme described in this section. For agiven � and n, which scheme would you use if you were trying tominimize storage requirements?4.2.2) Consider the star graph of n nodes, as shown in Figure 4.3.3(a).Prove that any ordering of this graph yields a bandwidth of at leastd(n� 1)=2e.



4.3. THE ENVELOPE METHOD 594.3 The Envelope Method4.3.1 Matrix FormulationA slightly more sophisticated scheme for exploiting sparsity is the so-calledenvelope or pro�le method, which simply takes advantage of the variationin �i(A) with i. The envelope of A, denoted by Env(A), is de�ned byEnv(A) = ffi; jg j 0 < i� j � �i(A)g:In terms of the column subscripts fi(A), we haveEnv(A) = ffi; jg j fi(A) � j < ig:The quantity jEnv(A)j is called the pro�le or envelope size of A, and isgiven by jEnv(A)j = nXi=1 �i(A):266666666664 � � �� � g�� 0 � �� g� 0 � � 0� � � g� �� 0 g� � �� � � 377777777775Env(A)Figure 4.3.1: Illustration of the envelope of A. Circled elements denote �llelements of L.Lemma 4.3.1 Env(A) = Env(L+LT ):Proof: We prove the lemma by induction on the dimension n. Assume thatthe result holds for n� 1 by n� 1 matrices. Let A be an n by n symmetricmatrix partitioned as A =  M uuT s ! ;



60 CHAPTER 4. BAND AND ENVELOPE METHODSwhere s is a scalar, u is a vector of length n� 1, and M is an n� 1 by n� 1nonsingular matrix factored as LMLTM . By the inductive assumption, wehave Env(M) = Env(LM + LTM ). If LLT is the symmetric factorizationof A, the triangular factor L can be partitioned asL =  LM 0wT t ! ;where t is a scalar, and w is a vector of length n� 1. It is then su�cient toshow that fn(A) = fn(L+ LT ).From (2.2.4), the vectors u and w are related byLMw = u:But ui = 0 for 1 � i < fn(A) and the entry ufn(A) is nonzero. By Lem-mas 2.3.3 and 2.3.4, we have wi = 0 for 1 � i < fn(A) and wfn(A) 6= 0.Hence fn(A) = fn(L+ LT ), so thatEnv(A) = Env(L+LT ): 2Theorem 4.3.2 Env(A) � Band(A):Proof: It follows from the de�nitions of Band and Env . 2Lemma 4.3.1 justi�es the exploitation of zeros outside the envelope or theband region. Assuming that only those zeros outside Env(A) are exploited,we now determine the arithmetic cost in performing the direct solution. Inorder to compute operation counts, it is helpful to introduce the notion offrontwidth. For a matrix A, the i-th frontwidth of A is de�ned to be!i(A) = jfk j k > i and akl 6= 0 for some l � igj :Note that !i(A) is simply the number of \active" rows at the i-th step inthe factorization; that is, the number of rows of the envelope of A, whichintersect column i. The quantity!(A) = maxf!i(A) j 1 � i � ngis usually referred to as the frontwidth or wave front of A (Irons [31],Melosh [41]). Figure 4.3.2 illustrates these de�nitions.The relevance of the notion of frontwidth in the analysis of the envelopemethod is illustrated by the following.



4.3. THE ENVELOPE METHOD 61A = 266666666664 � � �� � g�� 0 � �� g� 0 � � 0� � � g� �� 0 g� � �� � � 377777777775 i !i(A) �i(A)1 2 02 1 13 3 04 2 35 2 26 1 37 0 2Figure 4.3.2: Illustration of the i-th bandwidth and frontwidth.Lemma 4.3.3 jEnv(A)j = nXi=1 !i(A):Theorem 4.3.4 If only those zeros outside the envelope are exploited, thenumber of operations required to factor A into LLT is given by12 nXi=1 !i(A)(!i(A) + 3);and the number of operations required to solve the system Ax = b, given thefactorization LLT is 2 nXi=1(!i(A) + 1):Proof: If we treat the envelope of A as full, the number of nonzeros inL�i is simply !i(A) + 1. The result then follows from Theorem 2.2.2 andLemma 2.3.1. 2Although pro�le schemes appear to represent a rather minor increase insophistication over band schemes, they can sometimes lead to quite spectac-ular improvements. To see this, consider the example in Figure 4.3.3 showingtwo orderings of the same matrix.It is not hard to verify that the number of operations required to factorthe minimum pro�le ordered matrix, and the number of nonzeros in thecorresponding factor are both O(n), as is the bandwidth. On the other
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& %���������������� ��������``````̀        ����@@@@Figure 4.3.3: Star graph of n nodes.2666666666666664 � �� �� �� �� �� �� �� �� � � � � � � � � 3777777777777775 2666666666666664 � �� �� �� �� � � � � � � � �� �� �� �� � 3777777777777775Ordering correspondingto numbering thecenter node last Minimum bandwidthorderingFigure 4.3.4: Minimum pro�le ordering and minimum band ordering for thestar graph on n nodes with n = 9.



4.3. THE ENVELOPE METHOD 63hand, the minimum bandwidth ordering yields an O(n3) operation countand an L having O(n2) nonzeros.Although this example is contrived, numerous practical examples existwhere envelope schemes are much more e�cient than band schemes. Forsome examples, see Liu and Sherman [38].4.3.2 Graph InterpretationFor an n by n symmetric matrix A, let its associated undirected graph beGA = (XA; EA);where the node set is labelled as implied by A:XA = fx1; � � � ; xng:To provide insight into the combinatorial nature of the envelope method, itis important to give graph theoretic interpretation to the matrix de�nitionsintroduced in the previous subsection.Theorem 4.3.5 For i < j, fi; jg 2 Env(A) if and only if xj 2 Adj(fx1; � � � ; xig).Proof: If xj 2 Adj(fx1; � � � ; xig), then ajk 6= 0 for some k � i so thatfj(A) � i and fi; jg 2 Env(A).Conversely, if fj(A) � i < j, this means xj 2 Adj(xfj(A)) which impliesxj 2 Adj(fx1; � � � ; xig). 2Corollary 4.3.6 For i = 1; � � � ; n, !i(A) = jAdj(fx1; � � � ; xig)j.Proof: From the de�nition of !i(A), we have!i(A) = jfj > i j fi; jg 2 Env(A)gj ;so that the result follows from Theorem 4.3.5. 2Consider the matrix example and its associated labelled graph in Fig-ure 4.3.5. The respective adjacent sets areAdj(x1) = fx2; x4g;Adj(fx1; x2g) = fx4g;Adj(fx1; x2; x3g) = fx4; x5; x6g;Adj(fx1; x2; x3; x4g) = fx5; x6g;Adj(fx1; � � � ; x5g) = fx6; x7g;Adj(fx1; � � � ; x6g) = fx7g;Adj(fx1; � � � ; x7g) = �:



64 CHAPTER 4. BAND AND ENVELOPE METHODSCompare them with the row subscripts of the envelope entries in each col-umn.266666666664 � � �� � � � �� 0 0 � �� � � �� 0 0 � �� � � 377777777775 mx2 mx1 mx4 mx5 mx3mx7 mx6Figure 4.3.5: A matrix and its associated labelled graph.The set Adj(fx1; � � � ; xig) shall be referred to as the i-th front of thelabelled graph, and its size the i-th frontwidth (as before).Exercises4.3.1) Prove that12 nXi=1 !i(A)(!i(A) + 3) � 12 nXi=1 �i(A)(�i(A) + 3):4.3.2) A symmetric matrix A is said to have the monotone pro�le propertyif fj(A) � fi(A) for j � i. Show that for monotone pro�le matrices,12 nXi=1 !i(A)(!i(A) + 3) = 12 nXi=1 �i(A)(�i(A) + 3):4.3.3) Prove that the following conditions are equivalent.a) for 1 � i � n, the section graphs G(fx1; � � � ; xig) are connectedb) for 2 � i � n, fi(A) < i.4.3.4) (Full Envelope) Prove that the matrix L+ LT has a full envelope iffi(A) < i for 2 � i � n. Show that L + LT has a full envelope formonotone pro�le matrix A.



4.4. ENVELOPE ORDERINGS 654.3.5) Let L be an n by n lower triangular matrix with bandwidth � � n,and let V be an n by p (pseudo) lower triangular matrix as de�nedin Exercise 2.3.8 on page 30. Approximately how many operationsare required to compute L�1V ?4.3.6) Let fx1; � � � ; xng be the nodes in the graph GA associated with asymmetric matrix A. Show that the following conditions are equiv-alent.a) Env(A) is full,b) Adj(fx1; � � � ; xig) � Adj(xi) for 1 � i � n,c) Adj(fx1; � � � ; xig) [ fxig is a clique for 1 � i � n.4.3.7) Show that if the graph GA is connected, then !i(A) 6= 0 for 1 � i �n� 1.4.4 Envelope Orderings4.4.1 The Reverse Cuthill-McKee AlgorithmPerhaps the most widely used pro�le reduction ordering algorithm is a vari-ant of the Cuthill-McKee ordering. In 1969, Cuthill and McKee [10] pub-lished their algorithm which was primarily designed to reduce the bandwidthof a sparse symmetric matrix.The scheme makes use of the following observation. Let y be a labellednode, and z an unlabelled neighbor of y. To minimize the bandwidth of therow associated with z, it is apparent that the node z should be ordered assoon as possible after y. Figure 4.4.1 illustrates this point.The Cuthill-McKee scheme may be regarded as a method that reducesthe bandwidth of a matrix via a local minimization of the �i's. This sug-gests that the scheme can be used as a method to reduce the pro�le P�i ofa matrix. George [17], in his study of the pro�le methods, discovered thatthe ordering obtained by reversing the Cuthill-McKee ordering often turnsout to be much superior to the original ordering in terms of pro�le reduc-tion, although the bandwidth remains unchanged. He called this the reverseCuthill-McKee ordering (RCM). It has since been proved that the reversescheme is never inferior, as far as envelope storage and envelope operationcounts are concerned (Liu and Sherman [38]).
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ma ���� mf ���� mhmi md mgme��@@@@mc mb mjFigure 4.4.2: Graph to which the RCM algorithm is to be applied.Unnumberedi Node xi neighbors inincreasing ordering ofdegree1 g h; e; b; f2 h �3 e c4 b j5 f a; d6 c �7 j �8 a �9 d i10 i �Figure 4.4.3: Table showing numbering in Step 2 of the RCM algorithm.
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377777777777777775Figure 4.4.4: The �nal ordering and corresponding matrix structure.as the starting node, we get a smaller pro�le of 18. In Section 4.4.3, wepresent an algorithm which experience has shown to provide a good startingnode for the Cuthill-McKee algorithm.We now establish a rough complexity bound for the execution time of theRCM algorithm, assuming that a starting node is provided. The underlyingassumption here is that the execution time of the sorting algorithm usedis proportional to the number of operations performed, where an operationmight be a comparison, or a retrieval of a data item from the adjacencystructure used to store the graph.Theorem 4.4.1 If linear insertion is used for sorting, the time complexityof the RCM algorithm is bounded by O(m jEj), where m is the maximumdegree of any node.Proof: The major cost is obviously due to Step 2 of the algorithm, sinceStep 3 can be done in O(n) time. For some constant c, sorting t elementsusing linear insertion requires ct2 operations [1]. Thus, the overall time spentin sorting is less thancXx2X jDeg(x)j2 � cmXx2X jDeg(x)j = 2cm jEj :For each index in Step 2, we have to examine the neighbors of node i, inorder to retrieve the unnumbered ones for sorting by degree. This sweepthrough the adjacency structure requires 2 jEj operations. The computation
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377777777777777775Figure 4.4.5: The RCM ordering of the example of Figure 4.4.2, using adi�erent starting node.
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70 CHAPTER 4. BAND AND ENVELOPE METHODSof the degrees of the nodes requires a further 2 jEj operations. Thus, theRCM algorithm requires at most4 jEj+ 2cm jEj+ n operations;where the last term represents the time required to reverse the ordering. 24.4.2 Finding a Starting NodeWe now turn to the problem of �nding a starting node for the RCM algo-rithm. We consider this problem separately because its solution is usefulin connection with several other algorithms we consider in this book. Inall cases the objective is to �nd a pair of nodes which are at maximumor near maximum \distance" apart (de�ned below). Substantial experienceindicates that such nodes are good starting nodes for several ordering algo-rithms, including the RCM algorithm.Recall from Section 3.2 that a path of length k from node x0 to xk isan ordered set of distinct vertices (x0; x1; � � � ; xk), where xi 2 Adj(xi+1) for0 � i � k � 1. The distance d(x; y) between two nodes x and y in theconnected graph G = (X;E) is simply the length of a shortest path joiningnodes x and y. Following Berge [3], we de�ne the eccentricity of a node xto be the quantity `(x) = maxfd(x; y) j y 2 Xg: (4.4.1)The diameter of G is then given by�(G) = maxf`(x) j x 2 Xg;or equivalently �(G) = maxfd(x; y) j x; y 2 Xg:A node x 2 X is said to be a peripheral node if its eccentricity is equalto the diameter of the graph, that is, if `(x) = �(G). Figure 4.4.7 shows agraph having 8 nodes, with a diameter of 5. The nodes x2, x5 and x7 areperipheral nodes.With this terminology established, our objective in this subsection is todescribe an e�cient heuristic algorithm for �nding nodes of high eccentric-ity. We emphasize that the algorithm is not guaranteed to �nd a peripheralnode, or even one that is close to being peripheral. Nevertheless, the nodesfound usually do have high eccentricity, and are good starting nodes for thealgorithms that employ them. Futhermore, except for some fairly trivial



4.4. ENVELOPE ORDERINGS 71mx2 mx1 mx6 mx8 mx3 mx5mx4 mx7Figure 4.4.7: An 8-node graph G with �(G) = 5situations, there seems to be no reason to expect that peripheral nodes areany better as starting nodes than those found by this algorithm. Finally, inmany situations it is probably too expensive to �nd peripheral nodes evenif it were known to be desirable to use them, since the best known algo-rithm for �nding them has a time complexity bound of O(jX j jEj) (Smythand Benzi [49]). For most sparse matrix applications this bound would beO(jX j2). In what follows, we will refer to nodes produced by this algorithmas pseudo-peripheral nodes.We now introduce some notation and terminology which is useful indescribing the algorithm. The reader may �nd it helpful to review the def-initions of adjacent set, degree, section graph and connected component,introduced in Section 3.2. A key construct in the algorithm is the rootedlevel structure (Arany et al. [2]). 2 Given a node x 2 X , the level structurerooted at x is the partitioning L(x) of X satisfyingL(x) = fL0(x); L1(x); � � � ; L`(x)(x)g; (4.4.2)where L0(x) = fxg; L1(x) = Adj(L0(x));and Li(x) = Adj(Li�1(x))� Li�2(x); i = 2; 3; � � � ; `(x): (4.4.3)The eccentricity `(x) of x is called the length of L(x), and the width w(x)2A general level structure is a partitioning L = fL0; L1; � � � ; L`g where Adj(L0) � L1,Adj(L`) � L`�1 and Adj(Li) � Li�1 [ Li+1, i = 2; 3; � � � ; `� 1.



72 CHAPTER 4. BAND AND ENVELOPE METHODSof L(x) is de�ned byw(x) = maxfjLi(x)j j 0 � i � `(x)g: (4.4.4)In Figure 4.4.8 we show a rooted level structure of the graph of Figure 4.4.7,rooted at the node x6. Note that `(x6) = 3 and w(x6) = 3.lx6lx1lx2 lx8lx4 lx3lx7 lx5
������ @@@@@@������������ L3(x6) = fx5; x7gL2(x6) = fx2; x3; x4gL1(x6) = fx1; x8gL0(x6) = fx6g

Figure 4.4.8: A level structure, rooted at x6, of the graph of Figure 4.4.7.We are now ready to describe the pseudo-peripheral node �nding algo-rithm which is essentially a modi�cation of an algorithm due to Gibbs etal. [30]. For details on why these modi�cations were made, see George andLiu [26]. Using our level structure notation just introduced, the algorithmis as follows.Step 1 (Initialization): Choose an arbitrary node r in X .Step 2 (Generate a level structure): Construct the level structure rootedat r: L(r) = fL0(r); L1(r); � � � ; L`(r)(r)g.



4.4. ENVELOPE ORDERINGS 73Step 3 (Shrink last level): Choose a node x in L`(r)(r) of minimum degree.Step 4 (Generate a level structure):a) Construct the level structure rooted at x:b) If `(x) > `(r), set r x and go to Step 3.Step 5 (Finished): The node x is a pseudo-peripheral node.Computer subroutines FNROOT and ROOTLS, which implement this algo-rithm, are presented and discussed in the next subsection. An exampleshowing the operation of the algorithm is given in Figure 4.4.9. Nodes inlevel i of the level structures are labelled with the integer i.m m m m mmmm
m m m m mmmmm m m mmmmm r1123 234 44432 21r2 1 r 1 2221

@@@@����� �����@@@@���������� ����� ```````̀�����SSSSS������@@@@ ����� XXXXXX
����� ```````̀�����SSSSS����������� XXXXXX XXXXXX ������ SSSSS �����```````̀�����

Figure 4.4.9: An example of the application of the pseudo-peripheral node�nding algorithm.



74 CHAPTER 4. BAND AND ENVELOPE METHODS4.4.3 Subroutines for Finding a Starting NodeIn this subsection we present and describe a pair of subroutines which im-plement the algorithm of the previous section. In these subroutines, as wellas those in Sections 4.4.4 and 4.5.2, several input parameters are the same,and have already been described in Section 3.4. The reader might �nd ituseful to review that section before proceeding.ROOTLS (ROOTed Level Structure)The purpose of this subroutine is to generate a level structure of the con-nected component speci�ed by the input parameters ROOT, MASK, XADJ, andADJNCY, as described in Section 3.4. On exit from the subroutine, the levelstructure generated is rooted at ROOT, and is contained in the array pair(XLS, LS), with nodes at level k given by LS(j), XLS(k) � j < XLS(k + 1).The number of levels is provided by the variable NLVL. Note that since For-tran does not allow zero subscripts, we cannot have a \zero level," so k herecorresponds to level Lk�1 in the level structure L(ROOT) in Section 4.4.2.Thus, NLVL is one greater than the eccentricity of ROOT.The subroutine �nds the nodes level by level; a new level is obtainedfor each execution of the loop DO 400 .... As each new node is found (inexecuting the loop DO 300 ...), the node number is placed in the array LS,and its corresponding MASK value is set to zero so it will not be put in LSmore than once. After the level structure has been generated, the values ofMASK for the nodes in the level structure are reset to 1 (by executing the loopDO 500 ...).1. C***************************************************************2. C***************************************************************3. C******** ROOTLS ..... ROOTED LEVEL STRUCTURE *********4. C***************************************************************5. C***************************************************************6. C7. C PURPOSE - ROOTLS GENERATES THE LEVEL STRUCTURE ROOTED8. C AT THE INPUT NODE CALLED ROOT. ONLY THOSE NODES FOR9. C WHICH MASK IS NONZERO WILL BE CONSIDERED.10. C11. C INPUT PARAMETERS -12. C ROOT - THE NODE AT WHICH THE LEVEL STRUCTURE IS TO13. C BE ROOTED.14. C (XADJ, ADJNCY) - ADJACENCY STRUCTURE PAIR FOR THE15. C GIVEN GRAPH.16. C MASK - IS USED TO SPECIFY A SECTION SUBGRAPH. NODES



4.4. ENVELOPE ORDERINGS 7517. C WITH MASK(I)=0 ARE IGNORED.18. C19. C OUTPUT PARAMETERS -20. C NLVL - IS THE NUMBER OF LEVELS IN THE LEVEL STRUCTURE.21. C (XLS, LS) - ARRAY PAIR FOR THE ROOTED LEVEL STRUCTURE.22. C23. C***************************************************************24. C25. SUBROUTINE ROOTLS ( ROOT, XADJ, ADJNCY, MASK, NLVL, XLS, LS )26. C27. C***************************************************************28. C29. INTEGER ADJNCY(1), LS(1), MASK(1), XLS(1)30. INTEGER XADJ(1), I, J, JSTOP, JSTRT, LBEGIN,31. 1 CCSIZE, LVLEND, LVSIZE, NBR, NLVL,32. 1 NODE, ROOT33. C34. C***************************************************************35. C36. C ------------------37. C INITIALIZATION ...38. C ------------------39. MASK(ROOT) = 040. LS(1) = ROOT41. NLVL = 042. LVLEND = 043. CCSIZE = 144. C -----------------------------------------------------45. C LBEGIN IS THE POINTER TO THE BEGINNING OF THE CURRENT46. C LEVEL, AND LVLEND POINTS TO THE END OF THIS LEVEL.47. C -----------------------------------------------------48. 200 LBEGIN = LVLEND + 149. LVLEND = CCSIZE50. NLVL = NLVL + 151. XLS(NLVL) = LBEGIN52. C -------------------------------------------------53. C GENERATE THE NEXT LEVEL BY FINDING ALL THE MASKED54. C NEIGHBORS OF NODES IN THE CURRENT LEVEL.55. C -------------------------------------------------56. DO 400 I = LBEGIN, LVLEND57. NODE = LS(I)58. JSTRT = XADJ(NODE)59. JSTOP = XADJ(NODE + 1) - 160. IF ( JSTOP .LT. JSTRT ) GO TO 40061. DO 300 J = JSTRT, JSTOP62. NBR = ADJNCY(J)63. IF (MASK(NBR) .EQ. 0) GO TO 300



76 CHAPTER 4. BAND AND ENVELOPE METHODS64. CCSIZE = CCSIZE + 165. LS(CCSIZE) = NBR66. MASK(NBR) = 067. 300 CONTINUE68. 400 CONTINUE69. C ------------------------------------------70. C COMPUTE THE CURRENT LEVEL WIDTH.71. C IF IT IS NONZERO, GENERATE THE NEXT LEVEL.72. C ------------------------------------------73. LVSIZE = CCSIZE - LVLEND74. IF (LVSIZE .GT. 0 ) GO TO 20075. C -------------------------------------------------------76. C RESET MASK TO ONE FOR THE NODES IN THE LEVEL STRUCTURE.77. C -------------------------------------------------------78. XLS(NLVL+1) = LVLEND + 179. DO 500 I = 1, CCSIZE80. NODE = LS(I)81. MASK(NODE) = 182. 500 CONTINUE83. RETURN84. ENDFNROOT (FiNd ROOT)This subroutine �nds a pseudo-peripheral node of a connected component ofa given graph, using the algorithm described in Section 4.4.2. The subroutineoperates on the connected component speci�ed by the input arguments ROOT,MASK, XADJ, and ADJNCY, as we described in Section 3.4.The �rst call to ROOTLS corresponds to Step 2 of the algorithm. If the com-ponent consists of a single node or a chain with ROOT as its endpoint, thenROOT is a peripheral node and LS contains its corresponding rooted levelstructure, so execution terminates. Otherwise, a node of minimum degreein the last level is found (Step 3 of the algorithm; DO 300 ... loop of thesubroutine). The new level structure rooted at this node is generated (thecall to ROOTLS with label 400) and the termination test (Step 4.b of the algo-rithm) is performed. If the test fails, control transfers to statement 100 andthe procedure is repeated. On exit, ROOT is the node number of the pseudo-peripheral node, and the array pair (XLS, LS) contains the correspondingrooted level structure.1. C***************************************************************2. C***************************************************************



4.4. ENVELOPE ORDERINGS 773. C******* FNROOT ..... FIND PSEUDO-PERIPHERAL NODE *******4. C***************************************************************5. C***************************************************************6. C7. C PURPOSE - FNROOT IMPLEMENTS A MODIFIED VERSION OF THE8. C SCHEME BY GIBBS, POOLE, AND STOCKMEYER TO FIND PSEUDO-9. C PERIPHERAL NODES. IT DETERMINES SUCH A NODE FOR THE10. C SECTION SUBGRAPH SPECIFIED BY MASK AND ROOT.11. C12. C INPUT PARAMETERS -13. C (XADJ, ADJNCY) - ADJACENCY STRUCTURE PAIR FOR THE GRAPH.14. C MASK - SPECIFIES A SECTION SUBGRAPH. NODES FOR WHICH15. C MASK IS ZERO ARE IGNORED BY FNROOT.16. C17. C UPDATED PARAMETER -18. C ROOT - ON INPUT, IT (ALONG WITH MASK) DEFINES THE19. C COMPONENT FOR WHICH A PSEUDO-PERIPHERAL NODE IS20. C TO BE FOUND. ON OUTPUT, IT IS THE NODE OBTAINED.21. C22. C OUTPUT PARAMETERS -23. C NLVL - IS THE NUMBER OF LEVELS IN THE LEVEL STRUCTURE24. C ROOTED AT THE NODE ROOT.25. C (XLS,LS) - THE LEVEL STRUCTURE ARRAY PAIR CONTAINING26. C THE LEVEL STRUCTURE FOUND.27. C28. C PROGRAM SUBROUTINES -29. C ROOTLS.30. C31. C***************************************************************32. C33. SUBROUTINE FNROOT ( ROOT, XADJ, ADJNCY, MASK, NLVL, XLS, LS )34. C35. C***************************************************************36. C37. INTEGER ADJNCY(1), LS(1), MASK(1), XLS(1)38. INTEGER XADJ(1), CCSIZE, J, JSTRT, K, KSTOP, KSTRT,39. 1 MINDEG, NABOR, NDEG, NLVL, NODE, NUNLVL,40. 1 ROOT41. C42. C***************************************************************43. C44. C ---------------------------------------------45. C DETERMINE THE LEVEL STRUCTURE ROOTED AT ROOT.46. C ---------------------------------------------47. CALL ROOTLS ( ROOT, XADJ, ADJNCY, MASK, NLVL, XLS, LS )48. CCSIZE = XLS(NLVL+1) - 149. IF ( NLVL .EQ. 1 .OR. NLVL .EQ. CCSIZE ) RETURN



78 CHAPTER 4. BAND AND ENVELOPE METHODS50. C ----------------------------------------------------51. C PICK A NODE WITH MINIMUM DEGREE FROM THE LAST LEVEL.52. C ----------------------------------------------------53. 100 JSTRT = XLS(NLVL)54. MINDEG = CCSIZE55. ROOT = LS(JSTRT)56. IF ( CCSIZE .EQ. JSTRT ) GO TO 40057. DO 300 J = JSTRT, CCSIZE58. NODE = LS(J)59. NDEG = 060. KSTRT = XADJ(NODE)61. KSTOP = XADJ(NODE+1) - 162. DO 200 K = KSTRT, KSTOP63. NABOR = ADJNCY(K)64. IF ( MASK(NABOR) .GT. 0 ) NDEG = NDEG + 165. 200 CONTINUE66. IF ( NDEG .GE. MINDEG ) GO TO 30067. ROOT = NODE68. MINDEG = NDEG69. 300 CONTINUE70. C ----------------------------------------71. C AND GENERATE ITS ROOTED LEVEL STRUCTURE.72. C ----------------------------------------73. 400 CALL ROOTLS ( ROOT, XADJ, ADJNCY, MASK, NUNLVL, XLS, LS )74. IF (NUNLVL .LE. NLVL) RETURN75. NLVL = NUNLVL76. IF ( NLVL .LT. CCSIZE ) GO TO 10077. RETURN78. END4.4.4 Subroutines for the Reverse Cuthill-McKee AlgorithmIn this subsection we describe the three subroutines DEGREE, RCM, and GENRCM,which together with the subroutines of the previous section provide a com-plete implementation for the RCM algorithm described in Section 4.4.1. Theroles of the input parameters ROOT, MASK, XADJ, ADJNCY, and PERM are as de-scribed in Section 3.4. The control relationship among the subroutines isgiven in Figure 4.4.10.DEGREEThis subroutine computes the degrees of the nodes in a connected componentof a graph. The subroutine operates on the connected component speci�edby the input parameters ROOT, MASK, XADJ, and ADJNCY.



4.4. ENVELOPE ORDERINGS 79GENRCMFNROOTROOTLS RCMDEGREE!!!!! aaaaaFigure 4.4.10: Control relation of subroutines for the reverse Cuthill-McKeealgorithm.Beginning with the �rst level (containing only ROOT), the degrees of the nodesare computed one level at a time (loop DO 400 I = ...). As the neighborsof these nodes are examined (loop DO 200 J = ...), those which are notalready recorded in LS are put in that array, thus generating the next levelof nodes. When a node is put in LS, its corresponding value of XADJ has itssign changed, so that the node will only be recorded once. (This functionwas performed using MASK in the subroutine ROOTLS, but here MASK must bemaintained in its input form so that the degree will be computed correctly).The variable CCSIZE contains the number of nodes currently in LS. After allnodes have been found, and their degrees have been computed, the nodes inLS are used to reset the signs of the corresponding elements of XADJ to theiroriginal values (loop DO 500 I = ...).1. C***************************************************************2. C***************************************************************3. C******** DEGREE ..... DEGREE IN MASKED COMPONENT ********4. C***************************************************************5. C***************************************************************6. C7. C PURPOSE - THIS ROUTINE COMPUTES THE DEGREES OF THE NODES8. C IN THE CONNECTED COMPONENT SPECIFIED BY MASK AND ROOT.9. C NODES FOR WHICH MASK IS ZERO ARE IGNORED.10. C11. C INPUT PARAMETER -12. C ROOT - IS THE INPUT NODE THAT DEFINES THE COMPONENT.13. C (XADJ, ADJNCY) - ADJACENCY STRUCTURE PAIR.14. C MASK - SPECIFIES A SECTION SUBGRAPH.



80 CHAPTER 4. BAND AND ENVELOPE METHODS15. C16. C OUTPUT PARAMETERS -17. C DEG - ARRAY CONTAINING THE DEGREES OF THE NODES IN18. C THE COMPONENT.19. C CCSIZE-SIZE OF THE COMPONENT SPECIFED BY MASK AND ROOT20. C21. C WORKING PARAMETER -22. C LS - A TEMPORARY VECTOR USED TO STORE THE NODES OF THE23. C COMPONENT LEVEL BY LEVEL.24. C25. C***************************************************************26. C27. SUBROUTINE DEGREE ( ROOT, XADJ, ADJNCY, MASK,28. 1 DEG, CCSIZE, LS )29. C30. C***************************************************************31. C32. INTEGER ADJNCY(1), DEG(1), LS(1), MASK(1)33. INTEGER XADJ(1), CCSIZE, I, IDEG, J, JSTOP, JSTRT,34. 1 LBEGIN, LVLEND, LVSIZE, NBR, NODE, ROOT35. C36. C***************************************************************37. C38. C -------------------------------------------------39. C INITIALIZATION ...40. C THE ARRAY XADJ IS USED AS A TEMPORARY MARKER TO41. C INDICATE WHICH NODES HAVE BEEN CONSIDERED SO FAR.42. C -------------------------------------------------43. LS(1) = ROOT44. XADJ(ROOT) = -XADJ(ROOT)45. LVLEND = 046. CCSIZE = 147. C -----------------------------------------------------48. C LBEGIN IS THE POINTER TO THE BEGINNING OF THE CURRENT49. C LEVEL, AND LVLEND POINTS TO THE END OF THIS LEVEL.50. C -----------------------------------------------------51. 100 LBEGIN = LVLEND + 152. LVLEND = CCSIZE53. C -----------------------------------------------54. C FIND THE DEGREES OF NODES IN THE CURRENT LEVEL,55. C AND AT THE SAME TIME, GENERATE THE NEXT LEVEL.56. C -----------------------------------------------57. DO 400 I = LBEGIN, LVLEND58. NODE = LS(I)59. JSTRT = -XADJ(NODE)60. JSTOP = IABS(XADJ(NODE + 1)) - 161. IDEG = 0



4.4. ENVELOPE ORDERINGS 8162. IF ( JSTOP .LT. JSTRT ) GO TO 30063. DO 200 J = JSTRT, JSTOP64. NBR = ADJNCY(J)65. IF ( MASK(NBR) .EQ. 0 ) GO TO 20066. IDEG = IDEG + 167. IF ( XADJ(NBR) .LT. 0 ) GO TO 20068. XADJ(NBR) = -XADJ(NBR)69. CCSIZE = CCSIZE + 170. LS(CCSIZE) = NBR71. 200 CONTINUE72. 300 DEG(NODE) = IDEG73. 400 CONTINUE74. C ------------------------------------------75. C COMPUTE THE CURRENT LEVEL WIDTH.76. C IF IT IS NONZERO , GENERATE ANOTHER LEVEL.77. C ------------------------------------------78. LVSIZE = CCSIZE - LVLEND79. IF ( LVSIZE .GT. 0 ) GO TO 10080. C ------------------------------------------81. C RESET XADJ TO ITS CORRECT SIGN AND RETURN.82. C ------------------------------------------83. DO 500 I = 1, CCSIZE84. NODE = LS(I)85. XADJ(NODE) = -XADJ(NODE)86. 500 CONTINUE87. RETURN88. ENDRCM (Reverse Cuthill-McKee)This subroutine applies the RCM algorithm described in Section 4.4.1 toa connected component of a subgraph. It operates on a connected compo-nent speci�ed by the input parameters ROOT, MASK, XADJ, and ADJNCY. Thestarting node is ROOT.Since the algorithm requires the degrees of the nodes in the component,the �rst step is to compute those degrees by calling the subroutine DEGREE.The nodes are found and ordered in a level by level fashion; a new level isnumbered each time the loop DO 600 I = ... is executed. The loop DO 200I = ... �nds the unnumbered neighbors of a node, and the remainder ofthe DO 600 loop implements a linear insertion sort to order those neighborsin increasing order of degree. The new ordering is recorded in the arrayPERM as explained in Section 3.4. The �nal loop (DO 700 I = ...) reverses



82 CHAPTER 4. BAND AND ENVELOPE METHODSthe ordering, so that the reverse Cuthill-McKee ordering, rather than thestandard Cuthill-McKee ordering is obtained.Note that just as in the subroutine ROOTLS, MASK(i) is set to zero as node i isrecorded. However, unlike ROOTLS, the subroutine RCM does not restore MASKto its original input state. The values of MASK corresponding to the nodesof the connected component that has been numbered remain set to zero onexit from the subroutine.1. C***************************************************************2. C***************************************************************3. C******** RCM ..... REVERSE CUTHILL-MCKEE ORDERING *******4. C***************************************************************5. C***************************************************************6. C7. C PURPOSE - RCM NUMBERS A CONNECTED COMPONENT SPECIFIED BY8. C MASK AND ROOT, USING THE RCM ALGORITHM.9. C THE NUMBERING IS TO BE STARTED AT THE NODE ROOT.10. C11. C INPUT PARAMETERS -12. C ROOT - IS THE NODE THAT DEFINES THE CONNECTED13. C COMPONENT AND IT IS USED AS THE STARTING14. C NODE FOR THE RCM ORDERING.15. C (XADJ, ADJNCY) - ADJACENCY STRUCTURE PAIR FOR16. C THE GRAPH.17. C18. C UPDATED PARAMETERS -19. C MASK - ONLY THOSE NODES WITH NONZERO INPUT MASK20. C VALUES ARE CONSIDERED BY THE ROUTINE. THE21. C NODES NUMBERED BY RCM WILL HAVE THEIR22. C MASK VALUES SET TO ZERO.23. C24. C OUTPUT PARAMETERS -25. C PERM - WILL CONTAIN THE RCM ORDERING.26. C CCSIZE - IS THE SIZE OF THE CONNECTED COMPONENT27. C THAT HAS BEEN NUMBERED BY RCM.28. C29. C WORKING PARAMETER -30. C DEG - IS A TEMPORARY VECTOR USED TO HOLD THE DEGREE31. C OF THE NODES IN THE SECTION GRAPH SPECIFIED32. C BY MASK AND ROOT.33. C34. C PROGRAM SUBROUTINES -35. C DEGREE.36. C37. C***************************************************************38. C



4.4. ENVELOPE ORDERINGS 8339. SUBROUTINE RCM ( ROOT, XADJ, ADJNCY, MASK,40. 1 PERM, CCSIZE, DEG )41. C42. C***************************************************************43. C44. INTEGER ADJNCY(1), DEG(1), MASK(1), PERM(1)45. INTEGER XADJ(1), CCSIZE, FNBR, I, J, JSTOP,46. 1 JSTRT, K, L, LBEGIN, LNBR, LPERM,47. 1 LVLEND, NBR, NODE, ROOT48. C49. C***************************************************************50. C51. C -------------------------------------52. C FIND THE DEGREES OF THE NODES IN THE53. C COMPONENT SPECIFIED BY MASK AND ROOT.54. C -------------------------------------55. CALL DEGREE ( ROOT, XADJ, ADJNCY, MASK, DEG,56. 1 CCSIZE, PERM )57. MASK(ROOT) = 058. IF ( CCSIZE .LE. 1 ) RETURN59. LVLEND = 060. LNBR = 161. C --------------------------------------------62. C LBEGIN AND LVLEND POINT TO THE BEGINNING AND63. C THE END OF THE CURRENT LEVEL RESPECTIVELY.64. C --------------------------------------------65. 100 LBEGIN = LVLEND + 166. LVLEND = LNBR67. DO 600 I = LBEGIN, LVLEND68. C ----------------------------------69. C FOR EACH NODE IN CURRENT LEVEL ...70. C ----------------------------------71. NODE = PERM(I)72. JSTRT = XADJ(NODE)73. JSTOP = XADJ(NODE+1) - 174. C ------------------------------------------------75. C FIND THE UNNUMBERED NEIGHBORS OF NODE.76. C FNBR AND LNBR POINT TO THE FIRST AND LAST77. C UNNUMBERED NEIGHBORS RESPECTIVELY OF THE CURRENT78. C NODE IN PERM.79. C ------------------------------------------------80. FNBR = LNBR + 181. DO 200 J = JSTRT, JSTOP82. NBR = ADJNCY(J)83. IF ( MASK(NBR) .EQ. 0 ) GO TO 20084. LNBR = LNBR + 185. MASK(NBR) = 0



84 CHAPTER 4. BAND AND ENVELOPE METHODS86. PERM(LNBR) = NBR87. 200 CONTINUE88. IF ( FNBR .GE. LNBR ) GO TO 60089. C ------------------------------------------90. C SORT THE NEIGHBORS OF NODE IN INCREASING91. C ORDER BY DEGREE. LINEAR INSERTION IS USED.92. C ------------------------------------------93. K = FNBR94. 300 L = K95. K = K + 196. NBR = PERM(K)97. 400 IF ( L .LT. FNBR ) GO TO 50098. LPERM = PERM(L)99. IF ( DEG(LPERM) .LE. DEG(NBR) ) GO TO 500100. PERM(L+1) = LPERM101. L = L - 1102. GO TO 400103. 500 PERM(L+1) = NBR104. IF ( K .LT. LNBR ) GO TO 300105. 600 CONTINUE106. IF (LNBR .GT. LVLEND) GO TO 100107. C ---------------------------------------108. C WE NOW HAVE THE CUTHILL MCKEE ORDERING.109. C REVERSE IT BELOW ...110. C ---------------------------------------111. K = CCSIZE/2112. L = CCSIZE113. DO 700 I = 1, K114. LPERM = PERM(L)115. PERM(L) = PERM(I)116. PERM(I) = LPERM117. L = L - 1118. 700 CONTINUE119. RETURN120. ENDGENRCM (GENeral RCM)This subroutine �nds the RCM ordering of a general disconnected graph. Itproceeds through the graph, and calls the subroutine RCM to number eachconnected component. The inputs to the subroutine are the number of nodes(or equations) NEQNS, and the graph in the array pair (XADJ, ADJNCY). Thearrays MASK and XLS are working arrays, used by the subroutines FNROOTand RCM, which are called by GENRCM.



4.4. ENVELOPE ORDERINGS 85The subroutine begins by setting all values of MASK to 1 (loop DO 100 I =...). It then loops through MASK until it �nds an i for which MASK(i) = 1;node i along with MASK, XADJ, and ADJNCY will specify a connected subgraphof the original graph G. The subroutines FNROOT and RCM are then calledto order the nodes of that subgraph. (Recall that the numbered nodes willhave their MASK values set to zero by RCM.) Note that NUM points to the �rstfree position in the array PERM, and is updated after each call to RCM. Theactual parameter in GENRCM corresponding to PERM in RCM is PERM(NUM); thatis, PERM in RCM corresponds to the last NEQNS - NUM + 1 elements of PERMin GENRCM. Note also that these same elements of PERM are used to store thelevel structure in FNROOT. They correspond to the array LS in the executionof that subroutine.After the component is ordered, the search for another i for which MASK(i) 6=0 resumes, until either the loop is exhausted, or NEQNS nodes have beennumbered.1. C***************************************************************2. C***************************************************************3. C******** GENRCM ..... GENERAL REVERSE CUTHILL MCKEE *******4. C***************************************************************5. C***************************************************************6. C7. C PURPOSE - GENRCM FINDS THE REVERSE CUTHILL-MCKEE8. C ORDERING FOR A GENERAL GRAPH. FOR EACH CONNECTED9. C COMPONENT IN THE GRAPH, GENRCM OBTAINS THE ORDERING10. C BY CALLING THE SUBROUTINE RCM.11. C12. C INPUT PARAMETERS -13. C NEQNS - NUMBER OF EQUATIONS14. C (XADJ, ADJNCY) - ARRAY PAIR CONTAINING THE ADJACENCY15. C STRUCTURE OF THE GRAPH OF THE MATRIX.16. C17. C OUTPUT PARAMETER -18. C PERM - VECTOR THAT CONTAINS THE RCM ORDERING.19. C20. C WORKING PARAMETERS -21. C MASK - IS USED TO MARK VARIABLES THAT HAVE BEEN22. C NUMBERED DURING THE ORDERING PROCESS. IT IS23. C INITIALIZED TO 1, AND SET TO ZERO AS EACH NODE24. C IS NUMBERED.25. C XLS - THE INDEX VECTOR FOR A LEVEL STRUCTURE. THE26. C LEVEL STRUCTURE IS STORED IN THE CURRENTLY27. C UNUSED SPACES IN THE PERMUTATION VECTOR PERM.28. C



86 CHAPTER 4. BAND AND ENVELOPE METHODS29. C PROGRAM SUBROUTINES -30. C FNROOT, RCM.31. C32. C***************************************************************33. C34. SUBROUTINE GENRCM ( NEQNS, XADJ, ADJNCY, PERM, MASK, XLS )35. C36. C***************************************************************37. C38. INTEGER ADJNCY(1), MASK(1), PERM(1), XLS(1)39. INTEGER XADJ(1), CCSIZE, I, NEQNS, NLVL,40. 1 NUM, ROOT41. C42. C***************************************************************43. C44. DO 100 I = 1, NEQNS45. MASK(I) = 146. 100 CONTINUE47. NUM = 148. DO 200 I = 1, NEQNS49. C ---------------------------------------50. C FOR EACH MASKED CONNECTED COMPONENT ...51. C ---------------------------------------52. IF (MASK(I) .EQ. 0) GO TO 20053. ROOT = I54. C -----------------------------------------55. C FIRST FIND A PSEUDO-PERIPHERAL NODE ROOT.56. C NOTE THAT THE LEVEL STRUCTURE FOUND BY57. C FNROOT IS STORED STARTING AT PERM(NUM).58. C THEN RCM IS CALLED TO ORDER THE COMPONENT59. C USING ROOT AS THE STARTING NODE.60. C -----------------------------------------61. CALL FNROOT ( ROOT, XADJ, ADJNCY, MASK,62. 1 NLVL, XLS, PERM(NUM) )63. CALL RCM ( ROOT, XADJ, ADJNCY, MASK,64. 1 PERM(NUM), CCSIZE, XLS )65. NUM = NUM + CCSIZE66. IF (NUM .GT. NEQNS) RETURN67. 200 CONTINUE68. RETURN69. ENDExercises4.4.1) Let the graph associated with a given matrix be the n by n gridgraph. Here is the case when n = 5.



4.4. ENVELOPE ORDERINGS 87t tFigure 4.4.11: A 5 by 5 grid.a) Show that if the reverse Cuthill-McKee algorithm starts at acorner node, the pro�le is 23n3 + O(n2).b) What if the scheme starts at the center node?4.4.2) Give an example where the algorithm of Section 4.4.2 will fail to �nda peripheral node. Find a large example which is particularly bad,say some signi�cant fraction of jX j from the diameter. The authorsdo not know of a large example where the execution time will begreater than O(jEj). Can you �nd one?4.4.3) The original pseudo-peripheral node �nding algorithm of Gibbs et. al (1976b)did not have a \shrinking step;" Steps 3 and 4 were as follows:Step 3: (Sort the last level): Sort the nodes in L`(r)(r) in order ofincreasing degree.Step 4: (Test for termination): For x 2 L`(r)(r) in order of increas-ing degree, generateL(x) = fL0(x); L1(x); � � � ; L`(x)(x)g:If `(x) > `(r), set r  x and go to Step 3.Give an example to show that the execution time of this algorithmcan be greater than O(jEj). Answer the �rst two questions in Exer-cise 4.4.2 on page 87 for this algorithm.4.4.4) Suppose we delete Step 3 of the algorithm of Section 4.4.1. Theordering given by x1, x2, � � �, xn is called the Cuthill-McKee ordering .Let Ac be the matrix ordered by this algorithm. Show that



88 CHAPTER 4. BAND AND ENVELOPE METHODSa) the matrix Ac has the monotone pro�le property (see Exer-cise 4.3.2 on page 64 ),b) in the graph GAc , for 1 < i � nAdj(fxi; � � � ; xng) � fxfi(Ac); � � � ; xi�1g:4.4.5) Show that Env(Ar) = Env(Ac) if and only if the matrix Ar hasthe monotone pro�le property. Here Ar is the matrix ordered by thealgorithm of Section 4.4.1, and Ac is as described in Exercise 4.4.4on page 87.4.4.6) What ensures that the pseudo-peripheral node �nding algorithm de-scribed in Section 4.4.2 terminates?4.4.7) Consider the n by n symmetric positive de�nite system of equationsAx = b derived from an s by s �nite element mesh as follows. Themesh consists of (s � 1)2 small squares, as shown in Figure 4.4.10for s = 5, each mesh square has a node at its vertices and midsides,and there is one variable xi associated with each node. For somelabelling of the n = 3s2 � 2s nodes, the matrix A has the propertythat aij 6= 0 if and only if xi and xj are associated with the samemesh square.We have a choice of two orderings, �1 and �2, as shown in Fig-ure 4.4.12. The orderings are similar in that they both number thenodes mesh line by mesh line. Their di�erence is essentially that �1numbers nodes on each horizontal mesh line and on the vertical linesimmediately above it at the same time, while �2 numbers nodes ona horizontal line along with nodes on the vertical lines immediatelybelow it at the same time, as depicted by the dashed lines in thediagrams.a) What is the bandwidth of A, for orderings �1 and �2?b) Suppose the envelope method is used to solve Ax = b, usingorderings �1 and �2. Let �1 and �2 be the corresponding arith-metic operation counts, and let �1 and �2 be the correspondingstorage requirements. Show that for large s,�1 = 6s4 +O(s3)�2 = 13:5s4 +O(s3)
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Figure 4.4.12: Two orderings �1 and �2 of a 5 by 5 �nite element mesh.



90 CHAPTER 4. BAND AND ENVELOPE METHODS�1 = 6s3 +O(s2)�2 = 9s3 +O(s2):Orderings �1 and �2 resemble the type of ordering producedby the RCM and standard Cuthill-McKee ordering algorithmsrespectively; the results above illustrate the substantial di�er-ences in storage and operation counts the two orderings canproduce. For more details see Liu and Sherman [38]4.4.8) (King Ordering) King [33] has proposed an algorithm for reducingthe pro�le of a symmetric matrix. His algorithm for a connectedgraph can be described as follows.Step 1 (Initialization) Determine a pseudo-peripheral node r andassign x1  r.Step 2 (Main loop) For i = 1; � � � ; n�1, �nd a node y 2 Adj(fx1; � � � ; xig)with minimum jAdj(fx1; � � � ; xi; yg)j :Number the node y as xi+1.Step 3 (Exit) The King ordering is given by x1, x2, � � �, xn.This algorithm reduces the pro�le by a local minimization of the fron-twidth. Implement this algorithm for general disconnected graphs.Run your program on the matrices in test set #1 of Chapter 9. Com-pare the performance of this algorithm with that of RCM.4.5 Implementation of the Envelope Method4.5.1 An Envelope Storage SchemeThe most commonly used storage scheme for the envelope method is theone proposed by Jennings [32]. For each row in the matrix, all the entriesfrom the �rst nonzero to the diagonal are stored. These row portions arestored in contiguous locations in a one dimensional array. However, we usea modi�cation of this scheme, in which the diagonal entries are stored in aseparate vector. An advantage of this variant scheme is that it lends itselfreadily to the case when A is unsymmetric; this point is pursued in anexercise at the end of this chapter.



4.5. IMPLEMENTATION OF THE ENVELOPE METHOD 91The scheme has a main storage array ENV which contains the envelope entriesof each row in the matrix. An auxiliary index vector XENV of length n is usedto point to the start of each row portion. For uniformity in indexing, we setXENV(n + 1) to jEnv(A)j+ 1. In this way, the index vector XENV allows usto access any nonzero component conveniently. The mapping from Env(A)to f1; 2; � � � ; jEnv(A)jg is given by:fi; jg! XENV(i+ 1)� (i� j):In other words, a component aij within the envelope region of A is found inENV(XENV(i+ 1)� (i� j)). Figure 4.5.1 illustrates the storage scheme. Forexample, to retrieve a64, we haveXENV(7)� (6� 4) = 8so that a64 is stored in the 8-th element of the vector ENV.A more frequently used operation is to retrieve the envelope portion of arow. This can be done conveniently as follows....JSTRT = XENV(IROW)JSTOP = XENV(IROW+1) - 1IF (JSTOP.LT.JSTRT) GO TO 200DO 100 J = JSTRT, JSTOPELEMNT = ENV(J)...100 CONTINUE200 ...The primary storage of the scheme is jEnv(A)j+n and the overhead storageis n + 1. The data structure for the storage scheme can be set up in O(jEj)time and the subroutine FNENV, discussed in the next subsection, performsthis function.



92 CHAPTER 4. BAND AND ENVELOPE METHODS
266666664 a11 a22 symmetrica31 a33a43 a44a53 a55a62 a64 a66 377777775a11 a22 a33 a44 a55 a66a31 0 a43 a53 0 a62 0 a64 01 1 1 3 4 6 106 6 6 6 6XENVENVDIAG

Figure 4.5.1: Example of the envelope storage scheme.



4.5. IMPLEMENTATION OF THE ENVELOPE METHOD 934.5.2 The Storage Allocation Subroutine FNENV (FiNd ENVe-lope)In this section we describe the subroutine FNENV. This subroutine accepts asinput the graph of the matrix A, stored in the array pair (XADJ, ADJNCY),along with the permutation vector PERM and its inverse INVP (discussed inSection 3.4). The objective of the subroutine is to compute the componentsof the array XENV discussed in Section 4.5.1, which is used in connection withstoring the factor L of PAP T . Also returned is the value ENVSZE, whichis the envelope size of L and equals XENV(NEQNS + 1) � 1. Here as before,NEQNS is the number of equations or nodes.The subroutine is straightforward and needs little explanation. The loopDO 200 I = ... processes each row; the index of the �rst nonzero in thei-th row (IFIRST) of PAP T is determined by the loop DO 100 J = .... Atthe end of each execution of the loop DO 100 J = ..., ENVSZE is suitablyupdated. Note that PERM and INVP are used since the array pair (XADJ,ADJNCY) stores the structure of A, but the structure of L we are �ndingcorresponds to PAP T .1. C*************************************************************2. C*************************************************************3. C*************** FNENV ..... FIND ENVELOPE ************4. C*************************************************************5. C*************************************************************6. C7. C PURPOSE - FINDS THE ENVELOPE STRUCTURE OF A PERMUTED8. C MATRIX.9. C10. C INPUT PARAMETERS -11. C NEQNS - NUMBER OF EQUATIONS12. C (XADJ, ADJNCY) - ARRAY PAIR CONTAINING THE ADJACENCY13. C STRUCTURE OF THE GRAPH OF THE MATRIX.14. C PERM,INVP - ARRAYS CONTAINING PERMUTATION DATA ABOUT15. C THE REORDERED MATRIX.16. C17. C OUTPUT PARAMETERS -18. C XENV - INDEX VECTOR FOR THE LEVEL STRUCTURE19. C TO BE USED TO STORE THE LOWER (OR UPPER)20. C ENVELOPE OF THE REORDERED MATRIX.21. C ENVSZE - IS EQUAL TO XENV(NEQNS+1) - 1.22. C BANDW - BANDWIDTH OF THE REORDERED MATRIX.23. C24. C*************************************************************25. C



94 CHAPTER 4. BAND AND ENVELOPE METHODS26. SUBROUTINE FNENV ( NEQNS, XADJ, ADJNCY, PERM, INVP,27. 1 XENV, ENVSZE, BANDW )28. C29. C*************************************************************30. C31. INTEGER ADJNCY(1), INVP(1), PERM(1)32. INTEGER XADJ(1), XENV(1), BANDW, I, IBAND,33. 1 IFIRST, IPERM, J, JSTOP, JSTRT, ENVSZE,34. 1 NABOR, NEQNS35. C36. C*************************************************************37. C38. BANDW = 039. ENVSZE = 140. DO 200 I = 1, NEQNS41. XENV(I) = ENVSZE42. IPERM = PERM(I)43. JSTRT = XADJ(IPERM)44. JSTOP = XADJ(IPERM + 1) - 145. IF ( JSTOP .LT. JSTRT ) GO TO 20046. C --------------------------------47. C FIND THE FIRST NONZERO IN ROW I.48. C --------------------------------49. IFIRST = I50. DO 100 J = JSTRT, JSTOP51. NABOR = ADJNCY(J)52. NABOR = INVP(NABOR)53. IF ( NABOR .LT. IFIRST ) IFIRST = NABOR54. 100 CONTINUE55. IBAND = I - IFIRST56. ENVSZE = ENVSZE + IBAND57. IF ( BANDW .LT. IBAND ) BANDW = IBAND58. 200 CONTINUE59. XENV(NEQNS+1) = ENVSZE60. ENVSZE = ENVSZE - 161. RETURN62. END4.6 The Numerical Subroutines ESFCT, ELSLV andEUSLVIn this section we describe the subroutines which perform the numerical fac-torization and solution, using the envelope storage scheme described in Sec-tion 4.5.1. We describe the triangular solution subroutines ELSLV (Envelope-



4.6. THE NUMERICAL SUBROUTINES ESFCT, ELSLV AND EUSLV 95Lower-SoLVe) and EUSLV (Envelope-Upper-SoLVe) before the factorizationsubroutine ESFCT (Envelope-Symmetric-FaCTorization) because ELSLV is usedby ESFCT.4.6.1 The Triangular Solution Subroutines ELSLV and EUSLV.These subroutines carry out the numerical solutions of the lower and uppertriangular systems Ly = band LTx = y;respectively, where L is a lower triangular matrix stored as described inSection 4.5.1.There are several important features of ELSLV which deserve explanation. Tobegin, the position (IFIRST) of the �rst nonzero in the right hand side (RHS)is determined. With this initialization, the program then loops (DO 500 I= ...) over the rows IFIRST, IFIRST+1, � � �, NEQNS of L, using the innerproduct scheme described in Section 2.3.1. However, the program attemptsto exploit strings of zeros in the solution; the variable LAST is used to storethe index of the most recently computed nonzero component of the solution.(The solution overwrites the input right hand side array RHS.)The reader is urged to simulate the subroutine's action on the problem de-scribed by Figure 4.6.1 to verify that only the nonzeros denoted by 
 areactually used by the subroutine ELSLV.Note that LAST simply allows us to skip certain rows; we still perform somemultiplications with zero operands in the DO 300 K ... loop, but on mostmachines a test to avoid such a multiplication is more costly than goingahead and doing it.The test and adjustment of IBAND just preceding the DO 300 ... loop alsorequires some explanation. In some circumstances ELSLV is used to solvea lower triangular system where the coe�cient matrix to be used is only asubmatrix of the matrix passed to ELSLV in the array pair (XENV, ENV), asdepicted in Figure 4.6.2. Some of the rows of the envelope protrude outsidethe coe�cient matrix to be used, and IBAND is appropriately adjusted toaccount for them. In the example in Figure 4.6.2, L is actually 16 by 16,and if the system we wish to solve is the submatrix indicated by the 11by 11 system with right hand side RHS, we would solve it by executing thestatement
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.



