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Preface

This book is intended to introduce the reader to the important practical
problem of solving large systems of sparse linear equations on a computer.
The problem has many facets, from fundamental questions about the in-
herent complexity of certain problems, to less precisely specified questions
about the design of efficient data structures and computer programs. In or-
der to limit the size of the book, and yet consider the problems in detail, we
have restricted our attention to symmetric positive definite systems of equa-
tions. Such problems are very common, arising in numerous fields of science
and engineering. For similar reasons, we have limited our treatment to one
specific method for each general approach to solving large sparse positive
definite systems. For example, among the numerous methods for approxi-
mately minimizing the bandwidth of a matrix, we have selected only one,
which through our experience has appeared to perform well. Our objective
is to expose the reader to the important ideas, rather than the method which
is necessarily best for his particular problem. Our hope is that someone fa-
miliar with the contents of the book could make sound judgements about the
applicability and appropriateness of proposed ideas and methods for solving
sparse systems.

The quality of the computer implementation of sparse matrix algorithms
can have a profound effect on their performance, and the difficulty of imple-
mentation varies a great deal from one algorithm to another. Thus, while
“paper and pencil” analyses of sparse matrix algorithms are useful and im-
portant, they are not enough. Our view is that studying and using sub-
routines which implement these algorithms is an essential component in a
good introduction to this important area of scientific computation. To this
end, we provide listings of Fortran subroutines, and discuss them in detail.
The procedure for obtaining machine readable copies of these is provided in
Appendix A.

We are grateful to Mary Wang for doing a superb job of typing the orig-
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inal manuscript, and to Anne Trip de Roche and Heather Pente for coping
with our numerous revisions. We are also grateful to the many students who
debugged early versions of the manuscript, and in particular to Mr. Hamza
Rashwan and Mr. Esmond Ng for a careful reading of the final manuscript.

Writing a book consumes time that might otherwise be spent with ones
wife and children. We are grateful to our wives for their patience and un-
derstanding, and we dedicate this book to them.

Alan George
Joseph W-H Liu



Chapter 1

Introduction

1.1 About the Book

This book deals with efficient computer methods for solving large sparse
systems of linear algebraic equations. The reader is assumed to have a basic
knowledge of linear algebra, and should be familiar with standard matrix
notation and manipulation. Some basic knowledge of graph theory notation
would be helpful, but it is not required since all the relevant notions and
notations are introduced as they are needed.

This is a book about computing, and it contains numerous Fortran sub-
routines which are to be studied and used. Thus, the reader should have
at least a basic understanding of Fortran, and ideally one should have ac-
cess to a computer to execute programs using the subroutines in the book.
The success of algorithms for sparse matrix computations, perhaps more
than in any other area of numerical computation, depends on the quality
of their computer implementation; i.e., the computer program which exe-
cutes the algorithm. Implementations of these algorithms characteristically
involve fairly complicated storage schemes, and the degree of complication
varies substantially for different algorithms. Some algorithms which appear
extremely attractive “on paper” may be much less so in practice because
their implementation is complicated and inefficient. Other less theoretically
attractive algorithms may be more desirable in practical terms because their
implementation is simple and incurs very little “overhead.”

For these and other reasons which will be apparent later, we have in-
cluded Fortran subroutines which implement many of the important algo-
rithms discussed in the book. We have also included some numerical exper-
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iments which illustrate the implementation issues noted above, and which
provide the reader with some information about the absolute time and stor-
age that sparse matrix computations require on a typical computer. The
subroutines have been carefully tested, and are written in a portable subset
of Fortran (Ryder [46]). Thus, they should execute correctly on most com-
puter systems without any changes. They would be a useful addition to the
library of any computer center which does scientific computing. Machine
readable copies of the subroutines, along with the test problems described
and used in Chapter 9, are available from the authors.