4.6. THE NUMERICAL SUBROUTINES ESFCT, ELSLV AND EUSLV 97CALL ELSLV ( 11, XENV(5), ENV, DIAG(5), RHS ) .In the subroutine, XENV(5) is interpreted as XENV(1), XENV(6) becomesXENV(2), etc. This \trick" is used heavily by the subroutine ESFCT, whichcalls ELSLV.26666666666666666666666666666664
� � coe�cient matrix� to be used�� �� �� �� � �� � � � � �� �� � � � � � �� � �� � � � �� � � � � �� � � � �� � � �

37777777777777777777777777777775
?solution? = ?righthandside

Figure 4.6.2: An example illustrating the use of ELSLV.1. C*************************************************************2. C*************************************************************3. C********** ELSLV ..... ENVELOPE LOWER SOLVE **********4. C*************************************************************5. C*************************************************************6. C7. C PURPOSE - THIS SUBROUTINE SOLVES A LOWER TRIANGULAR8. C SYSTEM L X = RHS. THE FACTOR L IS STORED IN THE9. C ENVELOPE FORMAT.10. C11. C INPUT PARAMETERS -



98 CHAPTER 4. BAND AND ENVELOPE METHODS12. C NEQNS - NUMBER OF EQUATIONS.13. C (XENV, ENV) - ARRAY PAIR FOR THE ENVELOPE OF L.14. C DIAG - ARRAY FOR THE DIAGONAL OF L.15. C16. C UPDATED PARAMETER -17. C RHS - ON INPUT, IT CONTAINS THE RIGHT HAND VECTOR.18. C ON RETURN, IT CONTAINS THE SOLUTION VECTOR.19. C OPS - DOUBLE PRECISION VARIABLE CONTAINED IN THE20. C LABELLED COMMON BLOCK OPNS. ITS VALUE IS21. C INCREASED BY THE NUMBER OF OPERATIONS22. C PERFORMED BY THIS SUBROUTINE.23. C24. C*************************************************************25. C26. SUBROUTINE ELSLV ( NEQNS, XENV, ENV, DIAG, RHS )27. C28. C*************************************************************29. C30. DOUBLE PRECISION COUNT, OPS31. COMMON /SPKOPS/ OPS32. REAL DIAG(1), ENV(1), RHS(1), S33. INTEGER XENV(1), I, IBAND, IFIRST, K, KSTOP,34. 1 KSTRT, L, LAST, NEQNS35. C36. C*************************************************************37. C38. C -------------------------------------------------39. C FIND THE POSITION OF THE FIRST NONZERO IN RHS AND40. C PUT IT IN IFIRST.41. C -------------------------------------------------42. IFIRST = 043. 100 IFIRST = IFIRST + 144. IF ( RHS(IFIRST) .NE. 0.0E0 ) GO TO 20045. IF ( IFIRST .LT. NEQNS ) GO TO 10046. RETURN47. 200 LAST = 048. C -----------------------------------------------49. C LAST CONTAINS THE POSITION OF THE MOST RECENTLY50. C COMPUTED NONZERO COMPONENT OF THE SOLUTION.51. C -----------------------------------------------52. DO 500 I = IFIRST, NEQNS53. IBAND = XENV(I+1) - XENV(I)54. IF ( IBAND .GE. I ) IBAND = I - 155. S = RHS(I)56. L = I - IBAND57. RHS(I) = 0.0E058. C ----------------------------------------------



4.6. THE NUMERICAL SUBROUTINES ESFCT, ELSLV AND EUSLV 9959. C ROW OF THE ENVELOPE IS EMPTY, OR CORRESPONDING60. C COMPONENTS OF THE SOLUTION ARE ALL ZEROS.61. C ----------------------------------------------62. IF ( IBAND .EQ. 0 .OR. LAST .LT. L ) GO TO 40063. KSTRT = XENV(I+1) - IBAND64. KSTOP = XENV(I+1) - 165. DO 300 K = KSTRT, KSTOP66. S = S - ENV(K)*RHS(L)67. L = L + 168. 300 CONTINUE69. COUNT = IBAND70. OPS = OPS + COUNT71. 400 IF ( S .EQ. 0.0E0 ) GO TO 50072. RHS(I) = S/DIAG(I)73. OPS = OPS + 1.0D074. LAST = I75. 500 CONTINUE76. RETURN77. ENDWe now turn to a description of the subroutine EUSLV, which solves theproblem LTx = y, with L stored using the same storage scheme as thatused by ELSLV. This means that we have convenient access to the columnsof LT , and sparsity can be exploited completely, as discussed in Section 2.3.1,using an outer product form of the computation. The i-th column of LT isused in the computation only if the i-th element of the solution is nonzero.Just as in ELSLV, the subroutine EUSLV can be used to solve upper triangularsystems involving only a submatrix of L contained in the array pair (XENV,ENV), using techniques analogous to those we described above. The valueof IBAND is appropriately adjusted for those columns of LT that protrudeoutside the part of L actually being used.All the subroutines which perform numerical computation contain a labelledCOMMON block SPKOPS, which has a single variable OPS. Each subroutinecounts the number of operations (multiplications and divisions) it performs,and increments the value of OPS accordingly. Thus, if the user of the subrou-tines wishes to monitor the number of operations performed, he can makethe same common block declaration in his calling program and examine thevalue of OPS.The variable OPS has been declared to be double precision to avoid thepossibility of serious rounding error in the computation of operation counts.Our subroutines may be used to solve very large systems, so OPS may easilyassume values as large as 108 or 109, even though OPS may be incremented in



100 CHAPTER 4. BAND AND ENVELOPE METHODSeach subroutine by relatively small numbers. On many computers, if singleprecision is used, the 
oating point addition of a small number (say lessthan 10) to 108 will again yield 108. (Try it, simulating 6 digit 
oating pointarithmetic!) Using double precision for OPS makes serious rounding error inthe operation count very unlikely.1. C*************************************************************2. C*************************************************************3. C********** EUSLV ..... ENVELOPE UPPER SOLVE **********4. C*************************************************************5. C*************************************************************6. C7. C PURPOSE - THIS SUBROUTINE SOLVES AN UPPER TRIANGULAR8. C SYSTEM U X = RHS. THE FACTOR U IS STORED IN THE9. C ENVELOPE FORMAT.10. C11. C INPUT PARAMETERS -12. C NEQNS - NUMBER OF EQUATIONS.13. C (XENV, ENV) - ARRAY PAIR FOR THE ENVELOPE OF U.14. C DIAG - ARRAY FOR THE DIAGONAL OF U.15. C16. C UPDATED PARAMETER -17. C RHS - ON INPUT, IT CONTAINS THE RIGHT HAND SIDE.18. C ON OUTPUT, IT CONTAINS THE SOLUTION VECTOR.19. C OPS - DOUBLE PRECISION VARIABLE CONTAINED IN THE20. C LABELLED COMMON BLOCK OPNS. ITS VALUE IS21. C INCREASED BY THE NUMBER OF OPERATIONS22. C PERFORMED BY THIS SUBROUTINE.23. C24. C*************************************************************25. C26. SUBROUTINE EUSLV ( NEQNS, XENV, ENV, DIAG, RHS )27. C28. C*************************************************************29. C30. DOUBLE PRECISION COUNT, OPS31. COMMON /SPKOPS/ OPS32. REAL DIAG(1), ENV(1), RHS(1), S33. INTEGER XENV(1), I, IBAND, K, KSTOP, KSTRT, L,34. 1 NEQNS35. C36. C*************************************************************37. C38. I = NEQNS + 139. 100 I = I - 140. IF ( I .EQ. 0 ) RETURN41. IF ( RHS(I) .EQ. 0.0E0 ) GO TO 100



4.6. THE NUMERICAL SUBROUTINES ESFCT, ELSLV AND EUSLV 10142. S = RHS(I)/DIAG(I)43. RHS(I) = S44. OPS = OPS + 1.0D045. IBAND = XENV(I+1) - XENV(I)46. IF ( IBAND .GE. I ) IBAND = I - 147. IF ( IBAND .EQ. 0 ) GO TO 10048. KSTRT = I - IBAND49. KSTOP = I - 150. L = XENV(I+1) - IBAND51. DO 200 K = KSTRT, KSTOP52. RHS(K) = RHS(K) - S*ENV(L)53. L = L + 154. 200 CONTINUE55. COUNT = IBAND56. OPS = OPS + COUNT57. GO TO 10058. END4.6.2 The Factorization Subroutine ESFCTIn this section we describe some details about the numerical factorizationsubroutine ESFCT, which computes the Cholesky factorization LLT of agiven matrix A, stored using the envelope storage scheme described in Sec-tion 4.5.1. The variant of Cholesky's method used is the bordering method(see Section 2.2.2).Recall that if A is partitioned asA =  M uuT s !whereM is the leading principal submatrix ofA andLMLTM is its Choleskyfactorization, then the factor of A is given byL =  LM 0wT t ! ;where LMw = u and t = (s � wTw)1=2. Thus, the Cholesky factor of Acan be computed row by row, working with successively larger matrices M ,beginning with the one by one matrix a11. The main point of interest inESFCT concerns the exploitation of the fact that the vectors u are \short"because we are dealing with an envelope matrix.



102 CHAPTER 4. BAND AND ENVELOPE METHODSReferring to Figure 4.6.3, suppose the �rst i � 1 steps of the factorizationhave been completed, so that the leading (i�1)�(i�1) principal submatrixofA has been factored. (Thus, the statements preceeding the loop DO 300 I= 2, ... have been executed, and the loop DO 300 I = 2, ... has beenexecuted i � 2 times.) In order to compute row i of L, we must solve thesystem of equations LMw = u. -............. .......................................-..........................��....................................................����- ��.............���....................................................�������..........................���@@@@@@@@@@@ @@@@@@@@@@@�� �L�uTuT LmFigure 4.6.3: Sketch showing the way sparsity is exploited in ESFCT; only �Lenters into the computation of �w from �u.However, it is clear from the picture (and from Lemmas 2.3.1 and 2.3.4)that only part of LM is involved in the computation, namely that part ofLM labelled �L. Thus ELSLV is called with the size of the triangular systemspeci�ed as IBAND, the size of �u (and �L ), and IFIRST is the index in L ofthe �rst row of �L.1. C*************************************************************2. C*************************************************************3. C****** ESFCT ..... ENVELOPE SYMMETRIC FACTORIZATION ****4. C*************************************************************5. C*************************************************************6. C7. C PURPOSE - THIS SUBROUTINE FACTORS A POSITIVE DEFINITE8. C MATRIX A INTO L*L(TRANSPOSE). THE MATRIX A IS STORED9. C IN THE ENVELOPE FORMAT. THE ALGORITHM USED IN THE10. C STANDARD BORDERING METHOD.11. C12. C INPUT PARAMETERS -13. C NEQNS - NUMBER OF EQUATIONS.14. C XENV - THE ENVELOPE INDEX VECTOR.15. C



4.6. THE NUMERICAL SUBROUTINES ESFCT, ELSLV AND EUSLV 10316. C UPDATED PARAMETERS -17. C ENV - THE ENVELOPE OF L OVERWRITES THAT OF A.18. C DIAG - THE DIAGONAL OF L OVERWRITES THAT OF A.19. C IFLAG - THE ERROR FLAG. IT IS SET TO 1 IF A ZERO OR20. C NEGATIVE SQUARE ROOT IS DETECTED DURING THE21. C FACTORIZATION.22. C23. C PROGRAM SUBROUTINES -24. C ELSLV.25. C26. C*************************************************************27. C28. SUBROUTINE ESFCT ( NEQNS, XENV, ENV, DIAG, IFLAG )29. C30. C*************************************************************31. C32. DOUBLE PRECISION COUNT, OPS33. COMMON /SPKOPS/ OPS34. REAL DIAG(1), ENV(1), S, TEMP35. INTEGER XENV(1), I, IBAND, IFIRST, IFLAG, IXENV,36. 1 J, JSTOP, NEQNS37. C38. C*************************************************************39. C40. IF ( DIAG(1) .LE. 0.0E0 ) GO TO 40041. DIAG(1) = SQRT(DIAG(1))42. IF ( NEQNS .EQ. 1 ) RETURN43. C ------------------------------------------------44. C LOOP OVER ROWS 2,3,..., NEQNS OF THE MATRIX ....45. C ------------------------------------------------46. DO 300 I = 2, NEQNS47. IXENV = XENV(I)48. IBAND = XENV(I+1) - IXENV49. TEMP = DIAG(I)50. IF ( IBAND .EQ. 0 ) GO TO 20051. IFIRST = I - IBAND52. C ---------------------------------------53. C COMPUTE ROW I OF THE TRIANGULAR FACTOR.54. C ---------------------------------------55. CALL ELSLV ( IBAND, XENV(IFIRST), ENV,56. 1 DIAG(IFIRST), ENV(IXENV) )57. JSTOP = XENV(I+1) - 158. DO 100 J = IXENV, JSTOP59. S = ENV(J)60. TEMP = TEMP - S*S61. 100 CONTINUE62. 200 IF ( TEMP .LE. 0.0E0 ) GO TO 400



104 CHAPTER 4. BAND AND ENVELOPE METHODS63. DIAG(I) = SQRT(TEMP)64. COUNT = IBAND65. OPS = OPS + COUNT66. 300 CONTINUE67. RETURN68. C ------------------------------------------------69. C SET ERROR FLAG - NON POSITIVE DEFINITE MATRIX.70. C ------------------------------------------------71. 400 IFLAG = 172. RETURN73. ENDExercises4.6.1) Suppose A has symmetric structure but A 6= AT , and assume thatGaussian elimination applied to A is numerically stable without piv-oting. The bordering equations for factoring A, analogous to thoseused by ESFCT in Section 4.6.2, are as follows.A =  M vuT s !L =  LM 0wT 1 ! U =  UM g0 t !LMg = v; U TMw = u; t = s�wTg:Here L is now unit lower triangular (ones on the diagonal), and ofcourse L 6= UT .a) Using ELSLV as a base, implement a Fortran subroutine EL1SLVthat solves unit lower triangular systems stored using the enve-lope storage scheme.b) Using ESFCT as a base, implement a Fortran subroutine EFCTthat factors A into LU , where L and UT are stored using theenvelope scheme.c) What subroutines do you need to solve Ax = b, where A is asdescribed in this question? Hints:i) Very few changes in ELSLV and ESFCT are required.ii) Your implementation of EFCT should use EL1SLV and ELSLV.



4.7. ADDITIONAL NOTES 1054.6.2) Suppose L and b have the structure shown in Figure 4.6.4, whereL is stored in the arrays XENV, ENV, and DIAG, as described in Sec-tion 4.5.1. How many arithmetic operations will ELSLV perform insolving Lx = b? How many will EUSLV perform in solving LTx = b?266666666666666664 �� �� � � �� �� � � �� �� � � � � �
377777777777777775 266666666666666664 ��� 377777777777777775L bFigure 4.6.4: An example of a sparse triangular system.4.7 Additional NotesOur lack of enthusiasm for band orderings is due in part to the fact thatwe only consider \in core" methods in our book. Band orderings are attrac-tive if auxiliary storage is to be used, since it is quite easy to implementfactorization and solution subroutines which utilize auxiliary storage, pro-vided about �(� + 1)=2 main storage locations are available (Felippa [16]).Wilson et al. [55] describe an out-of-core band-oriented scheme which re-quires even less storage; their program can execute even if there is onlyenough storage to hold two columns of the band of L. Another contextin which band orderings are important is in the use of so-called minimalstorage band methods (Sherman [47]). The basic computational scheme issimilar to those which use auxiliary storage, except that the columns of Lare computed, used, and then \thrown away," instead of being written onauxiliary storage. The parts of L needed later are recomputed.Several other algorithms for producing low pro�le orderings have been pro-



106 CHAPTER 4. BAND AND ENVELOPE METHODSposed. Levy [35] describes an algorithm which picks nodes to number onthe basis of minimum increase in the envelope size. King [33] has proposeda similar scheme, except that the candidates for numbering are restricted tothose having at least one numbered neighbor, and therefore requires a start-ing node. More recently, several algorithms more closely related to the onedescribed in this chapter have been proposed (Gibbs et al. [30], Gibbs [29]).Several researchers have described \frontal" or \wavefront" techniques toexploit the variation in the bandwidth when using auxiliary storage (Meloshand Bamford [41], Irons [31]). These schemes require only about !(! +1)=2 main storage locations rather than �(� + 1)=2 for the band schemes,although the programs tend to be substantially more complicated as a result.These ideas have been proposed in the context of solving �nite elementequations, and a second novel feature the methods have is that the equationsare generated and solved in tandem.It has been shown that given a starting node, the RCM algorithm can beimplemented to run in O(jEj) time (Chan and George [8]). Since each edgeof the graph must be examined at least once, this new method is apparentlyoptimal.A set of subroutines which are similar to ELSLV, EUSLV, and ESFCT is providedin Eisenstat et al. [13].



Chapter 5General Sparse Methods5.1 IntroductionIn this chapter we consider methods which, unlike those of Chapter 4, at-tempt to exploit all the zero elements in the triangular factor L of A. Theordering algorithm we study in this chapter is called the minimum degreealgorithm (Rose [44]). It is a heuristic algorithm for �nding an orderingfor A which su�ers low �ll when it is factored. This algorithm has beenused widely in industrial applications, and enjoys a good reputation. Thecomputer implementations of the allocation and numerical subroutines areadapted from those of the Yale Sparse Matrix Package (Eisenstat [13]).5.2 Symmetric FactorizationLet A be a symmetric sparse matrix. The nonzero structure of A is de�nedby Nonz(A) = ffi; jg j aij 6= 0 and i 6= jg:Suppose the matrix is factored into LLT using the Cholesky factorizationalgorithm. The �lled matrixF (A) of A is the matrix sum L + LT . Whenthe matrix under study is clear from context, we use F rather than F (A).Its corresponding structure is thenNonz(F ) = ffi; jg j lij 6= 0 and i 6= jg:Recall that throughout our book, we assume that exact numerical cancella-tion does not occur, so for a given nonzero structure Nonz(A), the corre-107



108 CHAPTER 5. GENERAL SPARSE METHODSsponding Nonz(F ) is completely determined. That is, Nonz(F ) is indepen-dent of the numerical quantities in A.This no-cancellation assumption immediately implies thatNonz(A) � Nonz(F );and the �ll of the matrix A can then be de�ned asFill(A) = Nonz(F )�Nonz(A):For example, consider the matrix in Figure 5.2.1, where �ll-in entries areindicated by +. The corresponding sets are given byNonz(A) = ff1; 5g; f1; 8g; f2; 4g; f2; 5g; f3; 8g; f4; 7g; f5; 6g; f6; 8g; f8; 9ggFill(A) = ff4; 5g; f5; 7g; f5; 8g; f6; 7g; f7; 8gg :In the next section, we shall consider how Fill(A) can be obtained fromNonz(A). 2666666666666664 g1 � �g2 � �g3 �� g4 g� �� � g� g5 � g� g�� g6 g� �� g� g� g7 g�� � g� � g� g8 �� g9 3777777777777775Figure 5.2.1: A matrix example of Nonz and Fill.5.2.1 Elimination Graph ModelWe now relate the application of symmetric Gaussian elimination to A, tocorresponding changes in its graph GA. Recall from Chapter 2 that the�rst step of the outer product version of the algorithm applied to an n � n



5.2. SYMMETRIC FACTORIZATION 109symmetric positive de�nite matrixA = A0 can be described by the equation:A = A0 = H0 =  d1 vT1v1 �H1 ! (5.2.1)=  pd1 0v1pd1 In�1 ! 1 00 H1 ! pd1 vT1pd10 In�1 != L1A1LT1 ;where H1 = �H1 � v1vT1d1 : (5.2.2)The basic step is then recursively applied to H1, H2, and so on. Makingthe usual assumption that exact cancellation does not occur, equation (5.2.2)implies that the jk-th entry of H1 is nonzero if the corresponding entry in�H1 is already nonzero, or if both (v1)j 6= 0 and (v1)k 6= 0. Of course bothsituations may prevail, but when only the latter one does, some �ll-in occurs.This phenomenon is illustrated pictorially in Figure 5.2.2. After the �rst stepof the factorization is completed, we are left with the matrix H1 to factor.j k� �j � g�k � g�Figure 5.2.2: Pictorial illustration of �ll-in in the outer-product formulation.Following Parter [43] and Rose [44], we now establish a correspondence be-tween the transformation of H0 to H1 and the corresponding changes totheir respective graphs. As usual, we denote the graphs of H0(= A) andH1 by GH0 and GH1 respectively, and for convenience we denote the node�(i) by xi, where � is the labelling of GA implied by A. Now as shown inthe example of Figure 5.2.3, the graph of H1 is obtained from that of H0by:1) deleting node x1 and its incident edges



110 CHAPTER 5. GENERAL SPARSE METHODS2) adding edges to the graph so that nodes in Adj(x1) are pairwise adjacentin GH1 .The recipe is due to Parter [43].Thus, as observed by Rose, symmetric Gaussian elimination can be inter-preted as generating a sequence of elimination graphsG�i = GHi = (X�i ; E�i ); i = 1; 2; � � � ; n� 1;where G�i is obtained from G�i�1 according to the procedure described above.When � is clear from context, we use Gi instead of G�i . The example inFigure 5.2.3 illustrates this vertex elimination operation. The darker linesdepict edges added during the factorization. For example, the eliminationof the node x2 in the graph G1 generates three �ll-in edges fx3; x4g; fx4; x6g,fx3; x6g in G2 since fx3; x4; x6g is the adjacent set of x2 in G1.Let L be the triangular factor of the matrix A. De�ne the �lled graph ofGA to be the symmetric graph GF = (XF ; EF ), where F = L+LT . Herethe edge set EF consists of all the edges in EA together with all the edgesadded during the factorization. Obviously, XF = XA. The edge sets EFand EA are related by the following lemma due to Parter [43]. Its proof isleft as an exercise.Lemma 5.2.1 The unordered pair fxi; xjg 2 EF if and only if fxi; xjg 2EA or fxi; xkg 2 EF and fxk; xjg 2 EF for some k < minfi; jg.The notion of elimination graphs allows us to interpret the step by stepelimination process as a sequence of graph transformations. Moreover, theset of edges added in the elimination graphs corresponds to the set of �ll-ins.Thus, for the example in Figure 5.2.3, the structures of the correspondingmatrix F = L+ LT and the �lled graph GF are given in Figure 5.2.4.Note that the �lled graph GF can easily be constructed from the sequenceof elimination graphs. Finding GF is important because it contains thestructure of L. We need to know it if we intend to use a storage schemewhich exploits all the zeros in L.5.2.2 Modelling Elimination By Reachable SetsSection 5.2.1 de�nes the sequence of elimination graphsG0 ! G1 ! � � � ! Gn�1
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G0 kk k kk kBBBB ����61 2 34 5 H0 = 266666664 � � �� � � �� � �� �� � �� � � 377777775G1 k k kk k



 ����6 2 34 5 H1 = 2666664 � � � g�� � �� �� � �g� � � 3777775G2 kk kk������6 34 5 H2 = 26664 � g� � g�g� � g�� � �g� g� � � 37775G3 kk kZZZZZZ64 5 H3 = 264 � g� g�g� � �g� � � 375G4 k k6 5 H4 = " � �� � #G5 k6 H5 = h � iFigure 5.2.3: The sequence of elimination graphs.
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 @@@��� �����F = L +LT GFFigure 5.2.4: The �lled graph and matrix of the example on Figure 5.2.3.and provides a recursive characterization of the edge set EF . It is often help-ful, both in theoretical and computational terms, to have characterizationsof Gi and EF directly in terms of the original graph GA. Our objective inthis section is to provide such characterizations using the notion of reachablesets .Let us �rst study the way the �ll edge fx4; x6g is formed in the example ofFigure 5.2.3. In G1, there is the path(x4; x2; x6);so that when x2 is eliminated, the edge fx4; x6g is created. However, theedge fx2; x6g is not present in the original graph; it is formed from the path(x2; x1; x6)when x1 is eliminated from G0. On combining the two, we see that the path(x4; x2; x1; x6) in the original graph is really responsible for the �lled edgefx4; x6g. This motivates the use of reachable sets, which we now introduce(George [27]).Let S be a subset of the node set with x 62 S. The node x is said to bereachable from a node y through S if there exists a path (y; v1; � � � ; vk; x)from y to x such that vi 2 S for 1 � i � k. Note that k can be zero, so thatany adjacent node of y not in S is reachable from y through S.The reachable set of y through S, denoted by Reach(y; S), is then de�nedto beReach(y; S) = fx 62 S j x is reachable from y through Sg : (5.2.3)



5.2. SYMMETRIC FACTORIZATION 113To illustrate the notion of reachable sets, we consider the example in Fig-ure 5.2.5. If S = fs1; s2; s3; s4g, we haveReach(y; S) = fa; b; cg;since we can �nd the following paths through S :(y; s2; s4; a);(y; b);(y; s1; c):������������������������������������a s4 s2 y s1b c s3dFigure 5.2.5: Example to illustrate the reachable set concept.The following theorem characterizes the �lled graph by reachable sets.Theorem 5.2.2EF = ffxi; xjg j xj 2 Reach(xi; fx1; x2; � � � ; xi�1g)g:Proof: Assume xj 2 Reach(xi; fx1; � � � ; xi�1g). By de�nition, there existsa path (xi; y1; � � � ; yt; xj) in GA with yk 2 fx1; � � � ; xi�1g for 1 � k � t. Ift = 0 or t = 1, the result follows immediately from Lemma 5.2.1. If t > 1, asimple induction on t, together with Lemma 5.2.1 shows that fxi; xjg 2 EF .Conversely, assume fxi; xjg 2 EF and i � j. The proof is by induction onthe subscript i. The result is true for i = 1, since fxi; xjg 2 EF impliesfxi; xjg 2 EA. Suppose the assertion is true for subscripts less than i.If fxi; xjg 2 EA, there is nothing to prove. Otherwise, by Lemma 5.2.1,there exists a k < minfi; jg such that fxi; xkg 2 EF and fxj; xkg 2 EF .By the inductive assumption, a path can be found from xi to xj passing



114 CHAPTER 5. GENERAL SPARSE METHODSthrough xk in the section graph GA(fx1; � � � ; xkg [ fxi; xjg) which impliesthat xj 2 Reach(xi; fx1; � � � ; xi�1g). 2In terms of the matrix, the set Reach(xi; fx1; � � � ; xi�1g) is simply the setof row subscripts that correspond to nonzero entries in the column vectorL�i. For example, let the graph of Figure 5.2.5 be ordered as shown inFigure 5.2.6. ������������������������������������7 4 2 5 16 8 39Figure 5.2.6: A labelling of the graph of Figure 5.2.5.If Si = fx1; � � � ; xig, it is not di�cult to see from the de�nition of reachableset that Reach(x1; S0) = fx5; x8gReach(x2; S1) = fx4; x5gReach(x3; S2) = fx8gReach(x4; S3) = fx5; x7gReach(x5; S4) = fx6; x7; x8gReach(x6; S5) = fx7; x8gReach(x7; S6) = fx8gReach(x8; S7) = fx9gReach(x9; S8) = �:It then follows from Theorem 5.2.2 that the structure of the correspondingL is given by the matrix in Figure 5.2.7.We have thus characterized the structure of L directly in terms of the struc-ture of A. More importantly, there is a convenient way of characterizing theelimination graphs introduced in Section 5.2.1 in terms of reachable sets.Let G0;G1; : : : ;Gn�1 be the sequence of elimination graphs as de�ned by thenodes x1; x2; � � � ; xn, and consider the graph Gi = (Xi; Ei). We then have



5.2. SYMMETRIC FACTORIZATION 1152666666666666664 g1 g2 g3� g4� � g� g5� g6� g� g� g7� � g� � g� g8� g9 3777777777777775Figure 5.2.7: Structure of a Cholesky factor L.Theorem 5.2.3 Let y be a node in the elimination graph Gi = (Xi; Ei).The set of nodes adjacent to y in Gi is given byReach(y; fx1; : : : ; xig)where the Reach operator is applied to the original graph G0.Proof: The proof can be done by induction on i. 2Let us re-examine the example in Figure 5.2.3. Consider the graphs G0 andG2. kk k kk kBBBB ����61 2 34 5 kk kk������6 34 5G0 G2Figure 5.2.8: The graphs G0 and G2.Let S2 = fx1; x2g. It is clear thatReach(x3; S2) = fx4; x5; x6g;Reach(x4; S2) = fx3; x6g;Reach(x5; S2) = fx3; x6g;



116 CHAPTER 5. GENERAL SPARSE METHODSand Reach(x6; S2) = fx3; x4; x5g;since we have paths (x3; x2; x4);(x3; x2; x1; x6);and (x4; x2; x1; x6)in the graph G0. These reach sets are precisely the adjacent sets in the graphG2.The importance of reachable sets in sparse elimination lies in Theorem 5.2.3.Given a graph G = (X;E) and an elimination sequence x1; x2; : : : ; xn, thewhole elimination process can be described implicitly by this sequence andthe Reach operator. This can be regarded as an implicit model for elim-ination, as opposed to the explicit model using elimination graphs (Sec-tion 5.2.1).Exercises5.2.1) For any nonzero structure Nonz(A), can you always �nd a matrixA� so that its �lled matrix F � has identical logical and numericalnonzero structures? Why?5.2.2) Consider the star graph with 7 nodes (Figure 4.3.3). Assuming thatthe centre node is numbered �rst, determine the sequence of elimi-nation graphs.5.2.3) For a given labelled graph GA = (XA; EA), show thatReach(xi; fx1; x2; � � � ; xi�1g) � Adj(fx1; x2; � � � ; xig);and hence conclude that Fill(A) � Env(A).5.2.4) Show that the section graphGA(Reach(xi; fx1; � � � ; xi�1g) [ fxig)is a clique in the �lled graph GF .



5.3. COMPUTER REPRESENTATION OF ELIMINATION GRAPHS1175.2.5) (Rose [44]) A graph is triangulated if for every cycle (x1; x2; � � � ; xl; x1)of length l > 3, there is an edge joining two non-consecutive verticesin the cycle. (Such an edge is called a chord of the cycle.) Show thatthe following conditions are equivalent.a) the graph GA is triangulatedb) there exists a permutation matrix P such thatFill(PAP T ) = �.5.2.6) Show that the graph GF (A) is triangulated. Give a permutationP such that Fill(PF (A)P T ) = �. Hence, or otherwise, show thatNonz(F (A)) = Nonz(F (F (A))).5.2.7) Let S � T and y 62 T . Show thatReach(y; S)� Reach(y; T ) [ T:5.2.8) Let y 62 S. De�ne the neighborhood set of y in S to beNbrhd(y; S) =fs 2 S j s is reachable from y through a subset of Sg :Let x 62 S. Show that, ifAdj(x) � Reach(y; S)[Nbrhd(y; S)[ fyg;thena) Nbrhd(x; S)� Nbrhd(y; S)b) Reach(x; S) � Reach(y; S)[ fyg.5.2.9) Prove Theorem 5.2.3.5.3 Computer Representation of Elimination GraphsAs discussed in Section 5.2, Gaussian elimination on a sparse symmetriclinear system can be modelled by the sequence of elimination graphs. Inthis section, we study the representation and transformation of eliminationgraphs on a computer. These issues are important in the implementation ofgeneral sparse methods.



118 CHAPTER 5. GENERAL SPARSE METHODS5.3.1 Explicit and Implicit RepresentationsElimination graphs are, after all, symmetric graphs so that they can be rep-resented explicitly using one of the storage schemes described in Section 3.3However, what concerns us is that the implementation should be tailored forelimination, so that the transformation from one elimination graph to thenext in the sequence can be performed easily.Let us review the transformation steps. Let Gi be the elimination graphobtained from eliminating the node xi from Gi�1. The adjacency structureof Gi can be obtained as follows.Step 1 Determine the adjacent set AdjGi�1(xi) in Gi�1.Step 2 Remove the node xi and its adjacent list from the adjacency struc-ture.Step 3 For each node y 2 AdjGi�1(xi), the new adjacent set of y in Gi isgiven by merging the subsetsAdjGi�1(y)� fxig and AdjGi�1(xi)� fyg:The above is an algorithmic formulation of the recipe by Parter (Section 5.2.1)to e�ect the transformation. There are two points that should be mentionedabout the implementation. First, the space used to store AdjGi�1(xi) in theadjacency structure can be re-used after Step 2. Secondly, the explicit adja-cency structure of Gi may require much more space than that of Gi�1. Forexample, in the star graph of n nodes (Figure 4.3.3), if the centre node isto be numbered �rst and G0 = (X0; E0) and G1 = (X1; E1) are the corre-sponding elimination graphs, it is easy to show that (see Exercise 5.2.2 onpage 116 ) jE0j = O(n)and jE1j = O(n2):In view of these observations a very 
exible data structure has to be used inthe explicit implementation to allow for the dynamic change in the structureof the elimination graphs. The adjacency linked list structure described inSection 3.3 is a good candidate.Any explicit computer representation has two disadvantages. First, the 
ex-ibility in the data structure often requires signi�cant overhead in storageand execution time. Secondly, the maximum amount of storage required is



5.3. COMPUTER REPRESENTATION OF ELIMINATION GRAPHS119unpredictable. Enough storage is needed for the largest elimination graph Githat occurs. (Here \largest" refers to the number of edges, rather than thenumber of nodes.) This may exceed greatly the storage requirement for theoriginal G0. Futhermore, this maximum storage requirement is not knownuntil the end of the entire elimination process.Theorem 5.2.3 provides another way to represent elimination graphs. Theycan be stored implicitly using the original graph G and the eliminated subsetSi. The set of nodes adjacent to y in Gi can then be retrieved by generatingthe reachable set Reach(y; Si) in the original graph. This implicit represen-tation does not have any of the disadvantages of the explicit method. It hasa small and predictable storage requirement and it preserves the adjacencystructure of the given graph.However, the amount of work required to determine reachable sets can be in-tolerably large, especially at the later stages of elimination when jSij is large.In the next section, we shall consider another model which is more suitablefor computer implementation, but still retains many of the advantages ofusing reachable sets.5.3.2 Quotient Graph ModelLet us �rst consider elimination on the graph given in Figure 5.2.6. Afterthe elimination of the nodes x1, x2, x3, x4, x5 the corresponding elimina-tion graph is given in Figure 5.3.1. Shaded nodes are those that have beeneliminated.������������������������������������7 4 2 5 16 8 39 ����������������76 89@@@Figure 5.3.1: A graph example and its elimination graph.Let S = fx1; x2; x3; x4; x5g. In the implicit model, to discover that x6 2Reach(x7; S), the path (x7; x4; x2; x5; x6)



120 CHAPTER 5. GENERAL SPARSE METHODShas to be traversed. Similarly, x8 2 Reach(x7; S) because of the path(x7; x4; x2; x5; x1; x8):Note that the lengths of the two paths are 4 and 5 respectively.We make two observations:a) the amount of work to generate reachable sets can be reduced if thelengths of paths to uneliminated nodes are shortened.b) if these paths are shortened to the extreme case, we get the explicitelimination graphs which have undesirable properties as mentioned inthe previous section.We look for a compromise. By coalescing connected eliminated nodes, weobtain a new graph structure that serves our purpose. For example, inFigure 5.3.1, there are two connected components in the graph G(S), whosenode sets are fx1; x2; x4; x5g and fx3g:By forming two \supernodes," we obtain the graph as given in Figure 5.3.2.��������&%'$'&$%����������������7 6 1,2,4,5 8 39�� AAFigure 5.3.2: Graph formed by coalescing connected eliminated nodes.For convenience, we set �x5 = fx1; x2; x4; x5g and �x3 = fx3g to denote theseconnected components in S. With this new graph, we note that the paths(x7; �x5; x6)and (x7; �x5; x8)



5.3. COMPUTER REPRESENTATION OF ELIMINATION GRAPHS121are of length two and they lead us from the node x7 to x6 and x8 respectively.In general, if we adopt this strategy all such paths are of length less than orequal to two. This has the obvious advantage over the reachable set approachon the original graph, where paths can be of arbitrary lengths (less than n).What is then its advantage over the explicit elimination graph approach?In the next section we shall show that this approach can be implementedin-place; that is, it requires no more space than the original graph structure.In short, this new graph structure can be used to generate reachable sets (oradjacent sets in the elimination graph) quite e�ciently and yet it requires a�xed amount of storage.To formalize this model for elimination, we introduce the notion of quotientgraphs . Let G = (X;E) be a given graph and let P be a partition on itsnode set X : P = fY1; Y2; � � � ; Ypg:That is, Sk = 1pYk = X and Yi \ Yj = � for i 6= j. We de�ne the quotientgraph of G with respect to P to be the graph (P;E), where fYi; Yjg 2 E ifand only if Adj(Yi) \ Yj 6= �. Often, we denote this graph by G=P .For example, the graph in Figure 5.3.2 is the quotient graph of the one inFigure 5.3.1 with respect to the partitioningfx1; x2; x4; x5g; fx3g; fx6g; fx7g; fx8g; fx9g:The notion of quotient graphs will be treated in more detail in Chapter 6where partitioned matrices are considered. Here, we study its role in mod-elling elimination. The new model represents the elimination process as asequence of quotient graphs.Let G = (X;E) be a given graph and consider a stage in the eliminationwhere S is the set of eliminated nodes. We now associate a quotient graphwith respect to this set S as motivated by the example in Figure 5.3.2. De�nethe setC(S) = (5.3.1)fC � S j G(C) is a connected component in the subgraph G(S)g ;and the partitioning on X ,�C(S) = ffyg j y 2 X � Sg [ C(S): (5.3.2)This uniquely de�nes the quotient graphG=�C(S);



122 CHAPTER 5. GENERAL SPARSE METHODSwhich can be viewed as the graph obtained by coalescing connected sets inS. Figure 5.3.2 is the resulting quotient graph for S = fx1; x2; x3; x4; x5g.We now study the relevance of quotient graphs in elimination. Let x1; x2; : : : ; xnbe the sequence of node elimination in the given graph G. As before, letSi = fx1; x2; � � � ; xig; 1 � i � n:For each i, the subset Si induces the partitioning �C(Si) and the correspondingquotient graph Gi = G=�C(Si) = (�C(Si);Ei): (5.3.3)In this way, we obtain a sequence of quotient graphsG1 ! G2 ! � � � ! Gnfrom the node elimination sequence. Figure 5.3.3 shows the sequence for thegraph example of Figure 5.3.1. For notational convenience, we use y insteadof fyg for such \supernodes" in �C(Si).The following theorem shows that quotient graphs of the form (5.3.3) areindeed representations of elimination graphs.Theorem 5.3.1 For y 2 X � Si,ReachG(y; Si) = ReachGi(y;C(Si)):Proof: Consider u 2 ReachG(y; Si). If the nodes y and u are adjacent in G,so are y and u in Gi. Otherwise, there exists a path(y; s1; � � � ; st; u)in G where fs1; : : : ; stg � Si. Let G(C) be the connected component in G(Si)containing fs1g. Then we have the path(y; C; u)in Gi so that u 2 ReachGi(y;C(Si)).Conversely, consider any u 2 ReachGi(y;C(Si)). There exists a path(y; C1; � � � ; Ct; u)in Gi where fC1; : : : ; Ctg � C(Si). If t = 0, y and u are adjacent in theoriginal graph G. If t > 0, by de�nition of connected components, t cannotbe greater than one; that is, the path must be(y; C; u);
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124 CHAPTER 5. GENERAL SPARSE METHODSso that we can obtain a path from y to u through C in the graph G. Henceu 2 ReachG(y; Si): 2The determination of reachable sets in the quotient graph Gi is straightfor-ward. For a given node y 62 C(Si), the following algorithm returns the setReachGi(y;C(Si)).Step 1 (Initialization) R �.Step 2 (Find reachable nodes)for x 2 AdjGi(y) doif x 2 C(Si)then R R [AdjGi(x)else R R [ fxg:Step 3 (Exit) The reachable set is given in R.The connection between elimination graphs and quotient graphs (5.3.3) isquite obvious. Indeed, we can obtain the structure of the elimination graphGi from that of Gi by the simple algorithm below.Step 1 Remove supernodes in C(Si) and their incident edges from the quo-tient graph.Step 2 For each C 2 C(Si), add edges to the quotient graph so that alladjacent nodes of C are pairwise adjacent in the elimination graph.To illustrate the idea, consider the transformation of G4 to G4 for the examplein Figure 5.3.3. The elimination graph G4 is given in Figure 5.3.4.In terms of implicitness, the quotient graph model lies in between the reach-able set approach and the elimination graph model as a vehicle for repre-senting the elimination process.Reachable seton originalgraph ! Quotientgraph ! EliminationgraphThe correspondence between the three models is summarized in Table 5.3.1.



5.3. COMPUTER REPRESENTATION OF ELIMINATION GRAPHS125
G4���� ����������������������������������������7 2,4 5 16 8 39 G4��������������������7 56 89@@@Figure 5.3.4: From quotient graph to elimination graph.

Implicit Quotient ExplicitModel Model ModelRepresentation S1 G1 G1S2 G2 G2... ... ...Sn�1 Gn�1 Gn�1Adjacency Reach(y; Si) ReachGi(y;C(Si)) AdjGi(y)Table 5.3.1: Correspondence among the elimination models.



126 CHAPTER 5. GENERAL SPARSE METHODS5.3.3 Implementation of the Quotient Graph ModelConsider the quotient graph G = G=�C(S) induced by the eliminated set S.For notational convenience, if s 2 S, we use the notation �s to denote theconnected component in the subgraph G(S), containing the node s. Forexample, in the quotient graph of Figure 5.3.2,�x5 = �x1 = �x2 = �x4 = fx1; x2; x4; x5g:On the other hand, for a given C 2 C(S), we can select any node x fromC and use x as a representative for C, that is, �x = C. Before we discussthe choice of representative in the implementation, we establish some resultsthat can be used to show that the model can be implemented in-place; thatis, in the space provided by the adjacency structure of the original graph.Lemma 5.3.2 Let G = (X;E) and C � X where G(C) is a connectedsubgraph. Then Xx2C jAdj(x)j � jAdj(C)j+ 2(jCj � 1):Proof: Since G(C) is connected, there are at least jCj � 1 edges in thesubgraph. These edges are counted twice in Px2C jAdj(x)j and hence theresult. 2Let x1; x2; : : : ; xn be the node sequence and Si = fx1; : : : ; xig, 1 � i � n.For 1 � i � n, let Gi = G=�C(Si) = (�C(Si);Ei):Lemma 5.3.3 Let y 2 X � Si. ThenjAdjG(y)j � ���AdjGi(y)��� :Proof: This follows from the inequality���AdjGi(y)��� � ���AdjGi+1(y)���for y 2 X � Si+1. The problem of verifying this inequality is left as anexercise. 2Theorem 5.3.4 max1�i�n jE ij � jEj :



5.3. COMPUTER REPRESENTATION OF ELIMINATION GRAPHS127Proof: Consider the quotient graphs Gi and Gi+1. If xi+1 is isolated in thesubgraph G(Si+1), clearly jEi+1j = jEij. Otherwise the node xi+1 is mergedwith some components in Si to form a new component in Si+1. The resultsof Lemmas 5.3.2 and 5.3.3 apply, so thatjEi+1j < jEij :Hence, in all cases, jEi+1j � jEijand the result follows. 2Theorem 5.3.4 shows that the sequence of quotient graphs produced by elim-ination requires no more space than the original graph structure. On coa-lescing a connected set C into a supernode, we know from Lemma 5.3.2 thatthere are enough storage locations for Adj(C) from those of Adj(x), x 2 C.Moreover, for jCj > 1, there is a surplus of 2(jCj � 1) locations, which canbe used for links or pointers.Figure 5.3.5 is an illustration of the data structure used to representAdjG(C),in the quotient graph G, where C = fa; b; cg. Here, zero signi�es the end ofthe neighbor list in G. .................................................... ������������ �������� ��.......................... ������.......................... �������� ..........................��-��- �� 0c ...b ...a
Quotient StructureOriginal Sturcturec ...b ...a

Figure 5.3.5: Data structure for quotient graphs.Note that in the example, the node \a" is chosen to be the representativefor C = fa; b; cg. In the computer implementation, it is important to choosea unique representative for each C 2 C(S), so that any reference to C canbe made through its representative.



128 CHAPTER 5. GENERAL SPARSE METHODSLet x1; x2; : : : ; xn be the node sequence, and C 2 C(S). We choose the nodexr 2 C to be the representative of C, wherer = maxfj j xj 2 Cg: (5.3.4)That is, xr is the node in C last eliminated.So far, we have described the data structure of the quotient graphs and howto represent supernodes. Another important aspect in the implementation ofthe quotient graph model for elimination is the transformation of quotientgraphs due to node elimination. Let us now consider how the adjacencystructure of Gi can be obtained from that of Gi�1 when the node xi iseliminated. The following algorithm performs the transformation.Step 1 (Preparation) Determine the setsT = AdjGi�1(xi) \ C(Si�1)R = ReachGi�1(xi;C(Si�1)):Step 2 (Form new supernode and partitioning) Form�xi = fxig [ TC(Si) = (C(Si�1)� T ) [ f�xig:Step 3 (Update adjacency)AdjGi(�xi) = RFor y 2 R; AdjGi(y) = f�xig [AdjGi�1(y)� (T [ fxig):Let us apply this algorithm to transform G4 to G5 in the example of Fig-ure 5.3.3. In G4 C(S4) = f�x1; �x3; �x4g:On applying Step 1 to the node x5, we obtainT = f�x1; �x4gand R = fx6; x7; x8g:Therefore, the new \supernode" is given by�x5 = fx5g [ �x1 [ �x4 = fx1; x2; x4; x5g:



5.3. COMPUTER REPRESENTATION OF ELIMINATION GRAPHS129m7 m4 m2 m5 m1m6 m8 m3m9 1 5 82 4 53 84 2 75 1 2 66 5 87 48 1 3 6 99 8Figure 5.3.6: Adjacency representation.and the new partitioning is C(S5) = f�x3; �x5g:Finally, in Step 3 the adjacency sets are updated and we getAdjG5(x6) = f�x5; x8gAdjG5(x7) = f�x5gAdjG5(x8) = f�x3; �x5; x6; x9g;and AdjG5(�x5) = R = fx6; x7; x8g:The e�ect of the quotient graph transformation on the data structure can beillustrated by an example. Consider the example of Figure 5.3.3, where weassume that the adjacency structure is represented as shown in Figure 5.3.6.Figure 5.3.7 shows some important steps in producing quotient graphs forthis example. The adjacency structure remains unchanged when the quotientgraphs G1, G2 and G3 are formed. To transform G3 to G4, the nodes x2 andx4 are to be coalesced, so that in G4, the new adjacent set of node x4 contains
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ignored "" end of list . . .. .. . .. .. . .. . modi�edFigure 5.3.7: An in-place quotient graph transformation.



5.3. COMPUTER REPRESENTATION OF ELIMINATION GRAPHS131that of the subset fx2; x4g in the original graph, namely fx5; x7g. Here, thelast location for the adjacent set of x4 is used as a link. Note also that inthe adjacent list of node x5, the neighbor x2 has been changed to x4 in G4since node x4 becomes the representative of the component subset fx2; x4g.The representations for G5 and G6 in this storage mode are also included inFigure 5.3.7.This way of representing quotient graphs for elimination will be used in theimplementation of the minimum degree ordering algorithm, to be discussedin the Section 5.5Exercises5.3.1) a) Design and implement a subroutine called REACH which can beused to determine the reachable set of a given node ROOT througha subset S. The subset is given by an array SFLAG, where a nodei belongs to S if SFLAG(i) is nonzero. Describe the parametersof the subroutine and any auxiliary storage you require.b) Suppose a graph is stored in the array pair (XADJ, ADJNCY).For any given elimination sequence, use the subroutine REACH toprint out the adjacency structures of the sequence of eliminationgraphs.5.3.2) Let �C(Si) be as de�ned in (5.3.2) and show that ���C(Si+1)�� � ���C(Si)�� :5.3.3) Prove the inequality that appears in the proof of Lemma 5.3.3.5.3.4) Let X = fC j C 2 C(Si) for some ig. Show that jX j = n.5.3.5) Let C 2 C(Si), and �xr = C wherer = maxfj j xj 2 Cg:Show thata) AdjG(C) = ReachG(xr; Si).b) ReachG(xr; Si) = ReachG(xr; Sr�1).5.3.6) Display the sequence fGig of quotient graphs for the star graph of 7nodes, where the centre node is numbered �rst.



132 CHAPTER 5. GENERAL SPARSE METHODS5.4 The Minimum Degree Ordering AlgorithmLet A be a given symmetric matrix and let P be a permutation matrix.Although the nonzero structures of A and PAP T are di�erent, their sizesare the same: jNonz(A)j = ���Nonz(PAP T )���. However, the crucial pointis that there may be a dramatic di�erence between jNonz(F (A))j and���Nonz(F (PAPT ))��� for some permutation P . The example in Figure 4.3.3illustrates this fact.Ideally, we want to �nd a permutation P � that minimizes the size of thenonzero structure of the �lled matrix:���Nonz(F (P �AP �T ))��� = minP ���Nonz(F (PAP T ))��� :So far, there is no e�cient algorithm for getting such an optimal P � fora general symmetric matrix. Indeed, the problem been shown to be verydi�cult { a so-called NP-complete problem (Yannakakis [56]). Thus, we haveto rely on heuristics which will produce an ordering P with an acceptablysmall but not necessarily minimum ���Nonz(F (PAP T ))���.By far the most popular �ll-reducing scheme used is the minimum de-gree algorithm (Tinney [53]), which corresponds to the Markowitz scheme(Markowitz [39]) for unsymmetric matrices. The scheme is based on thefollowing observation, which is depicted in Figure 5.4.1.Suppose fx1; : : : ; xi�1g have been labelled. The number of nonzeros in the�lled graph for these columns is �xed. In order to reduce the number ofnonzeros in the i-th column, it is apparent that in the submatrix remainingto be factored, the column with the fewest nonzeros should be moved tobecome column i. In other words, the scheme may be regarded as a methodthat reduces the �ll of a matrix by a local minimization of �(L�i) in thefactored matrix.5.4.1 The Basic AlgorithmThe minimum degree algorithm can be most easily described in terms ofordering a symmetric graph. Let G0 = (X;E) be an unlabelled graph. Usingthe elimination graph model, the basic algorithm is as follows.Step 1 (Initialization) i 1.Step 2 (Minimum degree selection) In the graph Gi�1 = (Xi�1; Ei�1), choosea node xi of minimum degree.
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Figure 5.4.1: Motivation of the minimum degree algortihm.Step 3 (Graph transformation) Form the new elimination graph Gi = (Xi; Ei)by eliminating the node xi from Gi�1.Step 4 (Loop or stop) i i+ 1. If i > jX j, stop. Otherwise, go to Step 2.As an illustration of the algorithm, we consider the graph in Figure 5.4.2.The way the minimum degree algorithm is carried out for this example isshown step by step in Figure 5.4.3. Notice that there can be more than onenode with the minimum degree at a particular step. Here we break the tiesarbitrarily. However, di�erent tie-breaking strategies give di�erent versionsof the minimum degree algorithm.5.4.2 Description of the Minimum Degree Algorithm UsingReachable SetsThe use of elimination graphs in the minimum degree algorithm provides themechanism by which we select the next node to be numbered. Each step ofthe algorithm involves a graph transformation, which is the most expensivepart of the algorithm in terms of implementation. These transformations canbe eliminated if we can provide an alternative way to compute the degreesof the nodes in the elimination graph.Theorem 5.2.3 provides a mechanism for achieving this through the use ofreachable sets. With this connection, we can restate the minimum degreealgorithm as follows.



134 CHAPTER 5. GENERAL SPARSE METHODSma mcmJJJJ b mJJJJ�����dm��@@e m      f mg m1 m2mJJJJ 5 mJJJJ�����3m��@@4 m      6 m7Figure 5.4.2: A minimum degree ordering for a graph.Step 1 (Initialization) S  �. Deg(x) jAdj(x)j, for x 2 X .Step 2 (Minimum degree selection) Pick a node y 2 X�S where Deg(y) =minx2X�S Deg(x). Number the node y next and set T  S [ fyg.Step 3 (Degree update) Deg(u) jReach(u; T )j for u 2 X � T .Step 4 (Loop or stop) If T = X , stop. Otherwise, set S  T and go toStep 2.This approach uses the original graph structure throughout the entire pro-cess. Indeed, the algorithm can be carried out with only the adjacencystructure G0 = (X;E):It is appropriate here to point out that in the degree update step of thealgorithm, it is not necessary to recompute the sizes of the reachable sets forevery node in X�T , since most of them remain unchanged. This observationis formalized in the following lemma. Its proof follows from the de�nition ofreachable sets and is left as an exercise.Lemma 5.4.1 Let y 62 S and T = S [ fyg. ThenReach(x; T ) = ( Reach(x; S) for x 62 Reach(y; S)Reach(x; S)[ Reach(y; S)� fx; yg otherwise



5.4. THE MINIMUM DEGREE ORDERING ALGORITHM 135i Elimination Graph Gi�1 Node Selected Minimum Degree1 ma mcmAA b mJJJJ��dm��HHe mf mg a 12 mcmb mJJJJ��dm��HHe mf mg c 13 mb mJJJJdm��HHe mf mg d 24 mbbbbbbbm��HHe mf mg e 25 mbbbbbbbmf mg b 26 mf mg f 17 mg g 0Figure 5.4.3: Numbering in the minimum degree algorithm.



136 CHAPTER 5. GENERAL SPARSE METHODSIn the example of Figure 5.4.3, consider the stage when node d is beingeliminated.ma mcmJJJJ b mJJJJ�����dm��@@e m      f mg - ma mcmJJJJ b mJJJJ�����dm��@@e m      f mgFigure 5.4.4: Elimination of node d from G2 at stage 3.We have S = fa; cg, so that Reach(d; S) = fb; gg. Therefore, the eliminationof d only a�ects the degrees of the nodes b and g. By this observation, Step 3in the algorithm can be restated asStep 3 (Degree update)Deg(u) jReach(u; T )j ; for u 2 Reach(y; S):Corollary 5.4.2 Let y, S, T be as in Lemma 5.4.1. For x 2 X � T ,jReach(x; T )j � jReach(x; S)j� 1:Proof: The result follows directly from Lemma 5.4.1. 25.4.3 An EnhancementAs the algorithm stands, one node is numbered each time the loop is ex-ecuted. However, when a node y of minimum degree is found at Step 2,it is often possible to detect that a subset of nodes may automatically benumbered next, without carrying out any minimum degree search.Let us begin the study by introducing an equivalence relation. Consider astage in the elimination process, where S is the set of eliminated nodes. Two



5.4. THE MINIMUM DEGREE ORDERING ALGORITHM 137nodes x; y 2 X�S are said to be indistinguishable with respect to eliminationif Reach(x; S)[ fxg = Reach(y; S)[ fyg: (5.4.1)(Henceforth, it should be understood that nodes referred to as \indistin-guishable" are indistinguishable with respect to elimination.)Consider the graph example in Figure 5.4.5. The subset S contains 36shaded nodes. (This is an actual stage that occurs when the minimumdegree algorithm is applied to this graph.) We note that the nodes a, b andc are indistinguishable with respect to elimination, since Reach(a; S)[ fag,Reach(b; S)[ fbg and Reach(c; S)[ fcg are all equal tofa; b; c; d; e; f; g; h; j; kg:There are two more groups that can be identi�ed as indistinguishable. Theyare fj; kg;and ff; gg:We now study the implication of this equivalence relation and its role in theminimum degree algorithm. As we shall see later, this notion can be usedto speed up the execution of the minimum degree algorithm.Theorem 5.4.3 Let x; y 2 X � S. IfReach(x; S)[ fxg = Reach(y; S)[ fyg;then for all X � fx; yg � T � S,Reach(x; T ) [ fxg = Reach(y; T )[ fyg:Proof: Obviously, x 2 Reach(y; S)� Reach(y; T )[T , (see Exercise 5.2.7 onpage 117 ) so that x 2 Reach(y; T ). We now want to show that Reach(x; T ) �Reach(y; T )[ fyg. Consider z 2 Reach(x; T ). There exists a path(x; s1; � � � ; st; z)where fs1; : : : ; stg � T . If all si 2 S, there is nothing to prove. Otherwise,let si be the �rst node in fs1; : : : ; stg not in S, that issi 2 Reach(x; S)\ T:
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5.4. THE MINIMUM DEGREE ORDERING ALGORITHM 139This implies si 2 Reach(y; S) and hence z 2 Reach(y; T ). Together, we haveReach(x; T ) [ fxg � Reach(y; T )[ fyg:The inclusion in the other direction follows from symmetry, yielding theresult. 2Corollary 5.4.4 Let x; y be indistinguishable with respect to the subset S.Then for T � S, jReach(x; T )j= jReach(y; T )j :In other words, if two nodes become indistinguishable at some stage of theelimination, they remain indistinguishable until one of them is eliminated.Moreover, the following theorem shows that they can be eliminated togetherin the minimum degree algorithm.Theorem 5.4.5 If two nodes become indistinguishable at some stage in theminimum degree algorithm. then they can be eliminated together in the al-gorithm.Proof: Let x; y be indistinguishable after the elimination of the subset S.Assume that x becomes a node of minimum degree after the set T � S hasbeen eliminated, that is,jReach(x; T )j � jReach(z; T )j for all z 2 X � T:Then, by Corollary 5.4.4,jReach(y; T [ fxg)j = jReach(y; T )� fxgj= jReach(y; T )j� 1= jReach(x; T )j � 1:Therefore, for all z 2 X � T [ fxg, by Corollary 5.4.2,jReach(y; T [ fxg)j � jReach(z; T )j � 1� jReach(z; T [ fxg)j :In other words, after the elimination of the node x, the node y becomes anode of minimum degree. 2These observations can be exploited in the implementation of the minimumdegree algorithm. After carrying out a minimum degree search to determine



140 CHAPTER 5. GENERAL SPARSE METHODSthe next node y 2 X � S to eliminate, we can number immediately after ythe set of nodes indistinguishable from y.In addition, in the degree update step, by virtue of Corollary 5.4.4, workcan be reduced since indistinguishable nodes have the same degree in theelimination graphs. Once nodes are identi�ed as being indistinguishable,they can be \glued" together and treated as a single supernode thereafter.For example, Figure 5.4.6 shows two stages in the eliminations where su-pernodes are formed from indistinguishable nodes. For simplicity, the elim-inated nodes are not shown. After the elimination of the indistinguishableset fa; b; cg, all the nodes have identical reachable sets so that they can bemerged into one."!# �������� a,b,c m����� d m�� e ��������@@ f ,gmAAh m�� i��������j,k m��l mm &%'$"!# d,e,fg,h,i,jk,l,mFigure 5.4.6: Indistinguishable nodes in two stages of elimination for theexample in Figure 5.4.5.In general, to identify indistinguishable nodes via the de�nition (5.4.1) istime consuming. Since the enhancement does not require the merging of allpossible indistinguishable nodes, we look for some simple, easily-implementedcondition. In what follows, a condition is presented which experience hasshown to be very e�ective. In most cases, it identi�es all indistinguishablenodes.Let G = (X;E) and S be the set of eliminated nodes. Let G(C1) and G(C2)be two connected components in the subgraph G(S); that is,C1; C2 2 C(S):



5.4. THE MINIMUM DEGREE ORDERING ALGORITHM 141Lemma 5.4.6 Let R1 = Adj(C1), and R2 = Adj(C2). If y 2 R1 \ R2, andAdj(y) � R1 [ R2 [ C1 [ C2then Reach(y; S)[ fyg = R1 [R2.Proof: Let x 2 R1 [ R2. Assume x 2 R1 = Adj(C1). Since G(C1) isa connected component in G(S), we can �nd a path from y to x throughC1 � S. Therefore, x 2 Reach(y; S)[ fyg.On the other hand, y 2 R1[R2 by de�nition. Moreover, if x 2 Reach(y; S),there exists a path from y to x through S:(y; s1; s2; � � � ; st; x):If t = 0, then x 2 Adj(y) � S � R1 [ R2. Otherwise, if t > 0, s1 2Adj(y)\ S � C1[C2. This means fs1; : : : ; stg is a subset of either C1 or C2so that x 2 R1 [R2. Hence Reach(y; S)[ fyg � R1 [ R2. 2'& $%'& $%'& $%C1����������������������������������������������� ������ ��������������������������������������������������'& $%C2����������������������������������������������� ������ ��������������������������������������������������....................................................................................6Y���
AAA ��� HHHFigure 5.4.7: Finding indistinguishable nodes.Theorem 5.4.7 Let C1; C2 and R1; R2 be as in Lemma 5.4.6. Then thenodes in Y = fy 2 R1 \ R2 j Adj(y) � R1 [R2 [ C1 [ C2g (5.4.2)are indistinguishable with respect to the eliminated subset S.Proof: It follows from Lemma 5.4.6. 2



142 CHAPTER 5. GENERAL SPARSE METHODSCorollary 5.4.8 For y 2 Y ,jReach(y; S)j= jR1 [ R2j � 1:Theorem 5.4.7 can be used to merge indistinguishable nodes in the intersec-tion of the two reachable sets R1 and R2. The test can be simply done byinspecting the adjacent set of nodes in the intersection R1 \ R2.This notion of indistinguishable nodes can be applied to the minimum degreealgorithm. The new enhanced algorithm can be stated as follows.Step 1 (Initialization) S  �,Deg(x) = jAdj(x)j ; for x 2 X:Step 2 (Selection) Pick a node y 2 X � S such thatDeg(y) = minx2X�SDeg(x):Step 3 (Elimination) Number the nodes inY = fx 2 X � S j x is indistinguishable from ygnext in the ordering.Step 4 (Degree update ) For u 2 Reach(y; S)� YDeg(u) = jReach(u; S [ Y )jand identify indistinguishable nodes in the set Reach(y; S)� Y .Step 5 (Loop or stop) Set S  S [ Y . If S = X , stop. Otherwise, go toStep 2.5.4.4 Implementation of the Minimum Degree AlgorithmThe implementation of the minimum degree algorithm presented here incor-porates the notion of indistinguishable nodes as described in the previoussections. Nodes identi�ed as indistinguishable are merged together to forma supernode. They will be treated essentially as one node in the remainderof the algorithm. They share the same adjacent set, have the same degree,and can be eliminated together in the algorithm. In the implementation,this supernode will be referenced by a representative of the set.



5.4. THE MINIMUM DEGREE ORDERING ALGORITHM 143The algorithm requires the determination of reachable sets for degree update.The quotient graph model (Section 5.3.2) is used for this purpose to improvethe overall e�ciency of the algorithm. In e�ect, eliminated connected nodesare merged together and the computer representation of the sequence ofquotient graphs (Section 5.3.3) is utilized.It should be emphasized that the idea of quotient (or merging nodes intosupernodes) is applied here in two di�erent contexts.a) eliminated connected nodes to facilitate the determination of reachablesets.b) uneliminated indistinguishable nodes to speed up elimination.This is illustrated in Figure 5.4.8. It shows how the graph of Figure 5.4.5is stored conceptually in this implementation by the two forms of quotient.The shaded double-circled nodes denote supernodes that have been elimi-nated, while blank double-circled supernodes represent those formed fromindistinguishable nodes.In this subsection, we describe a set of subroutines, which implement theminimum degree algorithm as presented earlier. Some of the parametersused are the same as those discussed in Chapter 3. We shall brie
y reviewthem here and readers are referred to Section 3.4 for details.The graph G = (X;E) is stored using the integer array pair (XADJ, ADJNCY),and the number of variables in X is given by NEQNS. The resulting minimumdegree ordering is stored in the vector PERM, while INVP returns the inverseof this ordering.This collection of subroutines requires some working vectors to implementthe quotient graph model and the notion of indistinguishable nodes. Thecurrent degrees of the nodes in the (implicit) elimination graph are kept inthe array DEG. The DEG value for nodes that have been eliminated is set to�1.In the representation of the sequence of quotient graphs, connected elimi-nated nodes are merged to form a supernode. As mentioned in Section 5.4.2,for the purpose of reference, it is su�cient to pick a representative from thesupernode. If G(C) is such a connected component, we always choose thenode x 2 C last eliminated to represent C. This implies that the remainingnodes in C can be ignored in subsequent quotient graphs.The same remark applies to indistinguishable groups of uneliminated nodes.For each group, only the representative will be considered in the presentquotient structure.
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5.4. THE MINIMUM DEGREE ORDERING ALGORITHM 145The working vector MARKER is used to mark those nodes that can be ignoredin the adjacency structure. The MARKER values for such nodes are set to �1.This vector is also used temporarily to facilitate the generation of reachablesets.Two more arrays QSIZE and QLINK are used to completely specify indistin-guishable supernodes. If node i is the representative, the number of nodesin this supernode is given by QSIZE( i ) and the nodes are given byi; QLINK(i); QLINK(QLINK(i)); � � � :Figure 5.4.9 illustrates the use of the vectors QSIZE, QLINK and MARKER. Thenodes f2; 5; 8g form an indistinguishable supernode represented by node 2.Thus, the MARKER values of 5 and 8 are�1. On the other hand, f3; 6; 9g formsan eliminated supernode. Its representative is node 9 so that MARKER(3) andMARKER(6) are �1.QLINK QSIZE MARKER123456789 ��0 300 0-1-1-1-10 ��������2,5,8 ��������3,6,9Figure 5.4.9: Illustration of the role of QLINK, QSIZE and MARKER workingvectors.There are �ve subroutines in this set, namely GENQMD, QMDRCH, QMDQT, QMDUPD,and QMDMRG. Their control relationship is as shown in Figure 5.4.10. Theyare described in detail in this Figure.GENQMD (GENeral Quotient Minimum Degree algorithm)The purpose of this subroutine is to �nd the minimum degree ordering fora general disconnected graph. It operates on the input graph as given byNEQNS and (XADJ, ADJNCY), and returns the ordering in the vectors PERMand INVP. On return, the adjacency structure will be destroyed because it isused by the subroutine to store the sequence of quotient graph structures.



146 CHAPTER 5. GENERAL SPARSE METHODSGENQMDQMDRCH QMDUPD QMDQTQMDMRG QMDRCH������ PPPPPP��� QQQFigure 5.4.10: Control relation of subroutines for the minimum degree algo-rithm.The subroutine begins by initializing the working arrays QSIZE, QLINK, MARKERand the DEG vector. It then prepares itself for the main loop of the algorithm.In the main loop the subroutine �rst determines a node of minimum degreeby the technique of threshold searching. It keeps two variables THRESH andMINDEG. Any node with its current degree equal to the value of THRESH is onewith minimum degree in the elimination graph. The variable MINDEG keepsthe lowest degree greater than the threshold value THRESH, and it is used toupdate the value of THRESH.Having found a node NODE of minimum degree, GENQMD then determines thereachable set of NODE through eliminated supernodes by calling the sub-routine QMDRCH. The set is contained in the vector RCHSET and its size inRCHSZE. The nodes indistinguishable from NODE are then retrieved via thevector QLINK, and numbered (eliminated).Next, the nodes in the reachable set have their degree updated and at thesame time more indistinguishable nodes are identi�ed. In the program, thisis done by calling the subroutine QMDUPD. Afterwards, the threshold value isalso updated.Before the program loops back for the next node of minimum degree, thequotient graph transformation is performed by the subroutine QMDQT. Theprogram exits when all the nodes in the graph have been numbered.1. C****************************************************************2. C****************************************************************3. C********** GENQMD ..... QUOT MIN DEGREE ORDERING *********4. C****************************************************************



5.4. THE MINIMUM DEGREE ORDERING ALGORITHM 1475. C****************************************************************6. C7. C PURPOSE - THIS ROUTINE IMPLEMENTS THE MINIMUM DEGREE8. C ALGORITHM. IT MAKES USE OF THE IMPLICIT REPRESENT-9. C ATION OF THE ELIMINATION GRAPHS BY QUOTIENT GRAPHS,10. C AND THE NOTION OF INDISTINGUISHABLE NODES.11. C CAUTION - THE ADJACENCY VECTOR ADJNCY WILL BE12. C DESTROYED.13. C14. C INPUT PARAMETERS -15. C NEQNS - NUMBER OF EQUATIONS.16. C (XADJ, ADJNCY) - THE ADJACENCY STRUCTURE.17. C18. C OUTPUT PARAMETERS -19. C PERM - THE MINIMUM DEGREE ORDERING.20. C INVP - THE INVERSE OF PERM.21. C22. C WORKING PARAMETERS -23. C DEG - THE DEGREE VECTOR. DEG(I) IS NEGATIVE MEANS24. C NODE I HAS BEEN NUMBERED.25. C MARKER - A MARKER VECTOR, WHERE MARKER(I) IS26. C NEGATIVE MEANS NODE I HAS BEEN MERGED WITH27. C ANOTHER NODE AND THUS CAN BE IGNORED.28. C RCHSET - VECTOR USED FOR THE REACHABLE SET.29. C NBRHD - VECTOR USED FOR THE NEIGHBORHOOD SET.30. C QSIZE - VECTOR USED TO STORE THE SIZE OF31. C INDISTINGUISHABLE SUPERNODES.32. C QLINK - VECTOR TO STORE INDISTINGUISHABLE NODES,33. C I, QLINK(I), QLINK(QLINK(I)) ... ARE THE34. C MEMBERS OF THE SUPERNODE REPRESENTED BY I.35. C36. C PROGRAM SUBROUTINES -37. C QMDRCH, QMDQT, QMDUPD.38. C39. C****************************************************************40. C41. C42. SUBROUTINE GENQMD ( NEQNS, XADJ, ADJNCY, PERM, INVP, DEG,43. 1 MARKER, RCHSET, NBRHD, QSIZE, QLINK,44. 1 NOFSUB )45. C46. C****************************************************************47. C48. INTEGER ADJNCY(1), PERM(1), INVP(1), DEG(1), MARKER(1),49. 1 RCHSET(1), NBRHD(1), QSIZE(1), QLINK(1)50. INTEGER XADJ(1), INODE, IP, IRCH, J, MINDEG, NDEG,51. 1 NEQNS, NHDSZE, NODE, NOFSUB, NP, NUM, NUMP1,



148 CHAPTER 5. GENERAL SPARSE METHODS52. 1 NXNODE, RCHSZE, SEARCH, THRESH53. C54. C****************************************************************55. C56. C -----------------------------------------------------57. C INITIALIZE DEGREE VECTOR AND OTHER WORKING VARIABLES.58. C -----------------------------------------------------59. MINDEG = NEQNS60. NOFSUB = 061. DO 100 NODE = 1, NEQNS62. PERM(NODE) = NODE63. INVP(NODE) = NODE64. MARKER(NODE) = 065. QSIZE(NODE) = 166. QLINK(NODE) = 067. NDEG = XADJ(NODE+1) - XADJ(NODE)68. DEG(NODE) = NDEG69. IF ( NDEG .LT. MINDEG ) MINDEG = NDEG70. 100 CONTINUE71. NUM = 072. C -----------------------------------------------------73. C PERFORM THRESHOLD SEARCH TO GET A NODE OF MIN DEGREE.74. C VARIABLE SEARCH POINTS TO WHERE SEARCH SHOULD START.75. C -----------------------------------------------------76. 200 SEARCH = 177. THRESH = MINDEG78. MINDEG = NEQNS79. 300 NUMP1 = NUM + 180. IF ( NUMP1 .GT. SEARCH ) SEARCH = NUMP181. DO 400 J = SEARCH, NEQNS82. NODE = PERM(J)83. IF ( MARKER(NODE) .LT. 0 ) GOTO 40084. NDEG = DEG(NODE)85. IF ( NDEG .LE. THRESH ) GO TO 50086. IF ( NDEG .LT. MINDEG ) MINDEG = NDEG87. 400 CONTINUE88. GO TO 20089. C ---------------------------------------------------90. C NODE HAS MINIMUM DEGREE. FIND ITS REACHABLE SETS BY91. C CALLING QMDRCH.92. C ---------------------------------------------------93. 500 SEARCH = J94. NOFSUB = NOFSUB + DEG(NODE)95. MARKER(NODE) = 196. CALL QMDRCH (NODE, XADJ, ADJNCY, DEG, MARKER,97. 1 RCHSZE, RCHSET, NHDSZE, NBRHD )98. C ------------------------------------------------



5.4. THE MINIMUM DEGREE ORDERING ALGORITHM 14999. C ELIMINATE ALL NODES INDISTINGUISHABLE FROM NODE.100. C THEY ARE GIVEN BY NODE, QLINK(NODE), ....101. C ------------------------------------------------102. NXNODE = NODE103. 600 NUM = NUM + 1104. NP = INVP(NXNODE)105. IP = PERM(NUM)106. PERM(NP) = IP107. INVP(IP) = NP108. PERM(NUM) = NXNODE109. INVP(NXNODE) = NUM110. DEG(NXNODE) = - 1111. NXNODE = QLINK(NXNODE)112. IF (NXNODE .GT. 0) GOTO 600113. C114. IF ( RCHSZE .LE. 0 ) GO TO 800115. C ------------------------------------------------116. C UPDATE THE DEGREES OF THE NODES IN THE REACHABLE117. C SET AND IDENTIFY INDISTINGUISHABLE NODES.118. C ------------------------------------------------119. CALL QMDUPD ( XADJ, ADJNCY, RCHSZE, RCHSET, DEG,120. 1 QSIZE, QLINK, MARKER, RCHSET(RCHSZE+1),121. 1 NBRHD(NHDSZE+1) )122. C -------------------------------------------123. C RESET MARKER VALUE OF NODES IN REACH SET.124. C UPDATE THRESHOLD VALUE FOR CYCLIC SEARCH.125. C ALSO CALL QMDQT TO FORM NEW QUOTIENT GRAPH.126. C -------------------------------------------127. MARKER(NODE) = 0128. DO 700 IRCH = 1, RCHSZE129. INODE = RCHSET(IRCH)130. IF ( MARKER(INODE) .LT. 0 ) GOTO 700131. MARKER(INODE) = 0132. NDEG = DEG(INODE)133. IF ( NDEG .LT. MINDEG ) MINDEG = NDEG134. IF ( NDEG .GT. THRESH ) GOTO 700135. MINDEG = THRESH136. THRESH = NDEG137. SEARCH = INVP(INODE)138. 700 CONTINUE139. IF ( NHDSZE .GT. 0 ) CALL QMDQT ( NODE, XADJ,140. 1 ADJNCY, MARKER, RCHSZE, RCHSET, NBRHD )141. 800 IF ( NUM .LT. NEQNS ) GO TO 300142. RETURN143. END



150 CHAPTER 5. GENERAL SPARSE METHODSQMDRCH (Quotient MD ReaCHable set)This subroutine determines the reachable set of a given node ROOT throughthe set of eliminated nodes. The adjacency structure is assumed to be storedin the quotient graph format as described in Section 5.3.3. On exit, thereachable set determined is placed in the vector RCHSET and its size is givenby RCHSZE. As a byproduct, the set of eliminated supernodes adjacent toROOT is returned in the set NBRHD with its size NHDSZE. Nodes in these twosets will have their MARKER values set to nonzero.This is an exact implementation of the algorithm in Section 5.3.2. Afterinitialization, the loop DO 600 ... considers each neighbor of the nodeROOT. If the neighbor is a representative of an eliminated supernode, its ownadjacent set in the quotient graph is included into the reachable set in theDO 500 ... loop. Otherwise, the neighbor itself is included.1. C***************************************************************2. C***************************************************************3. C********* QMDRCH ..... QUOT MIN DEG REACH SET **********4. C***************************************************************5. C***************************************************************6. C7. C PURPOSE - THIS SUBROUTINE DETERMINES THE REACHABLE SET OF8. C A NODE THROUGH A GIVEN SUBSET. THE ADJACENCY STRUCTURE9. C IS ASSUMED TO BE STORED IN A QUOTIENT GRAPH FORMAT.10. C11. C INPUT PARAMETERS -12. C ROOT - THE GIVEN NODE NOT IN THE SUBSET.13. C (XADJ, ADJNCY) - THE ADJACENCY STRUCTURE PAIR.14. C DEG - THE DEGREE VECTOR. DEG(I) LT 0 MEANS THE NODE15. C BELONGS TO THE GIVEN SUBSET.16. C17. C OUTPUT PARAMETERS -18. C (RCHSZE, RCHSET) - THE REACHABLE SET.19. C (NHDSZE, NBRHD) - THE NEIGHBORHOOD SET.20. C21. C UPDATED PARAMETERS -22. C MARKER - THE MARKER VECTOR FOR REACH AND NBRHD SETS.23. C GT 0 MEANS THE NODE IS IN REACH SET.24. C LT 0 MEANS THE NODE HAS BEEN MERGED WITH25. C OTHERS IN THE QUOTIENT OR IT IS IN NBRHD SET.26. C27. C***************************************************************28. C29. SUBROUTINE QMDRCH ( ROOT, XADJ, ADJNCY, DEG, MARKER,30. 1 RCHSZE, RCHSET, NHDSZE, NBRHD )



5.4. THE MINIMUM DEGREE ORDERING ALGORITHM 15131. C32. C***************************************************************33. C34. INTEGER ADJNCY(1), DEG(1), MARKER(1),35. 1 RCHSET(1), NBRHD(1)36. INTEGER XADJ(1), I, ISTRT, ISTOP, J, JSTRT, JSTOP,37. 1 NABOR, NHDSZE, NODE, RCHSZE, ROOT38. C39. C***************************************************************40. C41. C -----------------------------------------42. C LOOP THROUGH THE NEIGHBORS OF ROOT IN THE43. C QUOTIENT GRAPH.44. C -----------------------------------------45. NHDSZE = 046. RCHSZE = 047. ISTRT = XADJ(ROOT)48. ISTOP = XADJ(ROOT+1) - 149. IF ( ISTOP .LT. ISTRT ) RETURN50. DO 600 I = ISTRT, ISTOP51. NABOR = ADJNCY(I)52. IF ( NABOR .EQ. 0 ) RETURN53. IF ( MARKER(NABOR) .NE. 0 ) GO TO 60054. IF ( DEG(NABOR) .LT. 0 ) GO TO 20055. C -------------------------------------56. C INCLUDE NABOR INTO THE REACHABLE SET.57. C -------------------------------------58. RCHSZE = RCHSZE + 159. RCHSET(RCHSZE) = NABOR60. MARKER(NABOR) = 161. GO TO 60062. C -------------------------------------63. C NABOR HAS BEEN ELIMINATED. FIND NODES64. C REACHABLE FROM IT.65. C -------------------------------------66. 200 MARKER(NABOR) = -167. NHDSZE = NHDSZE + 168. NBRHD(NHDSZE) = NABOR69. 300 JSTRT = XADJ(NABOR)70. JSTOP = XADJ(NABOR+1) - 171. DO 500 J = JSTRT, JSTOP72. NODE = ADJNCY(J)73. NABOR = - NODE74. IF (NODE) 300, 600, 40075. 400 IF ( MARKER(NODE) .NE. 0 ) GO TO 50076. RCHSZE = RCHSZE + 177. RCHSET(RCHSZE) = NODE



152 CHAPTER 5. GENERAL SPARSE METHODS78. MARKER(NODE) = 179. 500 CONTINUE80. 600 CONTINUE81. RETURN82. ENDQMDQT (Quotient MD Quotient graph Transformation)This subroutine performs the quotient graph transformation on the adja-cency structure (XADJ, ADJNCY). The new eliminated supernode containsthe node ROOT and the nodes in the array NBRHD, and it will be representedby ROOT in the new structure. Its adjacent set in the new quotient graph isgiven in (RCHSZE, RCHSET).After initialization, the new adjacent set in (RCHSZE, RCHSET)will be placedin the adjacency list of ROOT in the structure (DO 200 ...). If there is notenough space, the program will use the space provided by the nodes in theset NBRHD. We know from Section 5.3.3 that there are always enough storagelocations.Before exit, the representative node ROOT is added to the neighbor list ofeach node in RCHSET. This is done in the DO 600 ... loop.1. C*************************************************************2. C*************************************************************3. C******* QMDQT ..... QUOT MIN DEG QUOT TRANSFORM *******4. C*************************************************************5. C*************************************************************6. C7. C PURPOSE - THIS SUBROUTINE PERFORMS THE QUOTIENT GRAPH8. C TRANSFORMATION AFTER A NODE HAS BEEN ELIMINATED.9. C10. C INPUT PARAMETERS -11. C ROOT - THE NODE JUST ELIMINATED. IT BECOMES THE12. C REPRESENTATIVE OF THE NEW SUPERNODE.13. C (XADJ, ADJNCY) - THE ADJACENCY STRUCTURE.14. C (RCHSZE, RCHSET) - THE REACHABLE SET OF ROOT IN THE15. C OLD QUOTIENT GRAPH.16. C NBRHD - THE NEIGHBORHOOD SET WHICH WILL BE MERGED17. C WITH ROOT TO FORM THE NEW SUPERNODE.18. C MARKER - THE MARKER VECTOR.19. C20. C UPDATED PARAMETER -21. C ADJNCY - BECOMES THE ADJNCY OF THE QUOTIENT GRAPH.22. C



5.4. THE MINIMUM DEGREE ORDERING ALGORITHM 15323. C*************************************************************24. C25. SUBROUTINE QMDQT ( ROOT, XADJ, ADJNCY, MARKER,26. 1 RCHSZE, RCHSET, NBRHD )27. C28. C*************************************************************29. C30. INTEGER ADJNCY(1), MARKER(1), RCHSET(1), NBRHD(1)31. INTEGER XADJ(1), INHD, IRCH, J, JSTRT, JSTOP, LINK,32. 1 NABOR, NODE, RCHSZE, ROOT33. C34. C*************************************************************35. C36. IRCH = 037. INHD = 038. NODE = ROOT39. 100 JSTRT = XADJ(NODE)40. JSTOP = XADJ(NODE+1) - 241. IF ( JSTOP .LT. JSTRT ) GO TO 30042. C ------------------------------------------------43. C PLACE REACH NODES INTO THE ADJACENT LIST OF NODE44. C ------------------------------------------------45. DO 200 J = JSTRT, JSTOP46. IRCH = IRCH + 147. ADJNCY(J) = RCHSET(IRCH)48. IF ( IRCH .GE. RCHSZE ) GOTO 40049. 200 CONTINUE50. C ----------------------------------------------51. C LINK TO OTHER SPACE PROVIDED BY THE NBRHD SET.52. C ----------------------------------------------53. 300 LINK = ADJNCY(JSTOP+1)54. NODE = - LINK55. IF ( LINK .LT. 0 ) GOTO 10056. INHD = INHD + 157. NODE = NBRHD(INHD)58. ADJNCY(JSTOP+1) = - NODE59. GO TO 10060. C -------------------------------------------------------61. C ALL REACHABLE NODES HAVE BEEN SAVED. END THE ADJ LIST.62. C ADD ROOT TO THE NBR LIST OF EACH NODE IN THE REACH SET.63. C -------------------------------------------------------64. 400 ADJNCY(J+1) = 065. DO 600 IRCH = 1, RCHSZE66. NODE = RCHSET(IRCH)67. IF ( MARKER(NODE) .LT. 0 ) GOTO 60068. JSTRT = XADJ(NODE)69. JSTOP = XADJ(NODE+1) - 1



154 CHAPTER 5. GENERAL SPARSE METHODS70. DO 500 J = JSTRT, JSTOP71. NABOR = ADJNCY(J)72. IF ( MARKER(NABOR) .GE. 0 ) GO TO 50073. ADJNCY(J) = ROOT74. GOTO 60075. 500 CONTINUE76. 600 CONTINUE77. RETURN78. ENDQMDUPD (Quotient MD UPDate)This subroutine performs the degree update step in the minimum degreealgorithm. The nodes whose new degrees are to be determined are givenby the pair (NLIST, LIST). The subroutine also merges indistinguishablenodes in this subset by using Theorem 5.4.7.The �rst loop DO 200 ... and the call to the subroutine QMDMRG determinegroups of indistinguishable nodes in the given set. They will be mergedtogether and have their degrees updated.For those nodes not being merged, the loop DO 600 ... determines theirnew degrees by calling the subroutine QMDRCH. The vectors RCHSET and NBRHDare used as temporary arrays.1. C****************************************************************2. C****************************************************************3. C********** QMDUPD ..... QUOT MIN DEG UPDATE ***********4. C****************************************************************5. C****************************************************************6. C7. C PURPOSE - THIS ROUTINE PERFORMS DEGREE UPDATE FOR A SET8. C OF NODES IN THE MINIMUM DEGREE ALGORITHM.9. C10. C INPUT PARAMETERS -11. C (XADJ, ADJNCY) - THE ADJACENCY STRUCTURE.12. C (NLIST, LIST) - THE LIST OF NODES WHOSE DEGREE HAS TO13. C BE UPDATED.14. C15. C UPDATED PARAMETERS -16. C DEG - THE DEGREE VECTOR.17. C QSIZE - SIZE OF INDISTINGUISHABLE SUPERNODES.18. C QLINK - LINKED LIST FOR INDISTINGUISHABLE NODES.19. C MARKER - USED TO MARK THOSE NODES IN REACH/NBRHD SETS.20. C21. C WORKING PARAMETERS -



5.4. THE MINIMUM DEGREE ORDERING ALGORITHM 15522. C RCHSET - THE REACHABLE SET.23. C NBRHD - THE NEIGHBORHOOD SET.24. C25. C PROGRAM SUBROUTINES -26. C QMDMRG.27. C28. C****************************************************************29. C30. SUBROUTINE QMDUPD ( XADJ, ADJNCY, NLIST, LIST, DEG,31. 1 QSIZE, QLINK, MARKER, RCHSET, NBRHD )32. C33. C****************************************************************34. C35. INTEGER ADJNCY(1), LIST(1), DEG(1), MARKER(1),36. 1 RCHSET(1), NBRHD(1), QSIZE(1), QLINK(1)37. INTEGER XADJ(1), DEG0, DEG1, IL, INHD, INODE, IRCH,38. 1 J, JSTRT, JSTOP, MARK, NABOR, NHDSZE, NLIST,39. 1 NODE, RCHSZE, ROOT40. C41. C****************************************************************42. C43. C ------------------------------------------------44. C FIND ALL ELIMINATED SUPERNODES THAT ARE ADJACENT45. C TO SOME NODES IN THE GIVEN LIST. PUT THEM INTO46. C (NHDSZE, NBRHD). DEG0 CONTAINS THE NUMBER OF47. C NODES IN THE LIST.48. C ------------------------------------------------49. IF ( NLIST .LE. 0 ) RETURN50. DEG0 = 051. NHDSZE = 052. DO 200 IL = 1, NLIST53. NODE = LIST(IL)54. DEG0 = DEG0 + QSIZE(NODE)55. JSTRT = XADJ(NODE)56. JSTOP = XADJ(NODE+1) - 157. DO 100 J = JSTRT, JSTOP58. NABOR = ADJNCY(J)59. IF ( MARKER(NABOR) .NE. 0 .OR.60. 1 DEG(NABOR) .GE. 0 ) GO TO 10061. MARKER(NABOR) = - 162. NHDSZE = NHDSZE + 163. NBRHD(NHDSZE) = NABOR64. 100 CONTINUE65. 200 CONTINUE66. C --------------------------------------------67. C MERGE INDISTINGUISHABLE NODES IN THE LIST BY68. C CALLING THE SUBROUTINE QMDMRG.



156 CHAPTER 5. GENERAL SPARSE METHODS69. C --------------------------------------------70. IF ( NHDSZE .GT. 0 )71. 1 CALL QMDMRG ( XADJ, ADJNCY, DEG, QSIZE, QLINK,72. 1 MARKER, DEG0, NHDSZE, NBRHD, RCHSET,73. 1 NBRHD(NHDSZE+1) )74. C ----------------------------------------------------75. C FIND THE NEW DEGREES OF THE NODES THAT HAVE NOT BEEN76. C MERGED.77. C ----------------------------------------------------78. DO 600 IL = 1, NLIST79. NODE = LIST(IL)80. MARK = MARKER(NODE)81. IF ( MARK .GT. 1 .OR. MARK .LT. 0 ) GO TO 60082. MARKER(NODE) = 283. CALL QMDRCH ( NODE, XADJ, ADJNCY, DEG, MARKER,84. 1 RCHSZE, RCHSET, NHDSZE, NBRHD )85. DEG1 = DEG086. IF ( RCHSZE .LE. 0 ) GO TO 40087. DO 300 IRCH = 1, RCHSZE88. INODE = RCHSET(IRCH)89. DEG1 = DEG1 + QSIZE(INODE)90. MARKER(INODE) = 091. 300 CONTINUE92. 400 DEG(NODE) = DEG1 - 193. IF ( NHDSZE .LE. 0 ) GO TO 60094. DO 500 INHD = 1, NHDSZE95. INODE = NBRHD(INHD)96. MARKER(INODE) = 097. 500 CONTINUE98. 600 CONTINUE99. RETURN100. ENDQMDMRG (Quotient MD MeRGe)This subroutine implements a check for the condition (5.4.2) to determineindistinguishable nodes. Let C1, C2, R1, R2 and Y be as in Lemma 5.4.6. Thesubroutine assumes that C1 and R1 have already been determined elsewhere.Nodes in R1 have their MARKER values set to 1.There may be more than one C2 input to QMDMRG. They are contained in(NHDSZE, NBRHD), where each NBRHD(i) speci�es one eliminated supernode(that is, connected component).The loop DO 1400 ... applies the condition on each given connected com-ponent. It �rst determines the set R2 � R1 in (RCHSZE, RCHSET) and the



5.4. THE MINIMUM DEGREE ORDERING ALGORITHM 157intersection set R2 \ R1 in (NOVRLP, OVRLP) in the loop DO 600 .... Foreach node in the intersection, the condition (5.4.2) is tested in the loop DO1100 .... If the condition is satis�ed, the node is included in the mergedsupernode by placing it in the QLINK vector. The size of the new supernodeis also computed.1. C****************************************************************2. C****************************************************************3. C********** QMDMRG ..... QUOT MIN DEG MERGE ***********4. C****************************************************************5. C****************************************************************6. C7. C PURPOSE - THIS ROUTINE MERGES INDISTINGUISHABLE NODES IN8. C THE MINIMUM DEGREE ORDERING ALGORITHM.9. C IT ALSO COMPUTES THE NEW DEGREES OF THESE10. C NEW SUPERNODES.11. C12. C INPUT PARAMETERS -13. C (XADJ, ADJNCY) - THE ADJACENCY STRUCTURE.14. C DEG0 - THE NUMBER OF NODES IN THE GIVEN SET.15. C (NHDSZE, NBRHD) - THE SET OF ELIMINATED SUPERNODES16. C ADJACENT TO SOME NODES IN THE SET.17. C18. C UPDATED PARAMETERS -19. C DEG - THE DEGREE VECTOR.20. C QSIZE - SIZE OF INDISTINGUISHABLE NODES.21. C QLINK - LINKED LIST FOR INDISTINGUISHABLE NODES.22. C MARKER - THE GIVEN SET IS GIVEN BY THOSE NODES WITH23. C MARKER VALUE SET TO 1. THOSE NODES WITH DEGREE24. C UPDATED WILL HAVE MARKER VALUE SET TO 2.25. C26. C WORKING PARAMETERS -27. C RCHSET - THE REACHABLE SET.28. C OVRLP - TEMP VECTOR TO STORE THE INTERSECTION OF TWO29. C REACHABLE SETS.30. C31. C****************************************************************32. C33. SUBROUTINE QMDMRG ( XADJ, ADJNCY, DEG, QSIZE, QLINK,34. 1 MARKER, DEG0, NHDSZE, NBRHD, RCHSET,35. 1 OVRLP )36. C37. C****************************************************************38. C39. INTEGER ADJNCY(1), DEG(1), QSIZE(1), QLINK(1),40. 1 MARKER(1), RCHSET(1), NBRHD(1), OVRLP(1)41. INTEGER XADJ(1), DEG0, DEG1, HEAD, INHD, IOV, IRCH,



158 CHAPTER 5. GENERAL SPARSE METHODS42. 1 J, JSTRT, JSTOP, LINK, LNODE, MARK, MRGSZE,43. 1 NABOR, NHDSZE, NODE, NOVRLP, RCHSZE, ROOT44. C45. C****************************************************************46. C47. C ------------------48. C INITIALIZATION ...49. C ------------------50. IF ( NHDSZE .LE. 0 ) RETURN51. DO 100 INHD = 1, NHDSZE52. ROOT = NBRHD(INHD)53. MARKER(ROOT) = 054. 100 CONTINUE55. C -------------------------------------------------56. C LOOP THROUGH EACH ELIMINATED SUPERNODE IN THE SET57. C (NHDSZE, NBRHD).58. C -------------------------------------------------59. DO 1400 INHD = 1, NHDSZE60. ROOT = NBRHD(INHD)61. MARKER(ROOT) = - 162. RCHSZE = 063. NOVRLP = 064. DEG1 = 065. 200 JSTRT = XADJ(ROOT)66. JSTOP = XADJ(ROOT+1) - 167. C ----------------------------------------------68. C DETERMINE THE REACHABLE SET AND ITS INTERSECT-69. C ION WITH THE INPUT REACHABLE SET.70. C ----------------------------------------------71. DO 600 J = JSTRT, JSTOP72. NABOR = ADJNCY(J)73. ROOT = - NABOR74. IF (NABOR) 200, 700, 30075. C76. 300 MARK = MARKER(NABOR)77. IF ( MARK ) 600, 400, 50078. 400 RCHSZE = RCHSZE + 179. RCHSET(RCHSZE) = NABOR80. DEG1 = DEG1 + QSIZE(NABOR)81. MARKER(NABOR) = 182. GOTO 60083. 500 IF ( MARK .GT. 1 ) GOTO 60084. NOVRLP = NOVRLP + 185. OVRLP(NOVRLP) = NABOR86. MARKER(NABOR) = 287. 600 CONTINUE88. C --------------------------------------------



5.4. THE MINIMUM DEGREE ORDERING ALGORITHM 15989. C FROM THE OVERLAPPED SET, DETERMINE THE NODES90. C THAT CAN BE MERGED TOGETHER.91. C --------------------------------------------92. 700 HEAD = 093. MRGSZE = 094. DO 1100 IOV = 1, NOVRLP95. NODE = OVRLP(IOV)96. JSTRT = XADJ(NODE)97. JSTOP = XADJ(NODE+1) - 198. DO 800 J = JSTRT, JSTOP99. NABOR = ADJNCY(J)100. IF ( MARKER(NABOR) .NE. 0 ) GOTO 800101. MARKER(NODE) = 1102. GOTO 1100103. 800 CONTINUE104. C -----------------------------------------105. C NODE BELONGS TO THE NEW MERGED SUPERNODE.106. C UPDATE THE VECTORS QLINK AND QSIZE.107. C -----------------------------------------108. MRGSZE = MRGSZE + QSIZE(NODE)109. MARKER(NODE) = - 1110. LNODE = NODE111. 900 LINK = QLINK(LNODE)112. IF ( LINK .LE. 0 ) GOTO 1000113. LNODE = LINK114. GOTO 900115. 1000 QLINK(LNODE) = HEAD116. HEAD = NODE117. 1100 CONTINUE118. IF ( HEAD .LE. 0 ) GOTO 1200119. QSIZE(HEAD) = MRGSZE120. DEG(HEAD) = DEG0 + DEG1 - 1121. MARKER(HEAD) = 2122. C --------------------123. C RESET MARKER VALUES.124. C --------------------125. 1200 ROOT = NBRHD(INHD)126. MARKER(ROOT) = 0127. IF ( RCHSZE .LE. 0 ) GOTO 1400128. DO 1300 IRCH = 1, RCHSZE129. NODE = RCHSET(IRCH)130. MARKER(NODE) = 0131. 1300 CONTINUE132. 1400 CONTINUE133. RETURN134. END



160 CHAPTER 5. GENERAL SPARSE METHODSExercises5.4.1) Let xi be the node selected from Gi�1 in the minimum degree algo-rithm. Let y 2 AdjGi�1(xi) withDegGi(y) = DegGi�1(xi)� 1:Show that y is a node of minimum degree in Gi.5.4.2) Let xi and Gi�1 be as in Exercise 5.4.1 on page 160, and y 2 AdjGi�1(xi).Prove that if AdjGi�1(y) � AdjGi�1(xi) [ fxigthen y is a node of minimum degree in Gi.5.5 Sparse Storage Schemes5.5.1 The Uncompressed SchemeThe data structure for the general sparse methods should only store (logical)nonzeros of the factored matrix. The scheme discussed here is oriented to theinner-product formulation of the factorization algorithm (see Section 2.2.2)and can be found in, for example, Gustavson (1972) and Sherman (1975).The scheme has a main storage array LNZ which contains all the nonzeroentries in the lower triangular factor. A storage location is provided for eachlogical nonzero in the factor. The nonzeros in L, excluding the diagonal,are stored column after column in LNZ. An accompanying vector NZSUB isprovided, which gives the row subscripts of the nonzeros. In addition, anindex vector XLNZ is used to point to the start of nonzeros in each columnin LNZ (or equivalently NZSUB). The diagonal entries are stored separately inthe vector DIAG.To access a nonzero component aij or lij, there is no direct method of cal-culating the corresponding index in the vector LNZ. Some testing on thesubscripts in NZSUB has to be done. The following portion of a program canbe used for that purpose. Note that any entry not represented by the datastructure is zero.KSTRT = XLNZ(J)KSTOP = XLNZ(J+1) - 1AIJ = 0.0IF (KSTOP.LT.KSTRT) GO TO 300



5.5. SPARSE STORAGE SCHEMES 161A = 0BBBBBBBBBB@ a11a21 a22 symmetrica33a41 a44a53 a54 a55a63 a66a75 a76 a77 1CCCCCCCCCCAL = 0BBBBBBBBBB@ l11l21 l22 l33l41 l42 l44l53 l54 l55l63 l65 l66l75 l76 l77 1CCCCCCCCCCAFigure 5.5.1: A 7 by 7 matrix A and its factor L.DO 100 K = KSTRT, KSTOPIF (NZSUB(K).EQ.I) GO TO 200100 CONTINUEGO TO 300200 AIJ = LNZ(K)300 ...Although this scheme is not particularly well suited for random access ofnonzero entries, it lends itself quite readily to sparse factorization and solu-tion. The primary storage of the scheme is jNonz(F )j + n for the vectorsLNZ and DIAG, and the overhead storage is jNonz(F )j + n for NZSUB andXLNZ.5.5.2 Compressed SchemeThis scheme, which is a modi�cation of the uncompressed scheme, is due toSherman [47]. The motivation can be provided by considering the minimum



162 CHAPTER 5. GENERAL SPARSE METHODS

1 3 4 6 7 9 10XLNZ l21 l41 l42 l53 l63 l54 l65 l75 l76LNZ 6 6 6 6 6 6 62 4 4 5 6 5 6 7 7NZSUB l11 l22 l33 l44 l55 l66 l77DIAG ? Factorization1 3 4 6 7 9 10XLNZ a21 a41 0 a53 a63 a54 0 a75 a76LNZ 6 6 6 6 6 6 62 4 4 5 6 5 6 7 7NZSUB a11 a22 a33 a44 a55 a66 a77DIAG

Figure 5.5.2: Uncompressed data storage scheme for the matrix and its factorin Figure 5.5.1.



5.5. SPARSE STORAGE SCHEMES 163degree ordering as discussed in Section 5.4.3. We saw that it was possibleto simultaneously number or eliminate a set Y of nodes. The nodes in Ysatisfy the indistinguishable conditionReach(x; S)[ fxg = Reach(y; S)[ fyg;for all x; y 2 Y . In terms of the matrix factor L, this means all the rowsubscripts below the block corresponding to Y are identical, as shown inFigure 5.5.3.


@@@@@@@@@@@@@@@@@@@.......................................����������������������������������..........................
Yz }| {Y8>>>><>>>>:Figure 5.5.3: Motivation for the compressed storage scheme.If the structure is stored using the uncompressed scheme, the row subscriptsof all but the �rst column in this block are �nal subsequences of that of theprevious column. Naturally, the subscript vector NZSUB can be compressedso that redundant information is not stored. It is done by removing the rowsubscripts for a column if they appear as a �nal subsequence of the previouscolumn.In exchange for the compression, we need to have an auxiliary index vectorXNZSUB which points to the start of row subscripts in NZSUB for each col-umn. The compressed scheme for the example in Figure 5.5.1 is shown inFigure 5.5.4.
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a11 a22 a33 a44 a55 a66 a77DIAG a21 a41 0 a53 a63 a54 0 a75 a76LNZ 1 3 4 6 7 9 10XLNZ 6 6 6 6 6 6 62 4 5 6 5 6 7NZSUB 1 2 3 5 6 7 8XNZSUB 6 6 6 6 6 6 6Figure 5.5.4: Compressed storage scheme for the matrix in Figure 5.5.1.



5.5. SPARSE STORAGE SCHEMES 165In this case, the way to access a nonzero entry in the (i; j)-th position is asfollows. KSTRT = XLNZ(J)KSTOP = XLNZ(J+1) - 1AIJ = 0.0IF (KSTOP.LT.KSTRT) GO TO 300KSUB = XNZSUB(J)DO 100 K = KSTRT, KSTOPIF(NZSUB(KSUB).EQ.I) GO TO 200KSUB = KSUB + 1100 CONTINUEGO TO 300200 AIJ = LNZ(K)300 ...In the compressed scheme, the primary storage remains the same, but theoverhead storage is changed and it is less than or equal to jNonz(F )j+ 2n.The example given is too small to bring out the signi�cance of the compressedscheme. In Table 5.5.1, we provide some numbers that are obtained from ninelarger problems which comprise one of the test sets considered in Chapter 9.The ordering which was used in generating these results was provided bya minimum degree algorithm similar to the one described in the previoussection. Typically, for problems of this size and larger, the overhead storageis reduced by at least �fty percent, compared to the uncompressed scheme.5.5.3 On Symbolic FactorizationAs its name implies, symbolic factorization is the process of simulating thenumerical factorization of a given matrix A in order to obtain the zero-nonzero structure of its factor L. Since the numerical values of the matrixcomponents are of no signi�cance in this connection, the problem can beconveniently studied using a graph theory approach.Let G� = (X�; E) be an ordered graph, where jX�j = n and for conveniencelet �(i) = xi. In view of Theorem 5.2.2, symbolic factorization may beregarded as determination of the setsReach(xi; fx1; � � � ; xi�1g); i = 1; � � � ; n:



166 CHAPTER 5. GENERAL SPARSE METHODSNumber of jNonz(A)j jNonz(F )j Overhead for Overhead forEquations Uncompressed Compressed936 2664 13870 14806 69031009 2928 19081 20090 80851089 3136 18626 19715 85741440 4032 19047 20487 105361180 3285 14685 15865 84361377 3808 16793 18170 97901138 3156 15592 16730 83261141 3162 15696 16837 84351349 3876 23726 25075 10666Table 5.5.1: Comparison of uncompressed and compressed storage schemes.The primary storage is equal to the overhead for the uncompressed scheme.De�ne Si = fx1; : : : ; xig.We prove the following result about reachable sets.Lemma 5.5.1Reach(xi; Si�1) = Adj(xi) [([fReach(xk; Sk�1) j xi 2 Reach(xk; Sk�1)g)� Si:Proof: Let j > i. Then by Lemma 5.2.1 and Theorem 5.2.2xj 2 Reach(xi; Si�1) () fxi; xjg 2 EF() fxi; xjg 2 EA; or fxi; xkg 2 EF and fxj; xkg 2 EF for some k < minfi; jg() xj 2 Adj(xi) or xi; xj 2 Reach(xk; Sk�1) for some k:The lemma then follows. 2Lemma 5.5.1 suggests an algorithm for �nding the reachable sets (and hencethe structure of the factor L ). It may be described as follows.Step 1 (Initialization) for k = 1; : : : ; n doReach(xk; Sk�1) Adj(xk)� Sk�1:Step 2 (Symbolic factorization)



5.5. SPARSE STORAGE SCHEMES 167for k = 1; 2; : : : ; n doif xi 2 Reach(xk; Sk�1) thenReach(xi; Si�1) Reach(xi; Si�1)[Reach(xk; Sk�1)� Si.A pictorial illustration of the scheme is shown in Figure 5.5.5. This scheme ishardly satisfactory, since it essentially simulates the entire factorization, andits cost will be proportional to the operation count as given in Theorem 2.2.2.Let us look into possible ways of improving the e�ciency of the algorithm.
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Figure 5.5.5: Merging of reachable sets to obtain Reach(xi; Si�1).Consider the stage when the set Si�1 = fx1; : : : ; xi�1g has been eliminated.For the purpose of this discussion, assume that xi has two connected com-ponents in G(Si�1) adjacent to it. Let their node sets be C1 and C2.



168 CHAPTER 5. GENERAL SPARSE METHODS'& $%'&$%C1���������������������������� ���� ����������������������������� '&$%C2���������������������������� ���� �����������������������������cxiFigure 5.5.6: Determination of the reachable set of xi.In this case, it can be seen thatReach(xi; Si�1) = Adj(xi) [Adj(C1) [Adj(C2)� Si:However, representatives xr1 and xr2 can be chosen from C1 and C2 respec-tively so that Adj(C1) = Reach(xr1 ; Sr1�1)and Adj(C2) = Reach(xr2 ; Sr2�1):(See Exercise 5.3.5 on page 131.) Indeed, the representative is given by(5.3.4); speci�cally, the node in the component last eliminated. In this way,the reachable set can be written asReach(xi; Si�1) = Adj(xi) [ Reach(xr1 ; Sr1�1) [ Reach(xr2 ; Sr2�1)� Si:Thus, instead of having to merge many reachable sets as given in Lemma 5.5.1,we can select representatives. The ideas presented below are motivated bythis observation.For k = 1; : : : ; n, de�nemk = minfj j xj 2 Reach(xk; Sk�1) [ fxkgg: (5.5.1)In terms of the matrix,mk is the subscript of the �rst nonzero in the columnvector L�k excluding the diagonal component.Lemma 5.5.2Reach(xk; Sk�1) � Reach(xmk ; Smk�1) [ fxmkg:



5.5. SPARSE STORAGE SCHEMES 169Proof: For any xi 2 Reach(xk; Sk�1), then k < mk � i. If i = mk, there isnothing to prove. Otherwise, by Lemma 5.2.1 and Theorem 5.2.2,xi 2 Reach(xmk ; Smk�1): 2Lemma 5.5.2 has the following important implication. For xi 2 Reach(xk; Sk�1)and i > mk, it is redundant to consider Reach(xk; Sk�1) in determiningReach(xi; Si�1) in the algorithm, since all the reachable nodes via xk can befound in Reach(xmk ; Smk�1). Thus, it is su�cient to merge the reachablesets of some representative nodes. Figure 5.5.7 shows the improvement onthe example in Figure 5.5.5. Lemma 5.5.1 can be improved as follows.Theorem 5.5.3Reach(xi; Si�1) = Adj(xi) [  [k fReach(xk; Sk�1) jmk = ig!� Si:Proof: Consider any xk with xi 2 Reach(xk; Sk�1). Putting m(k) = mk,we have an ascending sequence of subscripts bounded above by i :k < m(k) < m(m(k)) < m3(k) < � � � < i:There exists an integer p such that mp+1(k) = i. It follows from Lemma 5.5.2that Reach(xk; Sk�1)� Si � Reach(xm(k); Sm(k)�1)� Si� � � �� Reach(xmp(k); Smp(k)�1)� Si:The result then follows. 2Consider the determination of Reach(x5; S4) in the graph example of Fig-ure 5.5.8. If Lemma 5.5.1 is used, we see that the setsReach(x1; S0);Reach(x2; S1);and Reach(x4; S3)have to be merged with Adj(x5). On the other hand, by Theorem 5.5.3, itis su�cient to consider Reach(x1; S0)
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Figure 5.5.7: Improvement in merging reachable sets for Reach(xi; Si�1).m7 m4 m2 m5 m1m6 m8 m3m9 k mk Reach(xk; Sk�1)1 5 x5; x82 4 x4; x53 8 x84 5 x5; x7Figure 5.5.8: Illustration of mk.



5.5. SPARSE STORAGE SCHEMES 171and Reach(x4; S3):Note that m2 = 4 andReach(x2; S1) = fx4; x5g � Reach(x4; S3) [ fx4g:The symbolic factorization algorithm can now be re�ned as:Step 1 (Initialization)for k = 1; : : : ; n doReach(xk; Sk�1) = Adj(xk)� Sk:Step 2 (Symbolic Factorization)for k = 1; 2; : : : ; n dom = minfj j xj 2 Reach(xk; Sk�1)gReach(xm; Sm�1) Reach(xm; Sm�1)[(Reach(xk; Sk�1)� fxmg:Theorem 5.5.4 Symbolic factorization can be performed in O(���EF ���) oper-ations.Proof: For each column k, the value mk is unique. This means thatReach(xk; Sk�1) is accessed only when Reach(xmk ; Smk�1) is being deter-mined. That is, the set Reach(xk; Sk�1) is examined exactly once through-out the entire process. Moreover, the union of two reachable sets can beperformed in time proportional to the sum of their sizes (see Exercise 5.5.3on page 178 ). Therefore, symbolic factorization can be done in O(���EF ���)operations, where ���EF ��� = Pnk=1 jReach(xk; Sk�1)j. 25.5.4 Storage Allocation for the Compressed Scheme and theSubroutine SMBFCTIn this section, we describe the subroutine which performs symbolic factor-ization as described in the previous section. The result of the process is adata structure for the compressed scheme of Section 5.5.2.The implementation is due to Eisenstat et. al. [13], and can be found in theYale Sparse Matrix Package. Essentially, it implements the re�ned algorithmas described in the previous section, with a rearrangement of the order inwhich reachable sets are merged together.



172 CHAPTER 5. GENERAL SPARSE METHODSStep 1 (Initialization) for i = 1; � � � ; n do Ri = �:Step 2 (Symbolic Factorization)for k = 1; 2; : : : ; n doReach(xi; Si�1) = Adj(xi)� Sifor k 2 Ri doReach(xi; Si�1) Reach(xi; Si�1)[Reach(xk; Sk�1)� Sim = minfj j xj 2 Reach(xi; Si�1)gRm  Rm [ fxig:In this algorithm, the set Ri is used to accumulate the representatives whosereachable sets a�ect that of xi. There is an immediate result from Theo-rem 5.5.3 that can be used to speed up the algorithm. Moreover, it is usefulin setting up the compressed storage scheme.Corollary 5.5.5 If there is only one mk = i, andAdj(xi)� Si � Reach(xk; Sk�1)then Reach(xi; Si�1) = Reach(xk; Sk�1)� fxig:The subroutine SMBFCT accepts as input the graph of the matrix storedin the array pair (XADJ, ADJNCY), together with the permutation vectorPERM and its inverse INVP. The objective of the subroutine is to set up thedata structure for the compressed sparse scheme; that is, to compute thecompressed subscript vector NZSUB and the index vectors XLNZ and XNZSUB.Also returned are the values MAXLNZ and MAXSUB which contain the numberof o�-diagonal nonzeros in the triangular factor and the number of subscriptsfor the compressed scheme respectively.Three working vectors RCHLNK, MRGLNK and MARKER are used by the sub-routine SMBFCT. The vector RCHLNK is used to facilitate the merging of thereachable sets, while the vector MRGLNK is used to keep track of the non-overlapping representative sets fRig as introduced above. The vector MARKERis used to detect the condition as given in Corollary 5.5.5.The subroutine begins by initializing the working vectors MRGLNK and MARKER.It then executes the main loop �nding the reachable set for each node. Theset Adj(xk) � Sk is �rst determined and assigned to the vector RCHLNK. At



5.5. SPARSE STORAGE SCHEMES 173the same time, the condition in Corollary 5.5.5 is tested. If it is satis�ed,the merging of reachable sets can be skipped. Otherwise, based on the in-formation in MRGLNK, previous reachable sets are merged into RCHLNK. Withthe new reachable set completely formed in RCHLNK, the subroutine checksfor possible compression of subscripts and sets up the corresponding portionof the data structure accordingly. Finally, it updates the vector MRGLNK tore
ect the changes in the sets fRig.By merging a set of carefully selected reachable sets, the subroutine SMBFCT isable to �nd a new reachable set in a very e�cient manner. Since the numberof subscripts required in the compressed scheme is not known beforehand,the size of the vector NZSUB may not be large enough to accommodate all thesubscripts. In that case, the subroutine will abort and the error 
ag FLAGwill be set to 1.1. C****************************************************************2. C****************************************************************3. C********* SMBFCT ..... SYMBOLIC FACTORIZATION ********4. C****************************************************************5. C****************************************************************6. C7. C PURPOSE - THIS ROUTINE PERFORMS SYMBOLIC FACTORIZATION8. C ON A PERMUTED LINEAR SYSTEM AND IT ALSO SETS UP THE9. C COMPRESSED DATA STRUCTURE FOR THE SYSTEM.10. C11. C INPUT PARAMETERS -12. C NEQNS - NUMBER OF EQUATIONS.13. C (XADJ, ADJNCY) - THE ADJACENCY STRUCTURE.14. C (PERM, INVP) - THE PERMUTATION VECTOR AND ITS INVERSE.15. C16. C UPDATED PARAMETERS -17. C MAXSUB - SIZE OF THE SUBSCRIPT ARRAY NZSUB. ON RETURN,18. C IT CONTAINS THE NUMBER OF SUBSCRIPTS USED19. C20. C OUTPUT PARAMETERS -21. C XLNZ - INDEX INTO THE NONZERO STORAGE VECTOR LNZ.22. C (XNZSUB, NZSUB) - THE COMPRESSED SUBSCRIPT VECTORS.23. C MAXLNZ - THE NUMBER OF NONZEROS FOUND.24. C FLAG - ERROR FLAG. POSITIVE VALUE INDICATES THAT.25. C NZSUB ARRAY IS TOO SMALL.26. C27. C WORKING PARAMETERS -28. C MRGLNK - A VECTOR OF SIZE NEQNS. AT THE KTH STEP,29. C MRGLNK(K), MRGLNK(MRGLNK(K)) , .........30. C IS A LIST CONTAINING ALL THOSE COLUMNS L(*,J)31. C WITH J LESS THAN K, SUCH THAT ITS FIRST OFF-



174 CHAPTER 5. GENERAL SPARSE METHODS32. C DIAGONAL NONZERO IS L(K,J). THUS, THE33. C NONZERO STRUCTURE OF COLUMN L(*,K) CAN BE FOUND34. C BY MERGING THAT OF SUCH COLUMNS L(*,J) WITH35. C THE STRUCTURE OF A(*,K).36. C RCHLNK - A VECTOR OF SIZE NEQNS. IT IS USED TO ACCUMULATE37. C THE STRUCTURE OF EACH COLUMN L(*,K). AT THE38. C END OF THE KTH STEP,39. C RCHLNK(K), RCHLNK(RCHLNK(K)), ........40. C IS THE LIST OF POSITIONS OF NONZEROS IN COLUMN K41. C OF THE FACTOR L.42. C MARKER - AN INTEGER VECTOR OF LENGTH NEQNS. IT IS USED43. C TO TEST IF MASS SYMBOLIC ELIMINATION CAN BE44. C PERFORMED. THAT IS, IT IS USED TO CHECK WHETHER45. C THE STRUCTURE OF THE CURRENT COLUMN K BEING46. C PROCESSED IS COMPLETELY DETERMINED BY THE SINGLE47. C COLUMN MRGLNK(K).48. C49. C****************************************************************50. C51. SUBROUTINE SMBFCT ( NEQNS, XADJ, ADJNCY, PERM, INVP,52. 1 XLNZ, MAXLNZ, XNZSUB, NZSUB, MAXSUB,53. 1 RCHLNK, MRGLNK, MARKER, FLAG )54. C55. C****************************************************************56. C57. INTEGER ADJNCY(1), INVP(1), MRGLNK(1), NZSUB(1),58. 1 PERM(1), RCHLNK(1), MARKER(1)59. INTEGER XADJ(1), XLNZ(1), XNZSUB(1),60. 1 FLAG, I, INZ, J, JSTOP, JSTRT, K, KNZ,61. 1 KXSUB, MRGK, LMAX, M, MAXLNZ, MAXSUB,62. 1 NABOR, NEQNS, NODE, NP1, NZBEG, NZEND,63. 1 RCHM, MRKFLG64. C65. C****************************************************************66. C67. C ------------------68. C INITIALIZATION ...69. C ------------------70. NZBEG = 171. NZEND = 072. XLNZ(1) = 173. DO 100 K = 1, NEQNS74. MRGLNK(K) = 075. MARKER(K) = 076. 100 CONTINUE77. C --------------------------------------------------78. C FOR EACH COLUMN ......... . KNZ COUNTS THE NUMBER



5.5. SPARSE STORAGE SCHEMES 17579. C OF NONZEROS IN COLUMN K ACCUMULATED IN RCHLNK.80. C --------------------------------------------------81. NP1 = NEQNS + 182. DO 1500 K = 1, NEQNS83. KNZ = 084. MRGK = MRGLNK(K)85. MRKFLG = 086. MARKER(K) = K87. IF (MRGK .NE. 0 ) MARKER(K) = MARKER(MRGK)88. XNZSUB(K) = NZEND89. NODE = PERM(K)90. JSTRT = XADJ(NODE)91. JSTOP = XADJ(NODE+1) - 192. IF (JSTRT.GT.JSTOP) GO TO 150093. C -------------------------------------------94. C USE RCHLNK TO LINK THROUGH THE STRUCTURE OF95. C A(*,K) BELOW DIAGONAL96. C -------------------------------------------97. RCHLNK(K) = NP198. DO 300 J = JSTRT, JSTOP99. NABOR = ADJNCY(J)100. NABOR = INVP(NABOR)101. IF ( NABOR .LE. K ) GO TO 300102. RCHM = K103. 200 M = RCHM104. RCHM = RCHLNK(M)105. IF ( RCHM .LE. NABOR ) GO TO 200106. KNZ = KNZ+1107. RCHLNK(M) = NABOR108. RCHLNK(NABOR) = RCHM109. IF ( MARKER(NABOR) .NE. MARKER(K) ) MRKFLG = 1110. 300 CONTINUE111. C --------------------------------------112. C TEST FOR MASS SYMBOLIC ELIMINATION ...113. C --------------------------------------114. LMAX = 0115. IF ( MRKFLG .NE. 0 .OR. MRGK .EQ. 0 ) GO TO 350116. IF ( MRGLNK(MRGK) .NE. 0 ) GO TO 350117. XNZSUB(K) = XNZSUB(MRGK) + 1118. KNZ = XLNZ(MRGK+1) - (XLNZ(MRGK) + 1)119. GO TO 1400120. C -----------------------------------------------121. C LINK THROUGH EACH COLUMN I THAT AFFECTS L(*,K).122. C -----------------------------------------------123. 350 I = K124. 400 I = MRGLNK(I)125. IF (I.EQ.0) GO TO 800



176 CHAPTER 5. GENERAL SPARSE METHODS126. INZ = XLNZ(I+1) - (XLNZ(I)+1)127. JSTRT = XNZSUB(I) + 1128. JSTOP = XNZSUB(I) + INZ129. IF (INZ.LE.LMAX) GO TO 500130. LMAX = INZ131. XNZSUB(K) = JSTRT132. C -----------------------------------------------133. C MERGE STRUCTURE OF L(*,I) IN NZSUB INTO RCHLNK.134. C -----------------------------------------------135. 500 RCHM = K136. DO 700 J = JSTRT, JSTOP137. NABOR = NZSUB(J)138. 600 M = RCHM139. RCHM = RCHLNK(M)140. IF (RCHM.LT.NABOR) GO TO 600141. IF (RCHM.EQ.NABOR) GO TO 700142. KNZ = KNZ+1143. RCHLNK(M) = NABOR144. RCHLNK(NABOR) = RCHM145. RCHM = NABOR146. 700 CONTINUE147. GO TO 400148. C ------------------------------------------------------149. C CHECK IF SUBSCRIPTS DUPLICATE THOSE OF ANOTHER COLUMN.150. C ------------------------------------------------------151. 800 IF (KNZ.EQ.LMAX) GO TO 1400152. C -----------------------------------------------153. C OR IF TAIL OF K-1ST COLUMN MATCHES HEAD OF KTH.154. C -----------------------------------------------155. IF (NZBEG.GT.NZEND) GO TO 1200156. I = RCHLNK(K)157. DO 900 JSTRT=NZBEG,NZEND158. IF (NZSUB(JSTRT)-I) 900, 1000, 1200159. 900 CONTINUE160. GO TO 1200161. 1000 XNZSUB(K) = JSTRT162. DO 1100 J=JSTRT,NZEND163. IF (NZSUB(J).NE.I) GO TO 1200164. I = RCHLNK(I)165. IF (I.GT.NEQNS) GO TO 1400166. 1100 CONTINUE167. NZEND = JSTRT - 1168. C ----------------------------------------169. C COPY THE STRUCTURE OF L(*,K) FROM RCHLNK170. C TO THE DATA STRUCTURE (XNZSUB, NZSUB).171. C ----------------------------------------172. 1200 NZBEG = NZEND + 1



5.5. SPARSE STORAGE SCHEMES 177173. NZEND = NZEND + KNZ174. IF (NZEND.GT.MAXSUB) GO TO 1600175. I = K176. DO 1300 J=NZBEG,NZEND177. I = RCHLNK(I)178. NZSUB(J) = I179. MARKER(I) = K180. 1300 CONTINUE181. XNZSUB(K) = NZBEG182. MARKER(K) = K183. C --------------------------------------------------------184. C UPDATE THE VECTOR MRGLNK. NOTE COLUMN L(*,K) JUST FOUND185. C IS REQUIRED TO DETERMINE COLUMN L(*,J), WHERE186. C L(J,K) IS THE FIRST NONZERO IN L(*,K) BELOW DIAGONAL.187. C --------------------------------------------------------188. 1400 IF (KNZ.LE.1) GO TO 1500189. KXSUB = XNZSUB(K)190. I = NZSUB(KXSUB)191. MRGLNK(K) = MRGLNK(I)192. MRGLNK(I) = K193. 1500 XLNZ(K+1) = XLNZ(K) + KNZ194. MAXLNZ = XLNZ(NEQNS) - 1195. MAXSUB = XNZSUB(NEQNS)196. XNZSUB(NEQNS+1) = XNZSUB(NEQNS)197. FLAG = 0198. RETURN199. C ----------------------------------------------------200. C ERROR - INSUFFICIENT STORAGE FOR NONZERO SUBSCRIPTS.201. C ----------------------------------------------------202. 1600 FLAG = 1203. RETURN204. ENDExercises5.5.1) Let A be a matrix satisfying fi(A) < i for 2 � i � n. Show that foreach k < n, mk = k+1. Hence or otherwise, show that for 1 < i < n,Reach(xi; Si�1) = (Adj(xi) [Reach(xi�1; Si�2))� Si:5.5.2) Let A be a band matrix with bandwidth �. Assume that the matrixhas a full band.a) Compare the uncompressed and compressed sparse storage schemesfor A.