Our hope is that this book will be valuable in at least two capacities.
First, it can serve as a text for senior or graduate students in computer sci-
ence or engineering. The exercises at the end of each chapter are designed to
test the reader’s understanding of the material, to provide avenues for further
investigation, and to suggest some important research problems. Some of
the exercises involve using and/or changing the programs we provide, so it is
desirable to have access to a computer which supports the Fortran language,
and to have the programs available in a computer library.

This book should also serve as a useful reference for all scientists and
engineers involved in solving large sparse positive definite matrix problems.
Although this class of problems is special, a substantial fraction (perhaps
the majority) of linear equation problems arising in science and engineering
have this property. It is a large enough class to warrant separate treatment.
In addition, as we shall see later, the solution of sparse problems with this
property is fundamentally different from that for the general case.

1.2 Cholesky’s Method and the Ordering Problem

All the methods we discuss in this book are based on a single numerical
algorithm known as Cholesky’s method, a symmetric variant of Gaussian
elimination tailored to symmetric positive definite matrices. We shall de-
fine this class of matrices and describe the method in detail in Section 2.2.
Suppose the given system of equations to be solved is

Az =b, (1.2.1)
where A is an n X n, symmetric, positive definite coefficient matriz, b is a

vector of length n, called the right hand side, and @ is the solution vector
of length n, whose components are to be computed. Applying Cholesky’s
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method to A yields the triangular factorization
A=LL", (1.2.2)

where L is lower triangular with positive diagonal elements. A matrix M

is lower lupper triangular if m,; = 0 for ¢ < j {# > j}. The superscript

T indicates the transpose operation. In Section 2.2 we show that such a

factorization always exists when A is symmetric and positive definite.
Using (1.2.2) in (1.2.1) we have

LL"z = b, (1.2.3)

and by substituting y = L, it is clear we can obtain @ by solving the

triangular systems
Ly = b, (1.2.4)

and
L7z = y. (1.2.5)

As an example, consider the problem

412 1 2 zq 7
1 200 0 T, 3
2 0 3 00 zs | = 7 (1.2.6)
00 2 0 T4 -4
2 0 0 0 16 5 —4
The Cholesky factor of the coefficient matrix of (1.2.6) is given by
2
0.5 0.5
L= 1 -1 1 . (1.2.7)

.25 =25 —-.5 0.5
1 -1 -2 -3 1

Solving Ly = b, we obtain

3.5
2.5
Y= 6 5
—-2.5
—0.50
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and then solving L¥ @ = y yields

2
2
x = 1
-8
—0.50

The example above illustrates the most important fact about applying
Cholesky’s method to a sparse matrix A: the matrix usually suffers fill-in.
That is, L has nonzeros in positions which are zero in the lower triangular
part of A.

Now suppose we relabel the variables z; according to the recipe z; —
5 441, ¢t = 1,2,---,5, and rearrange the equations so that the last one
becomes the first, the second last becomes the second, and so on, with the
first equation finally becoming the last one. We then obtain the equivalent
system of equations (1.2.8).

16 00 0 2 & —4
0 200 1 &, —4

0 0 3 0 2 s | =| 7 (1.2.8)
0 00 1 1 Z4 3

2 121 4 &5 7

It should be clear that this relabelling of the variables and reordering of the
equations amounts to a symmetric permutation of the rows and columns of
A, with the same permutation applied to b. We refer to this new system as
Az =b. Using Cholesky’s method on this new system as before, we factor

A into j}j}T, obtaining (to three significant figures)

4
0 0.791

L= 0 0 1.73
0 0 0.707

0.500 0.632 1.15 1.41 1.29

Solving Ly =band 1~}T53 = y yields the solution &, which is simply a rear-
ranged form of . The crucial point is that our reordering of the equations
and variables provided a triangular factor L which is now just as sparse as
the lower triangle of A. Although it is rarely possible in practice to achieve
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this, for most sparse matrix problems a judicious reordering of the rows and
columns of the coefficient matrix can lead to enormous reductions in fill-
in, and hence savings in computer execution time and storage (assuming of
course that sparsity is exploited.) The study of algorithms which automati-
cally perform this reordering process is one of the major topics of this book,
along with a study of effective computational and storage schemes for the
sparse factors L that these reorderings provide.