178 CHAPTER 5. GENERAL SPARSE METHODSb) Compare the two symbolic factorization algorithms as given byLemma 5.5.1 and Theorem 5.5.3.5.5.3) Let R1 and R2 be two given sets of integers whose values are lessthan or equal to n. Assume that a temporary array of size n withall zero entries is provided. Show that the union R1 [ R2 can bedetermined in time proportional to jR1j+ jR2j.5.6 The Numerical Subroutines for Factorizationand SolutionIn this section, we describe the subroutines that perform the numerical fac-torization and solution for linear systems stored using the compressed sparsescheme. The factorization subroutine GSFCT (for general sparse symmetricfactorization) uses the inner product form of the factorization algorithm.Since the nonzeros in the lower triangle of A (or the factor L ) are storedcolumn by column, the inner product version of the algorithm must be im-plemented to adapt to this storage mode. The implementation GSFCT is aminor modi�cation of the one in the Yale Sparse Matrix Package.The Subroutine GSFCT (General sparse Symmetric FaCTorization)The subroutine GSFCT accepts as input the data structure of the compressedscheme (XLNZ, XNZSUB, NZSUB) and the primary storage vectors DIAG andLNZ. The vectors DIAG and LNZ, on input, contain the nonzeros of the matrixA. On return, the nonzeros of the factor L are overwritten on those of thematrix A. The subroutines use three temporary vectors LINK, FIRST andTEMP, all of size n.To compute a column L�i of the factor, the columns that are involved in theformation of L�i are exactly those L�j with lij 6= 0. The modi�cation canbe done one column at a time as follows:for L�j with lij 6= 0 do0B@ lii...lni 1CA 0B@ lii...lni 1CA � lij0B@ lij...lnj 1CA :At step i, all the columns that a�ect L�i are given by the list LINK(i),LINK(LINK(i)), .... To minimize subscript searching, a work vector FIRST is
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Figure 5.6.1: Illustration of the use of FIRST and LINK in GSFCT.



180 CHAPTER 5. GENERAL SPARSE METHODSused so that FIRST(j) points to the location in the storage vector LNZ, wherethe nonzero lij resides for j = LINK(i), LINK(LINK(i)), .... In this way, themodi�cation of L�i by L�j can start at the location FIRST(j) in LNZ. Thethird working vector TEMP is used to accumulate the modi�cations to thecolumn L�i.The subroutine GSFCT begins by initializing the working vectors LINK andTEMP. The loop DO 600 J ... processes each column. It accumulates themodi�cations to the current column in the variable DIAGJ and the vectorTEMP. At the same time, it updates the temporary vectors FIRST and LINK.Finally, the modi�cation is applied to the entries in the present column.1. C***************************************************************2. C***************************************************************3. C****** GSFCT ..... GENERAL SPARSE SYMMETRIC FACT ******4. C***************************************************************5. C***************************************************************6. C7. C PURPOSE - THIS SUBROUTINE PERFORMS THE SYMMETRIC8. C FACTORIZATION FOR A GENERAL SPARSE SYSTEM, STORED IN9. C THE COMPRESSED SUBSCRIPT DATA FORMAT.10. C11. C INPUT PARAMETERS -12. C NEQNS - NUMBER OF EQUATIONS.13. C XLNZ - INDEX VECTOR FOR LNZ. XLNZ(I) POINTS TO THE14. C START OF NONZEROS IN COLUMN I OF FACTOR L.15. C (XNZSUB, NZSUB) - THE COMPRESSED SUBSCRIPT DATA16. C STRUCTURE FOR FACTOR L.17. C18. C UPDATED PARAMETERS -19. C LNZ - ON INPUT, CONTAINS NONZEROS OF A, AND ON20. C RETURN, THE NONZEROS OF L.21. C DIAG - THE DIAGONAL OF L OVERWRITES THAT OF A.22. C IFLAG - THE ERROR FLAG. IT IS SET TO 1 IF A ZERO OR23. C NEGATIVE SQUARE ROOT OCCURS DURING THE24. C FACTORIZATION.25. C OPS - A DOUBLE PRECISION COMMON PARAMETER THAT IS26. C INCREMENTED BY THE NUMBER OF OPERATIONS27. C PERFORMED BY THE SUBROUTINE.28. C29. C WORKING PARAMETERS -30. C LINK - AT STEP J, THE LIST IN31. C LINK(J), LINK(LINK(J)), ...........32. C CONSISTS OF THOSE COLUMNS THAT WILL MODIFY33. C THE COLUMN L(*,J).34. C FIRST - TEMPORARY VECTOR TO POINT TO THE FIRST



5.6. NUMERICAL SUBROUTINES FOR FACTORIZATION AND SOLUTION18135. C NONZERO IN EACH COLUMN THAT WILL BE USED36. C NEXT FOR MODIFICATION.37. C TEMP - A TEMPORARY VECTOR TO ACCUMULATE MODIFICATIONS.38. C39. C***************************************************************40. C41. SUBROUTINE GSFCT ( NEQNS, XLNZ, LNZ, XNZSUB, NZSUB, DIAG,42. 1 LINK, FIRST, TEMP, IFLAG )43. C44. C***************************************************************45. C46. DOUBLE PRECISION COUNT, OPS47. COMMON /SPKOPS/ OPS48. REAL DIAG(1), LNZ(1), TEMP(1), DIAGJ, LJK49. INTEGER LINK(1), NZSUB(1)50. INTEGER FIRST(1), XLNZ(1), XNZSUB(1),51. 1 I, IFLAG, II, ISTOP, ISTRT, ISUB, J,52. 1 K, KFIRST, NEQNS, NEWK53. C54. C***************************************************************55. C56. C ------------------------------57. C INITIALIZE WORKING VECTORS ...58. C ------------------------------59. DO 100 I = 1, NEQNS60. LINK(I) = 061. TEMP(I) = 0.0E062. 100 CONTINUE63. C --------------------------------------------64. C COMPUTE COLUMN L(*,J) FOR J = 1,...., NEQNS.65. C --------------------------------------------66. DO 600 J = 1, NEQNS67. C -------------------------------------------68. C FOR EACH COLUMN L(*,K) THAT AFFECTS L(*,J).69. C -------------------------------------------70. DIAGJ = 0.0E071. NEWK = LINK(J)72. 200 K = NEWK73. IF ( K .EQ. 0 ) GO TO 40074. NEWK = LINK(K)75. C ---------------------------------------76. C OUTER PRODUCT MODIFICATION OF L(*,J) BY77. C L(*,K) STARTING AT FIRST(K) OF L(*,K).78. C ---------------------------------------79. KFIRST = FIRST(K)80. LJK = LNZ(KFIRST)81. DIAGJ = DIAGJ + LJK*LJK



182 CHAPTER 5. GENERAL SPARSE METHODS82. OPS = OPS + 1.0D083. ISTRT = KFIRST + 184. ISTOP = XLNZ(K+1) - 185. IF ( ISTOP .LT. ISTRT ) GO TO 20086. C ------------------------------------------87. C BEFORE MODIFICATION, UPDATE VECTORS FIRST,88. C AND LINK FOR FUTURE MODIFICATION STEPS.89. C ------------------------------------------90. FIRST(K) = ISTRT91. I = XNZSUB(K) + (KFIRST-XLNZ(K)) + 192. ISUB = NZSUB(I)93. LINK(K) = LINK(ISUB)94. LINK(ISUB) = K95. C ---------------------------------------96. C THE ACTUAL MOD IS SAVED IN VECTOR TEMP.97. C ---------------------------------------98. DO 300 II = ISTRT, ISTOP99. ISUB = NZSUB(I)100. TEMP(ISUB) = TEMP(ISUB) + LNZ(II)*LJK101. I = I + 1102. 300 CONTINUE103. COUNT = ISTOP - ISTRT + 1104. OPS = OPS + COUNT105. GO TO 200106. C ----------------------------------------------107. C APPLY THE MODIFICATIONS ACCUMULATED IN TEMP TO108. C COLUMN L(*,J).109. C ----------------------------------------------110. 400 DIAGJ = DIAG(J) - DIAGJ111. IF ( DIAGJ .LE. 0.0E0 ) GO TO 700112. DIAGJ = SQRT(DIAGJ)113. DIAG(J) = DIAGJ114. ISTRT = XLNZ(J)115. ISTOP = XLNZ(J+1) - 1116. IF ( ISTOP .LT. ISTRT ) GO TO 600117. FIRST(J) = ISTRT118. I = XNZSUB(J)119. ISUB = NZSUB(I)120. LINK(J) = LINK(ISUB)121. LINK(ISUB) = J122. DO 500 II = ISTRT, ISTOP123. ISUB = NZSUB(I)124. LNZ(II) = ( LNZ(II)-TEMP(ISUB) ) / DIAGJ125. TEMP(ISUB) = 0.0E0126. I = I + 1127. 500 CONTINUE128. COUNT = ISTOP - ISTRT + 1



5.6. NUMERICAL SUBROUTINES FOR FACTORIZATION AND SOLUTION183129. OPS = OPS + COUNT130. 600 CONTINUE131. RETURN132. C ------------------------------------------------------133. C ERROR - ZERO OR NEGATIVE SQUARE ROOT IN FACTORIZATION.134. C ------------------------------------------------------135. 700 IFLAG = 1136. RETURN137. END5.6.1 The Subroutine GSSLV (General sparse SymmetricSoLVe)The subroutine GSSLV is used to perform the numerical solution of a factoredsystem, where the matrix is stored in the compressed subscript sparse formatas discussed in Section 5.5.2. It accepts as input the number of equationsNEQNS, together with the data structure and numerical components of thematrix factor. This includes the compressed subscript structure (XNZSUB,NZSUB), the diagonal components DIAG of the factor and the o�-diagonalnonzeros in the factor stored in the array pair (XLNZ, LNZ).Since the nonzeros in the lower triangular factor are stored column by col-umn, the solution method should be arranged so that access to the com-ponents is made column-wise. The forward substitution uses the \outer-product" form, whereas the backward substitution loop performs the solu-tion by \inner-products" as discussed in Section 2.3.1 in Chapter 2.1. C***************************************************************2. C***************************************************************3. C****** GSSLV ..... GENERAL SPARSE SYMMETRIC SOLVE ******4. C***************************************************************5. C***************************************************************6. C7. C PURPOSE - TO PERFORM SOLUTION OF A FACTORED SYSTEM, WHERE8. C THE MATRIX IS STORED IN THE COMPRESSED SUBSCRIPT9. C SPARSE FORMAT.10. C11. C INPUT PARAMETERS -12. C NEQNS - NUMBER OF EQUATIONS.13. C (XLNZ, LNZ) - STRUCTURE OF NONZEROS IN L.14. C (XNZSUB, NZSUB) - COMPRESSED SUBSCRIPT STRUCTURE.15. C DIAG - DIAGONAL COMPONENTS OF L.16. C17. C UPDATED PARAMETER -



184 CHAPTER 5. GENERAL SPARSE METHODS18. C RHS - ON INPUT, IT CONTAINS THE RHS VECTOR, AND ON19. C OUTPUT, THE SOLUTION VECTOR.20. C21. C***************************************************************22. C23. SUBROUTINE GSSLV ( NEQNS, XLNZ, LNZ, XNZSUB, NZSUB,24. 1 DIAG, RHS )25. C26. C***************************************************************27. C28. DOUBLE PRECISION COUNT, OPS29. COMMON /SPKOPS/ OPS30. REAL DIAG(1), LNZ(1), RHS(1), RHSJ, S31. INTEGER NZSUB(1)32. INTEGER XLNZ(1), XNZSUB(1), I, II, ISTOP,33. 1 ISTRT, ISUB, J, JJ, NEQNS34. C35. C***************************************************************36. C37. C ------------------------38. C FORWARD SUBSTITUTION ...39. C ------------------------40. DO 200 J = 1, NEQNS41. RHSJ = RHS(J) / DIAG(J)42. RHS(J) = RHSJ43. ISTRT = XLNZ(J)44. ISTOP = XLNZ(J+1) - 145. IF ( ISTOP .LT. ISTRT ) GO TO 20046. I = XNZSUB(J)47. DO 100 II = ISTRT, ISTOP48. ISUB = NZSUB(I)49. RHS(ISUB) = RHS(ISUB) - LNZ(II)*RHSJ50. I = I + 151. 100 CONTINUE52. 200 CONTINUE53. COUNT = 2*(NEQNS + ISTOP)54. OPS = OPS + COUNT55. C -------------------------56. C BACKWARD SUBSTITUTION ...57. C -------------------------58. J = NEQNS59. DO 500 JJ = 1, NEQNS60. S = RHS(J)61. ISTRT = XLNZ(J)62. ISTOP = XLNZ(J+1) - 163. IF ( ISTOP .LT. ISTRT ) GO TO 40064. I = XNZSUB(J)



5.7. ADDITIONAL NOTES 18565. DO 300 II = ISTRT, ISTOP66. ISUB = NZSUB(I)67. S = S - LNZ(II)*RHS(ISUB)68. I = I + 169. 300 CONTINUE70. 400 RHS(J) = S / DIAG(J)71. J = J - 172. 500 CONTINUE73. RETURN74. END5.7 Additional NotesThe element model (George [18], Eisenstat [14]) is also used in the study ofelimination. It models the factorization process in terms of the clique struc-ture in the elimination graphs. It is motivated by �nite element applications,where the clique structure of the matrix graph arises in a natural way. Themodel is closely related to the quotient graph model studied in Section 5.3.An implementation of the minimum degree algorithm using the elementmodel can be found in George and McIntyre [28]. In [27] the authors haveimplemented the minimum degree algorithm using the implicit model viareachable sets on the original graph. Re�nements have been included tospeed up the execution time.There are other ordering algorithms that are designed to reduce �ll-in. Theminimum de�ciency algorithm (Rose [44]) numbers a node next if its elim-ination incurs the least number of �lls. It involves substantially more workthan the minimum degree algorithm and experience has shown that in prac-tice the ordering produced is rarely much better than the one produced bythe minimum degree algorithm.In (George [20]), a di�erent storage scheme is proposed for general sparseorderings. It makes use of the observation that o�-diagonal nonzeros formdense blocks. Only a few items of information are needed to store each non-null block, and standard dense matrix methods can be used to operate onthem.
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Chapter 6Quotient Tree Methods forFinite Element and FiniteDi�erence Problems6.1 IntroductionIn this and the subsequent two chapters we study methods designed primarilyfor matrix problems arising in connection with �nite di�erence and �niteelement methods for solving various problems in structural analysis, 
uid
ow, elasticity, heat transport and related problems (Zienkiewicz [58]). Forour purposes here, the problems we have in mind can be characterized asfollows.Let M be a planar mesh consisting of the union of triangles and/or quadri-laterals called elements , with adjacent elements sharing a common side or acommon vertex. There is a node at each vertex of the mesh M, and theremay also be nodes lying on element sides and element faces, as shown inthe example of Figure 6.1.1. Associated with each node is a variable xi andfor some labelling of the nodes or variables from 1 to n, we de�ne a �niteelement system Ax = b associated with M as one where A is symmetricand positive de�nite and for which aij 6= 0 implies variables xi and xj areassociated with nodes of the same element. The graph associated with Awill be referred to as the �nite element graph associated with M, as shownin Figure 6.1.1.In many practical settings, this de�nition of \�nite element system" is notquite general enough, since sometimes more than one variable is associated187
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 r������ rJJJ'& $%An 8 node �nite elementmesh M The �nite element graphassociated with MFigure 6.1.1: An 8 node �nite element mesh and its associated �nite elementgraph.with some or all of the nodes. However, our de�nition captures the essen-tial features of such problems and simpli�es the presentation of the ideas.Moreover, the extension of the basic ideas to the more general case is im-mediate, and since our algorithms and programs operate on the associatedgraph, they work for the general case anyway.Finite element matrix problems are often solved using the band or pro�lemethods described in Chapter 4, and for relatively small problems thesemethods are often the most e�cient, particularly for one-shot problemswhere the relatively high cost of �nding low �ll orderings o�sets their lowerarithmetic and storage costs. For fairly large problems, and/or in situa-tions where numerous problems having identical structure must be solved,the more sophisticated orderings which attempt to minimize �ll, such as theminimum degree ordering of Chapter 5 or the nested dissection orderings ofChapter 8, are attractive.The methods of Chapters 4 and 5 in a sense represent extremes in the \so-phistication spectrum;" the envelope methods do not attempt to exploitmuch of the structure of A and L, while the methods of Chapter 5 attemptto exploit it all. In this chapter we investigate methods which lie somewherein between these two extremes, and for certain sizes and types of �nite ele-ment problems, they turn out to be more e�cient than either of the othertwo strategies. The ordering times and the operation counts are usually com-parable with envelope orderings, but the storage requirements are usuallysubstantially lower.



6.2. SOLUTION OF PARTITIONED SYSTEMS 1896.2 Solution of Partitioned Systems of EquationsThe methods we consider in this chapter rely heavily on the use of partitionedmatrices, and some techniques to exploit sparsity in such systems. All thepartitionings we consider will be symmetric in the sense that the row andcolumn partitionings will be identical.6.2.1 Factorization of a Block Two by Two MatrixIn order to illustrate most of the important ideas about computations in-volving sparse partitioned matrices, we consider a block two by two linearsystem Ax = b:  B VV T �C ! x1x2 ! =  b1b2 ! ; (6.2.1)whereB and �C are r by r and s by s submatrices respectively, with r+s = n.The Cholesky factor L of A, correspondingly partitioned, is given byL =  LB OW T LC ! ; (6.2.2)where LB and LC are the Cholesky factors of the matrices B and C =�C�V TB�1V respectively, andW = L�1BV . Here the \modi�cation matrix"subtracted from �C to obtain C can be written asV TB�1V = V TL�TB L�1BV = W TW :The determination of the factor L can be done as described below. For rea-sons which will be obvious later in this section we refer to it as the symmetricblock factorization scheme.Step 1 Factor the matrix B into LBLTB .Step 2 Solve the triangular systemsLBW = V :Step 3 Modify the submatrix remaining to be factored:C = �C �W TW :Step 4 Factor the matrix C into LCLTC .



190 CHAPTER 6. QUOTIENT TREE METHODSThis computational sequence is depicted pictorially in Figure 6.2.1.Does this block-oriented computational scheme have any advantage over theordinary step by step factorization, in terms of operations? The followingresult is quoted from George [19].Theorem 6.2.1 The number of operations required to compute the factorL of A is the same whether the step by step elimination scheme or thesymmetric block factorization scheme is used.Intuitively, the result holds because the two methods perform exactly thesame numerical operations, but in a di�erent order. There is, however,a di�erent way to perform the block factorization, where the arithmeticrequirement may decrease or increase. The alternative way depends on theobservation that the modi�cation matrix V TB�1V can be computed in twodistinctly di�erent ways, namely as the conventional product(V TL�TB )(L�1BV ) = W TW ; (6.2.3)or as V T (L�TB (L�1BV )) = V T (L�TBW ) = V T ~W : (6.2.4)We shall refer to this latter way of performing the computation as the asym-metric block factorization scheme.The di�erence in the two computations hinges on the cost of computingW TW compared to the cost of solving LTB ~W = W , and then computingV T ~W . As an example illustrating the di�erence in the arithmetic cost, con-sider a partitioned matrix A having the structure indicated in Figure 6.2.2.Since the matrixW is full (see Exercise 2.3.3 on page 30), by Corollary 2.3.2,the cost of solving the equations LTB ~W = W is 4 � 19 = 76. The cost ofcomputing V T ~W is 10, yielding a total of 86. On the other hand, the costof computing WTW is 10� 10 = 100.In addition to potentially reducing arithmetic operations, this asymmetricscheme may allow us to substantially reduce storage requirements over thatfor the standard scheme. The key observation is that we do not need Win order to solve for x, provided that V is available. Whenever we needto compute a product such as W Tz or Wz, we can do so by computingV T (L�TB z) or L�1B (V z); that is, we solve a triangular system and multiplyby a sparse matrix. If V is much sparser than W , as it often is, we savestorage and perhaps operations as well. The important point to note interms of computing the factorization is that if we plan to discardW anyway,



6.2. SOLUTION OF PARTITIONED SYSTEMS 191
.......................................����

..........................�����..........................
..........................��
���

.............�� ��� ����
����@@@@@@@@
@@@@@@@@
@@@@@@@@
@@@@@@@@

modi�edaccessed andand not modi�ednot accessedaccessed only Factorization of C into LCLTC .Computation of C = �C �W TW .Solution of the system LBW = V .Factorization of B into LBLTB .

Figure 6.2.1: Diagram indicating the sequence of computations for the sym-metric block factorization scheme, and the modes in which the data is pro-cessed.



192 CHAPTER 6. QUOTIENT TREE METHODS266666666666666666666666664
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377777777777777777777777775Figure 6.2.2: Structure of a 2 by 2 partitioned matrix A and its Choleskyfactor L.computingC in the asymmetric fashion implied by (6.2.4) allows us to avoidever storing W . We can compute the product V T ~W one column at a time,discarding each as soon as it has been used to modify a column of �C. Onlyone temporary vector of length r is required. By comparison, if we computeV TB�1V as W TW , there appears to be no way to avoid storing all of Wat some point, even if we do not intend to retain it for later use.This asymmetric version of the factorization algorithm can be described asfollows.Step 1 Factor the matrix B into LBLTB .Step 2 For each column v = V �i of V ,2.1) Solve LBw = v.2.2) Solve LTB ~w = w.2.3) Set C�i = �C�i � V T ~w.Step 3 Factor the matrix C into LCLTC .



6.2. SOLUTION OF PARTITIONED SYSTEMS 193Of course, the symmetry of C is exploited in forming C�i in Step 2.3. Re-gardless of which of the above ways we actually employ in calculating theproduct V TB�1V , there is still some freedom in the order in which we cal-culate the components. Assuming that we compute the lower triangle, wecan compute the elements row by row or column by column, as depicted inFigure 6.2.3; each requires a di�erent order of access to the columns of Wor V . ............. ............. ............. ............. ............. ............. .......................... ........................................................................................................ ............. ....................................................�����������..........................���������������� .............@@@@@.......................... ..........................@@@@@@@@@@@ .............@@ ?- ....................................................��������������������������������������� ..........................����������������������������� @@@@@@@@@@@@@@@@@@@
@@@@@@@@@@@@@@@@@@@ row by rowcolumn by columnFigure 6.2.3: Diagram showing the access to columns of W or V , when thelower triangle of V TB�1V is computed column by column and row by row.6.2.2 Triangular Solution of a Block Two by Two SystemWith the Cholesky factor of the partitioned matrix available, the solution ofthe linear system is straightforward, as shown below.Forward SolveSolve LBy1 = b1.Compute ~b2 = b2 �W Ty1.Solve LCy2 = ~b2.Backward Solve



194 CHAPTER 6. QUOTIENT TREE METHODSSolve LTCx2 = y2.Compute ~y1 = y1 �Wx2.Solve LTBx1 = ~y1.This solution method will be referred to as the standard solution scheme.However, as we noted in Section 6.2.1, it may be desirable to discard W infavour of storing only V , and use the de�nition W = L�1BV whenever weneed to operate with the matrix W . If we do this, we obtain the followingalgorithm, which we refer to as the implicit solution scheme. Here t1 is atemporary vector.Forward SolveSolve LBy1 = b1.Solve LTBt1 = y1.Compute ~b2 = b2 � V T t1.Solve LCy2 = ~b2.Backward SolveSolve LTCx2 = y2.Solve LBt1 = V x2.Compute ~y1 = y1 � t1.Solve LTBx1 = ~y1.In the implicit scheme, only the submatricesfLB ;LC ;V gare required, compared to fLB ;LC ;Wgin the standard scheme. By Corollary 2.3.5,�(V ) � �(W )and for sparse matrices, V may have substantially fewer nonzeros than W .In the matrix example of Figure 6.2.2,�(V ) = 4



6.2. SOLUTION OF PARTITIONED SYSTEMS 195while �(W ) = 40:Thus, in terms of primary storage requirements, the use of the implicit so-lution scheme may be quite attractive.In terms of operations, the relative merits of the two schemes depend on thesparsity of the matrices LB , V and W . Since the cost of computing Wz is�(W ) and the cost of computingL�1B(V z) is �(V )+�(LB), we easily obtainthe following result. Here, the sparsity of the vector z is not exploited.Lemma 6.2.2 The cost of performing implicit solution is no greater thanthat of doing the standard block solution if and only if �(V ) + �(LB) ��(W ).In the next section, we shall extend these ideas to block p by p linear systems,for p > 2. In sparse partitioned systems, it is typical that the asymmetricversion of block factorization and the implicit form of the solution is superiorin terms of computation and storage. Thus, we consider only this version inthe remainder of this chapter.Exercises6.2.1) Let A be a symmetric positive de�nite block two by two matrix ofthe form A =  B VV T �C ! ;where both B and �C are m by m and tridiagonal, and V is diagonal.In your answers to the question below, assume m is large, and ignorelow order terms in your operation counts.a) Denote the triangular factor of A byL =  LB OW T LC ! :Describe the nonzero structures of LB , LC and W .b) Determine the number of operations (multiplications and divi-sions) required to compute L using the symmetric and asym-metric factorization algorithms described in Section 6.2.1.



196 CHAPTER 6. QUOTIENT TREE METHODSc) Compare the costs of the explicit and implicit solution schemesof Section 6.2.2 for this problem, where you may assume thatthe right hand side b in the matrix problem Ax = b is full.d) Answer a), b) and c) above when B and �C are full, and V isdiagonal.e) Answer a), b) and c) above when B and �C are full, and V isnull except for its �rst row, which is full.6.2.2) The asymmetric factorization scheme can be viewed as computingthe factorization shown below.A =  B VV T �C ! =  LBLTB OV T LCLTC ! I �WO I !where ~W = B�1V , and it is understood that the factors ofB and Care stored, rather than B and C. Write down explicit and implicitsolution procedures analogous to those described in Section 6.2.2, us-ing this factorization. Is there any reduction in the operation countsover those of Section 6.2.2? What about storage requirements if westore the o�-diagonal blocks of the factors in each case?6.2.3) Prove Theorem 6.2.1.6.3 Quotient Graphs, Trees, and Tree Partition-ingsIt should be clear that the success of the implicit solution scheme we consid-ered in Section 6.2.2 was due to the very simple form of the o�-diagonal blockW . For a general p by p partitioned matrix the o�-diagonal blocks of its fac-tor will not have such a simple form; to discard them in favor of the originalblock of A, and then to e�ectively recompute them when needed, would ingeneral be prohibitively costly in terms of computation. This immediatelyleads us to ask what characteristics a partitioned matrix should have in or-der that the o�-diagonal blocks of its factor have this simple form. In thissection we answer this question, and lay the foundations for an algorithmfor �nding such partitionings.



6.3. QUOTIENT GRAPHS, TREES, AND TREE PARTITIONINGS 1976.3.1 Partitioned Matrices and Quotient GraphsWe have already established the connection between symmetric matrices andgraphs. In this section we introduce some additional graph theory ideas toallow us to deal with partitioned matrices.Let A be partitioned into p2 submatrices Aij, 1 � i; j � p, and supposewe view each block as a single component which is zero if the block is null,and nonzero otherwise. We can then associate a p-node graph with the pby p block matrix A, having edges joining nodes if the corresponding o�-diagonal blocks are non-null. Figure 6.3.1 illustrates these ideas. Note thatjust as in the scalar case, an ordering of this new graph is implied by thematrix to which it corresponds. Also just as before, we are interested in�nding partitionings and orderings of unlabelled graphs. This motivates thede�nition of quotient graphs, which we introduced in Chapter 5.26666666666664 � � � �� � � �� �� � �� � �� �� � �� � � 37777777777775
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��8����AFigure 6.3.1: A partitioned matrix A, the implied partitioning of the nodeset of its graph, and the graph of its zero-nonzero block structure.Let G = (X;E) be a given unlabelled graph, and let P be a partition of itsnode set X : P = fY1; Y2; � � � ; Ypg:Recall from Chapter 5 that the quotient graph of G with respect to P is thegraph (P;E), where fYi; Yjg 2 E if and only if Adj(Yi)\ Yj 6= �. We denote



198 CHAPTER 6. QUOTIENT TREE METHODSthis graph by G=P.Note that our de�nition of quotient graph is for an unlabelled graph. Anordering � of G is said to be compatible with a partitioning P of G if eachmember Yi of P is numbered consecutively by �. Clearly orderings andpartitionings of graphs corresponding to partitioned matrices must have thisproperty. An ordering � which is compatible with P induces or impliesan ordering on G=P; conversely, an ordering �P of G=P induces a classof orderings on G which are compatible with P. Figure 6.3.2 illustratesthese notions. Unless we explicitly state otherwise, whenever we refer to anordering of a partitioned graph, we assume that the ordering is compatiblewith the partitioning, since our interest is in ordering partitioned matrices.III����5,6,7"!# I����1,2���� II����3,4���������IV�
��8����Labelling of G=P induced by theoriginal ordering in Figure 6.3.1m m m m m mm m7 5 6 2 1 48 3A di�erent ordering compatible with PFigure 6.3.2: An example of induced orderings for the graph example inFigure 6.3.1.In general, when we perform (block) Gaussian elimination on a partitionedmatrix, zero blocks may become nonzero. That is, \block �ll" may occur



6.3. QUOTIENT GRAPHS, TREES, AND TREE PARTITIONINGS 199just as �ll occurs in the scalar case. For example, in the partitioned matrixof Figure 6.3.1, there are two null o�-diagonal blocks which will becomenon-null after factorization. The structure of the triangular factor is givenin Figure 6.3.3. 26666666666664 �� �� �� g� � �� �� g� g� g� � g� �� g� g� � g� � 37777777777775Figure 6.3.3: Structure of the factor of the matrix in Figure 6.3.1.However, for a given partitioning of a symmetric matrix, the way block�ll occurs does not necessarily correspond exactly to the scalar situation. Inother words, we cannot simply carry out symbolic elimination on the quotientgraph, and thereby obtain the block structure of the factor L. What thisprovides is the worst case �ll , which of course could always happen, sinceeach non-null block could be full. Figure 6.3.4 illustrates this point.Thus, symbolically factoring the quotient graph of a partitioned matrix mayyield a higher block �ll than actually occurs. Intuitively, the reason is clear:the elimination model assumes that the product of two nonzero quantitieswill always be nonzero, which is true for scalars. However, it is quite possibleto have two non-null matrices whose product is logically zero.6.3.2 Trees, Quotient Trees, and Tree PartitioningsA tree T = (X;E) is a connected graph with no cycles. It is easy to verifythat for a tree T , jX j = jEj+1, and every pair of distinct nodes is connectedby exactly one path. A rooted tree node of T called the root . Since everypair of nodes in T is connected by exactly one path, the path from r to anynode x 2 X is unique. If this path passes through y, then x is a descendantof y, and y is an ancestor of x. If fx; yg 2 E, then x is a son of y and y isa father of x. If Y consists of a node y and all its descendants, the section
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6.3. QUOTIENT GRAPHS, TREES, AND TREE PARTITIONINGS 201graph T (Y ) is a subtree of T . Note that the ancestor-descendant relationshipis only de�ned for rooted trees. These notions are illustrated in Figure 6.3.5.ma��� mr � root@@@ mb � father of d@@@���mc XXXXXy son of bmd mc����� mbSSSSSmdtree T subtree of TFigure 6.3.5: A rooted tree T and a subtree.A monotone ordering each node is numbered before its father. Obviouslythe root must be numbered last. Given an unrooted tree T , an ordering � ismonotone if it is monotone for the rooted tree (�(jX j); T). The signi�canceof monotonely ordered trees is that the corresponding matrices su�er no �llduring their factorization. The following lemma is due to Parter [43].Lemma 6.3.1 Let A be an n by n symmetric matrix whose labelled graphis a monotonely ordered tree. If A = LLT , where L is the Cholesky factorof A, then aij = 0 implies lij = 0; i > j.The proof is left as an exercise.Lemma 6.3.2 LetA and L be as in Lemma 6.3.1. Then lij = aij=ljj, i > j.Proof: Recall from Section 2.2.2, that the components of L are given bylij =  aij � j�1Xk=1 likljk! =ljj; i > j:To prove the result we show thatPj�1k=1 likljk = 0. Suppose for a contradictionthat limljm 6= 0 for some m satisfying 1 � m � j � 1. By Lemma 6.3.1, thismeans that aimajm 6= 0, which implies nodes i and j are both connected to



202 CHAPTER 6. QUOTIENT TREE METHODSnode m in the corresponding tree, with i > m and j > m. But this impliesthat the tree is not monotonely ordered. 2Lemmas 6.3.1 and 6.3.2 are not as signi�cant as they might at �rst seembecause matrices which arise in applications seldom have graphs which aretrees. Their importance lies in the fact that they extend immediately topartitioned matrices .Suppose A is as before, partitioned into p2 submatrices Aij , 1 � i; j �p, and let Lij be the corresponding submatrices of its Cholesky factor L.Suppose further that the labelled quotient graph of the partitioned matrixA is a monotonely ordered tree, as illustrated in Figure 6.3.6. Then it isstraightforward to verify the analog of Lemma 6.3.2 for such a partitionedmatrix, that is Lij = AijL�Tjj = (L�1jj Aji)T for each non-null submatrix Aijin the lower triangle of A. When a partitioning P of a graph G is such thatG=P is a tree, we call P a tree partitioning of G.We have now achieved what we set out to do, namely, to determine thecharacteristics a partitioned matrix must have in order to apply the ideasdeveloped in Section 6.2. The answer is that we want its labelled quotientgraph to be a monotonely ordered tree. If it has this property, we canreasonably discard all the o�-diagonal blocks of L, saving only its diagonalblocks and the o�-diagonal blocks of the lower triangle of A.6.3.3 Asymmetric Block Factorization and Implicit Block So-lution of Tree-partitioned SystemsLet A be p by p partitioned with blocks Aij; 1 � i; j � p, and Lij bethe corresponding blocks of L for i > j. If the quotient graph of A isa monotonely ordered tree, there is exactly one non-null block below thediagonal block in A and L (Why?); let this block be A�k;k 1 � k � p � 1.The asymmetric block factorization algorithm for such problems is as follows.Step 1 For k = 1; 2; � � � ; p� 1 do the following1.1) Factor Akk.1.2) For each column u of Ak;�k, solve Akkv = u, compute w =ATk;�kv and subtract it from the appropriate column of A�k;�k .Step 2 Factor App.A pictorial illustration of the modi�cation of A�k;�k is shown in Figure 6.3.7.Note that in the algorithm, temporary storage for the vectors u and w of
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Figure 6.3.7: Pictorial illustration of asymmetric block factorization.



6.3. QUOTIENT GRAPHS, TREES, AND TREE PARTITIONINGS 205length equal to the largest block size is all that is needed. (The vector vcan overwrite u.) Of course, the symmetry of the diagonal blocks can beexploited.The implicit solution scheme for such block systems is also straightforward.Here t and ~t are temporary vectors which can share the same space.Forward implicit block solve: (Ly = b)Step 1 For k = 1; � � � ; p� 1, do the following:1.1) Solve Lkkyk = bk.1.2) Solve LTkkt = yk.1.3) Compute b�k  b�k �ATk;�kt.Step 2 Solve Lppyp = bp.Backward implicit block solve: (LTx = y)Step 1 Solve LTppxp = yp.Step 2 For k = p� 1; p� 2; � � � ; 1 do the following:2.1) Compute t = Ak;�kx�k .2.2) Solve Lkk~t = t.2.3) Replace yk  yk � ~t.2.4) Solve LTkkxk = yk.Figure 6.3.8 gives the steps on the forward block solve of a block four byfour system.Exercises6.3.1) Prove Lemma 6.3.1.6.3.2) Let GF =P = (P ;EF ) be the quotient graph of the �lled graph ofG with respect to a partitioning P, and let (G=P)F = (P ; ~EF ) bethe �lled graph of G=P. The example in Figure 6.3.4 shows that EFmay have fewer members than ~EF . That is, the block structure ofthe factor L of a partitioned matrixA may be sparser than the �lledgraph of the quotient graph G=P would suggest. Show that if the di-agonal blocks of L have the propagation property (see Exercise 2.3.3on page 30), then the �lled graph of G=P will correctly re
ect theblock structure of L. That is, show that EF = ~EF in this case.
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Figure 6.3.8: Forward implicit block solve for a block 4 by 4 system.



6.3. QUOTIENT GRAPHS, TREES, AND TREE PARTITIONINGS 2076.3.3) Let EF and ~EF be as de�ned in Exercise 6.3.2 on page 205, for thelabelled graph G, and partitioning P = fY1; Y2; � � � ; Ypg.a) Prove that if the subgraphs G(Yi), i = 1; 2; � � � ; p are connected,then EF = ~EF .b) Give an example to show that the converse need not hold.c) Prove that if the subgraphs G(Sli=1 Yi), l = 1; 2; � � � ; p � 1 areconnected, then EF = ~EF .6.3.4) A tree partitioning P = fY1; Y2; � � � ; Ypg of a graph G = (X;E) ismaximal if there does not exist a tree partitioningQ = fZ1; Z2; � � � ; Ztgsuch that p < t, and for each i, Zi � Yk for some 1 � k � p. Inother words, it is maximal if we cannot subdivide one or more of theYi's and still maintain a quotient tree. Suppose that for every pairof distinct nodes in any Yi, there exist two distinct paths between xand y: x; x1; x2; � � � ; xs; yand x; y1; y2; � � � ; yt; ysuch that S = [fZ 2 P j xi 2 Z; 1 � i � sgT = [fZ 2 P j yi 2 Z; 1 � i � tgare disjoint. Show that P is maximal.6.3.5) Let A be a block tridiagonal matrix,A = 0BBBBBBB@ A11 V 2V T2 A22 V 3V T3 A33 . . .. . . . . . V pV Tp App 1CCCCCCCAwhere each Aii is an m by m square full matrix and each V i is adiagonal matrix.



208 CHAPTER 6. QUOTIENT TREE METHODSa) What is the arithmetic cost for performing the asymmetric blockfactorization? How does it compare with that of the symmetricversion?b) What if each submatrix V i has this sparse form � � � � � � �O !?Assume m is large, and ignore low order terms in your calculations.6.4 A Quotient Tree Partitioning Algorithm6.4.1 A Heuristic AlgorithmThe results of Section 6.3 suggest that we would like to �nd a partitioningP = fY1; Y2; � � � ; Ypg with as many members as possible, consistent with therequirement that G=P be a tree. In this section we provide an algorithm for�nding a tree partitioning of a graph.The algorithm we propose is closely related to level structures (see Sec-tion 4.4), so we begin by observing the connection between a level structureon a graph and the partitioning it induces on the corresponding matrix. LetGA be the unlabelled graph associated with A, and let L = fL0; L1; � � � ; Llgbe a level structure in GA. From the de�nition of level structure, it is clearthat the quotient graph G=L is a chain, so if we number the nodes in eachlevel Li consecutively, from L0 to Ll, the levels of L induce a block tridiag-onal structure on the correspondingly ordered matrix. An example appearsin Figure 6.4.1.The algorithm we will ultimately present in this section begins with a rootedlevel structure and then attempts to make the partitioning �ner by re�ningthe levels of the level structure. Let L = fL0; L1; � � � ; Llg be a rooted levelstructure and let P = fY1; Y2; � � � ; Ypg be the partitioning obtained by sub-dividing each Lj as follows. Letting Bj be the section graph prescribed byBj = G 0@ l[i=jLi1A ; (6.4.1)each Lj is partitioned according to the sets speci�ed byfY j Y = Lj \ C;G(C) is a connected component of Bjg: (6.4.2)
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JJJJJJ L3oL2oL1oL0o675 43 21 2666666666666664 � � �� � �� � � � �� �� � �� � � � �� �� �� � 3777777777777775Figure 6.4.1: Block tridiagonal partitioning induced by a level structure.Figure 6.4.2 illustrates this re�nement for a simple graph.Consider the re�nement on L2 = fd; eg. Note thatB2 = G(fd; e; i; g; f; hg)and it has two connected components with node sets:fd; i; ggand fe; f; hg:Therefore, the level L2 can be partitioned according to (6.4.2) into fdg andfeg.We are now ready to describe the algorithm for �nding a tree partitioning.Our description makes use of the de�nition SPAN(Y ), which is de�ned fora subset Y of X bySPAN(Y ) = fx 2 X j there exists a path from yto x; for some y 2 Y g: (6.4.3)When Y is a single node y, SPAN(Y ) is simply the connected componentcontaining y.
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��aL G=PFigure 6.4.2: An example showing the re�ned partitioning P obtained fromthe level structure L.The algorithm we now describe makes use of a stack, and thereby avoidsexplicitly �nding the connected components of the Bj which appeared inthe description of the level re�nement (6.4.2). We assume that we are givena root r for the rooted level structure to be re�ned. We discuss the choiceof r later in this section.Step 0 (Initialization): Empty the stack. Generate the level structureL(r) = fL0; L1; L2; � � � ; Ll(r)g rooted at r, and choose any node y 2Ll(r). Set l = l(r) and S = fyg.Step 1 (Pop stack): If the node set T on the top of the stack belongs to Ll,pop T and set S  S [ T .Step 2 (Form possible partition member): Determine the set Y = SPAN(S)in the subgraph G(Ll). If l < l(r) and some node in Adj(Y )\Ll+1 hasnot yet been placed in a partition member, go to Step 5.Step 3 (New partition member): Put Y in P.Step 4 (Next level): Determine the set S = Adj(Y )\Ll�1, and set l l�1.If l � 0, go to Step 1, otherwise stop.Step 5 (Partially formed partition member): Push S onto the stack. Pickyl+1 2 Adj(Y ) \ Ll+1 and trace a path yl+1, yl+2, � � �, yl+t, where



6.4. A QUOTIENT TREE PARTITIONING ALGORITHM 211yl+i 2 Ll+i and Adj(yl+t) \ Ll+t+1 = �. Set S = fyl+tg and l  l + t,and then go to Step 2.The example in Figure 6.4.4, taken from George and Liu [23] illustrateshow the algorithm operates. The level structure rooted at node 1 is re�nedto obtain a quotient tree having 10 nodes. In the example, Y1 = f20g,Y2 = f18; 19g, Y3 = f16g, Y4 = f10; 15g, Y5 = f9; 14; 17g, and Y6 = f5; 11g,with L4 = Y5 [ Y6, L5 = Y2 [ Y4, and L6 = Y1 [ Y3.In order to complete the description of the tree partitioning algorithm wemust specify how to �nd the root node r for the level structure. We obtain rand L(r) by using the subroutine FNROOT, described in Section 4.4.3. Sincewe want a partitioning with as many members as possible, this seems to be asensible choice since it will tend to provide a level structure having relativelymany levels.6.4.2 Subroutines for Finding a Quotient Tree PartitioningIn this section, a set of subroutines which implements the quotient treealgorithm is discussed. The parameters NEQNS, XADJ and ADJNCY, as before,are used to store the adjacency structure of the given graph. The vector PERMreturns the computed quotient tree ordering. In addition to the ordering,the partitioning information is returned in the variable NBLKS and the vectorXBLK. The number of partition blocks is given in NBLKS, while the nodenumbers of a particular block, say block k, are given byfPERM(j) j XBLK(k) � j < XBLK(k + 1)gFigure 6.4.6 contains the representation of the quotient tree ordering for theexample in Figure 6.4.3.As we see from the example, the vector XBLK has size NBLKS + 1. The lastextra pointer is included so that blocks can be retrieved in a uniform manner.In the example, to obtain the �fth block, we note thatXBLK(5) = 7;XBLK(6) = 10:Thus, the nodes in this block are given by PERM(7), PERM(8) and PERM(9).There are seven subroutines in this set, two of which have been consideredin detail in Chapter 4. We �rst consider their control relationship as shownin Figure 6.4.7.
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Figure 6.4.5: Continuation of Figure 6.4.4.
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GENRQTFNLVLSFNROOTROOTLS RQTREEFNSPAN COPYSI���� HHHH�� @@Figure 6.4.7: Control relation of subroutines for the re�ned quotient treealgorithm.



216 CHAPTER 6. QUOTIENT TREE METHODSThe subroutines FNROOT and ROOTLS are used to determine a pseudo-peripheralnode of a connected component of a given graph. For details of these two sub-routines, readers are referred back to Section 4.4.3. The subroutine COPYSIis a simple utility program that copies an integer array into another one. (Alisting of the subroutine appears after that of RQTREE.) We now describe indetail the remaining subroutines in this group.GENRQT (GENeral Re�ned Quotient Tree)This subroutine is the driver subroutine for �nding the quotient tree orderingof a general disconnected graph. It goes through the graph and calls thesubroutine RQTREE to number each connected component in the graph. Itrequires three working arrays XLS, LS and NODLVL. The array pair (XLS, LS)is used by FNLVLS to obtain a level structure rooted at a pseudo-peripheralnode, while the vector NODLVL is used to store the level number of nodes inthe level structure.The subroutine begins by initializing the vector NODLVL and the variableNBLKS. It then goes through the graph until it �nds a node i not yet num-bered. Note that numbered nodes have their NODLVL values set to zero. Thisnode i together with the array NODLVL de�nes a connected subgraph of theoriginal graph. The subroutines FNLVLS and RQTREE are then called to orderthe nodes of this subgraph. The subroutine returns after it has processed allthe components of the graph.1. C***************************************************************2. C***************************************************************3. C****** GENRQT ..... GENERAL REFINED QUOTIENT TREE *******4. C***************************************************************5. C***************************************************************6. C7. C PURPOSE - THIS ROUTINE IS A DRIVER FOR DETERMINING A8. C PARTITIONED ORDERING FOR A POSSIBLY DISCONNECTED9. C GRAPH USING THE REFINED QUOTIENT TREE ALGORITHM.10. C11. C INPUT PARAMETERS -12. C NEQNS - NUMBER OF VARIABLES.13. C (XADJ, ADJNCY) - THE ADJACENCY STRUCTURE.14. C15. C OUTPUT PARAMETERS -16. C (NBLKS, XBLK) - THE QUOTIENT TREE PARTITIONING.17. C PERM - THE PERMUTATION VECTOR.18. C19. C WORKING PARAMETERS -



6.4. A QUOTIENT TREE PARTITIONING ALGORITHM 21720. C (XLS, LS) - THIS LEVEL STRUCTURE PAIR IS USED BY21. C FNROOT TO FIND A PSEUDO-PERIPHERAL NODE.22. C NODLVL - A TEMPORARY VECTOR TO STORE THE LEVEL23. C NUMBER OF EACH NODE IN A LEVEL STRUCTURE.24. C25. C PROGRAM SUBROUTINES -26. C FNLVLS, RQTREE.27. C28. C***************************************************************29. C30. SUBROUTINE GENRQT ( NEQNS, XADJ, ADJNCY, NBLKS, XBLK,31. 1 PERM, XLS, LS, NODLVL )32. C33. C***************************************************************34. C35. INTEGER ADJNCY(1), LS(1), NODLVL(1), PERM(1),36. 1 XBLK(1), XLS(1)37. INTEGER XADJ(1), I, IXLS, LEAF, NBLKS, NEQNS, NLVL,38. 1 ROOT39. C40. C***************************************************************41. C42. C ------------------43. C INITIALIZATION ...44. C ------------------45. DO 100 I = 1, NEQNS46. NODLVL(I) = 147. 100 CONTINUE48. NBLKS = 049. XBLK(1) = 150. C ----------------------------------------------------51. C FOR EACH CONNECTED COMPONENT, FIND A ROOTED LEVEL52. C STRUCTURE, AND THEN CALL RQTREE FOR ITS BLOCK ORDER.53. C ----------------------------------------------------54. DO 200 I = 1, NEQNS55. IF (NODLVL(I) .LE. 0) GO TO 20056. ROOT = I57. CALL FNLVLS ( ROOT, XADJ, ADJNCY, NODLVL,58. 1 NLVL, XLS, LS )59. IXLS = XLS(NLVL)60. LEAF = LS(IXLS)61. CALL RQTREE ( LEAF, XADJ, ADJNCY, PERM,62. 1 NBLKS, XBLK, NODLVL, XLS, LS )63. 200 CONTINUE64. RETURN65. END



218 CHAPTER 6. QUOTIENT TREE METHODSFNLVLS (FiNd LeVeL Structure)This subroutine FNLVLS generates a rooted level structure for a component,speci�ed by NODLVL and rooted at a pseudo-peripheral node. In addition, italso records the level number of the nodes in the level structure.The connected component is speci�ed by the input parameters ROOT, XADJ,ADJNCY and NODLVL. The subroutine �rst calls the subroutine FNROOT toobtain the required rooted level structure, given by (NLVL, XLS, LS). Itthen loops through the level structure to determine the level numbers andputs them into NODLVL (loop DO 200 LVL = ...).1. C***************************************************************2. C***************************************************************3. C******* FNLVLS ..... FIND LEVEL STRUCTURE **********4. C***************************************************************5. C***************************************************************6. C7. C PURPOSE - FNLVLS GENERATES A ROOTED LEVEL STRUCTURE FOR8. C A MASKED CONNECTED SUBGRAPH, ROOTED AT A PSEUDO-9. C PERIPHERAL NODE. THE LEVEL NUMBERS ARE RECORDED.10. C11. C INPUT PARAMETERS -12. C (XADJ, ADJNCY) - THE ADJACENCY STRUCTURE.13. C14. C OUTPUT PARAMETERS -15. C NLVL - NUMBER OF LEVELS IN THE LEVEL STRUCTURE FOUND.16. C (XLS, LS) - THE LEVEL STRUCTURE RETURNED.17. C18. C UPDATED PARAMETERS -19. C ROOT - ON INPUT, WITH THE ARRAY NODLVL, SPECIFIES20. C THE COMPONENT WHOSE PSEUDO-PERIPHERAL NODE IS21. C TO BE FOUND. ON OUTPUT, IT CONTAINS THAT NODE.22. C NODLVL - ON INPUT, IT SPECIFIES A SECTION SUBGRAPH.23. C ON RETURN, IT CONTAINS THE NODE LEVEL NUMBERS.24. C25. C PROGRAM SUBROUTINES -26. C FNROOT.27. C28. C***************************************************************29. C30. SUBROUTINE FNLVLS ( ROOT, XADJ, ADJNCY, NODLVL,31. 1 NLVL, XLS, LS )32. C33. C***************************************************************34. C35. INTEGER ADJNCY(1), LS(1), NODLVL(1), XLS(1)



6.4. A QUOTIENT TREE PARTITIONING ALGORITHM 21936. INTEGER XADJ(1), J, LBEGIN, LVL, LVLEND, NLVL,37. 1 NODE, ROOT38. C39. C***************************************************************40. C41. CALL FNROOT ( ROOT, XADJ, ADJNCY, NODLVL,42. 1 NLVL, XLS, LS )43. DO 200 LVL = 1, NLVL44. LBEGIN = XLS(LVL)45. LVLEND = XLS(LVL + 1) - 146. DO 100 J = LBEGIN, LVLEND47. NODE = LS(J)48. NODLVL(NODE) = LVL49. 100 CONTINUE50. 200 CONTINUE51. RETURN52. ENDRQTREE (Re�ned Quotient TREE)This is the subroutine that actually applies the quotient tree algorithm asdescribed in Section 6.4.1. Throughout the procedure, it maintains a stackof node subsets. Before going into the details of the subroutine, we �rstconsider the organization of the stack.For each node subset in the stack, we need to store its size and the levelnumber of its nodes. In the storage array called STACK, we store the nodesin the subset in contiguous locations, and then the subset size and the levelnumber in the next two locations. We also keep a variable TOPSTK thatstores the current number of locations used in STACK. Figure 6.4.8 containsan illustration of the organization of the vector STACK.To push a subset S of level i into the stack, we simply copy the nodes inS into the vector STACK starting at location TOPSTK+1. We then enter thesize jSj and the level number i and �nally update the value of TOPSTK. Onthe other hand, to pop a node subset from the stack, we �rst obtain the sizeof the subset from STACK(TOPSTK-1) and then the subset can be retrievedfrom STACK starting at TOPSTK-size-1. The value of TOPSTK is also updatedto re
ect the current status of the stack.We now consider the details of the subroutine RQTREE. It operates on a con-nected subgraph as speci�ed by LEAF, XADJ, ADJNCY and NODLVL. It implicitlyassumes that a level structure has been formed on this component, whereNODLVL contains the level numbers for its nodes and LEAF is a leaf node in



220 CHAPTER 6. QUOTIENT TREE METHODSthe level structure. In a level structure L = fL0; L1; � � � ; Llg, a node x issaid to be a leaf in L if Adj(x)\ Li+1 = � where x 2 Li.� � �0 0 TOPSTK6 Initialized STACK� � �0 0 node subset node subsetlevel number ? level number ?size6 size 6 TOPSTK6STACKFigure 6.4.8: Organization of the stack in the subroutine RQTREE.In addition to STACK, the subroutine uses a second working vector ADJS.This vector is used to store the adjacent set of the current block in the lowerlevel, and it is a potential subset for the next block.The subroutine starts by initializing the STACK vector, its pointer TOPSTKand the variable TOPLVL. The variable TOPLVL is local to the subroutine andit stores the level number of the top subset in the stack. A leaf block is thendetermined by calling the subroutine FNSPAN on the node LEAF. (A leaf blockis a subset Y such that Adj(Y ) \ Li+1 = � where Y � Li.) It is numberedas the next block (statement labelled 300).We then march onto the next lower level (LEVEL = LEVEL - 1 and follow-ing). The adjacent set of the previous block in this level is used to startbuilding up the next potential block. If the node subset at the top of theSTACK vector belongs to the same level, it is popped from the stack andincluded into the potential block. Then, the subroutine FNSPAN is called(statement labelled 400) to obtain the span of this subset. If the span doesnot have any unnumbered neighbors in the higher level, it becomes the nextblock to be numbered. Otherwise, the span is pushed into the stack andinstead a leaf block is determined as the next one to be numbered.The subroutine goes through all the levels until it comes to the �rst one. Bythis time, all the nodes in the component should have been numbered andthe subroutine returns.



6.4. A QUOTIENT TREE PARTITIONING ALGORITHM 2211. C***************************************************************2. C***************************************************************3. C********* RQTREE ..... REFINED QUOTIENT TREE *********4. C***************************************************************5. C***************************************************************6. C7. C PURPOSE - THIS SUBROUTINE FINDS A QUOTIENT TREE ORDERING8. C FOR THE COMPONENT SPECIFIED BY LEAF AND NODLVL.9. C10. C INPUT PARAMETERS -11. C (XADJ, ADJNCY) - THE ADJACENCY STRUCTURE.12. C LEAF - THE INPUT NODE THAT DEFINES THE CONNECTED13. C COMPONENT. IT IS ALSO A LEAF NODE IN THE14. C ROOTED LEVEL STRUCTURE PASSED TO RQTREE.15. C I.E. IT HAS NO NEIGHBOR IN THE NEXT LEVEL.16. C17. C OUTPUT PARAMETERS -18. C PERM - THE PERMUTATION VECTOR CONTAINING THE ORDERING.19. C (NBLKS, XBLK) - THE QUOTIENT TREE PARTITIONING.20. C21. C UPDATED PARAMETERS -22. C NODLVL - THE NODE LEVEL NUMBER VECTOR. NODES IN THE23. C COMPONENT HAVE THEIR NODLVL SET TO ZERO AS24. C AS THEY ARE NUMBERED.25. C26. C WORKING PARAMETERS -27. C ADJS - TEMPORARY VECTOR TO STORE THE ADJACENT SET28. C OF NODES IN A PARTICULAR LEVEL.29. C STACK - TEMPORARY VECTOR USED TO MAINTAIN THE STACK30. C OF NODE SUBSETS. IT IS ORGANISED AS -31. C ( SUBSET NODES, SUBSET SIZE, SUBSET LEVEL ).....32. C33. C PROGRAM SUBROUTINES -34. C FNSPAN, COPYSI.35. C36. C***************************************************************37. C38. SUBROUTINE RQTREE ( LEAF, XADJ, ADJNCY, PERM,39. 1 NBLKS, XBLK, NODLVL, ADJS, STACK )40. C41. C***************************************************************42. C43. INTEGER ADJNCY(1), ADJS(1), NODLVL(1), PERM(1),44. 1 STACK(1), XBLK(1)45. INTEGER XADJ(1), BLKSZE, IP, J, JP, LEAF, LEVEL,46. 1 NADJS, NBLKS, NODE, NPOP, NULEAF,



222 CHAPTER 6. QUOTIENT TREE METHODS47. 1 NUM, TOPLVL, TOPSTK48. C49. C***************************************************************50. C51. C ---------------------------------------------52. C INITIALIZE THE STACK VECTOR AND ITS POINTERS.53. C ---------------------------------------------54. STACK(1) = 055. STACK(2) = 056. TOPSTK = 257. TOPLVL = 058. NUM = XBLK(NBLKS+1) - 159. C -------------------------------------------------60. C FORM A LEAF BLOCK, THAT IS, ONE WITH NO NEIGHBORS61. C IN ITS NEXT HIGHER LEVEL.62. C -------------------------------------------------63. 100 LEVEL = NODLVL(LEAF)64. NODLVL(LEAF) = 065. PERM(NUM+1) = LEAF66. BLKSZE = 167. CALL FNSPAN ( XADJ, ADJNCY, NODLVL, BLKSZE, PERM(NUM+1),68. 1 LEVEL, NADJS, ADJS, NULEAF )69. IF ( NULEAF .LE. 0 ) GO TO 30070. JP = NUM71. DO 200 J = 1, BLKSZE72. JP = JP + 173. NODE = PERM(JP)74. NODLVL(NODE) = LEVEL75. 200 CONTINUE76. LEAF = NULEAF77. GO TO 10078. C ------------------------------79. C A NEW BLOCK HAS BEEN FOUND ...80. C ------------------------------81. 300 NBLKS = NBLKS + 182. XBLK(NBLKS) = NUM + 183. NUM = NUM + BLKSZE84. C --------------------------------------------------85. C FIND THE NEXT POSSIBLE BLOCK BY USING THE ADJACENT86. C SET IN THE LOWER LEVEL AND THE TOP NODE SUBSET (IF87. C APPROPRIATE) IN THE STACK.88. C --------------------------------------------------89. LEVEL = LEVEL - 190. IF ( LEVEL .LE. 0 ) GO TO 50091. CALL COPYSI ( NADJS, ADJS, PERM(NUM+1) )92. BLKSZE = NADJS93. IF ( LEVEL .NE. TOPLVL ) GO TO 400



6.4. A QUOTIENT TREE PARTITIONING ALGORITHM 22394. C ----------------------------------------------95. C THE LEVEL OF THE NODE SUBSET AT THE TOP OF THE96. C STACK IS THE SAME AS THAT OF THE ADJACENT SET.97. C POP THE NODE SUBSET FROM THE STACK.98. C ----------------------------------------------99. NPOP = STACK(TOPSTK-1)100. TOPSTK = TOPSTK - NPOP - 2101. IP = NUM + BLKSZE + 1102. CALL COPYSI ( NPOP, STACK(TOPSTK+1), PERM(IP) )103. BLKSZE = BLKSZE + NPOP104. TOPLVL = STACK(TOPSTK)105. 400 CALL FNSPAN ( XADJ, ADJNCY, NODLVL, BLKSZE,106. 1 PERM(NUM+1), LEVEL, NADJS, ADJS, NULEAF )107. IF ( NULEAF .LE. 0 ) GO TO 300108. C -----------------------------------------109. C PUSH THE CURRENT NODE SET INTO THE STACK.110. C -----------------------------------------111. CALL COPYSI ( BLKSZE, PERM(NUM+1), STACK(TOPSTK+1) )112. TOPSTK = TOPSTK + BLKSZE + 2113. STACK(TOPSTK-1) = BLKSZE114. STACK(TOPSTK) = LEVEL115. TOPLVL = LEVEL116. LEAF = NULEAF117. GO TO 100118. C ---------------119. C BEFORE EXIT ...120. C ---------------121. 500 XBLK(NBLKS+1) = NUM + 1122. RETURN123. END1. C****************************************************************2. C****************************************************************3. C********** COPYSI ..... COPY INTEGER VECTOR ************4. C****************************************************************5. C****************************************************************6. C7. C PURPOSE - THIS ROUTINE COPIES THE N INTEGER ELEMENTS FROM8. C THE VECTOR A TO B. (ARRAYS OF SHORT INTEGERS)9. C10. C INPUT PARAMETERS -11. C N - SIZE OF VECTOR A.12. C A - THE INTEGER VECTOR.13. C14. C OUTPUT PARAMETER -15. C B - THE OUTPUT INTEGER VECTOR.



224 CHAPTER 6. QUOTIENT TREE METHODS16. C17. C****************************************************************18. C19. SUBROUTINE COPYSI ( N, A, B )20. C21. C****************************************************************22. C23. INTEGER A(1), B(1)24. INTEGER I, N25. C26. C****************************************************************27. C28. IF ( N .LE. 0 ) RETURN29. DO 100 I = 1, N30. B(I) = A(I)31. 100 CONTINUE32. RETURN33. ENDFNSPAN (FiNd SPAN)This subroutine is used by the subroutine RQTREE and has several functions,one of which is to �nd the span of a set. Let L = fL0; L1; � � � ; Llg be a givenlevel structure and let S be a subset in level Li. This subroutine determinesthe span of S in the subgraph G(Li) and �nds the adjacent set of S in levelLi�1. Moreover, if the span of S has some unnumbered neighbors in levelLi+1, the subroutine returns an unnumbered leaf node and in that case, thespan of S may only be partially formed.Inputs to this subroutine are the graph structure in the array pair (XADJ,ADJNCY), the level structure stored implicitly in the vector NODLVL, and thesubset (NSPAN, SET) in level LEVEL of the level structure. On return, thevector SET is expanded to accommodate the span of this given set. Thevariable NSPAN will be increased to the size of the span set.After initialization, the subroutine goes through each node in the partiallyspanned set. Here, the variable SETPTR points to the current node in thespan set under consideration. The loop DO 500 J = ... is then executed toinspect the level numbers of its neighbors. Depending on the level number,the neighbor is either bypassed or included in the span set or included inthe adjacent set. A �nal possibility is when the neighbor belongs to a higherlevel. In this case, a path through unnumbered nodes is traced down the level



6.4. A QUOTIENT TREE PARTITIONING ALGORITHM 225structure until we hit a leaf node. The subroutine returns after recoveringthe nodes in the partially formed adjacent set (loop DO 900 I = ...).A normal return from FNSPAN will have the span set in (NSPAN, SET) andthe adjacent set in (NADJS, ADJS) completely formed, and have zero in thevariable LEAF.1. C***************************************************************2. C***************************************************************3. C********** FNSPAN ..... FIND SPAN SET *************4. C***************************************************************5. C***************************************************************6. C7. C PURPOSE - THIS SUBROUTINE IS ONLY USED BY RQTREE. ITS8. C MAIN PURPOSE IS TO FIND THE SPAN OF A GIVEN SUBSET9. C IN A GIVEN LEVEL SUBGRAPH IN A LEVEL STRUCTURE.10. C THE ADJACENT SET OF THE SPAN IN THE LOWER LEVEL IS11. C ALSO DETERMINED. IF THE SPAN HAS AN UNNUMBERED NODE12. C IN THE HIGHER LEVEL, AN UNNUMBERED LEAF NODE (I.E. ONE13. C WITH NO NEIGHBOR IN NEXT LEVEL) WILL BE RETURNED.14. C15. C INPUT PARAMETERS -16. C (XADJ, ADJNCY) - THE ADJACENT STRUCTURE.17. C LEVEL - LEVEL NUMBER OF THE CURRENT SET.18. C19. C UPDATED PARAMETERS -20. C (NSPAN, SET) - THE INPUT SET. ON RETURN, IT CONTAINS21. C THE RESULTING SPAN SET.22. C NODLVL - THE LEVEL NUMBER VECTOR. NODES CONSIDERED23. C WILL HAVE THEIR NODLVL CHANGED TO ZERO.24. C25. C OUTPUT PARAMETERS -26. C (NADJS, ADJS) - THE ADJACENT SET OF THE SPAN IN THE27. C LOWER LEVEL.28. C LEAF - IF THE SPAN HAS AN UNNUMBERED HIGHER LEVEL NODE,29. C LEAF RETURNS AN UNNUMBERED LEAF NODE IN THE LEVEL30. C STRUCTURE, OTHERWISE, LEAF IS ZERO.31. C32. C33. C***************************************************************34. C35. SUBROUTINE FNSPAN ( XADJ, ADJNCY, NODLVL, NSPAN, SET,36. 1 LEVEL, NADJS, ADJS, LEAF )37. C38. C***************************************************************39. C40. INTEGER ADJNCY(1), ADJS(1), NODLVL(1), SET(1)41. INTEGER XADJ(1), I, J, JSTOP, JSTRT, LEAF, LEVEL,



226 CHAPTER 6. QUOTIENT TREE METHODS42. 1 LVL, LVLM1, NADJS, NBR, NBRLVL, NODE,43. 1 NSPAN, SETPTR44. C45. C***************************************************************46. C47. C ------------------48. C INITIALIZATION ...49. C ------------------50. LEAF = 051. NADJS = 052. SETPTR = 053. 100 SETPTR = SETPTR + 154. IF ( SETPTR .GT. NSPAN ) RETURN55. C ----------------------------------------------56. C FOR EACH NODE IN THE PARTIALLY SPANNED SET ...57. C ----------------------------------------------58. NODE = SET(SETPTR)59. JSTRT = XADJ(NODE)60. JSTOP = XADJ(NODE + 1) - 161. IF ( JSTOP .LT. JSTRT ) GO TO 10062. C ----------------------------------------------------63. C FOR EACH NEIGHBOR OF NODE, TEST ITS NODLVL VALUE ...64. C ----------------------------------------------------65. DO 500 J = JSTRT, JSTOP66. NBR = ADJNCY(J)67. NBRLVL = NODLVL(NBR)68. IF (NBRLVL .LE. 0) GO TO 50069. IF (NBRLVL - LEVEL) 200, 300, 60070. C ----------------------------------71. C NBR IS IN LEVEL-1, ADD IT TO ADJS.72. C ----------------------------------73. 200 NADJS = NADJS + 174. ADJS(NADJS) = NBR75. GO TO 40076. C ----------------------------------------77. C NBR IS IN LEVEL, ADD IT TO THE SPAN SET.78. C ----------------------------------------79. 300 NSPAN = NSPAN + 180. SET(NSPAN) = NBR81. 400 NODLVL(NBR) = 082. 500 CONTINUE83. GO TO 10084. C --------------------------------------------------85. C NBR IS IN LEVEL+1. FIND AN UNNUMBERED LEAF NODE BY86. C TRACING A PATH UP THE LEVEL STRUCTURE. THEN87. C RESET THE NODLVL VALUES OF NODES IN ADJS.88. C --------------------------------------------------



6.5. A STORAGE SCHEME AND ALLOCATION PROCEDURE 22789. 600 LEAF = NBR90. LVL = LEVEL + 191. 700 JSTRT = XADJ(LEAF)92. JSTOP = XADJ(LEAF+1) - 193. DO 800 J = JSTRT, JSTOP94. NBR = ADJNCY(J)95. IF ( NODLVL(NBR) .LE. LVL ) GO TO 80096. LEAF = NBR97. LVL = LVL + 198. GO TO 70099. 800 CONTINUE100. IF (NADJS .LE. 0) RETURN101. LVLM1 = LEVEL - 1102. DO 900 I = 1, NADJS103. NODE = ADJS(I)104. NODLVL(NODE) = LVLM1105. 900 CONTINUE106. RETURN107. ENDExercises6.4.1) Let P = fY1; Y2; � � � ; Ypg be the partitioning of G generated by thealgorithm described in Section 6.4.1.a) Show that G=P is a quotient tree.b) Prove that the quotient tree generated by the algorithm of Sec-tion 6.4.1 is maximal, as de�ned in Exercise 6.3.4 on page 207.(Hint: Let Y 2 P and Y � Lj(r), where Lj(r) is de�ned inSection 6.4.1. Show that for any two nodes x and y in Y ,there exists a path joining them in G(Sj�1i=0 Li(r)) and one inG(Sli=j Li(r)). Then use the result of Exercise 6.3.4 on page 207.)6.5 A Storage Scheme and Storage Allocation Pro-cedureIn this section we describe a storage scheme which is specially designed forsolving partitioned matrix problems whose quotient graphs are monotonelyordered trees. The assumption is that all the o�-diagonal blocks of thetriangular factor L are to be discarded in favor of the blocks of the original



228 CHAPTER 6. QUOTIENT TREE METHODSmatrixA. In other words, the implicit solution scheme described at the endof Section 6.3.3 is to be used.6.5.1 The Storage SchemeFor illustrative purposes we again assume A is partitioned into p2 subma-trices Aij, 1 � i; j � p, and let Lij be the corresponding submatrices of L,where A = LLT . Since we do not know whether A will have the form
Figure 6.5.1: Examples of matrices whose quotient graphs are trees.(which correspond to quite di�erent quotient trees), or something in between,the storage scheme must be quite 
exible. De�ne the matricesV k = 0BBBB@ A1kA2k...Ak�1;k 1CCCCA ; 2 � k � p: (6.5.1)Thus, A can be viewed as follows, where p is chosen to be 5.Now our computational scheme requires that we store the diagonal blocksLkk, 1 � k � p, and the non-null o�-diagonal blocks of A. The storagescheme we use is illustrated in Figure 6.5.3. The diagonal blocks of L areviewed as forming a single block diagonal matrix which is stored using theenvelope storage scheme already described in Section 4.5.1. That is, thediagonal is stored in the array DIAG, and the rows of the lower envelope are



6.5. A STORAGE SCHEME AND ALLOCATION PROCEDURE 229266666666666666664 A11 V 2 V 3AT12 A22 V 4AT13 AT23 A33 V 5AT14 AT24 AT34 A44AT15 AT25 AT35 AT45 A55
377777777777777775Figure 6.5.2: A partitioned matrix.stored using the array pair (XENV, ENV). In addition, an array XBLK of lengthp+1 is used to record the partitioningP : XBLK(k) is the number of the �rstrow of the k-th diagonal block, and for convenience we set XBLK(p+1) = n+1.The nonzero components of the V k, 1 < k � p are stored in a single onedimensional array NONZ, column by column, beginning with those of V 2.A parallel integer array NZSUBS is used to store the row subscripts of thenumbers in NONZ, and a vector XNONZ of length n + 1 contains the positionsin NONZ where each column resides. For programming convenience, we setXNONZ(n + 1) = � + 1, where � denotes the number of components in NONZ.Note that XNONZ(i + 1) = XNONZ(i) implies that the corresponding columnof V k is null.Suppose XBLK(k) � i < XBLK(k+1), and we wish to print the (i�XBLK(k)+1)-st column of Ajk, where j < k. The following code segment illustrates howthis could be done. The elements of each row in NONZ are assumed to bestored in order of increasing row subscript.MSTRT = XNONZ(I)MSTOP = XNONZ(I+1)-1IF (MSTOP.LT.MSTRT) GO TO 200DO 100 M = MSTRT, MSTOPROW = NZSUBS(M)IF (ROW.LT.XBLK(J)) GO TO 100IF (ROW.GT.XBLK(J+1)) GO TO 200VALUE = NONZ(M)



230 CHAPTER 6. QUOTIENT TREE METHODS
A = 2666666666666666666666664
g1 1 61 g2 7 8g3 2 92 g4 g5 11g6 3 3 12g73 g8 103 g9 g10 4 134 g11 14g12 55 g13

3777777777777777777777775

1 1 1 1 3 4 4 4 4 4 6 8 9 10XNONZ 6 7 8 9 10 11 12 13 14NONZ 6 6 6 6 6 6 61 2 2 3 8 5 6 10 11NZSUB 1 3 6 10 12 14XBLK 1 1 2 2 3 3 3 3 5 8 8 9 9 10XENV 6 6 6 6 6 61 2 3 0 3 0 0 4 5ENV 6 6 6 6 6 6 6
Figure 6.5.3: Example showing the arrays used in the quotient tree storagescheme.



6.5. A STORAGE SCHEME AND ALLOCATION PROCEDURE 231WRITE (6,3000) ROW, VALUE3000 FORMAT (1X,15H ROW SUBSCRIPT=,I3,7H VALUE=,F12.6)100 CONTINUE200 CONTINUE...The storage required for the vectors XENV, XBLK, XNONZ and NZSUBS should beregarded as overhead storage, (recall our remarks in Section 2.4.1) since it isnot used for actual data. In addition we will need some temporary storage toimplement the factorization and solution procedures. We discuss this aspectin Section 6.6, where we deal with the numerical computation subroutinesTSFCT (Tree Symmetric FaCTorization) and TSSLV (Tree Symmetric SoLVe).6.5.2 Internal Renumbering of the BlocksThe ordering algorithm described in Section 6.4 determines a tree partition-ing for a connected graph. So far, we have assumed that nodes within ablock (or a partition member) are labelled arbitrarily. This certainly doesnot a�ect the number of o�-block-diagonal nonzeros in the original matrix.However, since the storage scheme stores the diagonal blocks using the en-velope structure, the way nodes are arranged within a block can a�ect theprimary storage for the diagonal envelope. It is the purpose of this sectionto discuss an internal numbering strategy and describe its implementation.The strategy should use some envelope/pro�le reduction scheme on eachblock, and the reverse Cuthill-McKee algorithm, which is simple and quitee�ective (see Section 4.4.1), seems to be suitable for this purpose. Themethod is described below. Let P = fY1; Y2; � � � ; Ypg be a given monotonelyordered quotient tree partitioning.For each blockYk in P, do the following:Step 1 Determine the subsetU = fy 2 Yk j Adj(y) \ (Y1 [ � � � [ Yk�1) = �g:Step 2 Reorder the nodes in G(U) by the reverse Cuthill-McKee al-gorithm.Step 3 Number the nodes in Yk � U after U in arbitrary order.



232 CHAPTER 6. QUOTIENT TREE METHODSThe example in Figure 6.5.5 serves to demonstrate the e�ect of this renum-bering step. The envelope of the diagonal blocks for the ordering �1 hassize 24, whereas the diagonal blocks for �2 have only a total of 11 entries intheir envelopes. Indeed, the relabelling can yield a signi�cant reduction ofthe storage requirement.The implementation of this internal-block renumbering scheme is quite straight-forward. It consists of two new subroutines BSHUFL and SUBRCM, along withthe use of three others which have already been discussed in previous chap-ters. BSHUFLSUBRCMFNROOTROOTLS RCM���� HHHHFigure 6.5.4: Control relation of subroutines for the re�ned quotient treealgorithm.They are discussed in detail below.BSHUFL (Block SHUFfLe)Inputs to this subroutine are the graph structure in (XADJ, ADJNCY), thequotient tree partitioning in (NBLKS, XBLK) and PERM. The subroutine willshu�e the permutation vector PERM according to the scheme described earlierin this section. It needs four working vectors: BNUM for storing the blocknumber of each node, SUBG for accumulating nodes in a subgraph, and MASKand XLS for the execution of the subroutine SUBRCM.The subroutine begins by initializing the working vectors BNUM and MASK(loop DO 200 K = ...). The loop DO 500 K = ... goes through each blockin the partitioning. For each block, all those nodes with no neighbors in the
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1 mJJJJ 4 mJJJJ 5m11 m10m6 m8 m9m7 Y1 Y2ordering �1 ordering �2Figure 6.5.5: Example to show the e�ect of within-block relabelling.



234 CHAPTER 6. QUOTIENT TREE METHODSprevious blocks are accumulated in the vector SUBG (loop DO 400 ...). Thevariable NSUBG keeps the number of nodes in the subgraph. The subroutineSUBRCM is then called to renumber this subgraph using the RCM algorithm.The program returns after all the blocks have been processed.1. C*************************************************************2. C*************************************************************3. C********** BSHUFL ..... INTERNAL BLOCK SHUFFLE ********4. C*************************************************************5. C*************************************************************6. C7. C PURPOSE - TO RENUMBER THE NODES OF EACH BLOCK8. C SO AS TO REDUCE ITS ENVELOPE.9. C NODES IN A BLOCK WITH NO NEIGHBORS IN PREVIOUS10. C BLOCKS ARE RENUMBERED BY SUBRCM BEFORE THE OTHERS.11. C12. C INPUT PARAMETERS -13. C (XADJ, ADJNCY) - THE GRAPH ADJACENCY STRUCTURE.14. C (NBLKS, XBLK ) - THE TREE PARTITIONING.15. C16. C UPDATED PARAMETER -17. C PERM - THE PERMUTATION VECTOR. ON RETURN, IT CONTAINS18. C THE NEW PERMUTATION.19. C20. C WORKING VECTORS -21. C BNUM - STORES THE BLOCK NUMBER OF EACH VARIABLE.22. C MASK - MASK VECTOR USED TO PRESCRIBE A SUBGRAPH.23. C SUBG - VECTOR USED TO CONTAIN A SUBGRAPH.24. C XLS - INDEX VECTOR TO A LEVEL STRUCTURE.25. C26. C PROGRAM SUBROUTINE -27. C SUBRCM.28. C29. C*************************************************************30. C31. SUBROUTINE BSHUFL ( XADJ, ADJNCY, PERM, NBLKS, XBLK,32. 1 BNUM, MASK, SUBG, XLS )33. C34. C************************************************************35. C36. INTEGER ADJNCY(1), BNUM(1), MASK(1), PERM(1),37. 1 SUBG(1), XBLK(1), XLS(1)38. INTEGER XADJ(1), I, IP, ISTOP, ISTRT, J,39. 1 JSTRT, JSTOP, K, NABOR, NBLKS, NBRBLK,40. 1 NODE, NSUBG41. C42. C*************************************************************



6.5. A STORAGE SCHEME AND ALLOCATION PROCEDURE 23543. C44. IF ( NBLKS .LE. 0 ) RETURN45. C ---------------------------------------------------46. C INITIALIZATION ..... FIND THE BLOCK NUMBER FOR EACH47. C VARIABLE AND INITIALIZE THE VECTOR MASK.48. C ---------------------------------------------------49. DO 200 K = 1, NBLKS50. ISTRT = XBLK(K)51. ISTOP = XBLK(K+1) - 152. DO 100 I = ISTRT,ISTOP53. NODE = PERM(I)54. BNUM(NODE) = K55. MASK(NODE) = 056. 100 CONTINUE57. 200 CONTINUE58. C ---------------------------------------------------59. C FOR EACH BLOCK, FIND THOSE NODES WITH NO NEIGHBORS60. C IN PREVIOUS BLOCKS AND ACCUMULATE THEM IN SUBG.61. C THEY WILL BE RENUMBERED BEFORE OTHERS IN THE BLOCK.62. C ---------------------------------------------------63. DO 500 K = 1,NBLKS64. ISTRT = XBLK(K)65. ISTOP = XBLK(K+1) - 166. NSUBG = 067. DO 400 I = ISTRT, ISTOP68. NODE = PERM(I)69. JSTRT = XADJ(NODE)70. JSTOP = XADJ(NODE+1) - 171. IF (JSTOP .LT. JSTRT) GO TO 40072. DO 300 J = JSTRT, JSTOP73. NABOR = ADJNCY(J)74. NBRBLK = BNUM(NABOR)75. IF (NBRBLK .LT. K) GO TO 40076. 300 CONTINUE77. NSUBG = NSUBG + 178. SUBG(NSUBG) = NODE79. IP = ISTRT + NSUBG - 180. PERM(I) = PERM(IP)81. 400 CONTINUE82. C -------------------------------------------83. C CALL SUBRCM TO RENUMBER THE SUBGRAPH STORED84. C IN (NSUBG, SUBG).85. C -------------------------------------------86. IF ( NSUBG .GT. 0 )87. 1 CALL SUBRCM ( XADJ, ADJNCY, MASK, NSUBG,88. 1 SUBG, PERM(ISTRT), XLS )89. 500 CONTINUE



236 CHAPTER 6. QUOTIENT TREE METHODS90. RETURN91. ENDSUBRCM (SUBgraph RCM)This subroutine is similar to GENRCM except that it operates on a subgraph.The subgraph, which may be disconnected, is given in the pair (NSUBG,SUBG). The arrays MASK and XLS are working vectors used by the subroutinesFNROOT and RCM (see Sections 4.4.3 and 4.4.4).1. C***************************************************************2. C***************************************************************3. C******** SUBRCM ..... REVERSE CM ON SUBGRAPH ********4. C***************************************************************5. C***************************************************************6. C7. C PURPOSE - THIS ROUTINE FINDS THE RCM ORDERING FOR A8. C GIVEN SUBGRAPH (POSSIBLY DISCONNECTED).9. C10. C INPUT PARAMETERS -11. C (XADJ, ADJNCY) - ADJACENCY STRUCTURE PAIR FOR THE GRAPH.12. C (NSUBG, SUBG) - THE GIVEN SUBGRAPH. NSUBG IS THE13. C THE SIZE OF THE SUBGRAPH, AND SUBG CONTAINS14. C THE NODES IN IT.15. C16. C OUTPUT PARAMETER -17. C PERM - THE PERMUTATION VECTOR. IT IS ALSO USED18. C TEMPORARILY TO STORE A LEVEL STRUCTURE.19. C20. C WORKING PARAMETERS -21. C MASK - MASK VECTOR WITH ALL ZEROS. IT IS USED TO22. C SPECIFY NODES IN THE SUBGRAPH.23. C XLS - INDEX TO A LEVEL STRUCTURE. NOTE THAT THE LEVEL24. C STRUCTURE IS STORED IN PART OF PERM.25. C26. C PROGRAM SUBROUTINES -27. C FNROOT, RCM.28. C29. C***************************************************************30. C31. SUBROUTINE SUBRCM ( XADJ, ADJNCY, MASK, NSUBG, SUBG,32. 1 PERM, XLS )33. C34. C***************************************************************35. C



6.5. A STORAGE SCHEME AND ALLOCATION PROCEDURE 23736. INTEGER ADJNCY(1), MASK(1), PERM(1), SUBG(1),37. 1 XLS(1)38. INTEGER XADJ(1), CCSIZE, I, NLVL, NODE, NSUBG, NUM39. C40. C***************************************************************41. C42. DO 100 I = 1, NSUBG43. NODE = SUBG(I)44. MASK(NODE) = 145. 100 CONTINUE46. NUM = 047. DO 200 I = 1, NSUBG48. NODE = SUBG(I)49. IF ( MASK(NODE) .LE. 0 ) GO TO 20050. C ---------------------------------------------51. C FOR EACH CONNECTED COMPONENT IN THE SUBGRAPH,52. C CALL FNROOT AND RCM FOR THE ORDERING.53. C ---------------------------------------------54. CALL FNROOT ( NODE, XADJ, ADJNCY, MASK,55. 1 NLVL, XLS, PERM(NUM+1) )56. CALL RCM ( NODE, XADJ, ADJNCY, MASK,57. 1 PERM(NUM+1), CCSIZE, XLS )58. NUM = NUM + CCSIZE59. IF ( NUM .GE. NSUBG ) RETURN60. 200 CONTINUE61. RETURN62. END6.5.3 Storage Allocation and the Subroutines FNTENV, FNOFNZ,and FNTADJWe now describe two subroutines FNTENV (FiNd Tree ENVelope) and FNOFNZ(FiNd OFf-diagonal NonZeros) which are designed to accept as input a graphG, an ordering �, and a partitioning P , and set up the data structure wedescribed in Section 6.5.1. In addition, in order to obtain an e�cient im-plementation of the numerical factorization procedure, it is necessary toconstruct a vector containing the adjacency structure of the associated quo-tient tree G=P. This is the function of the third subroutine FNTADJ (FiNdTree ADJacency) which we also describe in this section.



238 CHAPTER 6. QUOTIENT TREE METHODSFNTENV (FiNd Tree ENVelope)This subroutine �nds the envelope structure of the diagonal blocks in apartitioned matrix. It accepts as input the adjacency structure (XADJ,ADJNCY), the ordering (PERM, INVP) and the quotient tree partitioning(NBLKS, XBLK). The structure in XENV produced by FNTENV may not beexactly the envelope structure of the diagonal blocks, although it alwayscontains the actual envelope structure. For the sake of simplicity and e�-ciency, it uses the following observation in the construction of the envelopestructure.Let P = fY1; � � � ; Ypg be the given tree partitioning, and xi; xj 2 Yk. IfAdj(xi) \ fY1; � � � ; Yk�1g 6= �and Adj(xj) \ fY1; � � � ; Yk�1g 6= �;the subroutine will include fxi; xjg in the envelope structure of the diagonalblocks.Although this algorithm can yield an unnecessarily large envelope for the di-agonal block, (Why? Give an example.) for orderings generated by the RQTalgorithm, it usually comes very close to obtaining the exact envelope. Be-cause it works so well, we use it rather than a more sophisticated (and moreexpensive) scheme which would �nd the exact envelope. For other quotienttree ordering algorithms, such as the one-way dissection algorithm describedin Chapter 7, a more sophisticated scheme is required. (See Section 7.4.3.)1. C****************************************************************2. C****************************************************************3. C********** FNTENV ..... FIND TREE DIAGONAL ENVELOPE ********4. C****************************************************************5. C****************************************************************6. C7. C PURPOSE - THIS SUBROUTINE DETERMINES THE ENVELOPE INDEX8. C VECTOR FOR THE ENVELOPE OF THE DIAGONAL BLOCKS OF A9. C TREE PARTITIONED SYSTEM.10. C11. C INPUT PARAMETERS -12. C (XADJ, ADJNCY) - ADJACENCY STRUCTURE PAIR FOR THE GRAPH.13. C (PERM, INVP) - THE PERMUTATION VECTORS.14. C (NBLKS, XBLK) - THE TREE PARTITIONING.15. C16. C OUTPUT PARAMETERS -17. C XENV - THE ENVELOPE INDEX VECTOR.



6.5. A STORAGE SCHEME AND ALLOCATION PROCEDURE 23918. C ENVSZE - THE SIZE OF THE ENVELOPE FOUND.19. C20. C****************************************************************21. C22. SUBROUTINE FNTENV ( XADJ, ADJNCY, PERM, INVP,23. 1 NBLKS, XBLK, XENV, ENVSZE )24. C25. C****************************************************************26. C27. INTEGER ADJNCY(1), INVP(1), PERM(1), XBLK(1)28. INTEGER XADJ(1), XENV(1), BLKBEG, BLKEND,29. 1 I, IFIRST, J, JSTOP, JSTRT, K, KFIRST,30. 1 ENVSZE, NBLKS, NBR, NODE31. C32. C****************************************************************33. C34. ENVSZE = 135. C -----------------------------------------------36. C LOOP THROUGH EACH BLOCK IN THE PARTITIONING ...37. C -----------------------------------------------38. DO 400 K = 1, NBLKS39. BLKBEG = XBLK(K)40. BLKEND = XBLK(K+1) - 141. C ----------------------------------------------42. C KFIRST STORES THE FIRST NODE IN THE K-TH BLOCK43. C THAT HAS A NEIGHBOUR IN THE PREVIOUS BLOCKS.44. C ----------------------------------------------45. KFIRST = BLKEND46. DO 300 I = BLKBEG, BLKEND47. XENV(I) = ENVSZE48. NODE = PERM(I)49. JSTRT = XADJ(NODE)50. JSTOP = XADJ(NODE+1) - 151. IF ( JSTOP .LT. JSTRT ) GO TO 30052. C --------------------------------------53. C IFIRST STORES THE FIRST NONZERO IN THE54. C I-TH ROW WITHIN THE K-TH BLOCK.55. C --------------------------------------56. IFIRST = I57. DO 200 J = JSTRT, JSTOP58. NBR = ADJNCY(J)59. NBR = INVP(NBR)60. IF ( NBR .LT. BLKBEG ) GO TO 10061. IF ( NBR .LT. IFIRST ) IFIRST = NBR62. GO TO 20063. 100 IF ( KFIRST .LT. IFIRST ) IFIRST = KFIRST64. IF ( I .LT. KFIRST ) KFIRST = I



240 CHAPTER 6. QUOTIENT TREE METHODS65. 200 CONTINUE66. ENVSZE = ENVSZE + I - IFIRST67. 300 CONTINUE68. 400 CONTINUE69. XENV(BLKEND+1) = ENVSZE70. ENVSZE = ENVSZE - 171. RETURN72. ENDFNOFNZ (FiNd OFf-diagonal NonZeros)The subroutine FNOFNZ is used to determine the structure of the o�-block-diagonal nonzeros in a given partitioned matrix. With respect to the storagescheme in Section 6.5.1, this subroutine �nds the subscript vector NZSUBSand the subscript or nonzero index vector XNONZ. It also returns a numberin MAXNZ which is the number of o�-block-diagonal nonzeros in the matrix.Input to the subroutine is the adjacency structure of the graph (XADJ,ADJNCY), the quotient tree ordering (PERM, INVP), the quotient tree par-titioning (NBLKS, XBLK), and the size of the array NZSUBS, contained inMAXNZ. The subroutine loops through the blocks in the partitioning. Withineach block, the loop DO 200 J = ... is executed to consider each node inthe block. Each neighbor belonging to an earlier block corresponds to ano�-diagonal nonzero and it is added to the data structure. After the sub-scripts in a row have been determined, they are sorted (using SORTS1) intoascending sequence. The subroutine SORTS1 is straightforward and needs noexplanation. A listing of it follows that of FNOFNZ.Note that if the user does not provide a large enough subscript vector, thesubroutine will detect this from the input parameter MAXNZ. It will continueto count the nonzeros, but will not store their column subscripts. Before re-turning, MAXNZ is set to the number of nonzeros found. Thus, the user shouldcheck that the value of MAXNZ has not been increased by the subroutine, asthis indicates that not enough space in NZSUBS was provided.1. C****************************************************************2. C****************************************************************3. C******* FNOFNZ ..... FIND OFF-BLOCK-DIAGONAL NONZEROS ****4. C****************************************************************5. C****************************************************************6. C7. C PURPOSE - THIS SUBROUTINE FINDS THE COLUMN SUBSCRIPTS OF8. C THE OFF-BLOCK-DIAGONAL NONZEROS IN THE LOWER TRIANGLE



6.5. A STORAGE SCHEME AND ALLOCATION PROCEDURE 2419. C OF A PARTITIONED MATRIX.10. C11. C INPUT PARAMETERS -12. C (XADJ, ADJNCY) - ADJACENCY STRUCTURE PAIR FOR THE GRAPH.13. C (PERM, INVP) - THE PERMUTATION VECTORS.14. C (NBLKS, XBLK) - THE BLOCK PARTITIONING.15. C16. C OUTPUT PARAMETERS -17. C (XNONZ, NZSUBS) - THE COLUMN SUBSCRIPTS OF THE NONZEROS18. C OF A TO THE LEFT OF THE DIAGONAL BLOCKS ARE19. C STORED ROW BY ROW IN CONTINGUOUS LOCATIONS IN THE20. C ARRAY NZSUBS. XNONZ IS THE INDEX VECTOR TO IT.21. C22. C UPDATED PARAMETER -23. C MAXNZ - ON INPUT, IT CONTAINS THE SIZE OF THE VECTOR24. C NZSUBS; AND ON OUTPUT, THE NUMBER OF NONZEROS25. C FOUND.26. C27. C****************************************************************28. C29. SUBROUTINE FNOFNZ ( XADJ, ADJNCY, PERM, INVP,30. 1 NBLKS, XBLK, XNONZ, NZSUBS, MAXNZ )31. C32. C****************************************************************33. C34. INTEGER ADJNCY(1), INVP(1), NZSUBS(1), PERM(1),35. 1 XBLK(1)36. INTEGER XADJ(1), XNONZ(1), BLKBEG, BLKEND, I, J,37. 1 JPERM, JXNONZ, K, KSTOP, KSTRT, MAXNZ,38. 1 NABOR, NBLKS, NZCNT39. C40. C****************************************************************41. C42. NZCNT = 143. IF ( NBLKS .LE. 0 ) GO TO 40044. C -------------------------45. C LOOP OVER THE BLOCKS ....46. C -------------------------47. DO 300 I = 1, NBLKS48. BLKBEG = XBLK(I)49. BLKEND = XBLK(I+1) - 150. C ----------------------------------------51. C LOOP OVER THE ROWS OF THE I-TH BLOCK ...52. C ----------------------------------------53. DO 200 J = BLKBEG, BLKEND54. XNONZ(J) = NZCNT55. JPERM = PERM(J)



242 CHAPTER 6. QUOTIENT TREE METHODS56. KSTRT = XADJ(JPERM)57. KSTOP = XADJ(JPERM+1) - 158. IF ( KSTRT .GT. KSTOP ) GO TO 20059. C -----------------------------------60. C LOOP OVER THE NONZEROS OF ROW J ...61. C -----------------------------------62. DO 100 K = KSTRT, KSTOP63. NABOR = ADJNCY(K)64. NABOR = INVP(NABOR)65. C ----------------------------------------66. C CHECK TO SEE IF IT IS TO THE LEFT OF THE67. C I-TH DIAGONAL BLOCK.68. C ----------------------------------------69. IF ( NABOR .GE. BLKBEG ) GO TO 10070. IF ( NZCNT .LE. MAXNZ ) NZSUBS(NZCNT) = NABOR71. NZCNT = NZCNT + 172. 100 CONTINUE73. C ----------------------------74. C SORT THE SUBSCRIPTS OF ROW J75. C ----------------------------76. JXNONZ = XNONZ(J)77. IF ( NZCNT - 1 .LE. MAXNZ )78. 1 CALL SORTS1 (NZCNT - JXNONZ, NZSUBS(JXNONZ))79. 200 CONTINUE80. 300 CONTINUE81. XNONZ(BLKEND+1) = NZCNT82. 400 MAXNZ = NZCNT - 183. RETURN84. END1. C***************************************************************2. C***************************************************************3. C*********** SORTS1 ..... LINEAR INSERTION SORT *********4. C***************************************************************5. C***************************************************************6. C7. C PURPOSE - SORTS1 USES LINEAR INSERTION TO SORT THE8. C GIVEN ARRAY OF SHORT INTEGERS INTO INCREASING ORDER.9. C10. C INPUT PARAMETER -11. C NA - THE SIZE OF INTEGER ARRAY.12. C13. C UPDATED PARAMETER -14. C ARRAY - THE INTEGER VECTOR, WHICH ON OUTPUT WILL BE15. C IN INCREASING ORDER.16. C



6.5. A STORAGE SCHEME AND ALLOCATION PROCEDURE 24317. C***************************************************************18. C19. SUBROUTINE SORTS1 ( NA, ARRAY )20. C21. C***************************************************************22. C23. INTEGER ARRAY(1)24. INTEGER K, L, NA, NODE25. C26. C***************************************************************27. C28. IF (NA .LE. 1) RETURN29. DO 300 K = 2, NA30. NODE = ARRAY(K)31. L = K - 132. 100 IF (L .LT. 1) GO TO 20033. IF ( ARRAY(L) .LE. NODE ) GO TO 20034. ARRAY(L+1) = ARRAY(L)35. L = L - 136. GO TO 10037. 200 ARRAY(L+1) = NODE38. 300 CONTINUE39. RETURN40. ENDFNTADJ (FiNd Tree ADJacency)The purpose of this subroutine is to determine the adjacency structure of agiven monotonely-ordered quotient tree. Recall from Section 6.3.2 that thestructure of a monotonely ordered rooted tree is completely characterizedby the Father function, where for a node x, Father(x) = y means thaty 2 Adj(x) and that the (unique) path from the root to x goes through y.Our representation of the structure of our quotient tree is in a vector, calledFATHER, of size p, where p is the number of blocks. Figure 6.5.6 containsthe FATHER vector for the quotient tree ordering in Figure 6.5.5. Note thatFATHER( p ) is always set to zero.The subroutine FNTADJ accepts as input the adjacency structure of the graph(XADJ, ADJNCY), the quotient tree ordering (PERM, INVP), and the quotienttree partitioning (NBLKS, XBLK). It uses a working vector BNUM of size n tostore the block numbers of the nodes in the partitioning.The subroutine begins by setting up the BNUM vector for each node (loop DO200 K = ...). It then loops through each block in the partitioning in the
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FATHER 2 5 9 5 7 7 8 9 10 0 m�
��Y10m�
��Y9m�
��Y8m�
��Y7@@m�
��Y5@@�� m�
��Y6@@m�
��Y4�� m�
��Y2m�
��Y3 m�
��Y1Figure 6.5.6: An example of the FATHER vector.



6.5. A STORAGE SCHEME AND ALLOCATION PROCEDURE 245loop DO 600 K = ... to obtain its father block number. If it does not haveany father block, the corresponding FATHER value is set to 0.1. C****************************************************************2. C****************************************************************3. C********** FNTADJ ..... FIND TREE ADJACENCY ********4. C****************************************************************5. C****************************************************************6. C7. C PURPOSE - TO DETERMINE THE QUOTIENT TREE8. C ADJACENCY STRUCTURE OF A GRAPH. THE STRUCTURE IS9. C REPRESENTED BY THE FATHER VECTOR.10. C11. C INPUT PARAMETERS -12. C (XADJ, ADJNCY) - ADJACENCY STRUCTURE PAIR FOR THE GRAPH.13. C (PERM, INVP) - THE PERMUTATION VECTORS.14. C (NBLKS, XBLK) - THE TREE PARTITIONING.15. C16. C OUTPUT PARAMETERS -17. C FATHER - THE FATHER VECTOR OF THE QUOTIENT TREE.18. C19. C WORKING PARAMETERS -20. C BNUM - TEMPORARY VECTOR TO STORE THE BLOCK NUMBER OF21. C OF EACH VARIABLE.22. C23. C****************************************************************24. C25. SUBROUTINE FNTADJ ( XADJ, ADJNCY, PERM, INVP,26. 1 NBLKS, XBLK, FATHER, BNUM )27. C28. C****************************************************************29. C30. INTEGER ADJNCY(1), BNUM(1), FATHER(1), INVP(1),31. 1 PERM(1), XBLK(1)32. INTEGER XADJ(1), I, ISTOP, ISTRT, J, JSTOP, JSTRT,33. 1 K, NABOR, NBLKS, NBM1, NBRBLK, NODE34. C35. C****************************************************************36. C37. C -----------------------------------38. C INITIALIZE THE BLOCK NUMBER VECTOR.39. C -----------------------------------40. DO 200 K = 1, NBLKS41. ISTRT = XBLK(K)42. ISTOP = XBLK(K+1) - 143. DO 100 I = ISTRT, ISTOP44. NODE = PERM(I)



246 CHAPTER 6. QUOTIENT TREE METHODS45. BNUM(NODE) = K46. 100 CONTINUE47. 200 CONTINUE48. C ------------------49. C FOR EACH BLOCK ...50. C ------------------51. FATHER(NBLKS) = 052. NBM1 = NBLKS - 153. IF ( NBM1 .LE. 0 ) RETURN54. DO 600 K = 1, NBM155. ISTRT = XBLK(K)56. ISTOP = XBLK(K+1) - 157. C --------------------------------------------58. C FIND ITS FATHER BLOCK IN THE TREE STRUCTURE.59. C --------------------------------------------60. DO 400 I = ISTRT, ISTOP61. NODE = PERM(I)62. JSTRT = XADJ(NODE)63. JSTOP = XADJ(NODE+1) -164. IF ( JSTOP .LT. JSTRT ) GO TO 40065. DO 300 J = JSTRT, JSTOP66. NABOR = ADJNCY(J)67. NBRBLK = BNUM(NABOR)68. IF ( NBRBLK .GT. K ) GO TO 50069. 300 CONTINUE70. 400 CONTINUE71. FATHER(K) = 072. GO TO 60073. 500 FATHER(K) = NBRBLK74. 600 CONTINUE75. RETURN76. END6.6 The Numerical Subroutines TSFCT (Tree Sym-metric FaCTorization) and TSSLV (Tree Sym-metric SoLVe)In this section, we describe the subroutines that implement the numericalfactorization and solution for partitioned linear systems associated with quo-tient trees, stored in the sparse scheme as introduced in Section 6.5.1. Thesubroutine TSFCT employs the asymmetric version of the factorization, so webegin by �rst re-examining the asymmetric block factorization procedure ofSection 6.2.1 and studying possible improvements.



6.6. THE NUMERICAL SUBROUTINES TSFCT AND TSSLV 2476.6.1 Computing the Block Modi�cation MatrixLet the matrix A be partitioned into B VV T �C !as in Section 6.2.1. Recall that in the factorization scheme, the modi�cationmatrix V TB�1V used to form C = �C � V TB�1V is obtained as follows.V T (L�TB (L�1BV )) = V T (L�TBW ) = V T ~W :Note also that the modi�cation matrixV T ~W is symmetric and thatNonz(V ) �Nonz(W ). We now investigate an e�cient way to compute V T ~W .Let G be an r by s sparse matrix and H be an s by r matrix. For the i-throw of G, let fi(G) = minfj j gij 6= 0g; 1 � i � r: (6.6.1)That is, fi(G) is the column subscript of the �rst nonzero component in rowi of G. Assume that the matrix product GH is symmetric. In what follows,we show that only a portion of the matrix H is needed in computing theproduct. Figure 6.6.1 contains an example with r = 4 and s = 8. If theproduct GH is symmetric, the next lemma says that the crosshatched partof H can be ignored in the evaluation of GH.Lemma 6.6.1 If the matrix product GH is symmetric, the product is com-pletely determined by the matrix G and the matrix subsetfhjk j fk(G) � j � sgof H.Proof: It is su�cient to show that every entry in the matrix product canbe computed from G and the given subset of H. Since the product issymmetric, its (i; k)-th and (k; i)-th entries are given bysXj=fi(G) gijhjkor sXj=fk(G) gkjhji:



248 CHAPTER 6. QUOTIENT TREE METHODS�..........................���������............. ..........................������������������������������������������������� ignoredcan be
HG � ������� ���� ��� ���������Figure 6.6.1: Sparse symmetric matrix product.For de�niteness, let fk(G) � fi(G). The entry can then be obtained usingthe �rst expression, which involves components in G and those hjk withfk(G) � fi(G) � j � s. They belong to the given matrix subset. Onthe other hand, if fk(G) > fi(G), the second expression can be used whichinvolves matrix components in the subset. This proves the lemma. 2The order in which the components in the product are computed dependson the structure of the matrix (or more speci�cally, on the column sub-scripts fi(G), 1 � i � r). For example, in forming GH for the matrices inFigure 6.6.1, the order of computation is given in Figure 6.6.2.With this framework, we can study changing the submatrix �C into C =�C � V TB�1V = �C � V T (L�TB (L�1BV )). As pointed out in Section 6.2.1,the modi�cation can be carried out one column at a time as follows:1) Unpack a column v = V �i of V .2) Solve B ~w = v by solving the triangular systems LBw = v and LTB ~w =w.3) Compute the vector z = V T ~w and set C�i = �C�i � z.Now since V T ~W is symmetric, Lemma 6.6.1 applies to this modi�cationprocess, and it is unnecessary to compute the entire vector ~w from v in
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250 CHAPTER 6. QUOTIENT TREE METHODSStep 2. The components in ~w above the �rst nonzero subscript of v do nothave to be computed when solving LB(LTB ~w) = v.�w�wvw �rst nonzero LTBLB � not computed= =Figure 6.6.3: Illustration of computing the modi�cations.In e�ect, a smaller system than LB(LTB ~w) = v needs to be solved. Thiscan have a signi�cant e�ect on the amount of computation required for thefactorization. For example, see Exercise 6.6.1 on page 263.6.6.2 The Subroutine TSFCT (Tree Symmetric FaCTorization)The subroutine TSFCT performs the asymmetric block factorization for tree-partitioned systems. The way it computes the block modi�cation matrix isas described in the previous section.The subroutine accepts as input the tree partitioning information in (NBLKS,XBLK) and FATHER, the data structure in XENV, XNONZ and NZSUBS, and theprimary storage vectors DIAG, ENV and NONZ. The vectors DIAG and ENV, oninput, contain the nonzeros of the block diagonals of the matrix A. Onreturn, the corresponding nonzeros of the block diagonals of L are overwrit-ten on those of A. Since the implicit scheme is used, the o�-block-diagonalnonzeros of A stored in NONZ remain unchanged.Two temporary vectors of size n are used. The real vector TEMP is usedfor unpacking o�-diagonal block columns so that numerical solution on theunpacked column can be done in the vector TEMP. The second temporaryvector FIRST is an integer array used to facilitate indexing into the subscriptvector NZSUBS. (See remarks about FIRST below.)The subroutine TSFCT begins by initializing the temporary vectors TEMP andFIRST (loop DO 100 I = ...). The main loop DO 1600 K = ... is thenexecuted for each block in the partitioning. Within the main loop, the sub-routine ESFCT is �rst called to factor the K-th diagonal block. The next step



6.6. THE NUMERICAL SUBROUTINES TSFCT AND TSSLV 251is to �nd out where the o�-diagonal block is, and it is given by FATHER(K).The loops DO 200 ... and DO 400 ... are then executed to determine the�rst and last non-null columns respectively in the o�-diagonal block so thatmodi�cation can be performed within these columns. Figure 6.6.4 depictsthe role of some of the important local variables in the subroutine.
.......................... .......................... .......................... .......................... ..........................? .......................... �bb bb bb bb bb ..........................? ..........................ee ee ee ee ee ee

@@@@@@@@@@@@@@@ 9>>>>>>>>>>=>>>>>>>>>>; COLSIZE0ROWENDROWBEG FATHER(K)00 o�-diagonal blockK COLBEG COLEND FNZFigure 6.6.4: Illustration of some of the important local variables used inTSFCT.The loop DO 1300 COL = ... applies the modi�cation to the diagonal blockgiven by FATHER(K). Each column in the o�-diagonal block is unpacked intothe vector TEMP (loop DO 600 J = ...), after which the envelope solversELSLV and EUSLV are invoked. The inner loop DO 1100 COL1 = ... thenperforms the modi�cation in the same manner as discussed in Section 6.6.1.Before the subroutine proceeds to consider the next block, it updates thetemporary vector FIRST for columns in the FATHER(K)-th block, so that thecorresponding elements of FIRST point to the next numbers to be used inthose columns (loop DO 1500 COL = ...). When all the diagonal blockshave been processed, the subroutine returns.1. C***************************************************************2. C***************************************************************3. C********** TSFCT ..... TREE SYMMETRIC FACTORIZATION ******4. C***************************************************************5. C***************************************************************6. C7. C PURPOSE - THIS SUBROUTINE PERFORMS THE SYMMETRIC



252 CHAPTER 6. QUOTIENT TREE METHODS8. C FACTORIZATION OF A TREE-PARTITIONED SYSTEM.9. C10. C INPUT PARAMETERS -11. C (NBLKS, XBLK, FATHER) - THE TREE PARTITIONING.12. C XENV - THE ENVELOPE INDEX VECTOR.13. C (XNONZ, NONZ, NZSUBS) - THE OFF-DIAGONAL NONZEROS IN14. C THE ORIGINAL MATRIX.15. C16. C UPDATED PARAMETERS -17. C (DIAG, ENV) - STORAGE ARRAYS FOR THE ENVELOPE OF18. C THE DIAGONAL BLOCKS OF THE MATRIX. ON OUTPUT,19. C CONTAINS THE DIAGONAL BLOCKS OF THE FACTOR.20. C IFLAG - THE ERROR FLAG. IT IS SET TO 1 IF A ZERO OR21. C NEGATIVE SQUARE ROOT IS DETECTED DURING THE22. C FACTORIZATION.23. C24. C WORKING PARAMETER -25. C TEMP - TEMPORARY ARRAY REQUIRED TO IMPLEMENT THE26. C ASYMMETRIC VERSION OF THE FACTORIZATION.27. C FIRST - TEMPORARY VECTOR USED TO FACILITATE THE28. C INDEXING TO THE VECTOR NONZ (OR NZSUBS)29. C FOR NON-NULL SUBCOLUMNS IN OFF-DIAGONAL30. C BLOCKS.31. C32. C PROGRAM SUBROUTINES -33. C ESFCT, ELSLV, EUSLV.34. C35. C***************************************************************36. C37. SUBROUTINE TSFCT ( NBLKS, XBLK, FATHER, DIAG, XENV, ENV,38. 1 XNONZ, NONZ, NZSUBS, TEMP, FIRST, IFLAG )39. C40. C***************************************************************41. C42. DOUBLE PRECISION OPS43. COMMON /SPKOPS/ OPS44. REAL DIAG(1), ENV(1), NONZ(1), TEMP(1), S45. INTEGER FATHER(1), NZSUBS(1), XBLK(1)46. INTEGER FIRST(1), XENV(1), XNONZ(1),47. 1 BLKSZE, COL, COL1, COLBEG, COLEND,48. 1 COLSZE, FNZ, FNZ1, I, IFLAG, ISTRT, ISTOP,49. 1 ISUB, J, JSTOP, JSTRT, K, KENV, KENV0, KFATHR,50. 1 NBLKS, NEQNS, ROW, ROWBEG, ROWEND51. C52. C***************************************************************53. C54. C ------------------



6.6. THE NUMERICAL SUBROUTINES TSFCT AND TSSLV 25355. C INITIALIZATION ...56. C ------------------57. NEQNS = XBLK(NBLKS+1) - 158. DO 100 I = 1,NEQNS59. TEMP(I) = 0.0E060. FIRST(I) = XNONZ(I)61. 100 CONTINUE62. C ---------------------------63. C LOOP THROUGH THE BLOCKS ...64. C ---------------------------65. DO 1600 K = 1, NBLKS66. ROWBEG = XBLK(K)67. ROWEND = XBLK(K+1) - 168. BLKSZE = ROWEND - ROWBEG + 169. CALL ESFCT ( BLKSZE, XENV(ROWBEG), ENV,70. 1 DIAG(ROWBEG), IFLAG )71. IF ( IFLAG .GT. 0 ) RETURN72. C --------------------------------------------------73. C PERFORM MODIFICATION OF THE FATHER DIAGONAL BLOCK74. C A(FATHER(K),FATHER(K)) FROM THE OFF-DIAGONAL BLOCK75. C A(K,FATHER(K)).76. C --------------------------------------------------77. KFATHR = FATHER(K)78. IF ( KFATHR .LE. 0 ) GO TO 160079. COLBEG = XBLK(KFATHR)80. COLEND = XBLK(KFATHR+1) - 181. C --------------------------------------------82. C FIND THE FIRST AND LAST NON-NULL COLUMN IN83. C THE OFF-DIAGONAL BLOCK. RESET COLBEG,COLEND.84. C --------------------------------------------85. DO 200 COL = COLBEG, COLEND86. JSTRT = FIRST(COL)87. JSTOP = XNONZ(COL+1) - 188. IF ( JSTOP .GE. JSTRT .AND.89. 1 NZSUBS(JSTRT) .LE. ROWEND ) GO TO 30090. 200 CONTINUE91. 300 COLBEG = COL92. COL = COLEND93. DO 400 COL1 = COLBEG, COLEND94. JSTRT = FIRST(COL)95. JSTOP = XNONZ(COL+1) - 196. IF ( JSTOP .GE. JSTRT .AND.97. 1 NZSUBS(JSTRT) .LE. ROWEND ) GO TO 50098. COL = COL - 199. 400 CONTINUE100. 500 COLEND = COL101. DO 1300 COL = COLBEG, COLEND



254 CHAPTER 6. QUOTIENT TREE METHODS102. JSTRT = FIRST(COL)103. JSTOP = XNONZ(COL+1) - 1104. C --------------------------------------------105. C TEST FOR NULL SUBCOLUMN. FNZ STORES THE106. C FIRST NONZERO SUBSCRIPT IN THE BLOCK COLUMN.107. C --------------------------------------------108. IF ( JSTOP .LT. JSTRT ) GO TO 1300109. FNZ = NZSUBS(JSTRT)110. IF ( FNZ .GT. ROWEND ) GO TO 1300111. C -----------------------------------------112. C UNPACK A COLUMN IN THE OFF-DIAGONAL BLOCK113. C AND PERFORM UPPER AND LOWER SOLVES ON THE114. C UNPACKED COLUMN.115. C -----------------------------------------116. DO 600 J = JSTRT, JSTOP117. ROW = NZSUBS(J)118. IF ( ROW .GT. ROWEND ) GO TO 700119. TEMP(ROW) = NONZ(J)120. 600 CONTINUE121. 700 COLSZE = ROWEND - FNZ + 1122. CALL ELSLV ( COLSZE, XENV(FNZ), ENV,123. 1 DIAG(FNZ), TEMP(FNZ) )124. CALL EUSLV ( COLSZE, XENV(FNZ), ENV,125. 1 DIAG(FNZ), TEMP(FNZ) )126. C ---------------------------------------127. C DO THE MODIFICATION BY LOOPING THROUGH128. C THE COLUMNS AND FORMING INNER PRODUCTS.129. C ---------------------------------------130. KENV0 = XENV(COL+1) - COL131. DO 1100 COL1= COLBEG, COLEND132. ISTRT = FIRST(COL1)133. ISTOP = XNONZ(COL1+1) - 1134. C ----------------------------------135. C CHECK TO SEE IF SUBCOLUMN IS NULL.136. C ----------------------------------137. FNZ1 = NZSUBS(ISTRT)138. IF ( ISTOP .LT. ISTRT .OR.139. 1 FNZ1 .GT. ROWEND ) GO TO 1100140. C --------------------------------------141. C CHECK IF INNER PRODUCT SHOULD BE DONE.142. C --------------------------------------143. IF ( FNZ1 .LT. FNZ ) GO TO 1100144. IF ( FNZ1 .EQ. FNZ .AND.145. 1 COL1 .LT. COL ) GO TO 1100146. S = 0.0E0147. DO 800 I = ISTRT, ISTOP148. ISUB = NZSUBS(I)



6.6. THE NUMERICAL SUBROUTINES TSFCT AND TSSLV 255149. IF ( ISUB .GT. ROWEND ) GO TO 900150. S = S + TEMP(ISUB) * NONZ(I)151. OPS = OPS + 1.0D0152. 800 CONTINUE153. C ---------------------------------154. C MODIFY THE ENV OR THE DIAG ENTRY.155. C ---------------------------------156. 900 IF ( COL1 .EQ. COL ) GO TO 1000157. KENV = KENV0 + COL1158. IF ( COL1 .GT. COL )159. 1 KENV = XENV(COL1+1) - COL1 + COL160. ENV(KENV) = ENV(KENV) - S161. GO TO 1100162. 1000 DIAG(COL1) = DIAG(COL1) - S163. 1100 CONTINUE164. C --------------------------------------165. C RESET PART OF THE TEMP VECTOR TO ZERO.166. C --------------------------------------167. DO 1200 ROW = FNZ, ROWEND168. TEMP(ROW) = 0.0E0169. 1200 CONTINUE170. 1300 CONTINUE171. C -----------------------------------------172. C UPDATE THE FIRST VECTOR FOR COLUMNS IN173. C FATHER(K) BLOCK, SO THAT IT WILL INDEX TO174. C THE BEGINNING OF THE NEXT OFF-DIAGONAL175. C BLOCK TO BE CONSIDERED.176. C -----------------------------------------177. DO 1500 COL = COLBEG, COLEND178. JSTRT = FIRST(COL)179. JSTOP = XNONZ(COL+1) - 1180. IF ( JSTOP .LT. JSTRT ) GO TO 1500181. DO 1400 J = JSTRT, JSTOP182. ROW = NZSUBS(J)183. IF ( ROW .LE. ROWEND ) GO TO 1400184. FIRST(COL) = J185. GO TO 1500186. 1400 CONTINUE187. FIRST(COL) = JSTOP + 1188. 1500 CONTINUE189. 1600 CONTINUE190. RETURN191. END



256 CHAPTER 6. QUOTIENT TREE METHODS6.6.3 The Subroutine TSSLV (Tree Symmetric SoLVe)The implementation of the solver for tree-partitioned linear systems does notfollow the same execution sequence as speci�ed in Section 6.3.3. Instead, ituses the alternative decomposition for the asymmetric factorization as givenin Exercise 6.2.2 on page 196:A =  B VV T �C ! =  B OV T C ! I ~WO I ! ; (6.6.2)where ~W = B�1V is not explicitly stored, and C = �C � V TB�1V .Written in this form, the solution to B VV T �C ! x1x2 ! =  b1b2 !can be computed by solving B OV T C ! z1z2 ! =  b1b2 !and  I ~WO I ! x1x2 ! =  z1z2 ! :It is assumed that the submatricesB and C have been factored into LBLTBand LCLTC respectively. The scheme can hence be written as follows.Forward SolveSolve LB(LTBz1) = b1.Compute ~b2 = b2 � V Tz1.Solve LC (LTCz2) = ~b2.Backward SolveAssign x2 = z2.Compute t1 = V x2.Solve LB(LTB~t1) = t1.Compute x1 = z1 � ~t1.



6.6. THE NUMERICAL SUBROUTINES TSFCT AND TSSLV 257This scheme is simply a rearrangement of the operation sequences as givenin Section 6.2.2. The only di�erence is that no temporary vector is requiredin the forward solve (no real advantage though! Why?). We choose to usethis scheme because it simpli�es the program organization when the generalblockp by p tree-partitioned system is being solved.We now consider the generalization of the above asymmetric scheme. Let Abe a p by p tree-partitioned matrix with blocks Aij, 1 � i; j � p. Let Lij bethe corresponding submatrices of the triangular factor L of A.Recall from Section 6.3.2, that since A is tree-partitioned, the lower o�-diagonal blocks Lij (i > j) are given byLij = AijL�Tjj : (6.6.3)We want to de�ne an asymmetric block factorizationA = ~LU (6.6.4)similar to that of (6.6.2). Obviously the factor ~L is well de�ned and itsblocks are given by, ~Lij = 8><>: LiiLTii if i = jAij if i > jO otherwise:The case when p = 4 is given below.~L = 0BBB@ L11LT11 O O OA21 L22LT22 O OA31 A32 L33LT33 OA41 A42 A43 L44LT44 1CCCALemma 6.6.2 ~L = L0BBBB@ LT11 OLT22 . . .O LTpp 1CCCCAProof: The result follows directly from the relation (6.6.3) between o�-diagonal blocks Aij and Lij for tree-partitioned systems. 2



258 CHAPTER 6. QUOTIENT TREE METHODSBy this lemma, the upper triangular factor U in (6.6.4) can then be obtainedsimply as U = 0BBBB@ LT11 OLT22 . . .O LTpp 1CCCCA�1LTso that we have U ik = 8><>: I if i = kL�Tii LTki if i < kO otherwise:and for i < k, the expression can be simpli�ed by (6.6.3) toU ik = L�Tii (AkiL�Tii )T= L�Tii L�1ii ATki= (LiiLTii)�1Aik:Therefore, the asymmetric factorization (6.6.4) for the case p = 4 can beexpressed explicitly as shown by the following:~L = 0BBB@ L11LT11 O O OA21 L22LT22 O OA31 A32 L33LT33 OA41 A42 A43 L44LT44 1CCCAU = 0BBBB@ I (L11LT11)�1A12 (L11LT11)�1A13 (L11LT11)�1A14O I (L22LT22)�1A23 (L22LT22)�1A24O O I (L33LT33)�1A34O O O I 1CCCCA :To consider the actual solution phase on this factorization, we have to relateit to our block storage scheme as described in Section 6.5.1. As before, letV k = 0BBBB@ A1kA2k...Ak�1;k 1CCCCA ; 2 � k � p:



6.6. THE NUMERICAL SUBROUTINES TSFCT AND TSSLV 259Since the nonzero components outside the diagonal blocks are stored columnby column as in V 2 ; V 3 ; � � � ; V p;the solution method must be tailored to this storage scheme. The methodto be discussed makes use of the observation that0BBBB@ U 1kU 2k...U k�1;k 1CCCCA = 0BBBBB@ (L11LT11)�1 O(L22LT22)�1 . . .O (Lk�1;k�1LTk�1;k�1)�1 1CCCCCAV k:Forward Solve ~Lz = bStep 1 Solve (L11LT11)z1 = b1.Step 2 For k = 2; � � � ; p do the following2.1) Compute bk  bk � V Tk 0B@ z1...zk�1 1CA2.2) Solve (LkkLTkk)zk = bk.Backward Solve Ux = zStep 1 Initialize temporary vector ~z = 0,Step 2 xp = zpStep 3 For k = p� 1; p� 2; � � � ; 1 do the following3.1) 0B@ ~z1...~zk 1CA 0B@ ~z1...~zk 1CA+ V k+1xk+13.2) Solve (LkkLTkk)~xk = ~zk.3.3) Compute xk = zk � ~xk.



260 CHAPTER 6. QUOTIENT TREE METHODSNote that in the back solve, a temporary vector ~z is used to accumulate theproducts and its use is illustrated in Figure 6.6.5.The subroutine TSSLV implements this solution scheme. Unlike TSFCT, itdoes not require the FATHER vector of the tree partitioning, although im-plicitly it depends on it. Inputs to TSSLV are the tree partitioning (nBLKS,XBLK), the diagonal DIAG, the envelope (XENV, ENV) of the diagonal blocks,and the o�-diagonal nonzeros in (XNONZ, NONZ, NZSUBS).There are two main loops in the subroutine TSSLV; one to perform the for-ward substitution and the other to do the backward solve. In the forwardsolve, the loop DO 200 ROW = ... is executed to modify the right handvector before the subroutines ELSLV and EUSLV are called. In the back-ward solve, the temporary real vector TEMP accumulates the products of o�-diagonal blocks and parts of the solution, in preparation for calling ELSLVand EUSLV. At the end, the vector RHS contains the solution vector.1. C***************************************************************2. C***************************************************************3. C********** TSSLV ..... TREE SYMMETRIC SOLVE ***********4. C***************************************************************5. C***************************************************************6. C7. C PURPOSE - TO PERFORM SOLUTION OF A TREE-PARTITIONED8. C FACTORED SYSTEM BY IMPLICIT BACK SUBSTITUTION.9. C10. C INPUT PARAMETERS -11. C (NBLKS, XBLK) - THE PARTITIONING.12. C (XENV, ENV) - ENVELOPE OF THE DIAGONAL BLOCKS.13. C (XNONZ, NONZ, NZSUBS) - DATA STRUCTURE FOR THE OFF-14. C BLOCK DIAGONAL NONZEROS.15. C16. C UPDATED PARAMETERS -17. C RHS - ON INPUT IT CONTAINS THE RIGHT HAND VECTOR.18. C ON OUTPUT, THE SOLUTION VECTOR.19. C20. C WORKING VECTOR -21. C TEMP - TEMPORARY VECTOR USED IN BACK SUBSTITUTION.22. C23. C PROGRAM SUBROUTINES -24. C ELSLV, EUSLV.25. C26. C***************************************************************27. C28. SUBROUTINE TSSLV ( NBLKS, XBLK, DIAG, XENV, ENV,29. 1 XNONZ, NONZ, NZSUBS, RHS, TEMP )
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k = 4k = 3k = 2k = 1Figure 6.6.5: Backward solve for asymmetric factorization.



262 CHAPTER 6. QUOTIENT TREE METHODS30. C31. C***************************************************************32. C33. DOUBLE PRECISION COUNT, OPS34. COMMON /SPKOPS/ OPS35. REAL DIAG(1), ENV(1), NONZ(1), RHS(1), TEMP(1), S36. INTEGER NZSUBS(1), XBLK(1)37. INTEGER XENV(1), XNONZ(1), COL, COL1, COL2, I, J,38. 1 JSTOP, JSTRT, LAST, NBLKS, NCOL, NROW, ROW,39. 1 ROW1, ROW240. C41. C***************************************************************42. C43. C ------------------------44. C FORWARD SUBSTITUTION ...45. C ------------------------46. DO 400 I = 1, NBLKS47. ROW1 = XBLK(I)48. ROW2 = XBLK(I+1) - 149. LAST = XNONZ(ROW2+1)50. IF ( I .EQ. 1 .OR. LAST .EQ. XNONZ(ROW1) ) GO TO 30051. C --------------------------------------------------52. C MODIFY RHS VECTOR BY THE PRODUCT OF THE OFF-53. C DIAGONAL BLOCK WITH THE CORRESPONDING PART OF RHS.54. C --------------------------------------------------55. DO 200 ROW = ROW1, ROW256. JSTRT = XNONZ(ROW)57. IF ( JSTRT .EQ. LAST ) GO TO 30058. JSTOP = XNONZ(ROW+1) - 159. IF ( JSTOP .LT. JSTRT ) GO TO 20060. S = 0.0E061. COUNT = JSTOP - JSTRT + 162. OPS = OPS + COUNT63. DO 100 J = JSTRT, JSTOP64. COL = NZSUBS(J)65. S = S + RHS(COL)*NONZ(J)66. 100 CONTINUE67. RHS(ROW) = RHS(ROW) - S68. 200 CONTINUE69. 300 NROW = ROW2 - ROW1 + 170. CALL ELSLV ( NROW, XENV(ROW1), ENV, DIAG(ROW1),71. 1 RHS(ROW1) )72. CALL EUSLV ( NROW, XENV(ROW1), ENV, DIAG(ROW1),73. 1 RHS(ROW1) )74. 400 CONTINUE75. C ---------------------76. C BACKWARD SOLUTION ...



6.6. THE NUMERICAL SUBROUTINES TSFCT AND TSSLV 26377. C ---------------------78. IF ( NBLKS .EQ. 1 ) RETURN79. LAST = XBLK(NBLKS) - 180. DO 500 I = 1, LAST81. TEMP(I) = 0.0E082. 500 CONTINUE83. I = NBLKS84. COL1 = XBLK(I)85. COL2 = XBLK(I+1) - 186. 600 IF ( I .EQ. 1 ) RETURN87. LAST = XNONZ(COL2+1)88. IF ( LAST .EQ. XNONZ(COL1) ) GO TO 90089. C ------------------------------------------------90. C MULTIPLY OFF-DIAGONAL BLOCK BY THE CORRESPONDING91. C PART OF THE SOLUTION VECTOR AND STORE IN TEMP.92. C ------------------------------------------------93. DO 800 COL = COL1, COL294. S = RHS(COL)95. IF ( S .EQ. 0.0E0 ) GO TO 80096. JSTRT = XNONZ(COL)97. IF ( JSTRT .EQ. LAST ) GO TO 90098. JSTOP = XNONZ(COL+1) - 199. IF ( JSTOP .LT. JSTRT ) GO TO 800100. COUNT = JSTOP - JSTRT + 1101. OPS = OPS + COUNT102. DO 700 J = JSTRT, JSTOP103. ROW = NZSUBS(J)104. TEMP(ROW) = TEMP(ROW) + S*NONZ(J)105. 700 CONTINUE106. 800 CONTINUE107. 900 I = I - 1108. COL1 = XBLK(I)109. COL2 = XBLK(I+1) - 1110. NCOL = COL2 - COL1 + 1111. CALL ELSLV ( NCOL, XENV(COL1), ENV,112. 1 DIAG(COL1), TEMP(COL1) )113. CALL EUSLV ( NCOL, XENV(COL1), ENV, DIAG(COL1),114. 1 TEMP(COL1) )115. DO 1000 J = COL1, COL2116. RHS(J) = RHS(J) - TEMP(J)117. 1000 CONTINUE118. GO TO 600119. ENDExercises



264 CHAPTER 6. QUOTIENT TREE METHODS6.6.1) Let L and V be as described in Exercise 4.3.5 on page 65, where Vhas only 3 nonzeros per column. Compare the operation costs of com-puting V TL�TL�1V as V T (L�T (L�1V )) and (V TL�T )(L�1V ). As-sume n and p are large, so lower order terms can be ignored.6.7 Additional NotesThe idea of \throwing away" the o�-diagonal blocks of the factor L of A, asdiscussed in this chapter, can be recursively applied (George and Liu [23].To explain the strategy suppose A is p by p partitioned, with x and bpartitioned correspondingly. Let A(k) denote the leading block-k by block-kprincipal submatrix of A, and let x(k) and b(k) denote the correspondingparts of x and b respectively. Finally, de�ne submatrices of A as in (6.5.1),with L correspondingly partitioned, as shown in Figure 6.7.1 for p = 5.266666666666666664 A11 V 2 V 3V T2 A22 V 4V T3 A33 V 5V T4 A44V T5 A55
377777777777777775 266666666666666664 L11W T2 L22W T3 L33W T4 L44W T5 L55

377777777777777775A LFigure 6.7.1: A recursively paritioned matrix and its Cholesky factor.Using this notation, the system Ax = b can be expressed as A(4) V 5V T5 A55 ! x(4)x5 ! =  b(4)b5 ! ;and the factorization of A can be expressed as A(4) OV T5 ~A55 ! I A�1(4)V 5O I ! ;



6.7. ADDITIONAL NOTES 265where ~A55 = A55 � V T5A�1(4)V 5.Formally, we can solve Ax = b as follows:a) Factorization: Compute and factor ~A55 intoL55LT55. (Note thatV T5A�1(4)V 5can be computed one column at a time, and the columns discarded af-ter use.)b) Solution:b.1) Solve A(4)y(4) = b(4).b.2) Solve ~A55x5 = b5 � V T5 y(4).b.3) Solve A(4)~x(4) = V 5x5.b.4) Compute x(4) = y(4) � ~x(4).Note that we have only used the ideas presented in Section 6.2 and Exercise6.1.2 to avoid storing W 5; only V 5 is required. The crucial point is that allthat is required for us to solve the �ve by �ve partitioned system withoutstoring W 5 is that we be able to solve four by four partitioned systems.Obviously, we can use exactly the same strategy as shown above, to solvethe block four by four systems without storing W 4, and so on. Thus, weobtain a method which apparently solves a p by p block system requiringstorage only for the diagonal blocks of L and the o�-diagonal blocks V i ofthe original matrix. However, note that each level of recursion requires atemporary vector ~x(i) (in Step b.3 above), so there is a point where a �nerpartitioning no longer achieves a reduction in storage requirement. Thereare many interesting unexplored questions related to this procedure, and thestudy of the use of these partitioning and throw-away ideas appears to be apotentially fertile research area.Partitioning methods have been used successfully in utilizing auxiliary stor-age (Von Fuchs et al. [54]). The value of p is chosen so that the amountof main storage available is some convenient multiple of (n=p)2. Since A issparse, some of the blocks will be all zeros. A pointer array is held in mainstore, with each pointer component either pointing to the current location ofthe corresponding block, if the block contains nonzeros, or else is zero. If thep by p pointer matrix is itself too large to be held in main store, then it canalso be partitioned and the idea recursively applied. This storage manage-ment scheme obviously entails a certain amount of overhead, but experiencesuggests that it is a viable alternative to other out-of-core solution schemessuch as band or frontal methods. One advantage is that the actual matrix



266 CHAPTER 6. QUOTIENT TREE METHODSoperations involve simple data structures; only square or rectangular arraysare involved.Shier [48] has considered the use of tree partitionings in the context of ex-plicitly inverting a matrix, and provides an algorithm di�erent from ours for�nding a tree partitioning of a graph.



Chapter 7One-Way Dissection Methodsfor Finite Element Problems7.1 IntroductionIn this chapter we consider an ordering strategy designed primarily for prob-lems arising in �nite element applications. The strategy is similar to themethod of Chapter 6 in that a quotient tree partitioning is obtained, andthe computational ideas of implicit solution and asymmetric factorizationare exploited. The primary advantage of the one-way dissection algorithmdeveloped in this chapter is that the storage requirements are usually muchless than those for either the band or quotient tree schemes described in pre-vious chapters. Indeed, unless the problems are very large, for �nite elementproblems the methods of this chapter are often the best methods in termsof storage requirements of any we discuss in this book. They also yield verylow solution times, although their factorization times tend to be larger thanthose of some other methods.Since the orderings studied in this chapter are quotient tree orderings, thestorage and computing methods of Chapter 6 are appropriate, so we do nothave to deal with these topics in this chapter. However, the one-way dissec-tion schemes do demand a somewhat more sophisticated storage allocationprocedure than that described in Section 6.5.3. This more general allocationprocedure is the topic of Section 7.4.267



268 CHAPTER 7. ONE-WAY DISSECTION METHODS7.2 An Example { The s� t Grid Problem7.2.1 A One-Way Dissection OrderingIn this section we consider a simple s � t grid problem which motivates thedevelopment of the algorithm of Section 7.3. Consider an s� t grid or meshas shown in Figure 7.2.1, having n = st nodes with s � t. The corresponding�nite element matrix problem Ax = b we consider has the property that forsome numbering of the equations (nodes) from 1 to n, we have that aij 6= 0implies node i and node j belong to the same small square.
r r r r r r r r r r rr r r r r r r r r r rr r r r r r r r r r rr r r r r r r r r r rr r r r r r r r r r rr r r r r r r r r r r

Figure 7.2.1: An s by t grid with s = 6 and t = 11.Now let � be an integer satisfying 1 � � � t, and choose � vertical gridlines (which we will refer to as separators) which dissect the mesh into � +1 independent blocks of about the same size, as depicted in Figure 7.2.2,where � = 4. The � + 1 independent blocks are numbered row by row,followed by the separators, as indicated by the arrows in Figure 7.2.2. Thematrix structure this ordering induces in the triangular factor L is shown inFigure 7.2.3, where the o�-diagonal blocks with �lls are hatched. We let� = l � �� + 1 ;that is, the length between dissectors.Regarding A and L as partitioned into q2 submatrices, where q = 2� + 1,we �rst note the dimensions of the various blocks:Akk is s� by s� for 1 � k � � + 1: (7.2.1)
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6 6 6 6- - - - -- - - - -q q q q qq q q q qq q q q qk k k kk k k k k1 2 3 4 56 7 8 9s t z }| {� = t���+1

Figure 7.2.2: One-way dissection ordering of an s by t grid, indicated bythe arrows. Here � = 4, yielding a partitioning with 2� + 1 = 9 membersindicated by the circled numbers.
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7.2. AN EXAMPLE { THE S � T GRID PROBLEM 271Akj is s by s� for k > � + 1 and j � � + 1: (7.2.2)Akj is s by s for j > � + 1 and k > � + 1: (7.2.3)Of course in practice � must be chosen to be an integer, and unless � is alsoan integer, the leading �+ 1 diagonal blocks will not all be exactly the samesize. However, we will see later that these aberrations are of little practicalsigni�cance; in any case, our objective in this section is to present some basicideas rather than to study this s � t grid problem in meticulous detail. Forour purposes, we assume that � and � are integers, and that s and t are largeenough that s� s2 and t� t2.As we have already stated, the utility of this ordering hinges on using thepartitioned matrix techniques developed in Chapter 6. Indeed, it is notdi�cult to determine that this ordering is no better or even worse than thestandard band ordering if these techniques are not used. (see Exercises 7.2.4and 7.2.5.)The key observation which allows us to use the quotient tree techniquesdeveloped in Chapter 6 is that if we view the � separator blocks as forming asingle partition member, then the resulting partitioning, now with p = �+2members, is a monotonely ordered tree partitioning . This is depicted inFigure 7.2.4 for the example of Figure 7.2.2.�� ���� �
6,7,8,9����� 
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��1 j�
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��5Figure 7.2.4: Quotient tree corresponding to one-way dissection ordering,obtained by placing the separators together in one partition.Thus, we will use the storage scheme developed in Section 6.5, and therebystore only the diagonal blocks of L, and the o�-diagonal blocks of A. Fordiscussion purposes we will continue to regard A and L as q� q partitionedwhere q = 2�+ 1, although the reader should understand that for computa-tional purposes the last � partition members are combined into one, so that



272 CHAPTER 7. ONE-WAY DISSECTION METHODSin e�ect p = � + 2 members are involved.7.2.2 Storage RequirementsDenoting the partitions of L corresponding to Aij by Lij, 1 � i; j � 2�+ 1,we now derive an estimate for the storage requirements of this one-way dis-section ordering, using the implicit storage scheme described in Section 6.5.1.The primary storage requirements are as follows:i) Lkk, 1 � k � �+1. The bandwidth of these band matrices is (t+1)=(�+1), yielding a combined storage requirement ofs(t� �)(t+ 1)(� + 1) � st2� :ii) Lkj, � + 1 < j; k � 2� + 1, j < k. There are � � 1 �ll blocks, and �lower triangular blocks, all of which are s� s, yielding a total storagerequirement of (� � 1)s2 + �s(s+ 1)2 � 3�s22 :iii) Akj, k � � + 1, j > � + 1. Except for nodes near the boundary ofthe grid, all nodes on the separators are connected to 6 nodes in theleading � + 1 blocks. Thus, primary storage for these matrices totalsabout 6�s.The overhead storage for items i) and ii) is ts+�+3 (for the array XENV andXBLK), and about 6�s+ ts for XNONZ and NZSUBS. Thus, if lower order termsare ignored, the storage requirement for this ordering, using the implicitstorage scheme of Section 6.5.1, is approximatelyS(�) = st2� + 3�s22 : (7.2.4)If our objective is to minimize storage, then we want to choose � to minimizeS(�). Di�erentiating with respect to �, we havedSd� = �st2�2 + 3s22 :Using this, we �nd that S is approximately minimized by choosing � = ��where �� = t� 23m�1=2 (7.2.5)



7.2. AN EXAMPLE { THE S � T GRID PROBLEM 273yielding S(��) = p6s3=2t+ O(st): (7.2.6)Note that the corresponding optimal �� is given by�� = �3s2 �1=2 :It is interesting to compare this result with the storage requirements wewould expect if we used a standard band or envelope scheme. Since s � t,we would number the grid column by column, yielding a matrix whose band-width is s + 1, and for large s and t the storage required for L would bes2t + O(st). Thus, asymptotically, this one-way dissection scheme reducesstorage requirements by a factor ofp6=s over the standard schemes of Chap-ter 4.7.2.3 Operation Count for the FactorizationLet us now consider the computational requirements for this one-way dis-section ordering. Basically, we simply have to count the operations neededto perform the factorization and solution algorithm described in Section 6.3.However, the o�-diagonal blocks Akj, for k � � + 1 and j > � + 1, haverather special \pseudo tri-diagonal" structure, which is exploited by thesubroutines TSFCT and TSSLV. Thus, determining an approximate operationcount is far from trivial. In this Section we consider the factorization; Sec-tion 7.2.4 contains a derivation of an approximate operation count for thesolution.It is helpful in the derivation to break the computation into the three cate-gories, where again we ignore low order terms in the calculations.1. The factorization of the � + 1 leading diagonal blocks.(In our example of Figures 7.2.1{7.2.3, where � = 4, this is the com-putation of Lkk, 1 � k � 5.) Observing that the bandwidth of thesematrices is (t+ 1)=(�+ 1), and using Theorem 4.2.1, we conclude thatthe operation count for this category is approximatelyst32�2 :2. The computation of the Lkj, for k � j and j > � + 1.



274 CHAPTER 7. ONE-WAY DISSECTION METHODSThis corresponds to factoring an s� � s� block tri-diagonal matrixhaving blocks of size s. Using the results of Sections 2.2 and 2.3, we�nd that operation count is approximately7�s36 :3. The modi�cations toAjj, Aj+1;j, and Aj+1;j+1 for j > �+1 involving theo�-diagonal blocks Akj and the computed Lkk, k � � + 1, as depictedin Figure 7.2.5.The operation count for this computation is discussed below.
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Figure 7.2.5: Matrices which interact with and/or are modi�ed by Lkk, Akjand Ak;j+1, where k = 3 and j = 7.In computing the modi�cation matrix in the asymmetric way, we have tocompute L�Tkk (L�1kkAkj); (7.2.7)



7.2. AN EXAMPLE { THE S � T GRID PROBLEM 275for j > � + 1 and k � � + 1. In view of the results in Section 6.6, it isnot necessary to compute that part of L�Tkk (L�1kkAkj) which is above the �rstnonzero in each column of Akj. Thus, when computing W = L�1kkAkj, weexploit leading zeros in the columns of Akj, and when computing ~W =L�Tkk W we stop the computation as soon as the last required element of ~Whas been computed, as depicted in Figure 7.2.6.@@@@@@@@@@@@@@@@@@ @@@@@@@@ Akj n9>>>>>>>=>>>>>>>;n=ror~W�| {z } LTkkLkk =Figure 7.2.6: Structure ofAkj and the part of ~W that needs to be computed.It is straightforward to show that the number of operations required tocompute this part of ~W is approximately given byn(� + 1)(r� 1); (7.2.8)where Akj is n� r and Lkk +LTkk is an n� n band matrix with bandwidth� � n (see Exercise 7.2.5 on page 278 ). Here, n � st=�; � � t=� and r = m;thus the expression 7.2.8 becomes s2t2�2 :Note that there are in total 2� such o�-diagonal blocks, so the computationrequired to compute allL�Tkk (L�1kkAkj) for j > � + 1 and k � � + 1is approximately 2s2t2� : (7.2.9)We now estimate the cost of computing the modi�cations to Akj, k > �+ 1,j > � + 1. With (7.2.7) computed, we note that the modi�cation to each



276 CHAPTER 7. ONE-WAY DISSECTION METHODSentry in the diagonal blocksAkk, k > �+1 can be computed in six operations,while that to the o�-diagonal blocks Ak;k�1 requires three operations. Thatis, the cost for modi�cation is O(�s2). Thus, an estimate for the total numberof operations required for the factorization, using this one-way dissectionordering, is given by �F (�) = st32�2 + 7�s36 + 2s2t2� : (7.2.10)If our objective is to minimize the operation count for the factorization, usingthis one-way dissection ordering, we want to �nd the �F which minimizes�F (�). For large s and t, it can be shown that choosing�F = t�127s�1=2approximately minimizes (7.2.10), yielding (see Exercise 7.2.6 on page 278 )�F (�F ) = �283 �1=2 s5=2t +O(s2t): (7.2.11)The corresponding �F is given by�F = �7m12 �1=2 :Again it is interesting to compare this result with the operation count ifwe use a standard band or envelope scheme as described in Chapter 4. Forthis s � t grid problem, the factorization operation count would be � 12s3t.Thus, asymptotically this one-way dissection scheme reduces the factoriza-tion count by a factor of roughly 4p7=(3s).7.2.4 Operation Count for the SolutionWe now derive an estimate of the operation count required to solve Ax = b,given the \factorization" as computed in the preceding subsection.First observe that each of the �+1 leading diagonal blocksLkk, 1 � k � �+1,is used four times, twice in the lower solve and twice again in the upper solve.This yields an operation count of approximately4st2� :



7.2. AN EXAMPLE { THE S � T GRID PROBLEM 277The non-null blocks Lkj, for k > �+1 and j > �+1, are each used twice, fora total operation count of 3�s2+O(�s). Each matrixAkj, for k > �+1 andj � � + 1, is used twice, yielding an operation count of about 12�s. Thus,an estimate for the operation count associated with the solution, using thisone-way dissection ordering, is�S(�) = 4st2� + 3�s2: (7.2.12)If we wish to minimize �S with respect to �, we �nd � should be approxi-mately �S = 2tp3s;whence �S(�S) = 4p3s3=2t +O(st): (7.2.13)Again it is interesting to compare (7.1.11) with the corresponding operationcount if we were to use standard band or envelope schemes, which would beabout 2s2t. Thus, asymptotically, the one-way dissection ordering reducesthe solution operation count by a factor of about 2p3=s.Of course in practice we cannot choose � to simultaneously minimize storage,factorization operation count, and solution operation count; � must be �xed.Since the main attraction for these methods is their low storage requirements,in the algorithm of the next section � is chosen to attempt to minimizestorage.Exercises7.2.1) What are the coe�cients of the high order terms in (7.2.10) and(7.2.13) if � is chosen to be ��, given by (7.2.5)?7.2.2) Suppose we use the one-way dissection ordering of this section with� chosen to be O(t=ps), but we do not use the implicit storagetechnique; that is, we actually store the o�-diagonal blocks Lij, i >�+1, j � �+1. What would the storage requirements be then? If weused these blocks in the solution scheme, what would the operationcount corresponding to �S now be?7.2.3) Suppose we use the one-way dissection ordering of this section with �chosen to be t=ps, but we use the symmetric version of the factoriza-tion scheme rather than the asymmetric version. (See Section 6.2.1)



278 CHAPTER 7. ONE-WAY DISSECTION METHODSShow that now the factorization operation count is O(s3t) ratherthan O(s5=2t). How much temporary storage is required to carry outthe computation?7.2.4) Throughout Section 7.2 we assume that s � t, although we did notexplicitly use that fact anywhere. Do our results still apply for s > t?Why did we assume s � t?7.2.5) Let M be an n � n symmetric positive de�nite band matrix withbandwidth � � n and Cholesky factorization LLT . Let V be ann � r (r � n) \pseudo-tridiagonal" matrix, for which the leadingnonzero in column i is in position�i = �(i� 1)(n� 1)r � 1 �and let ~W = L�T (L�1V ). Show that the number of operationsrequired to compute ~wij, 1 � i � r, �i � j � n, is approximatelyn(� + 1)(r � 1). (Note that this is approximately the pseudo-lowertriangle of ~W , described in Exercise 2.3.8 on page 30.)7.2.6) Let �F minimize �F (�) in (7.2.10). Show that a lower bound for �Fis given by ��F = t�127s�1=2 ;whence �F (��F ) = 724s2t+ 2�73�1=2 s5=2t:7.2.7) In the description of the one-way dissection ordering of the s� t gridgiven in this section, the separator blocks were numbered \end toend." It turns out that the order in which these separator blocks arenumbered is important. For example, the blocks in the example ofFigure 7.2.2 might have been numbered as indicated in the diagramin Figure 7.2.7.a) Draw a �gure similar to Figure 7.2.5 showing the structure of Lcorresponding to this ordering. Is there more or fewer �ll blocksthan the ordering shown in Figure 7.2.2?
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Figure 7.2.7: Di�erent way of labelling the separators in the one-way dissec-tion algorithm.b) For the one-way dissection ordering of the s � t grid shown inFigure 7.2.2, the number of �ll blocks is � � 1. Show that forsome orderings of the separator blocks, as many as 2� � 3 �llblocks may result.7.3 An Algorithm for Finding One-Way DissectionOrderings of Irregular Mesh Problems7.3.1 The AlgorithmThe description and analysis of the previous section suggests that in gen-eral terms, we would like to �nd a set of \parallel" separators having rel-atively few nodes. These separators should disconnect the graph or meshinto components which can be ordered so as to have small envelopes. Thisis essentially what the following heuristic algorithm attempts to do.The algorithm operates on a given graph G = (X;E), which we assume tobe connected. The extension to disconnected graphs is obvious. Recall fromChapter 3 that the set Y � X is a separator of the connected graph G if thesection graph G(X � Y ) is disconnected.We now give a step-by-step description of the algorithm, followed by some



280 CHAPTER 7. ONE-WAY DISSECTION METHODSexplanatory remarks for the important steps. In the algorithm n = jX j, ands and t correspond roughly to s and t � 1 in Section 7.2. The algorithmattempts to choose � to minimize storage, but it can easily be modi�ed soas to attempt to minimize the factorization or solution operation count.Step 1 (Generate level structure) Find a pseudo-peripheral node x by thealgorithm of Section 4.4.2, and generate the level structure rooted atx. L(x) = fL0; L1; � � � ; Ltg:Step 2 (Estimate �) Calculate s = n=(t+ 1), and set� = �3s+ 132 �1=2:Step 3 (Limiting case) If � < t=2, and jX j > 50 go to Step 4. Otherwise,set p = 1, Yp = X and go to Step 6.Step 4 (Find separator) Set i = 1, j = b� + 0:5c, and T = �.While j < t do the following4.1) Choose Ti = fx 2 Lj j Adj(x) \ Lj+1 6= �g:4.2) Set T = T [ Ti4.3) Set i i+ 1 and j = bi� + 0:5c.Step 5 (De�ne blocks) Let Yk, k = 1; � � � ; p�1 be the connected componentsof the section graph G(X � T ), and set Yp = T .Step 6 (Internal numbering) Number each Yk, k = 1; � � � ; p consecutivelyusing the method described in Section 6.5.2.Step 1 of the algorithm produces a (hopefully) long, narrow level structure.This is desirable because the separators are selected as subsets of some ofthe levels Li.The calculation of the numbers s and t computed in Step 2 is motivateddirectly by the analysis of the s� t grid in Section 7.2. Since s is the averagenumber of nodes per level, it serves as a measure of the width of the levelstructure. The derivation of �� given in (7.2.5) was obtained in a fairly crudeway, since our objective was simply to convey the basic ideas. A more careful



7.3. A ONE-WAY DISSECTION ORDERING ALGORITHM 281analysis along with some experimentation suggests that a better value for�� is t� 23s+ 13�1=2 :The corresponding �� is given by the formula used in Step 2.Step 3 is designed to handle anomalous situations where m � t, or whenn is simply too small to make the use of the one-way dissection methodworthwhile. Experiments indicate that for small �nite element problems,and/or \long slender" problems, the methods of Chapter 4 are more e�cient,regardless of the basis for comparison. In these cases, the entire graph isprocessed as one block (p = 1). That is, an ordinary envelope ordering asdiscussed in Chapter 4 is produced for the graph.Step 4 performs the actual selection of the separators, and is done essentiallyas though the graph corresponds to an s � t grid as studied in Section 7.2.As noted earlier, each Li of L is a separator of G. In Step 4, approximatelyequally spaced levels are chosen from L, and subsets of these levels (the Ti) which are possibly smaller separators are then found.Finally, in Step 6 the p � � + 1 independent blocks created by removingthe separators from the graph are numbered, using the internal renumberingscheme described in Section 6.5.2.Although the choice of � and the method of selection of the separators seemsrather crude, we have found that attempts at more sophistication do notoften yield signi�cant bene�ts (except for some unrealistic, contrived exam-ples). Just as in the regular rectangular grid case, the storage requirement,as a function of �, is very 
at near its minimum. Even relatively large per-turbations in the value of �, and in the selection of the separators, usuallyproduce rather small changes in storage requirements.In Figure 7.3.1 we have an example of an irregular mesh problem, along withsome indications of the steps carried out by the algorithm. (For purposesof this illustration, we assume that the test for jX j > 50 in Step 3 of thealgorithm has been removed.) Figure 7.3.1 (a) contains the level numbers ofthe original level structure, while Figure 7.3.1 (b) displays the nodes chosenas the separators. Here s = n=(t + 1) = 25=11 � 2:27, � = p9:91 � 3:12.The levels chosen from which to pick the separators are levels 4 and 8.
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Figure 7.3.1: Diagram of an irregular mesh showing the separators chosenby the algorithm.



7.3. A ONE-WAY DISSECTION ORDERING ALGORITHM 2837.3.2 Subroutines for Finding a One-Way Dissection Parti-tioningThe set of subroutines which implements the one-way dissection algorithmis given in the control diagram in Figure 7.3.2. The subroutines FNROOTand ROOTLS are used together to determine a pseudo-peripheral node of aconnected component in a given graph. They have been discussed in detailin Section 4.4.3. The subroutine REVRSE is a utility subroutine that is usedto reverse an integer array. The execution of the calling statementGEN1WDFN1WDFNROOTROOTLS ROOTLS REVRSE!!!!! aaaaa
Figure 7.3.2: Control relation of subroutines for the one-way dissection al-gorithm.CALL REVRSE ( NV, V )will interchange the entries in the integer vector V of size NV in the followingway: V(i)$ V(NV�i+ 1) for 1 � i � bNVc=2:The remaining two subroutines GEN1WD and FN1WD are described in detailbelow.GEN1WD (GENeral 1-Way Dissection)This is the driver subroutine for �nding a one-way dissection partitioning of ageneral disconnected graph. The input and output parameters of GEN1WD fol-low the same notations as the implementations of other ordering algorithms.



284 CHAPTER 7. ONE-WAY DISSECTION METHODSThe parameters NEQNS, XADJ and ADJNCY are for the adjacency structure ofthe given graph. Returned from the subroutine are the one-way dissectionordering in the vector PERM, and the partitioning information in (NBLKS,XBLK). Three working vectors MASK, XLS and LS are used by GEN1WD. Thearray pair (XLS, LS) is used by FN1WD to store a level structure rooted ata pseudo-peripheral node, and the vector MASK is used by the subroutine tomask o� nodes that have been numbered.The subroutine begins by initializing the vector MASK so that all nodes areconsidered unnumbered. It then goes through the graph and obtains a nodei not yet numbered. The node de�nes an unnumbered connected componentin the graph and the subroutine FN1WD is called to �nd a one-way dissector forthe component. The set of dissecting nodes forms a block in the partitioning.Each component in the remainder of the dissected subgraph also constitutesa block, and they are found by calling the subroutine ROOTLS.After going through all the connected components in the graph, the sub-routine reverses the permutation vector PERM and block index vector XBLK,since the one-way dissectors which are found �rst should be ordered afterthe remaining nodes.1. C***************************************************************2. C***************************************************************3. C********** GEN1WD ..... GENERAL ONE-WAY DISSECTION *******4. C***************************************************************5. C***************************************************************6. C7. C PURPOSE - GEN1WD FINDS A ONE-WAY DISSECTION PARTITIONING8. C FOR A GENERAL GRAPH. FN1WD IS USED FOR EACH CONNECTED9. C COMPONENT.10. C11. C INPUT PARAMETERS -12. C NEQNS - NUMBER OF EQUATIONS.13. C (XADJ, ADJNCY) - THE ADJACENCY STRUCTURE PAIR.14. C15. C OUTPUT PARAMETERS -16. C (NBLKS, XBLK) - THE PARTITIONING FOUND.17. C PERM - THE ONE-WAY DISSECTION ORDERING.18. C19. C WORKING VECTORS -20. C MASK - IS USED TO MARK VARIABLES THAT HAVE21. C BEEN NUMBERED DURING THE ORDERING PROCESS.22. C (XLS, LS) - LEVEL STRUCTURE USED BY ROOTLS.23. C24. C PROGRAM SUBROUTINES -



7.3. A ONE-WAY DISSECTION ORDERING ALGORITHM 28525. C FN1WD, REVRSE, ROOTLS.26. C27. C***************************************************************28. C29. SUBROUTINE GEN1WD ( NEQNS, XADJ, ADJNCY, MASK,30. 1 NBLKS, XBLK, PERM, XLS, LS )31. C32. C***************************************************************33. C34. INTEGER ADJNCY(1), LS(1), MASK(1), PERM(1),35. 1 XBLK(1), XLS(1)36. INTEGER XADJ(1), CCSIZE, I, J, K, LNUM,37. 1 NBLKS, NEQNS, NLVL, NODE, NSEP,38. 1 NUM, ROOT39. C40. C***************************************************************41. C42. DO 100 I = 1, NEQNS43. MASK(I) = 144. 100 CONTINUE45. NBLKS = 046. NUM = 047. DO 400 I = 1, NEQNS48. IF ( MASK(I) .EQ. 0 ) GO TO 40049. C --------------------------------------------50. C FIND A ONE-WAY DISSECTOR FOR EACH COMPONENT.51. C --------------------------------------------52. ROOT = I53. CALL FN1WD ( ROOT, XADJ, ADJNCY, MASK,54. 1 NSEP, PERM(NUM+1), NLVL, XLS, LS )55. NUM = NUM + NSEP56. NBLKS = NBLKS + 157. XBLK(NBLKS) = NEQNS - NUM + 158. CCSIZE = XLS(NLVL+1) - 159. C ----------------------------------------------60. C NUMBER THE REMAINING NODES IN THE COMPONENT.61. C EACH COMPONENT IN THE REMAINING SUBGRAPH FORMS62. C A NEW BLOCK IN THE PARTITIONING.63. C ----------------------------------------------64. DO 300 J = 1, CCSIZE65. NODE = LS(J)66. IF ( MASK(NODE) .EQ. 0 ) GO TO 30067. CALL ROOTLS ( NODE, XADJ, ADJNCY, MASK,68. 1 NLVL, XLS, PERM(NUM+1) )69. LNUM = NUM + 170. NUM = NUM + XLS(NLVL+1) - 171. NBLKS = NBLKS + 1



286 CHAPTER 7. ONE-WAY DISSECTION METHODS72. XBLK(NBLKS) = NEQNS - NUM + 173. DO 200 K = LNUM, NUM74. NODE = PERM(K)75. MASK(NODE) = 076. 200 CONTINUE77. IF ( NUM .GT. NEQNS ) GO TO 50078. 300 CONTINUE79. 400 CONTINUE80. C ----------------------------------------------------81. C SINCE DISSECTORS FOUND FIRST SHOULD BE ORDERED LAST,82. C ROUTINE REVRSE IS CALLED TO ADJUST THE ORDERING83. C VECTOR, AND THE BLOCK INDEX VECTOR.84. C ----------------------------------------------------85. 500 CALL REVRSE ( NEQNS, PERM )86. CALL REVRSE ( NBLKS, XBLK )87. XBLK(NBLKS+1) = NEQNS + 188. RETURN89. ENDFN1WD (FiNd 1-Way Dissection ordering)This subroutine applies the one-way dissection algorithm described in Sec-tion 7.3.1 to a connected component of a subgraph. It operates on a compo-nent speci�ed by the input parameters ROOT, MASK, XADJ and ADJNCY. Outputfrom this subroutine is the set of dissecting nodes given by (NSEP, SEP).The �rst step in the subroutine is to �nd a level structure rooted at a pseudo-peripheral node which it does by calling FNROOT. Based on the characteristicsof the level structure (NLVL, the number of levels and WIDTH, the averagewidth), the subroutine determines the level increment DELTA to be used. Ifthe number of levels NLVL or the size of the component is too small, thewhole component is returned as the \dissector".With DELTA determined, the subroutine then marches along the level struc-ture picking up levels, subsets of which form the set of parallel dissectors.1. C***************************************************************2. C***************************************************************3. C******* FN1WD ..... FIND ONE-WAY DISSECTORS ********4. C***************************************************************5. C***************************************************************6. C7. C PURPOSE - THIS SUBROUTINE FINDS ONE-WAY DISSECTORS OF8. C A CONNECTED COMPONENT SPECIFIED BY MASK AND ROOT.9. C



7.3. A ONE-WAY DISSECTION ORDERING ALGORITHM 28710. C INPUT PARAMETERS -11. C ROOT - A NODE THAT DEFINES (ALONG WITH MASK) THE12. C COMPONENT TO BE PROCESSED.13. C (XADJ, ADJNCY) - THE ADJACENCY STRUCTURE.14. C15. C OUTPUT PARAMETERS -16. C NSEP - NUMBER OF NODES IN THE ONE-WAY DISSECTORS.17. C SEP - VECTOR CONTAINING THE DISSECTOR NODES.18. C19. C UPDATED PARAMETER -20. C MASK - NODES IN THE DISSECTOR HAVE THEIR MASK VALUES21. C SET TO ZERO.22. C23. C WORKING PARAMETERS-24. C (XLS, LS) - LEVEL STRUCTURE USED BY THE ROUTINE FNROOT.25. C26. C PROGRAM SUBROUTINE -27. C FNROOT.28. C29. C***************************************************************30. C31. SUBROUTINE FN1WD ( ROOT, XADJ, ADJNCY, MASK,32. 1 NSEP, SEP, NLVL, XLS, LS )33. C34. C***************************************************************35. C36. INTEGER ADJNCY(1), LS(1), MASK(1), SEP(1), XLS(1)37. INTEGER XADJ(1), I, J, K, KSTOP, KSTRT, LP1BEG, LP1END,38. 1 LVL, LVLBEG, LVLEND, NBR, NLVL, NODE,39. 1 NSEP, ROOT40. REAL DELTP1, FNLVL, WIDTH41. C42. C***************************************************************43. C44. CALL FNROOT ( ROOT, XADJ, ADJNCY, MASK,45. 1 NLVL, XLS, LS )46. FNLVL = FLOAT(NLVL)47. NSEP = XLS(NLVL + 1) - 148. WIDTH = FLOAT(NSEP) / FNLVL49. DELTP1 = 1.0 + SQRT((3.0*WIDTH+13.0)/2.0)50. IF (NSEP .GE. 50 .AND. DELTP1 .LE. 0.5*FNLVL) GO TO 30051. C ----------------------------------------------------52. C THE COMPONENT IS TOO SMALL, OR THE LEVEL STRUCTURE53. C IS VERY LONG AND NARROW. RETURN THE WHOLE COMPONENT.54. C ----------------------------------------------------55. DO 200 I = 1, NSEP56. NODE = LS(I)



288 CHAPTER 7. ONE-WAY DISSECTION METHODS57. SEP(I) = NODE58. MASK(NODE) = 059. 200 CONTINUE60. RETURN61. C -----------------------------62. C FIND THE PARALLEL DISSECTORS.63. C -----------------------------64. 300 NSEP = 065. I = 066. 400 I = I + 167. LVL = IFIX (FLOAT(I)*DELTP1 + 0.5)68. IF ( LVL .GE. NLVL ) RETURN69. LVLBEG = XLS(LVL)70. LP1BEG = XLS(LVL + 1)71. LVLEND = LP1BEG - 172. LP1END = XLS(LVL + 2) - 173. DO 500 J = LP1BEG, LP1END74. NODE = LS(J)75. XADJ(NODE) = - XADJ(NODE)76. 500 CONTINUE77. C -------------------------------------------------78. C NODES IN LEVEL LVL ARE CHOSEN TO FORM DISSECTOR.79. C INCLUDE ONLY THOSE WITH NEIGHBORS IN LVL+1 LEVEL.80. C XADJ IS USED TEMPORARILY TO MARK NODES IN LVL+1.81. C -------------------------------------------------82. DO 700 J = LVLBEG, LVLEND83. NODE = LS(J)84. KSTRT = XADJ(NODE)85. KSTOP = IABS(XADJ(NODE+1)) - 186. DO 600 K = KSTRT, KSTOP87. NBR = ADJNCY(K)88. IF ( XADJ(NBR) .GT. 0 ) GO TO 60089. NSEP = NSEP + 190. SEP(NSEP) = NODE91. MASK(NODE) = 092. GO TO 70093. 600 CONTINUE94. 700 CONTINUE95. DO 800 J = LP1BEG, LP1END96. NODE = LS(J)97. XADJ(NODE) = - XADJ(NODE)98. 800 CONTINUE99. GO TO 400100. END



7.4. THE ENVELOPE STRUCTURE OF DIAGONAL BLOCKS 2897.4 On Finding the Envelope Structure of Diago-nal BlocksIn Chapter 4, the envelope structure of a symmetric matrix A has beenstudied. It has been shown that the envelope structure is preserved undersymmetric factorization; in other words, if F is the �lled matrix of A, thenEnv(A) = Env(F ):In this section, we consider the envelope structure of the diagonal blocksubmatrices of the �lled matrix with respect to a given partitioning. This isimportant in setting up the data structure for the storage scheme describedin Section 6.5.1.7.4.1 Statement of the ProblemLet A be a sparse symmetric matrix partitioned asA = 0BBBB@ A11 A12 � � � A1pAT12 A22 � � � A2p... ...AT1p AT2p � � � App 1CCCCA ; (7.4.1)where each Akk is a square submatrix. The block diagonal matrix of A withrespect to the given partitioning is de�ned to beBdiag(A) = 0BBBB@ A11 OA22 . . .O App 1CCCCA : (7.4.2)Let the triangular factor L of A be correspondingly partitioned asL = 0BBBB@ L11 OL21 L22... . . .Lp1 Lp2 � � � Lpp 1CCCCA :



290 CHAPTER 7. ONE-WAY DISSECTION METHODSThen the associated block diagonal matrix of the �lled matrix F will beBdiag(F ) = 0BBBB@ F 11 OF 22 . . .O F pp 1CCCCAwhere F kk = Lkk +LTkk for 1 � k � p.Our objective is to determine the envelope structure of Bdiag(F ). AlthoughEnv(A) = Env(F ), the result does not hold in general for Bdiag(A) andBdiag(F ) due to the possible creation of nonzeros outside Env(Bdiag(A))during the factorization.7.4.2 Characterization of the Block Diagonal Envelope viaReachable SetsRecall from Chapter 4 that the envelope structure of a matrix A is charac-terized by the column subscriptsfi(A) = minfj j aij 6= 0g; 1 � i � n:In terms of the associated graph GA = (XA; EA), where XA = fx1; � � � ; xng,these numbers are given byfi(A) = minfs j xs 2 Adj(xi) [ fxigg: (7.4.3)In this subsection, we shall study the envelope structure of Bdiag(F) byrelating the �rst nonzero column subscript with the corresponding graphstructure.Let GA = (XA; EA) and GF = (XF ; EF ) be the undirected graphsassociated with the symmetric matrices A and F respectively. Let P =fY1; Y2; � � � ; Ypg be the set partitioning of XA that corresponds to the ma-trix partitioning of A. It is useful to note thatGAkk = GA(Yk);GF kk = GF (Yk);and GBdiag(F ) = (XA; EBdiag(F ))



7.4. THE ENVELOPE STRUCTURE OF DIAGONAL BLOCKS 291where EBdiag(F ) = [fEF (Yk) j 1 � k � pg:In what follows, we shall use fi to stand for fi(Bdiag(F)). Let row i belongto the k-th block in the partitioning. In other words, we let xi 2 Yk. Interms of the �lled graph, the quantity fi is given byfi = minfs j s = i or fxs; xig 2 EF (Yk)g:We now relate it to the original graph GA through the use of reachable setsintroduced in Section 5.2.2. By Theorem 5.2.2 which characterizes the �llvia reachable sets, we havefi = minfs j xs 2 Yk; xi 2 Reach(xs; fx1; � � � ; xs�1g) [ fxsgg (7.4.4)In Theorem 7.4.2, we prove a stronger result.Lemma 7.4.1 Let xi 2 Yk, and letS = Y1 [ � � � [ Yk�1:That is, S contains all the nodes in the �rst k � 1 blocks. Thenxi 2 Reach(xfi ; S)[ fxfig:Proof: By de�nition of fi, fxi; xfig 2 EF so that by Theorem 5.2.2, xi 2Reach(xfi ; fx1; � � � ; xfi�1g). We can then �nd a path xi, xr1 , � � �, xrt , xfiwhere fxr1 ; � � � ; xrtg � fx1; � � � ; xfi�1g.We now prove that xi can also be reached from xfi through S, which isa subset of fx1; � � � ; xfi�1g. If t = 0, clearly xi 2 Reach(xfi ; S). On theother hand, if t 6= 0, let xrs be the node with the largest index number infxr1 ; � � � ; xrtg. Then xi, xr1 , � � �, xrs�1 , xrs is a path from xi to xrs throughfx1; x2; � � � ; xrs�1g so that fxi; xrsg 2 EF :But rs < fi, so by the de�nition of fi we have xrs 62 Yk, or in other wordsxrs 2 S. The choice of rs impliesfxr1 ; � � � ; xrtg � Sand thus xi 2 Reach(xfi ; S). 2



292 CHAPTER 7. ONE-WAY DISSECTION METHODSTheorem 7.4.2 Let xi 2 Yk and S = Y1 [ � � � [ Yk�1. Thenfi = minfs j xs 2 Yk; xi 2 Reach(xs; S)[ fxsgg:Proof: By Lemma 7.4.1, it remains to show that xi 62 Reach(xr; S) forxr 2 Yk and r < fi. Assume for contradiction that we can �nd xr 2 Yk withr < fi and xi 2 Reach(xr; S). SinceS � fx1; � � � ; xr�1g;we have xi 2 Reach(xr; fx1; � � � ; xr�1g) so that fxi; xrg 2 EF (Yk). Thiscontradicts the de�nition of fi. 2Corollary 7.4.3 Let xi and S be as in Theorem 7.4.2. Thenfi = minfs j xs 2 Reach(xi; S)[ fxigg:Proof: It follows from Theorem 7.4.2 and the symmetry of the \Reach"operator. 2It is interesting to compare this result with that given by (7.4.4). To illustratethe result, we consider the partitioned matrix example in Figure 7.4.1.Consider Y2 = fx5; x6; x7; x8g. Then the associated set S is fx1; x2; x3; x4g.We have Reach(x5; S) = fx10; x11gReach(x6; S) = fx7; x8; x9; x10gReach(x7; S) = fx6; x8gReach(x8; S) = fx6; x7; x10; x11g:By Corollary 7.4.3,f5(Bdiag(F)) = 5f6(Bdiag(F)) = f7(Bdiag(F)) = f8(Bdiag(F )) = 6:7.4.3 An Algorithm and Subroutines for Finding DiagonalBlock EnvelopesCorollary 7.4.3 readily provides a method for �nding fi(Bdiag(F)) and hencethe envelope structure of Bdiag(F ). However, in the actual implementation,Lemma 7.4.1 is more easily applied. The algorithm can be described asfollows.Let P = fY1; � � � ; Ypg be the partitioning. For each block k in the partition-ing, do the following:
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A = 266666666666666666664

� � �� � � �� � � �� �� � �� � � �� � � �� � � �� �� � � � �� � � �
377777777777777777775 F = 266666666666666666664

� � �� � � �� � � � g�� �� � �� � � g� � g�� � � � g� g�� � g� � � g� g� g�� g� g� � g� g�� � g� � g� g� g� g� � �� � g� g� � �
377777777777777777775mx9 mx6 mx3 mx1ZZZZZmx4 mx7 mx8 mx2 mx10mx11����� mx5Figure 7.4.1: An 11 by 11 partitioned matrix A.



294 CHAPTER 7. ONE-WAY DISSECTION METHODSStep`1 (Initialization) S = Y1 [ � � � [ Yk�1, T = S [ Yk.Step 2 (Main loop) For each node xr in Yk do:2.1) Determine Reach(xr; S) in the subgraph G(T ).2.2) For each xi 2 Reach(xr; S), set fi = r.2.3) Reset T  T � (Reach(xr; S)[ fxrg).The implementation of this algorithm consists of two subroutines, which arediscussed below.REACH (�nd REACHable sets)Given a set S and a node x 62 S in a graph. To study the reachable setReach(x; S), it is helpful to introduce the related notion of neighborhoodset. Formally, the neighborhood set of x in S is de�ned to benbrhd(x; S) = fs 2 S j s is reachable from x through a subset of SgReachable and neighborhood sets are related by the following lemma.Lemma 7.4.4 Reach(x; S) = Adj(nbrhd(x; S)[ fxg):The subroutine REACH applies this simple relation to determine the reachableset of a node via a subset in a given subgraph. The subgraph is speci�ed bythe input parameters XADJ, ADJNCY and MARKER, where a node belongs to thesubgraph if its MARKER value is zero. The subset S is speci�ed by the maskvector SMASK, where a node belongs to S if its SMASK value is nonzero. Thevariable ROOT is the input node, whose reachable set is to be determined.It returns the reachable set in (RCHSZE, RCHSET). As a by-product, theneighborhood set in (NHDSZE, NBRHD) is also returned. On exit, nodes inthe reachable or neighborhood sets will have their MARKER value set to ROOT.After initialization, the subroutine loops through the neighbors of the givenROOT. Neighbors not in the subset S are included in the reach set, whileneighbors in the subset S are put into the neighborhood set. Furthermore,each neighbor in the subset S is examined to obtain new reachable nodes.This process is repeated until no neighbors in S can be found.



7.4. THE ENVELOPE STRUCTURE OF DIAGONAL BLOCKS 2951. C***************************************************************2. C***************************************************************3. C************* REACH ..... REACHABLE SET **************4. C***************************************************************5. C***************************************************************6. C7. C PURPOSE - THIS SUBROUTINE IS USED TO DETERMINE THE8. C REACHABLE SET OF A NODE Y THROUGH A SUBSET S9. C (I.E. REACH(Y,S) ) IN A GIVEN SUBGRAPH. MOREOVER,10. C IT RETURNS THE NEIGHBORHOOD SET OF Y IN S, I.E.11. C NBRHD(Y,S), THE SET OF NODES IN S THAT CAN BE12. C REACHED FROM Y THROUGH A SUBSET OF S.13. C14. C INPUT PARAMETERS -15. C ROOT - THE GIVEN NODE NOT IN THE SUBSET S.16. C (XADJ, ADJNCY) - THE ADJACENCY STRUCTURE PAIR.17. C SMASK - THE MASK VECTOR FOR THE SET S.18. C = 0, IF THE NODE IS NOT IN S,19. C > 0, IF THE NODE IS IN S.20. C21. C OUTPUT PARAMETERS -22. C (NHDSZE, NBRHD) - THE NEIGHBORHOOD SET.23. C (RCHSZE, RCHSET) - THE REACHABLE SET.24. C25. C UPDATED PARAMETERS -26. C MARKER - THE MARKER VECTOR USED TO DEFINE THE SUBGRAPH,27. C NODES IN THE SUBGRAPH HAVE MARKER VALUE 0.28. C ON RETURN, THE REACHABLE AND NEIGHBORHOOD NODE29. C SETS HAVE THEIR MARKER VALUES RESET TO ROOT.30. C31. C***************************************************************32. C33. SUBROUTINE REACH ( ROOT, XADJ, ADJNCY, SMASK, MARKER,34. 1 RCHSZE, RCHSET, NHDSZE, NBRHD )35. C36. C***************************************************************37. C38. INTEGER ADJNCY(1), MARKER(1), NBRHD(1), RCHSET(1),39. 1 SMASK(1)40. INTEGER XADJ(1), I, ISTOP, ISTRT, J, JSTOP, JSTRT,41. 1 NABOR, NBR, NHDBEG, NHDPTR, NHDSZE, NODE,42. 1 RCHSZE, ROOT43. C44. C***************************************************************45. C46. C ------------------47. C INITIALIZATION ...



296 CHAPTER 7. ONE-WAY DISSECTION METHODS48. C ------------------49. NHDSZE = 050. RCHSZE = 051. IF ( MARKER(ROOT) .GT. 0 ) GO TO 10052. RCHSZE = 153. RCHSET(1) = ROOT54. MARKER(ROOT) = ROOT55. 100 ISTRT = XADJ(ROOT)56. ISTOP = XADJ(ROOT+1) - 157. IF ( ISTOP .LT. ISTRT ) RETURN58. C --------------------------------------59. C LOOP THROUGH THE NEIGHBORS OF ROOT ...60. C --------------------------------------61. DO 600 I = ISTRT, ISTOP62. NABOR = ADJNCY(I)63. IF ( MARKER(NABOR) .NE. 0 ) GO TO 60064. IF ( SMASK(NABOR) .GT. 0 ) GO TO 20065. C -----------------------------------------------66. C NABOR IS NOT IN S, INCLUDE IT IN THE REACH SET.67. C -----------------------------------------------68. RCHSZE = RCHSZE + 169. RCHSET(RCHSZE) = NABOR70. MARKER(NABOR) = ROOT71. GO TO 60072. C --------------------------------------------------73. C NABOR IS IN SUBSET S, AND HAS NOT BEEN CONSIDERED.74. C INCLUDE IT INTO THE NBRHD SET AND FIND THE NODES75. C REACHABLE FROM ROOT THROUGH THIS NABOR.76. C --------------------------------------------------77. 200 NHDSZE = NHDSZE + 178. NBRHD(NHDSZE) = NABOR79. MARKER(NABOR) = ROOT80. NHDBEG = NHDSZE81. NHDPTR = NHDSZE82. 300 NODE = NBRHD(NHDPTR)83. JSTRT = XADJ(NODE)84. JSTOP = XADJ(NODE+1) - 185. DO 500 J = JSTRT, JSTOP86. NBR = ADJNCY(J)87. IF ( MARKER(NBR) .NE. 0 ) GO TO 50088. IF ( SMASK(NBR) .EQ. 0 ) GO TO 40089. NHDSZE = NHDSZE + 190. NBRHD(NHDSZE) = NBR91. MARKER(NBR) = ROOT92. GO TO 50093. 400 RCHSZE = RCHSZE + 194. RCHSET(RCHSZE) = NBR



7.4. THE ENVELOPE STRUCTURE OF DIAGONAL BLOCKS 29795. MARKER(NBR) = ROOT96. 500 CONTINUE97. NHDPTR = NHDPTR + 198. IF ( NHDPTR .LE. NHDSZE ) GO TO 30099. 600 CONTINUE100. RETURN101. ENDFNBENV (FiNd diagonal Block ENVelope)This subroutine serves the same purpose as FNTENV in Section 6.5.3. Theyare both used to determine the envelope structure of the factored diagonalblocks in a partitioned matrix. Unlike FNTENV, this subroutine FNBENV �ndsthe exact envelope structure. Although it works for general partitionedmatrices, it is more expensive to use than FNTENV, and for the orderingsprovided by the RQT algorithm, the output from FNTENV is satisfactory.However, for one-way dissection orderings the more sophisticated FNBENV isessential.Inputs to FNBENV are the adjacency structure (XADJ, ADJNCY), the order-ing (PERM, INVP) and the partitioning (NBLKS, XBLK). The subroutine willproduce the envelope structure in the index vector XENV and the variableMAXENV will contain the size of the envelope.Three temporary vectors are required. The vector SMASK is used to specifythose nodes in the subset S (see the above algorithm). On the other hand,the nodes in the set T are given by those with MARKER value 0. The vectorMARKER is also used temporarily to store the �rst neighbor in each row ofa block. The third temporary vector RCHSET is used to contain both thereachable and neighborhood sets. Since the two sets do not overlap, we canorganize the vector RCHSET as follows.The subroutine begins by initializing the temporary vectors SMASK and MARKER.The main loop goes through and processes each block. For each block, itsnodes are added to the subgraph by turning their MARKER values to zeros.For each node i in the block, the subroutine REACH is called so that nodes inthe thus-determined reachable sets will have node i as their �rst neighbor.Before the next block is processed, the MARKER values are reset and nodes inthe current block are added to the subset S.1. C***************************************************************2. C***************************************************************3. C******** FNBENV ..... FIND DIAGONAL BLOCK ENVELOPE *******



298 CHAPTER 7. ONE-WAY DISSECTION METHODSNeighborhoodset Reachableset6BLKBEGz }| { z }| {NHDSZE RCHSZERCHSETFigure 7.4.2: Organization of the RCHSET array.4. C***************************************************************5. C***************************************************************6. C7. C PURPOSE - THIS SUBROUTINE FINDS THE EXACT ENVELOPE8. C STRUCTURE OF THE DIAGONAL BLOCKS OF THE CHOLESKY9. C FACTOR OF A PERMUTED PARTITIONED MATRIX.10. C11. C INPUT PARAMETERS -12. C (XADJ, ADJNCY) - ADJACENCY STRUCTURE OF THE GRAPH.13. C (PERM, INVP) - THE PERMUTATION VECTOR AND ITS INVERSE.14. C (NBLKS, XBLK) - THE PARTITIONING.15. C16. C OUTPUT PARAMETERS _17. C XENV - THE ENVELOPE INDEX VECTOR.18. C ENVSZE - THE SIZE OF THE ENVELOPE.19. C20. C WORKING PARAMETERS -21. C SMASK - MARKS NODES THAT HAVE BEEN CONSIDERED.22. C MARKER - IS USED BY ROUTINE REACH.23. C RCHSET - IS USED BY THE SUBROUTINE REACH.24. C STORES BOTH REACHABLE AND NEIGHBORHOOD SETS.25. C26. C PROGRAM SUBROUTINES -27. C REACH.28. C29. C***************************************************************30. C31. SUBROUTINE FNBENV ( XADJ, ADJNCY, PERM, INVP, NBLKS, XBLK,32. 1 XENV, ENVSZE, SMASK, MARKER, RCHSET )33. C34. C***************************************************************35. C36. INTEGER ADJNCY(1), INVP(1), MARKER(1), PERM(1),37. 1 RCHSET(1), SMASK(1), XBLK(1)



7.4. THE ENVELOPE STRUCTURE OF DIAGONAL BLOCKS 29938. INTEGER XADJ(1), XENV(1), BLKBEG, BLKEND, I,39. 1 IFIRST, INHD, K, ENVSZE, NBLKS, NEQNS,40. 1 NEWNHD, NHDSZE, NODE, RCHSZE41. C42. C***************************************************************43. C44. C ------------------45. C INITIALIZATION ...46. C ------------------47. NEQNS = XBLK(NBLKS+1) - 148. ENVSZE = 149. DO 100 I = 1, NEQNS50. SMASK(I) = 051. MARKER(I) = 152. 100 CONTINUE53. C ------------------------54. C LOOP OVER THE BLOCKS ...55. C ------------------------56. DO 700 K = 1, NBLKS57. NHDSZE = 058. BLKBEG = XBLK(K)59. BLKEND = XBLK(K+1) - 160. DO 200 I = BLKBEG, BLKEND61. NODE = PERM(I)62. MARKER(NODE) = 063. 200 CONTINUE64. C -------------------------------------------65. C LOOP THROUGH THE NODES IN CURRENT BLOCK ...66. C -------------------------------------------67. DO 300 I = BLKBEG, BLKEND68. NODE = PERM(I)69. CALL REACH ( NODE, XADJ, ADJNCY, SMASK,70. 1 MARKER, RCHSZE, RCHSET(BLKBEG),71. 1 NEWNHD, RCHSET(NHDSZE+1) )72. NHDSZE = NHDSZE + NEWNHD73. IFIRST = MARKER(NODE)74. IFIRST = INVP(IFIRST)75. XENV(I) = ENVSZE76. ENVSZE = ENVSZE + I - IFIRST77. 300 CONTINUE78. C ------------------------------------------79. C RESET MARKER VALUES OF NODES IN NBRHD SET.80. C ------------------------------------------81. IF ( NHDSZE .LE. 0 ) GO TO 50082. DO 400 INHD = 1, NHDSZE83. NODE = RCHSET(INHD)84. MARKER(NODE) = 0



300 CHAPTER 7. ONE-WAY DISSECTION METHODS85. 400 CONTINUE86. C -----------------------------------------87. C RESET MARKER AND SMASK VALUES OF NODES IN88. C THE CURRENT BLOCK.89. C -----------------------------------------90. 500 DO 600 I = BLKBEG, BLKEND91. NODE = PERM(I)92. MARKER(NODE) = 093. SMASK(NODE) = 194. 600 CONTINUE95. 700 CONTINUE96. XENV(NEQNS+1) = ENVSZE97. ENVSZE = ENVSZE - 198. RETURN99. END7.4.4 Execution Time Analysis of the AlgorithmFor general partitioned matrices, the complexity of the diagonal block en-velope algorithm depends on the partitioning factor p, the sparsity of thematrix and the way blocks are connected. However, for one-way dissectionpartitionings, we have the following result.Theorem 7.4.5 Let G = (X;E) and P = fY1; � � � ; Ypg be a one-way dissec-tion partitioning. The complexity of the algorithm FNBENV is O(jEj).Proof: For a node xi in the �rst p� 1 blocks, the subroutine REACH, whencalled, merely looks through the adjacency list for the node xi. On the otherhand, when nodes in the last block Yp are processed, the adjacency lists forall the nodes in the graph are inspected at most once. Hence, in the entirealgorithm, the adjacency structure is gone through at most twice. 2Exercises7.4.1) Construct an example of a tree-partitioned matrix structure A toshow that FNTENV is not adequate to determine the exact envelopestructure of the block diagonal matrix Bdiag(F), where F is the�lled matrix of A.7.4.2) Give an example to show that Theorem 7.4.5 does not hold for alltree-partitionings P .



7.5. ADDITIONAL NOTES 3017.4.3) This question involves solving a sequence of st by st �nite elementmatrix problems Ax = b of the type studied in Section 7.3, withm = 5, 10, 15, and 20, and t = 2m. Set the diagonal elements ofA to 8, the o�-diagonal elements to �1, and arrange the right handside b so that the solution to the system is a vector of all ones. Usethe programs provided in Chapter 4 to solve these problems, takingcare to record the storage required and the execution times for eachphase of the solution of each problem. Repeat the procedure usingthe one-way dissection ordering subroutines provided in this chapter,along with the appropriate subroutines from Chapter 6. Compare thetwo methods for solving these problems with respect to the criteriadiscussed in Section 2.4 of Chapter 2.7.5 Additional NotesIt is interesting to speculate about more sophisticated ways of choosing theone-way dissectors. For example, instead of using a �xed �, one might insteaduse a sequence �i, i = 1; 2; � � �, where �i is obtained from local informationabout the part of the level structure that remains to be processed after the�rst i�1 dissectors have been chosen. Investigations such as these, aimed atthe development of robust heuristics, are good candidates for senior projectsand masters theses.The fundamental idea that makes the one-way dissection method e�ectiveis the use of the \throw-away" technique introduced in Section 6.3. Thistechnique can be recursively applied, as described in the additional notes atthe end of Chapter 6, which implies that the one-way dissection scheme ofthis chapter may also be similarly generalized. In its simplest form the ideais to also apply the one-way dissection technique to the � + 1 independentblocks, rather than ordering them using the RCM algorithm. The basicapproach for this two-level scheme is depicted in Figure 7.5.1.Of course the idea can be generalized to more than two levels, but apparentlyin practice using more than two levels does not yield signi�cant bene�t. Itcan be shown that for an k � k grid problem (s = t = k), if the optimal�1 and �2 are chosen, the storage and operation counts for this two levelordering are O(k7=3) and O(k10=3) respectively, compared to O(k5=2) andO(k7=2) for the ordinary (one-level) one-way dissection scheme as describedin this chapter (Ng [42]).
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kkkk kkkk kkkkkkk kkk kkkk k1234 891011 15161718567 121314 19202122 23t s� -

?
6

� -(t��1)(�1+1)?6(s��2)(�2+1)Figure 7.5.1: A two-level one-way dissection ordering, having �1 = 2 level-1dissectors, �2 = 3 level-2 dissectors, and (�1 + 1)(�2 + 1) = 12 independentblocks, which are numbered grid column by column.



Chapter 8Nested Dissection Methods8.1 IntroductionIn Chapter 7, we have studied the so-called one-way dissection method,and we have seen that it lends itself readily to the implicit tree-partitioningscheme of Chapter 6. In this chapter, we consider a di�erent dissectionmethod, which attempts to minimize �ll, just as the minimum degree algo-rithm described in Chapter 5 attempts to do.The nested dissection for matrix problems arising in �nite di�erence and�nite element applications. The main advantage of the algorithm of Sec-tion 8.3, compared to the minimum degree algorithm, is its speed, and itsmodest and predictable storage requirements. The orderings produced aresimilar in nature to those provided by the minimum degree algorithm, andfor this reason we do not deal with a storage scheme, allocation procedure,or numerical subroutines in this chapter. Those of Chapter 5 are appropriatefor nested dissection orderings.Separators, which we de�ned in Section 3.2, play a central role in the studyof sparse matrix factorization. Let A be a symmetric matrix and GA be itsassociated undirected graph. Consider a separator S in GA, whose removaldisconnects the graph into two parts whose node sets are C1 and C2.If the nodes in S are numbered after those of C1 and C2, this induces a par-titioning on the correspondingly ordered matrix and it has the form shownin Figure 8.1.1. The crucial observation is that the zero block in the matrixremains zero after the factorization. Since one of the primary purposes inthe study of sparse matrix computation is to preserve as many zero entriesas possible, the use of separators in this way is central. When appropriately303



304 CHAPTER 8. NESTED DISSECTION METHODSchosen, a (hopefully large) submatrix is guaranteed to stay zero. Indeed, theidea can be recursively applied, so that zeros can be preserved in the samemanner in the submatrices.�����������C1 C2S 0B@ A1 O V 1O A2 V 2V T1 V T2 AS 1CAFigure 8.1.1: Use of a separator to partition a matrix.The recursive application of this basic observation has come to be known asthe nested dissection method . George in 1973 [18] applied this technique tosparse systems associated with an s � s regular grid or mesh consisting of(s� 1)2 small elements. In the next section, we shall give a careful analysisof the method for this special problem.8.2 Nested Dissection of a Regular Grid8.2.1 The OrderingLet X be the set of vertices of the s � s regular grid. Let S0 consist of thevertices on a mesh line which as nearly as possible divides X into two equalparts R1 and R2. Figure 8.2.1 shows the case when s = 10.If we number the nodes of the two components R1 and R2 row by row, fol-lowed by those in S0, a matrix structure as shown in Figure 8.2.2 is obtained.Let us call this the one-level dissection ordering .To get a nested dissection ordering, we continue dissecting the remainingtwo components. Choose vertex setsSj � Rj ; j = 1; 2consisting of nodes lying on mesh lines which as nearly as possible divide Rjinto equal parts. If the variables associated with vertices in Rj�Sj are num-
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41 42 43 44 45 91 4 3 2 146 47 48 49 50 92 8 7 6 551 52 53 54 55 93 12 11 10 956 57 58 59 60 94 16 15 14 1361 62 63 64 65 95 20 19 18 1766 67 68 69 70 96 24 23 22 2171 72 73 74 75 97 28 27 26 2576 77 78 79 80 98 32 31 30 2981 82 83 84 85 99 36 35 34 3386 87 88 89 90 100 40 39 38 37
Figure 8.2.1: A one-level dissection ordering of a 10 by 10 grid.
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.Figure 8.2.2: Matrix structure associated with a one-level dissection order-ing.



8.2. NESTED DISSECTION OF A REGULAR GRID 307bered before those associated with Sj, we induce in the two leading principalsubmatrices exactly the same structure as that of the overall matrix.
50 49 57 42 41 91 6 5 13 156 55 58 48 47 92 12 11 14 452 51 59 44 43 93 8 7 15 254 53 60 46 45 94 10 9 16 390 89 88 87 86 95 40 39 38 3772 71 81 62 61 96 23 22 32 1774 73 82 64 63 97 25 24 33 1880 79 83 70 69 98 31 30 34 2176 75 84 66 65 99 27 26 35 1978 77 85 68 67 100 29 28 36 20

Figure 8.2.3: A nested dissection ordering of a 10 by 10 grid.The process can be repeated until the components left are not dissectable.This yields a nested dissection ordering . Figure 8.2.3 shows such an orderingon the 10 by 10 grid problem and Figure 8.2.4 shows the correspondinglyordered matrix structure. Note the recursive pattern in the matrix structure.8.2.2 Storage RequirementsNested dissection employs a strategy commonly known as divide and con-quer . The strategy splits a problem into smaller subproblems whose individ-ual solutions can be combined to yield the solution to the original problem.Moreover, the subproblems have structures similar to the original one sothat the process can be repeated recursively until the solutions to the sub-problems are trivial.In the study of such strategies, some forms of recursive equations need to besolved. We now provide some results in preparation for the analysis of the
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.Figure 8.2.4: Matrix structure associated with a nested dissection ordering.



8.2. NESTED DISSECTION OF A REGULAR GRID 309storage requirement for nested dissection orderings. The proofs of these areleft as exercises.Lemma 8.2.1 Let f(s) = 4f(s=2) + ks2 + O(s). Thenf(s) = ks2 log2 s+O(s2):Lemma 8.2.2 Let g(s) = g(s=2) + ks2 log2 s+ O(s2). Theng(s) = 43ks2 log2 s+ O(s2):Lemma 8.2.3 Let h(s) = 2h(s=2) + ks2 log2 s+O(s2). Thenh(s) = 2ks2 log2 s +O(s2):In order to give an analysis of the nested dissection orderings recursively,we introduce bordered s � s grids. A bordered s � s grid contains an s � ssubgrid, where one or more sides of this subgrid is bordered by an additionalgrid line. Figure 8.2.5 contains some examples of bordered 3 by 3 grids.We are now ready to analyze the storage requirement for the nested dis-section ordering. Let S(s; i) be the number of nonzeros in the factor of amatrix associated with an s� s grid ordered by nested dissection, where thegrid is bordered along i sides. Clearly, what we are after is the quantityS(s; 0). For our purposes, when i = 2, we always refer to the one as shownin Figure 8.2.5(c), rather than the grid in Figure 8.2.6:In what follows, we relate the quantities S(s; i), 0 � i � 4. Consider �rstS(s; 0). In Figure 8.2.7, a \+" shaped separator is used to divide the s � sgrid into 4 smaller subgrids. The variables in regions 1 , 2 , 3 and 4 areto be numbered before those in 5 so that a matrix structure of the form inFigure 8.2.8 is induced.The number of nonzeros in the factor comes from the Lii's (1 � i � 4) andthe L5i for 1 � i � 5. Now since the strategy is applied recursively on thesmaller subgrids, we have�(Lii) + �(L5i) � S(s=2; 2)for 1 � i � 4. As for L55 which corresponds to the nodes in the \+"separator, we can determine the number of nonzeros using Theorem 5.2.2.It is given by �(L55) = 2 3s=2Xi=s i+ s2=2 + O(s) = 7s2=4 + O(s):
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(a) (b)(c) (d)Figure 8.2.5: Some bordered 3 by 3 grids.

Figure 8.2.6: A di�erent type of bordered 3 by 3 grid.



8.2. NESTED DISSECTION OF A REGULAR GRID 311l5 l4l1 l2ligure 8.2.7: Dissection of an s by s grid.Thus, we obtain the �rst recursion equation:S(s; 0) = 4S(s2; 2) + 74s2 + O(s): (8.2.1)The other recursion equations can be established in the same way. In general,it can be expressed asS(s; i) = cost to store the 4 bordered s=2� s=2 subgrids +cost to store the \ + 00separator:We leave it to the reader to verify the following results.S(s; 2) = S(s=2; 2) + 2S(s=2; 3) + S(s=2; 4) + 19s2=4 +O(s)(8.2.2)S(s; 3) = 2S(s=2; 3) + 2S(s=2; 4) + 25s2=4 + O(s) (8.2.3)S(s; 4) = 4S(s=2; 4) + 31s2=4 + O(s): (8.2.4)Theorem 8.2.4 The number of nonzeros in the triangular factor L of amatrix associated with a regular s � s grid ordered by nested dissection isgiven by �(L) = 31(s2 log2 s)=4 +O(s2):Proof: The result follows from the recurrence relations (8.2.1)-(8.2.4). Ap-plying Lemma 8.2.1 to equation (8.2.4), we getS(s; 4) = 31(s2 log2 s)=4 +O(s2);
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AT51AT52AT53AT54@@@@@@@@@@@@@@@@@@@@L51 L52 L53 L54

L11 L22 L33 L44 L55Figure 8.2.8: Matrix structure for dissection in Figure 8.2.7.



s; 4)S(s; 3)S(s; 2)Figure 8.2.9: Illustrations of S(s; 2), S(s; 3) and S(s; 4).so that (8.2.3) becomesS(s; 3) = 2S(s=2; 3) + 31(s2 log2 s)=8 +O(s2):The solution to it gives, by Lemma 8.2.3,S(s; 3) = 31(s2 log2 s)=4 +O(s2):Substituting S(s; 3) and S(s; 4) into equation (8.2.2), we haveS(s; 2) = S(s=2; 2) + 93(s2 log2 s)=16 +O(s2):Again, the solution isS(s; 2) = 31(s2 log2 s)=4 + O(s2)so that �(L) = S(s; 0) = 31(s2 log2 s)=4 + O(s2) 2It is interesting to note from the proof of Theorem 8.2.4 that the asymptoticbounds for S(s; i), i = 0; 2; 3; 4 are all 31(s2 log2 s)=4. (What about i = 1?)8.2.3 Operation CountsLet A be a matrix associated with an s�s grid ordered by nested dissection.To estimate the number of operations required to factorA, we can follow thesame approach as used in the previous section. We �rst state some furtherresults on recursive equations.



314 CHAPTER 8. NESTED DISSECTION METHODSLemma 8.2.5 Let f(s) = f(s=2) + ks3 + O(s2 log2 s). Thenf(s) = 8ks3=7 + O(s2 log2 s):Lemma 8.2.6 Let g(s) = 2g(s=2) + ks3 + O(s2 log2 s). Theng(s) = 4ks3=3 + O(s2 log2 s):Lemma 8.2.7 Let h(s) = 4h(s=2) + ks3 + O(s2). Thenh(s) = 2ks3 + O(s2 log2 s):In parallel to S(s; i), we introduce �(s; i) to be the number of operationsrequired to factor a matrix associated with an s� s grid ordered by nesteddissection, where the grid is bordered on i sides. To determine �(s; 0), weagain consider Figure 8.2.7; clearly �(s; 0) is the cost of eliminating the fours=2� s=2 bordered subgrids, together with the cost of eliminating the nodesin the \+" dissector. Applying Theorem 2.2.2, we have�(s; 0) � 4�(s=2; 2) + 3s=2Xi=s i2 + 12 sXi=1 i2 (8.2.5)= 4�(s=2; 2) + 19s3=24 + s3=6 + O(s2)= 4�(s=2; 2) + 23s3=24 + O(s2): (8.2.6)We leave it to the reader to verify the following equations:�(s; 2) = �(s=2; 2) + 2�(s=2; 3) + �(s=2; 4) + 35s3=6 + O(s2)(8.2.7)�(s; 3) = 2�(s=2; 3) + 2�(s=2; 4) + 239s3=24 +O(s2) (8.2.8)�(s; 4) = 4�(s=2; 4) + 371s3=24 +O(s2): (8.2.9)Theorem 8.2.8 The number of operations required to factor a matrix as-sociated with an s by s grid ordered by nested dissection is given by829s3=84 +O(s2 log2 s):Proof: All that is required is to determine �(s; 0). Applying Lemma 8.2.7to equation (8.2.9), we obtain�(s; 4) = 371s3=12 + O(s2 log2 s):



8.2. NESTED DISSECTION OF A REGULAR GRID 315This means equation (8.2.8) can be rewritten as�(s; 3) = 2�(s=2; 3) + 849s3=48 + O(s2 log2 s):By Lemma 8.2.6, we have�(s; 3) = 283s3=12 + O(s2 log2 s):Substituting �(s; 3) and �(s; 4) into (8.2.7), we get�(s; 2) = �(s=2; 2) + 1497s3=96 + O(s2 log2 s);which is, by Lemma 8.2.5,�(s; 2) = 499s3=28 + O(s2 log2 s):Finally, from equation (8.2.5),�(s; 0) = 829s3=84 + O(s2 log2 s): 28.2.4 Optimality of the OrderingIn this section, we establish lower bounds on the number of nonzero entries inthe factor (primary storage) and the number of operations required to e�ectthe symmetric factorization for any ordering of the matrix system associatedwith an s � s regular grid. We show that at least O(s3) operations arerequired for its factorization and the corresponding lower triangular factormust have at least O(s2 log2 s) nonzero components. The nested dissectionordering described in Section 8.2.1 attains these lower bounds, so that theordering can be regarded as optimal in the order of magnitude sense.We �rst consider the lower bound on operations.Lemma 8.2.9 Let G = (X;E) be the graph associated with the s � s grid.Let x1, x2, � � �, xn be any ordering on G. Then there exists an xi such thatjReach(xi; fx1; � � � ; xi�1g)j � n � 1:Proof: Let xi be the �rst node to be removed which completely vacates arow or column of the grid. For de�niteness, let it be a column frowg. Atthis stage, there are at least (s�1) mesh rows fcolumnsg with uneliminatednodes. At least one in each of these rows fcolumnsg can be reached from xithrough the subset fx1; :::; xi�1g. This proves the lemma. 2



316 CHAPTER 8. NESTED DISSECTION METHODSTheorem 8.2.10 The factorization of a matrix associated with an s�s gridrequires at least O(s3) operations.Proof: By Lemma 8.2.9, there exists an xi such thatReach(xi; fx1; � � � ; xi�1g) [ fxigis a clique of size at least s in the �lled graph GF (A) (see Exercise 5.2.4 onpage 116). This corresponds to a full s� s submatrix in the �lled matrix Fso that symmetric factorization requires at least s3=6 +O(s2) operations. 2The proof for the lower bound on primary storage follows a di�erent argu-ment. For each k � k subgrid, the following lemma identi�es a special edgein the resulting �lled graph.Lemma 8.2.11 Consider any k � k subgrid in the given s � s grid. Thereexists an edge in GF joining a pair of parallel boundary lines in the subgrid.Proof: There are four boundary mesh lines in the k � k subgrid. Let xibe the �rst boundary node in the subgrid to be removed that completelyvacates a boundary line (sot including the corner vertices).
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Figure 8.2.10: The status of a grid when the �rst boundary is eliminated.



8.2. NESTED DISSECTION OF A REGULAR GRID 317Then there always exist two nodes in the remaining parallel boundary linesthat are linked through fx1; x2; � � � ; xi�1; xig:(See the nodes pointed to in the Figure 8.2.10.) In other words, there is anedge joining them in GF . 2Theorem 8.2.12 The triangular factor of a matrix associated with an s�sgrid has at least O(s2 log2 s) nonzeros.Proof: Consider each subgrid of size k. It follows from Lemma 8.2.11 thatthere is an edge in GF joining a pair of parallel boundary lines in the subgrid.Each such edge can be chosen for at most k subgrids of size k. Since thenumber of subgrids of size k is (s�k+1)2, the number of such distinct edgesis bounded below by (s� k + 1)2k :Futhermore, for subgrids of di�erent sizes, the corresponding edges must bedi�erent. So, we havejEF j � sXk=1 (s� k + 1)2k � s2 log2 s: 2Exercises8.2.1) Let A be the matrix associated with an s � s grid, ordered by theone-level dissection scheme. Show thata) the number of operations required to perform the symmetric fac-torization is 1324s4 + O(s3)b) the number of nonzeros in the factor L is s3 +O(s2).8.2.2) Prove the recursive equations in Lemmas 8.2.1-8.2.3 and Lemmas 8.2.5-8.2.7.8.2.3) In establishing equation (8.2.7) for �(s; 2), we assumed that the \+"separator is ordered as in (a).Assume �0(s; 2) is the corresponding cost if (b) is used. Show that�0(s; 2) = �0(s=2; 2) + 2�(s=2; 3) + �(s=2; 4) + 125s3=24 +O(s2):How does it compare to �(s; 2) ?



318 CHAPTER 8. NESTED DISSECTION METHODS.................................................... ............. ....................................... ............................................................................................................................................................................................................................. ..............................................................................��b)(a) 321231Figure 8.2.11: Di�erent ways of labelling the `+' separator.8.2.4) Prove results similar to Theorems 8.2.4 and 8.2.9 for an s � t gridwhere s is large and s < t.8.2.5) Prove that any ordering of an s � s grid must yield a matrix whosebandwidth is at least s� 1.8.2.6) Consider the s � s grid. It is known that the associated graph G =(X;E) satis�es the isoparametric inequality : for any subset S, ifjSj � s2=2 then jAdj(S)j � jSj1=2. Prove that any ordering on Gyields a pro�le of at least O(s3).8.2.7) Suppose one carries out \incomplete nested dissection" on the s �s grid problem (George et al. [22]). That is, one only carries outthe dissection l levels, where l < log2 s, and numbers the remainingindependent grid subarrays row by row. Show that if l � log2(ps)then the operation count for this ordering remains O(s3). Show thatthe number of nonzeros in the corresponding factor L is O(s2ps).8.2.8) Using a method due to Strassen [52], and extended by Bunch andHopcroft [5], it is possible to solve a dense s � s system of linearequations, and to multiply two dense s � s matrices together, inO(slog27) operations. Using this result, along with modi�cations toLemmas 8.2.5-8.2.7, show that the s�s grid problem can be solved inO(slog27) operations, using the nested dissection ordering (Rose [45]).



8.3. NESTED DISSECTION OF GENERAL PROBLEMS 3198.3 Nested Dissection of General Problems8.3.1 A Heuristic AlgorithmThe optimality of the nested dissection ordering for the s � s grid problemhas been established in the previous section. The underlying idea of splittingthe grid into two pieces of roughly equal size with a small separator is clearlyimportant. In this section, we describe a heuristic algorithm that applies thisstrategy for orderings of general graphs.How do we �nd a small separator to disconnect a given graph into compo-nents of approximately equal size? The method is to generate a long levelstructure of the graph and then choose a small separator from a \middle"level. The overall dissection ordering algorithm is described below. LetG = (X;E) be the given graph.Step 1 (Initialization) Set R = X , and n = jX j.Step 2 (Generate a level structure) Find a connected component G(C) inG(R) and construct a level structure of the component G(C) rooted ata pseudo-peripheral node r :L(r) = fL0; L1; � � � ; Llg:Step 3 (Find separator) If l � 2, set S = C and go to Step 4. Otherwiselet j = b(l + 1)=2c, and determine the set S � Lj, whereS = fy 2 Lj j Adj(y)\ Lj+1 6= �g:Step 4 (Number separator and loop) Number the nodes in the separator Sfrom n � jSj+ 1 to n. Reset R  R � S and n  n � jSj. If R 6= �,go to Step 2.In Step 3 of the algorithm, the separator set S can be obtained by simplydiscarding nodes in Lj which are not adjacent to any node in Lj+1. In manycases, this reduces the size of the separators.8.3.2 Computer ImplementationThe set of subroutines which implements the nested dissection ordering al-gorithm consists of those shown in Figure 8.3.1:The subroutines FNROOT and ROOTLS have been described in Section 4.4.3and the utility subroutine REVRSE was described in Section 7.3.2. The othertwo are described below.



320 CHAPTER 8. NESTED DISSECTION METHODSGENNDFNDSEPFNROOTROOTLS REVRSE���� HHHH
Figure 8.3.1: Control relation of subroutines for the nested dissection algo-rithm.GENND (GENeral Nested Dissection ordering)This is the driver subroutine for this set of subroutines. It is used to de-termine a nested dissection ordering for a general disconnected graph. Theinput graph is given by NEQNS and (XADJ, ADJNCY), and the output order-ing is returned in the vector PERM. The working vector MASK is used to masko� nodes that have been numbered during the ordering process. Two moreworking vectors (XLS, LS) are required and they are used by the calledsubroutine FNDSEP.The subroutine begins by initializing the vector MASK. It then goes throughthe graph until it �nds a node i not yet numbered. This node i de�nes acomponent in the unnumbered portion of the graph. The subroutine FNDSEPis then called to �nd a separator in the component. Note that the separatoris collected in the vector PERM starting at position NUM + 1. So, after allnodes have been numbered, the vector PERM has to be reversed to get the�nal ordering.1. C***************************************************************2. C***************************************************************3. C******** GENND ..... GENERAL NESTED DISSECTION ********4. C***************************************************************5. C***************************************************************6. C



8.3. NESTED DISSECTION OF GENERAL PROBLEMS 3217. C PURPOSE - SUBROUTINE GENND FINDS A NESTED DISSECTION8. C ORDERING FOR A GENERAL GRAPH.9. C10. C11. C INPUT PARAMETERS -12. C NEQNS - NUMBER OF EQUATIONS.13. C (XADJ, ADJNCY) - ADJACENCY STRUCTURE PAIR.14. C15. C OUTPUT PARAMETERS -16. C PERM - THE NESTED DISSECTION ORDERING.17. C18. C WORKING PARAMETERS -19. C MASK - IS USED TO MASK OFF VARIABLES THAT HAVE20. C BEEN NUMBERED DURING THE ORDERNG PROCESS.21. C (XLS, LS) - THIS LEVEL STRUCTURE PAIR IS USED AS22. C TEMPORARY STORAGE BY FNROOT.23. C24. C PROGRAM SUBROUTINES -25. C FNDSEP, REVRSE.26. C27. C***************************************************************28. C29. SUBROUTINE GENND ( NEQNS, XADJ, ADJNCY, MASK,30. 1 PERM, XLS, LS )31. C32. C***************************************************************33. C34. INTEGER ADJNCY(1), MASK(1), LS(1), PERM(1),35. 1 XLS(1)36. INTEGER XADJ(1), I, NEQNS, NSEP, NUM, ROOT37. C38. C***************************************************************39. C40. DO 100 I = 1, NEQNS41. MASK(I) = 142. 100 CONTINUE43. NUM = 044. DO 300 I = 1, NEQNS45. C -----------------------------46. C FOR EACH MASKED COMPONENT ...47. C -----------------------------48. 200 IF ( MASK(I) .EQ. 0 ) GO TO 30049. ROOT = I50. C -------------------------------------------51. C FIND A SEPARATOR AND NUMBER THE NODES NEXT.52. C -------------------------------------------53. CALL FNDSEP ( ROOT, XADJ, ADJNCY, MASK,



322 CHAPTER 8. NESTED DISSECTION METHODS54. 1 NSEP, PERM(NUM+1), XLS, LS )55. NUM = NUM + NSEP56. IF ( NUM .GE. NEQNS ) GO TO 40057. GO TO 20058. 300 CONTINUE59. C ----------------------------------------------60. C SINCE SEPARATORS FOUND FIRST SHOULD BE ORDERED61. C LAST, ROUTINE REVRSE IS CALLED TO ADJUST THE62. C ORDERING VECTOR.63. C ----------------------------------------------64. 400 CALL REVRSE ( NEQNS, PERM )65. RETURN66. ENDFNDSEP (FiND SEParator)This subroutine is used by GENND to �nd a separator for a connected sub-graph. The connected component is speci�ed by the input parameters ROOT,XADJ, ADJNCY and MASK. Returned from FNDSEP is the separator in (NSEP,SEP). The array pair (XLS, LS) is used to store a level structure of thecomponent.The subroutine �rst generates a level structure rooted at a pseudo-peripheralnode by calling FNROOT. If the number of levels is less than 3, the wholecomponent is returned as the \separator." Otherwise, a middle level, givenby MIDLVL is determined. The loop DO 500 I = ... goes through thenodes in this middle level. A node is included in the separator if it has someneighbor in the next level. The separator is then returned in (NSEP, SEP).1. C***************************************************************2. C***************************************************************3. C************ FNDSEP ..... FIND SEPARATOR ************4. C***************************************************************5. C***************************************************************6. C7. C PURPOSE - THIS ROUTINE IS USED TO FIND A SMALL8. C SEPARATOR FOR A CONNECTED COMPONENT SPECIFIED9. C BY MASK IN THE GIVEN GRAPH.10. C11. C INPUT PARAMETERS -12. C ROOT - IS THE NODE THAT DETERMINES THE MASKED13. C COMPONENT.14. C (XADJ, ADJNCY) - THE ADJACENCY STRUCTURE PAIR.15. C



8.3. NESTED DISSECTION OF GENERAL PROBLEMS 32316. C OUTPUT PARAMETERS -17. C NSEP - NUMBER OF VARIABLES IN THE SEPARATOR.18. C SEP - VECTOR CONTAINING THE SEPARATOR NODES.19. C20. C UPDATED PARAMETER -21. C MASK - NODES IN THE SEPARATOR HAVE THEIR MASK22. C VALUES SET TO ZERO.23. C24. C WORKING PARAMETERS -25. C (XLS, LS) - LEVEL STRUCTURE PAIR FOR LEVEL STRUCTURE26. C FOUND BY FNROOT.27. C28. C PROGRAM SUBROUTINES -29. C FNROOT.30. C31. C***************************************************************32. C33. SUBROUTINE FNDSEP ( ROOT, XADJ, ADJNCY, MASK,34. 1 NSEP, SEP, XLS , LS )35. C36. C***************************************************************37. C38. INTEGER ADJNCY(1), LS(1), MASK(1), SEP(1), XLS(1)39. INTEGER XADJ(1), I, J, JSTOP, JSTRT, MIDBEG,40. 1 MIDEND, MIDLVL, MP1BEG, MP1END,41. 1 NBR, NLVL, NODE, NSEP, ROOT42. C43. C***************************************************************44. C45. CALL FNROOT ( ROOT, XADJ, ADJNCY, MASK,46. 1 NLVL, XLS, LS )47. C ----------------------------------------------48. C IF THE NUMBER OF LEVELS IS LESS THAN 3, RETURN49. C THE WHOLE COMPONENT AS THE SEPARATOR.50. C ----------------------------------------------51. IF ( NLVL .GE. 3 ) GO TO 20052. NSEP = XLS(NLVL+1) - 153. DO 100 I = 1, NSEP54. NODE = LS(I)55. SEP(I) = NODE56. MASK(NODE) = 057. 100 CONTINUE58. RETURN59. C ----------------------------------------------------60. C FIND THE MIDDLE LEVEL OF THE ROOTED LEVEL STRUCTURE.61. C ----------------------------------------------------62. 200 MIDLVL = (NLVL + 2)/2



324 CHAPTER 8. NESTED DISSECTION METHODS63. MIDBEG = XLS(MIDLVL)64. MP1BEG = XLS(MIDLVL + 1)65. MIDEND = MP1BEG - 166. MP1END = XLS(MIDLVL+2) - 167. C -------------------------------------------------68. C THE SEPARATOR IS OBTAINED BY INCLUDING ONLY THOSE69. C MIDDLE-LEVEL NODES WITH NEIGHBORS IN THE MIDDLE+170. C LEVEL. XADJ IS USED TEMPORARILY TO MARK THOSE71. C NODES IN THE MIDDLE+1 LEVEL.72. C -------------------------------------------------73. DO 300 I = MP1BEG, MP1END74. NODE = LS(I)75. XADJ(NODE) = - XADJ(NODE)76. 300 CONTINUE77. NSEP = 078. DO 500 I = MIDBEG, MIDEND79. NODE = LS(I)80. JSTRT = XADJ(NODE)81. JSTOP = IABS(XADJ(NODE+1)) - 182. DO 400 J = JSTRT, JSTOP83. NBR = ADJNCY(J)84. IF ( XADJ(NBR) .GT. 0 ) GO TO 40085. NSEP = NSEP + 186. SEP(NSEP) = NODE87. MASK(NODE) = 088. GO TO 50089. 400 CONTINUE90. 500 CONTINUE91. C -------------------------------92. C RESET XADJ TO ITS CORRECT SIGN.93. C -------------------------------94. DO 600 I = MP1BEG, MP1END95. NODE = LS(I)96. XADJ(NODE) = - XADJ(NODE)97. 600 CONTINUE98. RETURN99. ENDExercises8.3.1) This problem involves modifying GENND and FNDSEP to implementa form of \incomplete nested dissection." Add a parameter MINSZEto both subroutines, and modify FNDSEP so that it only dissects thecomponent given to it if the number of nodes in the component isgreater than MINSZE. Otherwise, the component should be numbered



8.4. ADDITIONAL NOTES 325using the RCM subroutine from Chapter 4. Conduct an experiment toinvestigate whether the result you are asked to prove in Exercise 8.2.7on page 318 appears to hold for the heuristic orderings produced bythe algorithm of this section. One way to do this would be to solvea sequence of problems of increasing size, such as the test set #2from Chapter 9, with MINSZE set to pn. (For the s�s grid problem,note that l � log2(ps) implies that the �nal level independent blockshave O(s) nodes. That is, O(pn) nodes, where n = s2.) Monitor theoperation counts for these problems, and compare them to the cor-responding values for the original (complete) dissection algorithm.Similarly, you could compare storage requirements to see if they ap-pear to grow as npn for your incomplete dissection algorithm.8.3.2) Show that in the algorithm of Section 8.3.1, the number of �lls andfactorization operation count are independent of the order the nodesin the separator are numbered.8.4 Additional NotesLipton, Tarjan and Rose [36] have provided a major advance in the develop-ment of automatic nested dissection algorithms. The key to their algorithmis a fundamental result by Lipton and Tarjan [37] showing that the nodesof any n-node planar graph can be partitioned into three sets A, B, andC where Adj(A) \ B = �, jCj is O(pn), and jAj and jBj are bounded by2n=3. They also provided an algorithm which �nds A, B, and C in O(n)time. Using this result Lipton et al. have developed an ordering algorithmfor two dimensional �nite element problems for which the O(n3=2) operationand O(n log2 n) storage bounds are guaranteed. Moreover, the ordering al-gorithm itself runs in O(n log2 n) time. On the negative side, their algorithmappears to be substantially more complicated than the simple heuristic onegiven in this chapter. A practical approach might be to combine the twomethods, and use their more sophisticated scheme only if the simple ap-proach in this chapter yields a \bad" separator.The use of nested dissection ideas has been shown to be e�ective for problemsassociated with three dimensional structures. (George [18], Du� et al. [11],Rose [45], Eisenstat et al. [14].) Thus, research into automatic nested dis-section algorithms for these non-planar problems appears to be a potentiallyfertile area.



326 CHAPTER 8. NESTED DISSECTION METHODSThe use of dissection methods on parallel and vector computers has beeninvestigated by numerous researchers (Calahan [6, 7], George et al. [21],Lambiotte [34]). Vector computers tend to be most e�cient if they can op-erate on \long" vectors, but the use of dissection techniques tend to produceshort vectors, unless some unconventional methods of arranging the data areemployed. Thus, the main issue in these studies involves balancing severalcon
icting criteria to produce the best solution time. Often this does notcorrespond at all closely to minimizing the arithmetic performed.



Chapter 9Numerical Experiments9.1 IntroductionIn Chapter 1 we asserted that the success of algorithms for sparse matrixcomputations depends crucially on the quality of their computer implemen-tations. This is why we have included computer implementations of thealgorithms discussed in the previous chapters, and have provided a detaileddiscussion of how those programs work. In this chapter we provide resultsfrom numerical experiments where these subroutines have been used to solvesome test problems.Our primary objective here is to provide some concrete examples which illus-trate the points made in Section 2.4, where \practical considerations" werediscussed, and where it was pointed out how complicated it is to compare dif-ferent methods. Data structures vary in their complexity, and the executiontime for solving a problem consists of several components whose importancevaries with the ordering strategy and the problem. The numerical resultsprovided in this chapter give the user information to gauge the signi�canceof some of these points.As an attractive byproduct, the reader is supplied with data about the ab-solute time and storage requirements for some representative sparse matrixcomputations on a typical computer.The test problems are of one speci�c type, typical of those arising in �niteelement applications. Our justi�cation for this is that we are simply tryingto provide some evidence illustrating the practical points made earlier; weregard it as far too ambitious to attempt to gather evidence about the relativemerits of di�erent methods over numerous classes of problems. It is more327



328 CHAPTER 9. NUMERICAL EXPERIMENTSor less self-evident that for some classes of problems, one method may beuniformly better than all others, or that the relative merits of the methods inour book may be entirely di�erent for other classes of problems. Restrictingour attention to problems of one class simply removes one of the variablesin an already complicated study.Nevertheless, the test problems do represent a large and important applica-tion area for sparse matrix techniques, and have the additional advantagethat they are associated with physical objects (meshes) which provide uswith a picture (graph) of the matrix problem.An outline of the remaining parts of this chapter is as follows. In Section 9.2we describe the test problems, and in Section 9.3 we describe the informa-tion supplied in some of the tables, along with the reasons for providingit. These tables, containing the \raw" experimental data, appear at theend of Section 9.3. In Section 9.4 we review the main criteria used in com-paring methods, and then proceed to compare �ve methods, according tothese criteria, when applied to the test problems. Finally, in Section 9.5 weconsider the in
uence of the di�erent storage schemes on the storage andcomputational e�ciency of the numerical subroutines.9.2 Description of the Test ProblemsThe two sets of test problems are positive de�nite matrix equations typical ofthose which might arise in structural analysis or the study of heat conduction(Zienkiewicz [58]). (For an excellent tutorial see Chapter 6 of Strang [51].)The problems are derived from the triangular meshes shown in Figure 9.2.1as follows. The basic meshes shown are subdivided by a factor s in theobvious way, yielding a mesh having s2 as many triangles as the original, asshown in Figure 9.2.2 for the pinched hole domain with s = 3. Providing abasic mesh along with a subdivision factor determines a new mesh havingN nodes. Then, for some labelling of these N nodes, we generate an N byN symmetric positive de�nite matrix problem Ax = b, where aij 6= 0 if andonly if nodes of the mesh are joined by an edge. Thus, the generated meshescan be viewed as the graphs of the corresponding matrix problem.The two sets of test problems are derived from these meshes. Test set #1 issimply the nine mesh problems, subdivided by an appropriate factor so thatthe resulting matrix problems have about 1000{1500 equations, as shownin Table 9.2.1. The second set of problems is a sequence of nine graded-Lproblems obtained by subdividing the initial graded-L mesh of Figure 9.2.1



9.3. THE NUMBERS REPORTED AND WHAT THEY MEAN 329by subdivision factors s = 4; 5; : : : ; 12, as indicated in Table 9.2.2.Problem Subdivision factor N jEjSquare 32 1089 3136Graded L 8 1009 2928+ domain 9 1180 3285H domain 8 1377 3808Small hole 12 936 2665Large hole 9 1440 40323 holes 6 1138 31566 holes 6 1141 3162Pinched hole 19 1349 3876Table 9.2.1: Data on test problem set #1 with the subdivision factors usedto generate the problems, the number of equations obtained, and the numberof edges in the corresponding graphs.Subdivision factor N jEj4 265 7445 406 11556 577 16567 778 22478 1009 29289 1270 369910 1561 456011 1882 551112 2233 6552Table 9.2.2: Data on test problem set #2, which is derived from the Graded-L mesh with subdivision factors s = 4; 5; � � � ; 12.9.3 The Numbers Reported and What They MeanIn Chapters 4 through 8 we have described �ve methods, which in thischapter we refer to by the mnemonics RCM (reverse Cuthill-McKee), RQT(re�ned quotient tree), 1WD (one-way dissection), QMD (quotient minimum
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Figure 9.2.1: Mesh problems with s = 1.
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Figure 9.2.2: Pinched hole domain with subdivision factor s = 3.



332 CHAPTER 9. NUMERICAL EXPERIMENTSdegree), and ND (nested dissection). Recall that we described only threebasic data structures and corresponding numerical subroutines, because itis appropriate to use the same data structures with the one-way dissectionand re�ned quotient tree orderings, and similarly for the minimum degreeand nested dissection orderings.In the tables at the end of this section, operations mean multiplicative op-erations (multiplications and divisions). For reasons already discussed inChapter 2, we regard this as a reasonable measure of the amount of arith-metic performed, since arithmetic operations in matrix computations typi-cally occur in multiply-add pairs. Execution time is reported in seconds onan IBM 3031 computer, a fairly recent architecture using high speed cachememory, and on which typical operations take from .4 microseconds for asimple �xed-point register-to-register operation, to about 7 microseconds fora 
oating-point division. As is usual in multiprogrammed operating systemenvironments, accurate timing results are di�cult to obtain and may be inerror by up to 10 percent. We have attempted to reduce these errors some-what by making multiple runs, and running when the computer was lightlyloaded. The programs were all compiled using the optimizing version of thecompiler, which usually generates very e�cient machine code.Recall that we concluded in Section 2.4 that in some comparisons of orderingstrategies, it might be reasonable to ignore one or more of the four basicsteps in the overall solution procedure. For this reason, in the numericalexperiments we report execution times for each of the four individual steps:order, allocate, factor, and solve.There are four storage statistics reported in the tables: order storage, al-location storage, total (solution) storage, and overhead storage. All our ex-periments were performed within the framework of a sparse matrix packagecalled SPARSPAK ([24, 25]) which allocates all array storage from a singleone dimensional array. The order storage, allocation storage, and solutionstorage reported is the amount of storage used from that array. Thus, wefeel that these numbers represent the amount of storage required when thevarious subroutines are used in a practical setting, rather than the irreducibleminimum necessary to execute the subroutines. To illustrate this point, notethat one does not need to preserve the original graph when one uses the QMDordering subroutine, (which destroys its input graph during execution) but inmost practical applications one would preserve the graph since it is requiredfor the subsequent symbolic factorization step. Thus, the ordering storageentries under QMD in the tables include the space necessary to preserve theoriginal graph.



9.3. THE NUMBERS REPORTED AND WHAT THEY MEAN 333As another example, it is obviously not necessary to preserve PERM and INVPafter the allocation has been performed, since the numerical factorization andsolution subroutines do not use these arrays. However, in most situationsthe arrays would be saved in order to place the numerical values of A andb in the appropriate places in the data structure, and to replace the valuesof x in the original order after the (permuted) solution has been computed.In Table 9.3.1 we list the arrays included in our storage reporting, for thedi�erent phases of the computation (order, allocate, factorization, solution),and for the �ve methods. The notation A(B) in Table 9.3.1 means arraysA and B use the same storage space, in sequence.Strictly speaking, we should distinguish between factorization storage andtriangular solution storage, since several arrays required by TSFCT and GSFCTare not required by their respective solvers. However, the storage for thesearrays will usually be relatively small, compared to the total storage requiredfor the triangular solution. Thus, we report only \solution storage" in ourtables.So far our discussion about storage reporting has dealt only with the �rstthree categories: ordering, allocation, and numerical solution. The fourthcategory is \overhead storage," which is included in order to illustrate howmuch of the total storage used during the factorization/solution phase isoccupied by data [other than the nonzeros in L and the right hand side] b(which is overwritten by x). If a storage location is not being used to storea component of L or b, then we count it as overhead storage. The arraysmaking up the overhead storage entries are underlined in Table 9.3.1. Notethat solution storage includes overhead storage.There is another reason for reporting overhead storage as a separate item.On computers having a large word size, it may be sensible to pack severalintegers per word. Indeed, some computer manufacturers provide short inte-ger features directly in their Fortran languages. For example, IBM Fortranallows one to declare integers as INTEGER*2 or INTEGER*4, which will be rep-resented using 16 or 32 bits respectively. Since much of the overhead storageinvolves integer data, the reader can gauge the potential storage savings tobe realized if the Fortran processor one is using provides these short integerfeatures. However, note that all the experiments were performed on an IBM3031 in single precision, and both integers and 
oating point numbers arerepresented using 32 bits.



334 CHAPTER 9. NUMERICAL EXPERIMENTSOrder Allocate SolutionRCM XADJ,ADJNCY,PERM, XLS,MASK XADJ,ADJNCY,PERM, INVP PERM, INVP, RHS, XENV,ENV, DIAG
1WD XADJ,ADJNCY,PERM, BNUM,LS(SUBG),XBLK, MASK,XLS XADJ,ADJNCY,PERM, INVP,XBLK, MASK,MARKER,FATHER,XENV,NZSUBS,RCHSET(XNONZ) PERM, INVP, RHS, XENV,ENV, DIAG, XNONZ,NZSUBS, NONZ, TEMPV,FIRST
RQT XADJ,ADJNCY,PERM, XBLK,MASK,NODLVL(BNUM),XLS,LS(SUBG) XADJ,ADJNCY,PERM, INVP,XBLK, MASK,FATHER,XENV, XNONZ,NZSUBS same as aboveND XADJ,ADJNCY,PERM, LS,XLS, MASK XADJ,ADJNCY,PERM, INVP,XLNZ,XNZSUB,NZSUB,MRGLNK,RCHLNK,MARKER PERM, INVP, RHS, XNZSUB,NZSUB, XLNZ, LNZ, DIAG,LINK, FIRST, TEMPV
QMD XADJ, 2 copiesof ADJNCY,PERM,MARKER, DEG,RCHSET,NBRHD,QSIZE, QLINK same as above same as aboveTable 9.3.1: Arrays included in reported storage requirements for each phaseof the �ve methods. Storage required for the underlined arrays in the Solu-tion column is reported as \overhead storage."



9.3. THE NUMBERS REPORTED AND WHAT THEY MEAN 335Problem Order Allocation SolutionTime Store Time Store Time Operations StoreFact. Solve Fact. Solve TotalOvrhd936 0.21 0.91 0.04 0.91 2.85 0.40 30.18 4.55 2.65 0.281009 0.27 0.99 0.04 0.99 3.43 0.46 37.49 5.25 3.03 0.301089 0.24 1.06 0.05 1.06 3.25 0.45 34.46 5.11 2.99 0.331440 0.32 1.38 0.06 1.38 4.74 0.62 53.75 7.23 4.19 0.431180 0.32 1.13 0.06 1.13 2.86 0.44 31.87 5.17 3.06 0.351377 0.30 1.31 0.06 1.31 1.99 0.40 18.64 4.34 2.72 0.411138 0.30 1.09 0.06 1.09 2.81 0.45 28.88 4.92 2.92 0.341141 0.25 1.09 0.05 1.09 4.40 0.52 54.08 6.75 3.83 0.341349 0.36 1.31 0.06 1.31 5.74 0.69 64.95 7.95 4.52 0.40Table 9.3.2: Results of the RCM method applied to test set #1. (Operationsand storage scaled by 10�4)Problem Order Allocation SolutionTime Store Time Store Time Operations StoreFact. Solve Fact. Solve TotalOvrhd936 0.38 1.19 0.25 1.24 3.39 0.36 26.60 3.06 1.72 0.611009 0.47 1.29 0.28 1.35 5.47 0.40 44.90 3.66 1.94 0.661089 0.45 1.39 0.30 1.46 5.23 0.42 41.48 3.62 2.03 0.721440 0.60 1.81 0.39 1.89 4.43 0.52 33.04 4.32 2.51 0.941180 0.55 1.48 0.33 1.56 3.35 0.42 24.50 3.48 2.03 0.781377 0.57 1.73 0.37 1.82 3.25 0.49 21.41 3.57 2.21 0.921138 0.52 1.43 0.30 1.49 3.17 0.41 23.56 3.48 1.98 0.751141 0.46 1.43 0.31 1.49 5.10 0.44 41.08 3.77 2.07 0.741349 0.61 1.72 0.36 1.79 7.03 0.56 58.38 4.79 2.57 0.88Table 9.3.3: Results of the 1WD method applied to test set #1. (Operationsand storage scaled by 10�4)



336 CHAPTER 9. NUMERICAL EXPERIMENTSProblem Order Allocation SolutionTime Store Time Store Time Operations StoreFact. Solve Fact. Solve TotalOvrhd936 0.18 1.19 0.15 1.19 4.17 0.53 32.84 4.85 2.14 0.751009 0.26 1.29 0.16 1.30 4.88 0.59 39.32 5.49 2.38 0.811089 0.22 1.39 0.17 1.40 4.68 0.61 37.04 5.43 2.45 0.881440 0.29 1.81 0.22 1.81 6.75 0.82 55.46 7.44 3.29 1.151180 0.31 1.48 0.19 1.49 2.39 0.54 13.52 3.41 2.04 0.951377 0.28 1.74 0.21 1.74 2.30 0.58 11.69 3.53 2.27 1.121138 0.30 1.43 0.17 1.43 4.32 0.60 21.98 5.13 2.41 0.911141 0.23 1.42 0.17 1.42 7.18 0.72 63.98 6.92 2.86 0.911349 0.36 1.72 0.21 1.72 7.79 0.86 67.68 8.30 3.42 1.08Table 9.3.4: Results of the RQT method applied to test set #1. (Operationsand storage scaled by 10�4)Problem Order Allocation SolutionTime Store Time Store Time Operations StoreFact. Solve Fact. Solve TotalOvrhd936 0.77 1.00 0.24 1.78 2.19 0.29 16.25 2.96 2.73 1.151009 0.95 1.09 0.25 1.97 3.77 0.37 31.11 4.00 3.38 1.291089 0.92 1.17 0.27 2.10 3.40 0.37 26.82 3.91 3.43 1.361440 1.35 1.53 0.34 2.68 2.69 0.41 19.05 4.06 3.90 1.721180 1.10 1.25 0.28 2.17 2.05 0.31 14.22 3.15 3.09 1.401377 1.20 1.45 0.32 2.51 2.34 0.36 15.71 3.59 3.54 1.611138 1.15 1.20 0.27 2.11 2.32 0.32 16.89 3.32 3.14 1.371141 1.14 1.20 0.27 2.13 2.32 0.32 17.23 3.34 3.16 1.381349 1.39 1.45 0.33 2.60 4.48 0.48 35.48 4.98 4.31 1.69Table 9.3.5: Results of the ND method applied to test set #1. (Operationsand storage scaled by 10�4)



9.3. THE NUMBERS REPORTED AND WHAT THEY MEAN 337Problem Order Allocation SolutionTime Store Time Store Time Operations StoreFact. Solve Fact. Solve TotalOvrhd936 1.47 1.91 0.21 1.80 2.27 0.30 19.34 3.11 2.83 1.181009 1.57 2.08 0.24 1.97 3.37 0.37 30.91 3.95 3.36 1.291089 1.78 2.23 0.26 2.12 3.00 0.36 26.31 3.85 3.42 1.381440 2.33 2.91 0.34 2.74 2.70 0.42 21.62 4.21 4.04 1.791180 1.89 2.38 0.27 2.19 1.44 0.27 9.86 2.72 2.90 1.421377 2.09 2.76 0.30 2.52 1.50 0.30 10.00 2.99 3.25 1.621138 1.97 2.29 0.27 2.15 1.82 0.29 13.80 3.04 3.04 1.411141 2.07 2.29 0.27 2.17 2.03 0.31 16.24 3.24 3.14 1.431349 2.07 2.76 0.32 2.62 3.70 0.46 32.41 4.41 4.26 1.71Table 9.3.6: Results of the QMD method applied to test set #1. (Operationsand storage scaled by 10�4)Problem Order Allocation SolutionTime Store Time Store Time Operations StoreFact. Solve Fact. Solve TotalOvrhd265 0.07 0.25 0.01 0.25 0.33 0.07 2.97 0.75 0.48 0.08406 0.12 0.39 0.02 0.39 0.71 0.13 6.62 1.39 0.86 0.12577 0.16 0.56 0.03 0.56 1.30 0.21 12.88 2.32 1.39 0.17778 0.22 0.76 0.03 0.76 2.15 0.32 22.78 3.59 2.10 0.231009 0.27 0.99 0.05 0.99 3.43 0.46 37.49 5.25 3.03 0.301270 0.34 1.25 0.06 1.25 5.19 0.62 58.37 7.36 4.19 0.381561 0.42 1.54 0.07 1.54 7.50 0.83 86.95 9.97 5.61 0.471882 0.51 1.86 0.09 1.86 10.62 1.11 124.90 13.14 7.32 0.562233 0.62 2.20 0.10 2.20 14.44 1.40 174.10 16.91 9.32 0.67Table 9.3.7: Results of the RCM method applied to test set #2. (Operationsand storage scaled by 10�4)



338 CHAPTER 9. NUMERICAL EXPERIMENTSProblem Order Allocation SolutionTime Store Time Store Time Operations StoreFact. Solve Fact. Solve TotalOvrhd265 0.12 0.33 0.07 0.35 0.65 0.09 4.38 0.69 0.42 0.18406 0.18 0.52 0.11 0.54 1.29 0.15 9.25 1.18 0.69 0.27577 0.27 0.74 0.17 0.77 2.39 0.22 18.11 1.87 1.04 0.38778 0.35 0.99 0.20 1.04 3.69 0.32 29.22 2.68 1.45 0.511009 0.48 1.29 0.28 1.35 5.46 0.41 44.90 3.66 1.94 0.661270 0.60 1.63 0.35 1.70 7.76 0.54 66.00 4.87 2.53 0.831561 0.70 2.00 0.43 2.09 11.09 0.68 97.14 6.36 3.25 1.021882 0.91 2.42 0.51 2.51 14.73 0.85 131.13 7.90 4.00 1.222233 1.05 2.87 0.62 2.98 19.64 1.04 177.17 9.91 4.89 1.45Table 9.3.8: Results of the 1WD method applied to test set #2. (Operationsand storage scaled by 10�4)Problem Order Allocation SolutionTime Store Time Store Time Operations StoreFact. Solve Fact. Solve TotalOvrhd265 0.07 0.33 0.04 0.34 0.57 0.12 3.24 0.81 0.47 0.21406 0.10 0.52 0.07 0.52 1.12 0.20 7.11 1.49 0.78 0.33577 0.16 0.74 0.09 0.74 1.94 0.29 13.70 2.46 1.19 0.46778 0.20 0.99 0.12 1.00 3.15 0.43 24.03 3.78 1.72 0.631009 0.26 1.29 0.16 1.30 4.86 0.60 39.32 5.49 2.38 0.811270 0.33 1.63 0.20 1.63 7.15 0.78 60.94 7.67 3.19 1.021561 0.40 2.00 0.25 2.01 10.14 1.04 90.43 10.35 4.15 1.251882 0.48 2.42 0.30 2.43 14.06 1.31 129.48 13.59 5.28 1.512233 0.56 2.87 0.35 2.88 19.20 1.67 179.99 17.44 6.60 1.79Table 9.3.9: Results of the RQT method applied to test set #2. (Operationsand storage scaled by 10�4)



9.3. THE NUMBERS REPORTED AND WHAT THEY MEAN 339Problem Order Allocation SolutionTime Store Time Store Time Operations StoreFact. Solve Fact. Solve TotalOvrhd265 0.20 0.28 0.06 0.49 0.46 0.07 3.25 0.72 0.70 0.32406 0.33 0.43 0.10 0.77 0.93 0.12 6.93 1.27 1.17 0.50577 0.49 0.62 0.14 1.10 1.62 0.19 12.56 1.99 1.77 0.72778 0.68 0.84 0.20 1.51 2.58 0.29 20.10 2.88 2.50 0.991009 0.95 1.09 0.26 1.97 3.80 0.37 31.11 4.00 3.38 1.291270 1.22 1.38 0.32 2.49 5.30 0.49 44.45 5.27 4.39 1.631561 1.56 1.69 0.39 3.08 7.34 0.63 62.57 6.82 5.58 2.011882 1.93 2.04 0.50 3.74 9.73 0.78 83.85 8.54 6.90 2.442233 1.35 2.43 0.58 4.45 12.79 0.94 111.18 10.57 8.42 2.92Table 9.3.10: Results of the ND method applied to test set #2. (Operationsand storage scaled by 10�4)Problem Order Allocation SolutionTime Store Time Store Time Operations StoreFact. Solve Fact. Solve TotalOvrhd265 0.39 0.54 0.06 0.49 0.36 0.07 2.65 0.65 0.67 0.32406 0.72 0.83 0.09 0.78 0.78 0.11 6.35 1.19 1.14 0.50577 1.01 1.18 0.13 1.12 1.26 0.18 10.35 1.83 1.70 0.73778 1.39 1.60 0.19 1.52 2.22 0.26 19.65 2.80 2.48 1.001009 1.55 2.08 0.24 1.97 3.43 0.38 30.91 3.95 3.36 1.291270 2.48 2.62 0.34 2.53 4.59 0.48 42.56 5.15 4.37 1.661561 2.56 3.23 0.39 3.09 5.90 0.60 55.43 6.53 5.45 2.031882 3.32 3.90 0.48 3.76 8.36 0.76 80.10 8.49 6.91 2.472233 3.53 4.63 0.55 4.43 12.06 0.98 119.13 10.71 8.47 2.89Table 9.3.11: Results of the QMD method applied to test set #1. (Opera-tions and storage scaled by 10�4)



340 CHAPTER 9. NUMERICAL EXPERIMENTS9.4 Comparison of the Methods9.4.1 Criteria for Comparing MethodsIn this section we shall not attempt to answer the question \which methodshould we use?". Sparse matrices vary a great deal, and the collection oftest problems is of only one special class. Our objective here is to illustrate,using the data reported in Section 9.3, the issues involved in answering thequestion, given a particular problem or class of problems. These issues havealready been discussed, or at least mentioned, in Section 2.4.The main criteria were a) storage requirements, b) execution time, and c)cost. In some contexts, keeping storage requirements low is of overwhelm-ing importance, while in other situations, low execution time is of primaryconcern. Perhaps most frequently, however, we are interested in choosingthe method which results in the lowest computer charges. This chargingfunction is typically a fairly complicated multi-parameter function of stor-age used (S), execution time (T ), amount of input and output performed,: : : , etc. For our class of problems and the methods we treat, this chargingfunction can usually be quite well approximated by a function of the formCOST (S; T ) = T � p(S);where p(S) is a polynomial of degree d, usually equal to 1. (However, some-times d = 0, and in other cases where large storage demands are discouraged,d = 2.) For purposes of illustration, in this book we assume p(S) = S.Recall from Section 2.4 that the relative importance of the ordering and allo-cation, factorization, and solution depends on the context in which the sparsematrix problem arises. In some situations only one problem of a particularstructure is to be solved, so any comparison of methods should certainlyinclude ordering and allocation costs. In other situations where many prob-lems having identical structure must be solved, it may be sensible to ignorethe ordering and allocation costs. Finally, in still other contexts where nu-merous systems di�ering only in their right hand side must be solved, it maybe appropriate to consider only the time and/or storage associated with thetriangular solution, given the factorization.In some of the tables appearing later we report a \minimum" and \max-imum" total cost. The distinction is that the maximum cost is computedassuming that the storage used by any of the four phases (order, allocate,factor, solve) is equal to the maximum storage required by any of them(usually the factorization step). The minimum cost is obtained by assum-



9.4. COMPARISON OF THE METHODS 341ing that the storage used by each phase is the minimum required by thatphase (as speci�ed in Table 9.3.1). We report both costs to show that forsome methods and problems, the costs are quite di�erent and it is thereforeworthwhile to segment the computation into its constituent parts, and useonly the requisite storage for each phase.9.4.2 Comparison of the Methods Applied to Test Set #1Now consider Table 9.4.1, which we obtained by averaging the results in thetables of Section 9.3 for test set #1, and then computing the various costs.One of the most important things that it shows is that for the nine problemsof this test set, the method of choice depends very much on the criterionwe wish to optimize. For example, if total execution time is the basis forchoice, then RCM should be chosen. If solution time, or factorization plussolution time or factorization plus solution cost, is of primary importance,then QMD should be chosen. If storage requirements, solve cost, or totalcost are the most important criteria, then 1WD is the method of choice.Several other aspects of Table 9.4.1 are noteworthy. Apparently, QMD yieldsa somewhat better ordering than ND, which is re
ected in lower executiontimes and costs for the factorization and solution, and lower storage require-ments. However, the fact that the ordering time for ND is substantiallylower than that for QMD results in lower total costs and execution time forND, compared to QMD.Another interesting aspect of the ND and QMD total cost entries is thesubstantial di�erence between the maximum and minimum costs. Recallfrom Section 9.4.1 that the maximum cost is computed assuming that thestorage used during any of the phases (order, allocate, factor, solve) is equalto the maximum used by any of them, while the minimum cost is computedassuming that each phase uses only what is normally required, as prescribedby Table 9.3.1. These numbers suggest that even for \one-shot" problems,segmenting the computation into its natural components, and using only thestorage required for each phase, is well worthwhile.After examining Table 9.4.1, the reader might wonder whether methodssuch as RQT and ND have any merit, compared to the three other methods,since they fail to show up as winners according to any of the criteria we areconsidering. However, averages tend to hide di�erences among the problems,and to illustrate that each method does have a place, Table 9.4.2 containsa frequency count of which method was best, based on the various criteria,for the problems of set #1. Note that no row in the table is all zeros.



342 CHAPTER 9. NUMERICAL EXPERIMENTSMethod Cost Storage Execution TimeTotal Total Fact+ Solve Total Fact+ Solve(Max) (Min) Solve SolveRCM 14.60 13.86 13.47 1.64 3.32 4.39 4.06 0.491WD 12.22 11.72 10.45 0.95 2.12 5.77 4.94 0.45RQT 15.60 15.11 14.44 1.68 2.58 6.04 5.59 0.65ND 15.63 12.92 10.89 1.22 3.41 6.59 3.19 0.36QMD 16.66 14.52 9.30 1.15 3.36 4.96 2.77 0.34Table 9.4.1: Average values of the various criteria for problem set #1. (Costsand storage scaled by 10�4)This suggests that even within a particular class of problems, and for a�xed criterion (e.g., execution time, storage), the method of choice variesconsiderably across problems. One should also keep in mind that specialcombinations of criteria may make any of the methods look best, for almostany of the problems.Method Cost Storage Execution TimeTotal Total Fact+ Solve Total Fact+ Solve(Max) (Min) Solve SolveRCM 3 3 1 0 0 4 0 01WD 4 4 2 7 9 0 0 0RQT 1 1 0 0 0 1 0 0ND 1 1 1 0 0 3 2 3QMD 0 0 5 2 0 1 7 6Table 9.4.2: Frequency counts of which method was best on the basis ofvarious criteria for test problem set #1.One rather striking aspect of Table 9.4.2 is the very strong showing of 1WDin terms of cost and storage.



9.5. THE INFLUENCE OF DATA STRUCTURES 3439.4.3 Comparison of the Methods Applied to Test Set #2In order to illustrate some additional points, we include Tables 9.4.3 andreftab9.3.4, generated from Tables 9.3.7 { 9.3.11 of Section 9.3, which containthe experimental results for test problem set #2. Table 9.4.3 contains thesame information as Table 9.4.1, for the Graded-L problem with s = 4,(yielding N = 265). Table 9.4.4 is also the same, except the subdivisionfactor is s = 12, yielding N = 2233.First note that for N = 265, the RCM method displays a considerable ad-vantage in most categories, and is very competitive in the remaining ones.However, for N = 2233, it has lost its advantage in all except total executiontime. (Some other experiments show that it loses to ND in this category alsofor somewhat larger graded-L problems.) One of the main points we wishto make here is that even for essentially similar problems such as these, thesize of the problem can in
uence the method of choice. Roughly speaking,for \small problems," the more sophisticated methods simply do not pay.It is interesting to again note how very e�ective the 1WD method is in termsof storage and cost.Notice also that the relative cost of the ordering and allocation steps, com-pared to the total cost, is going down as N increases, for all the methods.For the RCM, 1WD and RQT methods, these �rst two steps have becomerelatively unimportant in the overall cost and execution time when N reachesabout 2000. However, for the ND and QMD methods, even for N as large as2233, the ordering and allocation steps still account for a signi�cant fractionof the total execution time. Since these steps in general require less storagethan the numerical computation steps, the di�erence between MAX costand MIN cost remains important even for N = 2233.9.5 The In
uence of Data StructuresIn several places in this book we have emphasized the importance of datastructures (storage schemes) for sparse matrices. In Section 2.4 we distin-guished between primary storage and overhead storage, and through a sim-ple example showed that primary storage requirements may not be a reliableindicator of the storage actually required by di�erent computer programs,because of di�erences in overhead storage. We also pointed out in Section 2.4that di�erences in data structures could lead to substantial di�erences in thearithmetic-operations-per-second output of the numerical subroutines. Themain objective of this section is to provide some experimental evidence which



344 CHAPTER 9. NUMERICAL EXPERIMENTSMethod Cost Storage Execution TimeTotal Total Fact+ Solve Total Fact+ Solve(Max) (Min) Solve SolveRCM 0.23 0.21 0.19 0.04 0.48 0.48 0.40 0.071WD 0.39 0.37 0.31 0.04 0.42 0.93 0.73 0.09RQT 0.38 0.36 0.32 0.06 0.47 0.81 0.69 0.12ND 0.56 0.46 0.37 0.05 0.70 0.79 0.53 0.07QMD 0.59 0.53 0.29 0.04 0.67 0.88 0.43 0.07Table 9.4.3: Values of the various criteria for the Graded-L problem withs = 4, yielding N = 265. (Costs and storage scaled by 10�4)
Method Cost Storage Execution TimeTotal Total Fact+ Solve Total Fact+ Solve(Max) (Min) Solve SolveRCM 154.83 149.69 148.10 13.09 9.35 16.56 15.84 1.401WD 109.41 106.10 101.25 5.11 4.89 22.35 20.69 1.04RQT 143.69 140.30 137.67 10.99 6.60 21.78 20.87 0.12ND 140.45 124.03 115.74 7.95 8.42 16.67 13.74 0.94QMD 145.07 129.28 110.49 8.33 8.47 17.13 13.04 0.98Table 9.4.4: Values of the various criteria for the Graded-L problem withs = 12, yielding N = 2233. (Costs and storage scaled by 10�4)



9.5. THE INFLUENCE OF DATA STRUCTURES 345supports these contentions, and to illustrate the potential magnitude of thedi�erences involved.9.5.1 Storage RequirementsIn Table 9.5.1 we have compiled the primary and total storage requirementsfor the �ve methods, applied to test problem set #2. Recall that primarystorage is that used for the numerical values ofL and b, and overhead storageis \everything else," consisting mainly of integer pointer data associated withmaintaining a compact representation of L.Primary StorageNumber of EquationsMethod 265 406 577 778 1009 1270 1561 1882 2233RCM 0.40 0.74 1.22 1.87 2.73 3.81 5.14 6.76 8.681WD 0.24 0.42 0.66 0.94 1.28 1.70 2.23 2.78 3.45RQT 0.26 0.45 0.73 1.10 1.57 2.17 2.90 3.77 4.80ND 0.39 0.67 1.05 1.52 2.10 2.76 3.57 4.46 5.51QMD 0.35 0.64 0.97 1.48 2.08 2.70 3.42 4.43 5.58Total StorageNumber of EquationsMethod 265 406 577 778 1009 1270 1561 1882 2233RCM 0.48 0.86 1.39 2.10 3.03 4.19 5.61 7.32 9.351WD 0.42 0.69 1.04 1.45 1.94 2.53 3.25 4.00 4.89RQT 0.47 0.78 1.19 1.72 2.38 3.19 4.15 5.28 6.60ND 0.70 1.17 1.77 2.50 3.38 4.39 5.58 6.90 8.42QMD 0.67 1.14 1.70 2.48 3.36 4.37 5.45 6.91 8.47Table 9.5.1: Primary and total storage for each method, applied to testproblem #2. (Operations are scaled by 10�4)The numbers in Table 9.4.1 illustrate some important practical points:1. For some methods, the overhead component in the storage require-ments is very substantial, even for the larger problems where the rela-tive importance of overhead is diminished somewhat. For example, forthe QMD method, the ratio (overhead storage)/(total storage) ranges



346 CHAPTER 9. NUMERICAL EXPERIMENTSfrom about .48 to .34 as N goes from 265 to 2233. Thus, while the ratiois decreasing, it is still very signi�cant for even fairly large problems.By way of comparison, for the RCM method, which utilizes a very sim-ple data structure, the (overhead storage)/(total storage) ratio rangesfrom about .17 to .07 over the same problems.2. Another point, (essentially a consequence of 1 above,) is that primarystorage is a very unreliable indicator of a program's array storage re-quirements. For example, if we were comparing the RCM and QMDmethods on the basis of primary storage requirements for the problemsof test set #2, then QMD would be the method of choice for all N .However, in terms of actual storage requirements, the RCM method issuperior until N is about 1500!This comparison also illustrates the potential importance of being ableto use less storage for integers than that used for 
oating point num-bers. In many circumstances, the number of binary digits used torepresent 
oating point numbers is at least twice that necessary torepresent integers of a su�cient magnitude. If it is convenient to ex-ploit this fact, the signi�cance of the overhead storage component willobviously be diminished. For example, if integers required only halfas much storage as 
oating point numbers, the cross-over point be-tween RCM and QMD would be at N ' 600, rather than simeq1500as stated above.3. Generally speaking, the information in Table 9.5.1 shows that whilethe more sophisticated ordering algorithms do succeed in reducing pri-mary storage over their simpler counterparts, since they also necessi-tate the use of correspondingly more sophisticated storage schemes, thenet reduction in storage requirements over the simpler schemes is notas pronounced as the relative di�erences in primary storage indicate.For example, primary storage requirements indicate that 1WD enjoysa storage saving of more than 50 percent over RCM, for N � 778,and that the advantage increases with N . However, the total storagerequirements, while they still indicate that the storage advantage of1WD over RCM increases with N , also show that the point at whicha 50 percent savings occurs has still not been reached at N = 2233.



9.5. THE INFLUENCE OF DATA STRUCTURES 3479.5.2 Execution TimeIn Table 9.5.2 we have computed and tabulated the operations-per-secondperformance of the factorization and solution subroutines for the �ve meth-ods, applied to test problem set #2. The information in the table suggeststhe following:1. Generally speaking, the e�ciency (i.e., operations-per-second) of thesubroutines tends to improve with increasing N . This is to be expectedsince loops, once initiated, will tend to be executed more often as Nincreases. Thus, there will be less loop initialization overhead perarithmetic operation performed.In this connection, note that the relative improvement from N = 265to N = 2233 varies considerably over the six di�erent subroutinesand �ve di�erent orderings involved. (Recall that the 1WD and RQTmethods use the same numerical subroutines, as do the ND and QMDmethods.) For example, the operations-per-second output for the NDsolver (GSSLV) only improved from 9:44�104 to 10:15�104 over the fullrange of N , while the RQT solver (TSSLV) improved from 6:07�104 to9:50� 104. These di�erences in improvement appear to be due to thevariation in the number of auxiliary subroutines used. For example,TSFCT uses subroutines ELSLV, EUSLV, and ESFCT (which in turn usesELSLV), while GSFCT uses none at all. These subroutine calls contributea large low order component to the execution time.These di�erences in the performance of the numerical subroutines illus-trate how unrealistic it is to conclude much of a practical nature froma study of operation counts alone. For example, if we were to comparethe RCM method to the QMD method on the basis of factorizationoperation counts, for the problems of test set #2, we would chooseQMD for all the problems. However, in terms of execution time, QMDdoes not win until N reaches about 1600.2. We have already observed that e�ciency varies across the di�erentsubroutines, and varies with N . It is also interesting that for a �xedproblem and subroutine, e�ciency varies with the ordering used. Asan example, consider the factorization entries for the 1WD and RQTmethods, for N = 2233. (Remember that both methods employ thesubroutine TSFCT.) This di�erence in e�ciency can be understood byobserving that unlike the subroutines ESFCT and GSFCT, where the
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FactorizationNumber of EquationsMethod 265 406 577 778 1009 1270 1561 1882 2233RCM 9.01 9.37 9.91 10.58 10.92 11.24 11.59 11.76 12.061WD 6.78 7.19 7.57 7.93 8.22 8.51 8.76 8.90 9.02RQT 5.68 6.33 7.07 7.63 8.10 8.53 8.92 9.21 9.37ND 7.07 7.42 7.75 7.78 8.20 8.38 8.52 8.62 8.69QMD 7.30 8.10 8.19 8.87 9.01 9.27 9.39 9.59 9.88SolutionNumber of EquationsMethod 265 406 577 778 1009 1270 1561 1882 2233RCM 10.21 10.69 10.87 11.21 11.50 11.81 11.97 11.87 12.081WD 7.96 8.05 8.50 8.27 9.00 9.01 9.31 9.30 9.50RQT 6.79 7.45 8.38 8.78 9.16 9.83 9.95 10.35 10.47ND 10.25 10.28 10.49 9.81 10.71 10.83 10.89 11.00 11.20QMD 9.77 10.52 9.98 10.65 10.50 10.65 10.89 11.12 10.89Table 9.5.2: Operations-per-second for each method, applied to testproblem #2. (Operations are scaled by 10�4)



9.5. THE INFLUENCE OF DATA STRUCTURES 349majority of the numerical computation is isolated in a single loop, thenumerical computation performed by TSFCT is distributed among threeauxiliary subroutines (which vary in e�ciency), in addition to a majorcomputational loop of its own. Thus, one ordering may yield a moree�cient TSFCT than another simply because a larger proportion of theassociated computation is performed by the most e�cient auxiliarysubroutines or loop of TSFCT.A �nal complicating factor in this study of the 1WD and RQT factor-ization entries is that apparently, the proportions of the computationperformed by the di�erent computational loops of TSFCT varies withN , and the variation with N is di�erent for the one-way dissectionordering than it is for the re�ned quotient tree ordering. For smallproblems, TSFCT operates more e�ciently on the one-way dissectionordering than on the re�ned quotient tree ordering, but as N increases,the situation is reversed, with the cross-over point occurring at aboutN = 1700.We should caution the reader not to infer too much from this partic-ular example. On a di�erent computer with a di�erent compiler andinstruction set, the relative e�ciencies of the computational loop inTSFCT and its auxiliary subroutines may be quite di�erent. However,this example does illustrate that e�ciency is not only a function of thedata structure used, but may depend in a rather subtle way on theordering used with that data structure, and on the problem size.
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Appendix ASome Hints on Using theSubroutines1.1 Sample Skeleton DriversDi�erent sparse methods have been described in Chapters 4 { 8 for solvinglinear systems. They di�er in storage schemes, ordering strategies, datastructures, and/or numerical subroutines. However, the overall procedure inusing these methods is the same. Four distinct phases can be identi�ed:Step 1 OrderingStep 2 Data structure set-upStep 3 FactorizationStep 4 Triangular solutionSubroutines required to perform these steps for each method are included inChapters 4 { 8. In Figures 1.1.1 { 1.1.3, three skeleton drivers are provided;they are for the envelope method (Chapter 4), the tree partitioning method(Chapter 6), and the nested dissection method (Chapter 8), respectively.They represent the sequence in which the subroutines should be called in thesolution of a given sparse system by the selected scheme. Note that theseare just skeleton programs; the various arrays are assumed to have beenappropriately declared, and no checking for possible errors is performed.When an ordering subroutine is called, the zero-nonzero pattern of the sparsematrix A is assumed to be in the adjacency structure pair (XADJ, ADJNCY).351
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C -----------------------------------------------------C CREATE XADJ AND ADJNCYC CORRESPONDING TO AX = BC -----------------------------------------------------...CALL GENRCM(N,XADJ,ADJNCY,PERM,MASK,XLS)CALL INVRSE(N,PERM,INVP)CALL FNENV(N,XADJ,ADJNCY,PERM,INVP,XENV,ENVSZE,BANDW)CC -----------------------------------------------------C PUT NUMERICAL VALUES IN DIAG, ENV AND RHSC -----------------------------------------------------...CALL ESFCT(N,XENV,ENV,DIAG,IERR)CALL ELSLV(N,XENV,ENV,DIAG,RHS,IERR)CALL EUSLV(N,XENV,ENV,DIAG,RHS,IERR)CC -----------------------------------------------------C PERMUTED SOLUTION IS NOW IN THE ARRAY RHSC RESTORE IT TO THE ORIGINAL ORDERINGC -----------------------------------------------------C CALL PERMRV(N,RHS,PERM)Figure 1.1.1: Skeleton driver for the envelope method.



1.1. SAMPLE SKELETON DRIVERS 353C -----------------------------------------------------C CREATE XADJ AND ADJNCYC CORRESPONDING TO AX = BC -----------------------------------------------------...CALL GENRQT(N,XADJ,ADJNCY,NBLKS,XBLK,PERM,XLS,LS,NODLVL)CALL BSHUFL(XADJ,ADJNCY,PERM,NBLKS,XBLK,BNUM,MASK,SUBG,XLS)CALL INVRSE(N,PERM,INVP)CALL FNTADJ(XADJ,ADJNCY,PERM,INVP,NBLKS,XBLK,FATHER,MASK)CALL FNTENV(XADJ,ADJNCY,PERM,INVP,NBLKS,XBLK,XENV,ENVSZE)CALL FNOFNZ(XADJ,ADJNCY,PERM,INVP,NBLKS,XBLK,XNONZ,NZSUBS,NOFNZ)CC -----------------------------------------------------C PUT NUMERICAL VALUES INTO NONZ,DIAG,ENV AND RHSC -----------------------------------------------------...CALL TSFCT(NBLKS,XBLK,FATHER,DIAG,XENV,ENV,XNONZ,NONZ,NZSUBS,TEMPV,FIRST,IERR)CALL TSSLV(NBLKS,XBLK,DIAG,XENV,ENV,XNONZ,NONZ,NZSUBS,RHS,TEMPV)CC -----------------------------------------------------C PERMUTED SOLUTION IS NOW IN THE ARRAY RHSC RESTORE IT TO THE ORIGINAL ORDERINGC -----------------------------------------------------C CALL PERMRV(N,RHS,PERM)Figure 1.1.2: Skeleton driver for the tree partitioning method.
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C -----------------------------------------------------C CREATE XADJ AND ADJNCYC CORRESPONDING TO AX = BC -----------------------------------------------------...CALL GENND(N,XADJ,ADJNCY,MASK,PERM,XLS,LS)CALL INVRSE(N,PERM,INVP)CALL SMBFCT(N,XADJ,ADJNCY,PERM,INVP,XLNZ,NOFNZ,XNZSUB,NZSUB,NOFSUB,RCHLNK,MRGLNK,MASK,FLAG)CC -----------------------------------------------------C PUT NUMERICAL VALUES IN LNZ,DIAG, AND RHSC -----------------------------------------------------...CALL GSFCT(N,XLNZ,LNZ,XNZSUB,NZSUB,DIAG,LINK,FIRST,TEMPV,IERR)CALL GSSLV(N,XLNZ,LNZ,XNZSUB,NZSUB,DIAG,RHS)CC -----------------------------------------------------C PERMUTED SOLUTION IS NOW IN THE ARRAY RHSC RESTORE IT TO THE ORIGINAL ORDERINGC -----------------------------------------------------C CALL PERMRV(N,RHS,PERM)Figure 1.1.3: Skeleton driver for the nested dissection method.



1.2. A SAMPLE NUMERICAL VALUE INPUT SUBROUTINE 355It is rare that the user has this representation provided for him. Thus, theuser must create this structure prior to the execution of the ordering step.The creation of the adjacency structure is not a trivial task, especially insituations where the (i; j) pairs for which aij 6= 0 become available in randomorder. We shall not concern ourselves with this problem here. Exercises 3.4.1and 3.4.6 in Chapter 3 indicate how part of this problem can be solved.The package SPARSPAK to be discussed in Appendix B provides ways togenerate the adjacency structure pair in the (XADJ, ADJNCY) format.In the skeleton drivers, there are two subroutines that have not been dis-cussed before. The subroutine INVRSE, called after the ordering PERM hasbeen determined, is used to compute the inverse INVP of the ordering (or per-mutation) found. The vector INVP is required in setting up data structuresfor the solution scheme, and in putting numerical values into them.After the numerical subroutines for factorization and triangular solutionshave been executed, the solution ~a obtained is that for the permuted system(PAP T )~x = Pb :The subroutine PERMRV is used to permute the vector ~x back to the originalgiven order.After the data structure for the triangular factor has been successfully setup, the user must input the actual numerical values for the matrix A andthe right hand side b. To insert values into the data structure, the usermust understand the storage scheme in detail. In the next section, a samplesubroutine is provided for matrix input. For di�erent storage methods, thesematrix input subroutines are obviously di�erent. With the sample providedin the next section, the user should be able to write those for the othermethods. It should be pointed out that they are all provided in SPARSPAK(see Appendix B).1.2 A Sample Numerical Value Input SubroutineBefore the numerical subroutines for a sparse method are called, it is neces-sary to put the numerical values into the data structure. Here, we provide asample subroutine for the tree-partitioning method, whereby the numericalvalues of an entry aij can be placed into the structure.Recall from Chapter 6 that there are three vectors in the storage schemecontaining numerical values. The vector DIAG contains the diagonal elementsof the matrix. The entries within the envelope of the diagonal blocks are



356 APPENDIX A. HINTS ON USING THE SUBROUTINESstored in ENV, while the vector NONZ keeps all the nonzero o�-diagonal entries.For a given nonzero entry aij , the subroutine ADAIJ updates one of the threestorage vectors DIAG, ENV, or NONZ, depending on where the value aij residesin the matrix.The calling statement to the matrix input subroutine is CALL ADAIJ ( I,J,VALUE,INVP,DIAG,XENV,ENV,XNONZ,NZSUBS,IERR) where I and J are the subscripts of the original matrix A (that is, un-permuted) and VALUE is the numerical value. This subroutine adds VALUEto the appropriate current value of aij in storage. This is used instead of anassignment so as to handle situations when the values of aij are obtained inan incremental fashion (such as in certain �nite element applications).The subroutine checks to see if the nonzero component lies on the diagonalor within the envelope of the diagonal blocks. If so, the value is added tothe appropriate location in DIAG or ENV. Otherwise, the subscript structure(XNONZ, NZSUBS) for o�-diagonal block nonzeros is searched and VALUE isthen added to the appropriate entry of the vector NONZ.Since ADAIJ only adds new values to those currently in storage, the spaceused for L must be initialized to zero before numerical values of A aresupplied. Therefore, the input of values ofA for the tree-partitioning methodwould be done as follows:� Initialize the vectors DIAG, ENV and NONZ to zeros.� fRepeated calls to ADAIJg.The input of values for the right hand vector b can be performed in a similarway.1. C*************************************************************2. C*************************************************************3. C******** ADAIJ ..... ADD ENTRY INTO MATRIX *********4. C*************************************************************5. C*************************************************************6. C7. C PURPOSE - THIS ROUTINE ADDS A NUMBER INTO THE (I,J)-TH8. C POSITION OF A MATRIX STORED USING THE9. C IMPLICIT BLOCK STORAGE SCHEME.10. C11. C INPUT PARAMETERS -12. C (ISUB, JSUB) - SUBSCRIPTS OF THE NUMBER TO BE ADDED13. C ASSUMPTIONS - ISUB .GE. JSUB.14. C DIAG - ARRAY CONTAINING THE DIAGONAL ELEMENTS15. C OF THE COEFFICIENT MATRIX.16. C VALUE - VALUE OF THE NUMBER TO BE ADDED.



1.2. A SAMPLE NUMERICAL VALUE INPUT SUBROUTINE 35717. C INVP - INVP(I) IS THE NEW POSITION OF THE18. C VARIABLE WHOSE ORIGINAL NUMBER IS I.19. C (XENV, ENV) - ARRAY PAIR CONTAINING THE ENVELOPE20. C STRUCTURE OF THE DIAGONAL BLOCKS.21. C (XNONZ, NONZ, NZSUBS) - LEVEL STRUCTURE CONTAINING22. C THE OFF-BLOCK DIAGONAL PARTS OF THE ROWS OF23. C THE LOWER TRIANGLE OF THE ORIGINAL MATRIX.24. C25. C OUTPUT PARAMETERS -26. C IERR - ERROR CODE....27. C 0 - NO ERRORS DETECTED28. C 5 - NO SPACE IN DATA STRUCTURE FOR NUMBER29. C WITH SUBSCRIPTS (I,J), I>J.30. C31. C*************************************************************32. C33. SUBROUTINE ADAIJ ( ISUB, JSUB, VALUE, INVP, DIAG,34. 1 XENV, ENV, XNONZ, NONZ, MZSUBS,35. 2 IERR )36. C37. C*************************************************************38. C39. REAL DIAG(1), ENV(1), NONZ(1), VALUE40. INTEGER INVP(1), NZSUBS(1)41. INTEGER XENV(1), XNONZ(1), KSTOP, KSTRT,42. 1 I, IERR, ISUB, ITEMP, J, JSUB, K43. C44. C*************************************************************45. I = INVP(ISUB)46. J = INVP(JSUB)47. IF ( I .EQ. J ) GO TO 40048. IF ( I .GT. J ) GO TO 10049. ITEMP = I50. I = J51. J = ITEMP52. C ------------------------------------------------53. C THE COMPONENT LIES WITHIN THE DIAGONAL ENVELOPE.54. C ------------------------------------------------55. 100 K = XENV(I+1) - I + J56. IF ( K .LT. XENV(I) ) GO TO 20057. ENV(K) = ENV(K) + VALUE58. RETURN59. C ------------------------------------------------60. C THE COMPONENT LIES OUTSIDE DIAGONAL BLOCKS.61. C ------------------------------------------------62. 200 KSTRT = XNONZ(I)63. KSTOP = XNONZ(I+1) - 1



358 APPENDIX A. HINTS ON USING THE SUBROUTINES64. IF ( KSTOP .LT. KSTRT ) GO TO 50065. C66. DO 300 K = KSTRT, KSTOP67. IF ( NZSUBS(K) .NE. J ) GO TO 30068. NONZ(K) = NONZ(K) + VALUE69. RETURN70. 300 CONTINUE71. GO TO 50072. C -------------------------------------------------73. C THE COMPONENT LIES ON THE DIAGONAL OF THE MATRIX.74. C -------------------------------------------------75. 400 DIAG(I) = DIAG(I) + VALUE76. RETURN77. C -------------------------------------78. C SET ERROR FLAG.79. C -------------------------------------80. 500 IERR = 581. RETURN82. C83. END1.3 Overlaying Storage in FortranConsider the skeleton driver in Figure 1.1.1 for the envelope method. Theordering subroutine GENRCM generates an ordering PERM based on the adja-cency structure (XADJ, ADJNCY). It also uses two working vectors MASK andXLS.After the input of numerical values into the data structure for the envelope,note that the working vectors MASK and XLS are no longer needed. Moreover,even the adjacency structure (XADJ, ADJNCY) will no longer be used. Toconserve storage, these vectors can be overlayed and re-used by the solutionsubroutines. Similar remarks apply to the other sparse methods.In this section, we show how overlaying can be done in Fortran. The generaltechnique involves the use of a large working storage array in the driverprogram. Storage management can be handled by this driver through theuse of pointers into the main storage vector.As an illustration, suppose that there are two subroutines SUB1 and SUB2:SUBROUTINE SUB1 (X,Y,Z)SUBROUTINE SUB2 (X,Y,U,V) .



1.3. OVERLAYING STORAGE IN FORTRAN 359The subroutine SUB1 requires two integer arrays X and Y of sizes 100 and 500respectively, and a working integer array Z of size 400. On the other hand,SUB2 requires four vectors: the X and Y output vectors from SUB1 and twoadditional arrays U and V of sizes 40 and 200 respectively.S IX6 IY6 IU6 IV6S IX6 IY6 IZ6Figure 1.3.1: Storage management by pointers into the main storage vector.The following skeleton driver makes use of a main storage vector S(1000) andcalls the subroutines SUB1 and SUB2 in succession. It manages the storageusing pointers into the array S.INTEGER S(1000) ...IX = 1IY = IX + 100IZ = IY + 500CALL SUB1 (S(IX),S(IY),S(IZ))...IU = IY + 500IV = IU + 40CALL SUB2 (S(IX),S(IY),S(IU),S(IV))...



360 APPENDIX A. HINTS ON USING THE SUBROUTINESIn this way, the storage used by the working vector Z can be overlayed by Uand V.The same overlay technique can be used in invoking the sequence of subrou-tines for a sparse solution method. The package SPARSPAK (Appendix B)uses essentially this same technique in a system of user interface subroutineswhich relieve the user of all the storage management tasks associated withusing the subroutines in this book.



Appendix BSPARSPAK: A SparseMatrix Package2.1 MotivationThe skeleton programs in Appendix A illustrate several important character-istics of sparse matrix programs and subroutines. First, the unconventionaldata structures employed to store sparse matrices result in subroutines whichhave distressingly long parameter lists, most of which have little or no mean-ing to the user unless he or she understands and remembers the details of thedata structure being employed. Second, the computation consists of severaldistinct phases, with numerous opportunities to overlay (re-use) storage. Inorder to use the subroutines e�ectively, the user must determine which arraysused in one module must be preserved as input to the next, and which onesare no longer required and can therefore be re-used. Third, in all cases, theamount of storage required for the solution phase is unknown until at leastpart of the computation has been performed. Usually we do not know themaximum storage requirement until the allocation subroutine (e.g., FNENV)has been executed. In some cases, the storage requirement for the successfulexecution of the allocation subroutine itself is not predictable (e.g., SMBFCT).Thus, often the computation must be suspended part way through becauseof insu�cient storage, and if the user wishes to avoid repeating the success-fully completed part, then he or she must be aware of all the informationrequired to restart the computation.These observations, along with our experience in using sparse matrix soft-ware, have prompted us to design and implement a user interface for the361



362 APPENDIX B. SPARSPAK: A SPARSE MATRIX PACKAGEsubroutines described in this book. This interface is simply a layer of sub-routines between the user, who presumably has a sparse system of equationsto solve, and subroutines which implement the various methods described inthis book, as depicted in Figure 2.1.1. The interface, along with the subrou-tines it serves, forms a package which has been given the name SPARSPAK(George [25]). In addition to the subroutines from Chapters 4 { 8 and theinterface subroutines, SPARSPAK also contains a number of utility subrou-tines for printing error messages, pictures of the structure of sparse matrices,etc. �� ��User6?���������� OCCCWOCCCWInterface Subroutines6?�������������������� OCCCWOCCCWOCCCWOCCCWSubroutinesfrom this book UtilitySubroutinesFigure 2.1.1: Schematic of the components of SPARSPAK.The interface provides a number of services. First, it relieves the user ofall responsibility for the allocation of array storage. All storage is allocatedby the interface from a user-supplied one-dimensional array, using a tech-nique similar to that described in Section 1.3. The interface also imposessequencing control so that interface subroutines are called in the correctorder. In addition, it provides a convenient means by which computationcan be suspended and later restarted. Finally, it has comprehensive errordiagnostics.Our objective in subsequent sections is to give a brief survey of the variousfeatures of SPARSPAK, rather than to provide a detailed user guide. Acomprehensive user guide and installation instructions are provided with thepackage. For information, the interested reader should write the authors.



2.2. BASIC STRUCTURE OF SPARSPAK 3632.2 Basic Structure of SPARSPAKFor all the methods described in Chapters 4 through 8, the user and SPARSPAKinteract to solve the problem Ax = b through the following basic steps.Step 1 (Structure Input) The user supplies the nonzero structure of A tothe package by calling the appropriate interface subroutines.Step 2 (Order and Allocate) The execution by the user program of a singlesubroutine call instructs the package to �nd an ordering and set upthe data structure for L.Step 3 (Matrix Input) The user supplies the numerical values for A bycalling appropriate interface subroutines.Step 4 (Factor A) A single subroutine call tells SPARSPAK to factor Ainto LLT .Step 5 (Right Hand Side Input) The user supplies the numerical values forb by calling appropriate interface subroutines. (This step can be donebefore Step 4, and/or intermixed with Step 3.)Step 6 (Solution) A single subroutine call instructs SPARSPAK to computex, using L from Step 4 and the b supplied in Step 5.A list of the names of some of the interface subroutines, along with theirargument lists and general roles is given in Figure 2.2.1. Details are providedlater in this and subsequent sections.2.3 User Mainline Program and an ExampleSPARSPAK allocates all its storage from a single one dimensional real arraywhich for purposes of discussion we will denote by S. In addition, the usermust provide its size MAXS, which is transmitted to the package via a commonblock /SPKUSR/, which has four variables:COMMON /SPKUSR/ MSGLVL, IERR, MAXS, NEQNSHere MSGLVL is the message level indicator which is used to control theamount of information printed by the package. The second variable IERRis an error code, which the user can examine in the mainline program for
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SPARSPAK o InitializationIJBEGNINIJ(I, J, S)INROW(I, NR, IR, S)INIJIJ(NIR, II, JJ, S)INCLQ(NCLQ, CLQ, S)IJEND(S) 9>>>>>>>=>>>>>>>; Structureinput (Step 1)ORDRxi(S) o Ordering and Allocation(Step 2. See Figure 2.3.1for meanings of x and i.)INAIJi(I, J, VALUE, S)INROWi(I, NIR, IR, VALUES, S)INMATi(NIJ, II, JJ, VALUES, S) 9=; Matrix input(Step 3)INBI(I, VALUE, S)INBIBI(NI, II, VALUES, S)INRHS(RHS, S) 9=; Right hand side input(Step 5)SOLVEi(S) o Factorization and Solution(Steps 4 and 6)Figure 2.2.1: List of names of some of the SPARSPAK interface subroutines.



2.3. USER MAINLINE PROGRAM AND AN EXAMPLE 365possible errors detected by the package. The variable NEQNS is the numberof equations, set by the package.The following program illustrates how one might use the envelope method ofChapter 4 to solve a system of equations, using SPARSPAK. The problemsolved is a 10 by 10 symmetric tridiagonal system Ax = b where the diago-nal elements of A are all 4, the superdiagonal and subdiagonal elements areall �1, and the entries in the right hand side vector b are all ones.The digit i and letter x in some of the interface subroutine names specifywhich method is to be used to solve the problem. We should note here thatSPARSPAK handles both symmetric and unsymmetricA, but assumes thatthe structure of A is symmetric, and that no pivoting is required for numer-ical stability. (See Exercise 4.6.1.) The methods available are as indicatedin Figure 2.3.1.ORDRxi Ordering Choices Ref.x iA 1 Reverse Cuthill-McKee ordering; symmetric A Ch. 4A 2 Reverse Cuthill-McKee ordering; unsymmetric A Ch. 4A 3 One-way Dissection ordering; symmetric A Ch. 7A 4 One-way Dissection ordering; unsymmetric A Ch. 7B 3 Re�ned quotient tree ordering; symmetric A Ch. 6B 4 Re�ned quotient tree ordering; unsymmetric A Ch. 6A 5 Nested Dissection ordering; symmetric A Ch. 8A 6 Nested Dissection ordering; unsymmetric A Ch. 8B 5 Minimum Degree ordering; symmetric A Ch. 5B 6 Minimum Degree ordering; unsymmetric A Ch. 5Figure 2.3.1: Choices of methods available in SPARSPAK.1. C SAMPLE PROGRAM ILLUSTRATING THE USE OF SPARSPAK2. C -----------------------------------------------------3. C4. COMMON /SPKUSR/ MSGLVL, IERR, MAXS, NEQNS5. REAL S(250)6. C7. CALL SPRSPK8. MAXS = 2509. C ------------------------------------------------------10. C INPUT THE MATRIX STRUCTURE. THE DIAGONAL IS ALWAYS11. C ASSUMED TO BE NONZERO, AND SINCE THE MATRIX IS SYM-



366 APPENDIX B. SPARSPAK: A SPARSE MATRIX PACKAGE12. C METRIC, ONLY THE SUBDIAGONAL POSITIONS ARE INPUT.13. C ------------------------------------------------------14. CALL IJBEGN15. DO 100 I = 2, 1016. CALL INIJ ( I, I-1, S )17. 100 CONTINUE18. CALL IJEND ( S )19. C ------------------------------------------------------20. C FIND THE ORDERING AND ALLOCATE STORAGE ....21. C ------------------------------------------------------22. CALL ORDRA1 ( S )23. C ------------------------------------------------------24. C INPUT THE NUMERICAL VALUES. (LOWER TRIANGLE ONLY.)25. C ------------------------------------------------------26. DO 200 I = 1, 1027. IF ( I .GT. 1) CALL INAIJ1 ( I, I-1, -1.0, S )28. CALL INAIJ1 ( I, I, 4.0, S )29. CALL INBI (I, 1.0, S )30. 200 CONTINUE31. C ------------------------------------------------------32. C SOLVE THE SYSTEM. SINCE BOTH THE MATRIX AND RIGHT HAND33. C SIDE HAVE BEEN INPUT, BOTH THE FACTORIZATION AND THE34. C TRIANGULAR SOLUTION OCCUR.35. C ------------------------------------------------------36. CALL SOLVE1 ( S )37. C ------------------------------------------------------38. C PRINT THE SOLUTION, FOUND IN THE FIRST 10 POSITIONS OF39. C THE WORKING STORAGE ARRAY S.40. C ------------------------------------------------------41. WRITE ( 6, 11 ) ( S(I), I = 1, 10 )42. 11 FORMAT ( / 10H SOLUTION ,/, (5F10.6) )43. C ------------------------------------------------------44. C PRINT SOME STATISTICS GATHERED BY THE PACKAGE.45. C ------------------------------------------------------46. CALL PSTATS47. STOP48. ENDThe subroutine SPRSPK must be called before any part of the package isused. Its role is to initialize some system parameters (e.g., the logical unitnumber for the printer), to set default values for options (e.g., the messagelevel indicator), and to perform some installation dependent functions (e.g.,initializing the timing subroutine). It needs only to be called once in theuser program. Note that the only variable in the common block /SPKUSR/that must be explicitly assigned a value by the user is MAXS.



2.4. DESCRIPTION OF THE INTERFACE SUBROUTINES 367SPARSPAK contains an interface subroutine called PSTATS which the usercan call to obtain storage requirements, execution times, operation countsetc. for the solution of the problem.It is assumed that the subroutines which comprise the SPARSPAK packagehave been compiled into a library , and that the user can reference them froma Fortran program just as the standard Fortran library subroutines, such asSIN, COS, etc., are referenced. Normally, a user will use only a small fractionof the subroutines provided in SPARSPAK.2.4 Brief Description of the Main Interface Sub-routines2.4.1 Modules for Input of the Matrix StructureSPARSPAK must know the matrix structure before it can determine anappropriate ordering for the system. SPARSPAK contains a group of sub-routines which provide a variety of ways through which the user can informthe package where the nonzero entries are; that is, those subscripts (i; j) forwhich aij 6= 0. Before any of these input subroutines is called, the user mustexecute an initialization subroutine called IJBEGN, which tells the packagethat a matrix problem with a new structure is to be solved.a) Input of a nonzero locationTo tell SPARSPAK that the matrix component aij is nonzero, the usersimply executes the statementCALL INIJ ( I, J, S )where I and J are the subscripts of the nonzero, and S is the workingstorage array declared by the user for use by the package.b) Input of the structure of a row, or part of a row.When the structure of a row or part of a row is available, it may bemore convenient to use the subroutine INROW. The statement to use isCALL INROW ( I, NIR, IR, S )where I denotes the subscript of the row under consideration, IR is anarray containing the column subscripts of some or all of the nonzerosin the I-th row, NIR is the number of subscripts in IR, and S is the



368 APPENDIX B. SPARSPAK: A SPARSE MATRIX PACKAGEuser-declared working storage array. The subscripts in the array IRcan be in arbitrary order, and the rows can be input in any order.c) Input of a submatrix structureSPARSPAK allows the user to input the structure of a submatrix. Thecalling statement isCALL INIJIJ ( NIJ, II, JJ, S ) ,where NIJ is the number of input subscript pairs and II, JJ are thearrays containing the subscripts.d) Input of a full submatrix structureThe structure of an entire matrix is completely speci�ed if all the fullsubmatrices are given. In applications where they are readily available,the subroutine INCLQ is useful. Its calling sequence isCALL INCLQ (NCLQ, CLQ, S) ,where NCLQ is the size of the submatrix and CLQ is an array containingthe subscripts of the submatrix.Thus, to inform the package that the submatrix corresponding to sub-scripts 1, 3, 5 and 6 is full, we executeCLQ(1) = 1CLQ(2) = 3CLQ(3) = 5CLQ(4) = 6CALL INCLQ(4, CLQ, S) .The type of structure input subroutine to use depends on how the userobtains the matrix structure. Anyway, one can select those that best suit theapplication. The package allows mixed use of the subroutines in inputtinga matrix structure. SPARSPAK automatically removes duplications so theuser does not have to worry about inputting duplicate subscript pairs.When all pairs have been input, using one or a combination of the inputsubroutines, the user is required to tell the package explicitly so by callingthe subroutine IJEND. The calling statement isCALL IJEND(S)



2.4. DESCRIPTION OF THE INTERFACE SUBROUTINES 369and its purpose is to transform the data from the format used during therecording phase to the standard (XADJ, ADJNCY) format used by all the sub-routines in the book. The user does not have to be concerned with this inputrepresentation or the transformation process.2.4.2 Modules for Ordering and Storage AllocationWith an internal representation of the nonzero structure of the matrix A,SPARSPAK is now ready to reorder the matrix problem. The user initiatesthis by calling an ordering subroutine, whose name has the form ORDRxi .Here i is a numerical digit between 1 and 6 that signi�es the storage method,and the character x denotes the ordering strategy as summarized in Fig-ure 2.3.1. The subroutine ORDRxi determines the ordering and then sets upthe data structure for the reordered matrix problem. The package is nowready for numerical inputs.2.4.3 Modules for Inputting Numerical Values of A and bThe modules in this group are similar to those for inputting the matrixstructure. They provide a means of transmitting the actual numerical valuesof the matrix problem to the package. Since the data structures for di�erentstorage methods are di�erent, the package must have a di�erent matrix inputsubroutine for each method. SPARSPAK uses the same set of subroutinenames for all the methods (except for the last digit which distinguishes themethod), and the parameter lists for all the methods are the same.There are three ways of passing the numerical values to the package. Inall of them, subscripts passed to the package always refer to those of theoriginal given problem. The user need not be concerned about the variouspermutations to the problem which may have occurred during the orderingstep.a) Input of a single nonzero componentThe subroutine INAIJi is provided for this purpose and its callingsequence isCALL INAIJi ( I, J, VALUE, S )where I and J are the subscripts, and VALUE is the numerical value.The subroutine INAIJi adds the quantity VALUE to the appropriatecurrent value in storage, rather than making an assignment. This is



370 APPENDIX B. SPARSPAK: A SPARSE MATRIX PACKAGEhelpful in situations (e.g., in some �nite element applications) wherethe numerical values are obtained in an incremental fashion. For ex-ample, the execution of ...INAIJ2 ( 3, 4, 9.5, S )INAIJ2 ( 3, 4, -4.0, S )...e�ectively assigns 5.5 to the matrix component a34.b) Input of a row of nonzerosThe subroutine INROWi can be used to input the numerical values of arow or part of a row in the matrix. Its calling sequence is similar tothat of INROW, described in Section 2.4.1.CALL INROWi ( I, NIR, IR, VALUES, S ) .Here the additional variable VALUES is an array containing the numer-ical values of the row. Again, the numerical values are added to thecurrent values in storage.c) Input of a submatrixThe subroutine for the input of a submatrix is called INMATi. Its param-eter list corresponds to that of INIJIJ with the additional parameterVALUES that stores the numerical quantities:CALL INMATi ( NIJ, II, JJ, VALUES, S ) .Again, the VALUES are added to those held by the package.Mixed use of the subroutines INAIJi, INROWi, and INMATi is permitted. Thus,the user is free to use whatever subroutines are most convenient.The same convenience is provided in the input of numerical values for theright hand side vector. The package includes the subroutine INBI whichinputs an entry to the right hand vector.



2.4. DESCRIPTION OF THE INTERFACE SUBROUTINES 371CALL INBI ( I, VALUE, S )Here I is the subscript and VALUE is the numerical value.The subroutine INBIBI can be used to input a subvector, and its callingsequence isCALL INBIBI ( NI, II, VALUES, S )where II and VALUES are vectors containing the subscripts and numericalvalues respectively. In both subroutines, incremental calculations of thenumerical values are performed.In some situations where the entire right hand vector is available, the user canuse the subroutine INRHS which transmits the whole vector to the package.It has the formCALL INRHS ( RHS, S )where RHS is the vector containing the numerical values.In all three subroutines, the numbers provided are added to those currentlyheld by the package, and the use of the subroutines can be intermixed. Thestorage used for the right hand side by the package is initialized to zero the�rst time any of them is executed.2.4.4 Modules for Factorization and SolutionThe numerical computation of the solution vector is initiated by the FortranstatementCALL SOLVEi ( S )where S is the working storage array for the package. Again, the last digit iis used to distinguish between solvers for di�erent storage methods.Internally, the subroutine SOLVEi consists of both the factorization and for-ward/backward solution steps. If the factorization has been performed ina previous call to SOLVEi , the package will automatically skip the factor-ization step, and perform the solution step directly. The solution vector isreturned in the �rst NEQNS locations of the storage vector S. If SOLVEi iscalled before any right hand side values are input, only the factorization willbe performed. The solution returned will be all zeros.



372 APPENDIX B. SPARSPAK: A SPARSE MATRIX PACKAGE2.5 Save and Restart FacilitiesSPARSPAK provides two subroutines called SAVE and RESTRT which allowthe user to stop the calculation at some point, save the results on an externalsequential �le, and then restart the calculation at exactly that point sometime later. To save the results of the computation done thus far, the userexecutes the statementCALL SAVE ( K, S )where K is the Fortran logical unit on which the results are to be written,along with other information needed to restart the computation. If executionis then terminated, the state of the computation can be re-established byexecuting the statementCALL RESTRT ( K, S ) .When an error is detected, so that the computation cannot proceed, a pos-itive code is assigned to IERR. The user can simply check the value of IERRto see if the execution of the module has been successful. This error 
ag canbe used in conjunction with the save/restart feature to retain the results ofsuccessfully completed parts of the computation, as shown by the programfragment below. ...CALL ORDRA1 ( S )IF (IERR.EQ.0) GO TO 100CALL SAVE ( 3, S )STOP100 CONTINUE ...Another potential use of the SAVE and RESTRT modules is to make the work-ing storage array S available to the user in the middle of a sparse matrixcomputation. After SAVE has been executed, the working storage array Scan be used by some other computation.



2.6. SOLVING PROBLEMS WITH THE SAME STRUCTURE 3732.6 Solving Many Problems Having the SameStructure or the Same Coe�cient Matrix AIn certain applications, many problems which have the same sparsity struc-ture, but di�erent numerical values, must be solved. This situation canbe accommodated perfectly well by the package. The control sequence isdepicted by the 
owchart in Figure 2.6.1. When the numerical input sub-routines (INAIJi, INBI, etc.) are �rst called after SOLVEi has been called,this is detected by the package, and the computer storage used for A and bis initialized to zero. SPRSPK?Input Structuresof A ?Call ORDRxi?Input NumericalValues of A and b?Call SOLVEi �Figure 2.6.1: Flowchart for using SPARSPAK to solve numerous problemshaving the same structure.Note that if such problems must be solved over an extended time period (i.e.,in di�erent runs), the user can execute SAVE after executing ORDRxi and thusavoid input of the structure of A and the execution of ORDRxi in subsequentequation solutions.



374 APPENDIX B. SPARSPAK: A SPARSE MATRIX PACKAGEIn other applications, numerous problems which di�er only in their righthand sides must be solved. In this case, we only want to factor A once, anduse the factors repeatedly in the calculation of x for each di�erent b. Again,the package can handle this in a straightforward manner, as illustrated bythe 
owcharts in Figure 2.6.2.When SPARSPAK is used as indicated by 
owchart (1) in Figure 2.6.2, itdetects that no right hand side has been provided during the �rst execu-tion of SOLVEi, and only the factorization is performed. In subsequent callsto SOLVEi, the package detects that the factorization has already been per-formed, and that part of the SOLVEi module is by-passed. In 
owchart (2)of Figure 2.6.2, both factorization and solution is performed during the �rstcall to SOLVEi, with only the solve part performed in subsequent executionsof SOLVEi.Note that SAVE can be used after SOLVEi has been executed, if the user wantsto save the factorization for use in some future calculation.2.7 Output From the PackageAs noted earlier, the user supplies a one-dimensional real array S, fromwhich all array storage is allocated. In particular, the interface allocatesthe �rst NEQNS storage locations in S for the solution vector of the linearsystem. After all the interface modules for a particular method have beensuccessfully executed, the user can retrieve the solution from these NEQNSlocations.In addition to the solution x, the package may print other information aboutthe computation, depending upon the value of MSGLVL, whether or not errorsoccur, and whether or not the module PSTATS is called.



2.7. OUTPUT FROM THE PACKAGE 375SPRSPK?Input Structure of A?Call ORDRxi?Input NumericalValues for A?Call SOLVEi?Input NumericalValues for b?Call SOLVEi �(1)

SPRSPK?Input Structure of A?Call ORDRxi?Input NumericalValues for A?Input NumericalValues for b?Call SOLVEi �
(2)Figure 2.6.2: Flowcharts for using SPARSPAK to solve numerous problemshaving the same coe�cient matrix but di�erent right hand sides.
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