The 5 by 5 matrix example above illustrates the basic characteristics of
sparse elimination and the effect of reordering. To emphasize these points,
we consider a somewhat larger example, the zero-nonzero pattern of which
is given in Figure 1.2.1. On factoring this matrix into LL”, we obtain the
structure shown in Figure 1.2.2. Evidently the matrix in its present ordering
is not good for sparse elimination, since it has suffered a lot of fill.

Figures 1.2.3 and 1.2.5 display the structure of two symmetric permuta-
tions A’ and A" of the matrix A whose structure is shown in Figure 1.2.1.
The structure of their Cholesky factors L' and L" is shown in Figures 1.2.4
and 1.2.6 respectively. The matrix A’ has been permuted into so-called
band form, to be discussed in Chapter 4. The matrix A” has been ordered
to reduce fill-in; a method for obtaining this type of ordering is the topic of
Chapter 5. The number of nonzeros in L, L' and L" is 369, 189, and 177
respectively.

As our example shows, some orderings can lead to dramatic reductions
in the amount of fill, or confine it to certain specific parts of L which can
be easily stored. This task of finding a “good” ordering, which we refer to
as the “ordering problem,” is central to the study of the solution of sparse
positive definite systems.

1.3 Positive Definite Versus Indefinite Matrix Prob-
lems

In this book we deal exclusively with the case when A is symmetric and
positive definite. As we noted earlier, a substantial portion of linear equa-
tion problems arising in science and engineering have this property, and the
ordering problem is both different from and easier than that for general
sparse A. For a general indefinite sparse matrix A, some form of pivoting
(row and/or column interchanges) is necessary to ensure numerical stability
Thus given A, one normally obtains a factorization of PA or PAQ, where
P and Q are permutation matrices of the appropriate size. (note that the
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Figure 1.2.1: The structure of a 35 by 35 matrix A.

Figure 1.2.2: Nonzero pattern of the Cholesky factor L for the matrix whose
structure is shown in Figure 1.2.1.
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Figure 1.2.3: The structure of A’, a symmetric permutation of the matrix
A, whose structure is shown in Figure 1.2.1.

Figure 1.2.4: The structure of L', the Cholesky factor of A, whose structure
is shown in Figure 1.2.3.
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Figure 1.2.5: The structure of A", a symmetric permutation of the matrix
A, whose structure is shown in Figure 1.2.1.

Figure 1.2.6: The structure of L", the Cholesky factor A", whose structure
is shown in Figure 1.2.5.
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application of P on the left permutes the rows of A, and the application
of Q on the right permutes the columns of A.) These permutations are de-
termined during the factorization by a combination of (usually competing)
numerical stability and sparsity requirements (Duff [12]). Different matrices,
even though they may have the same zero/nonzero pattern, will normally
yield different P and @, and therefore have factors with different sparsity
patterns. In other words, it is in general not possible to predict where fill-in
will occur for general sparse matrices before the computation begins. Thus,
we are obliged to use some form of dynamic storage scheme which allocates
storage for fill-in as the computation proceeds.

On the other hand, symmetric Gaussian elimination (Cholesky’s method,
or one of its variants, described in Chapter 2) applied to a symmetric pos-
itive definite matrix does not require interchanges (pivoting) to maintain
numerical stability. Since PAPT is also symmetric and positive definite for
any permutation matrix P, this means we can choose to reorder A sym-
metrically i) without regard to numerical stability and ii) before the actual
numerical factorization begins.

These options, which are normally not available to us when A is a general
indefinite matriz, have enormous practical implications. Since the ordering
can be determined before the factorization begins, the locations of the fill-in
suffered during the factorization can also be determined. Thus, the data
structure used to store L can be constructed before the actual numerical
factorization, and spaces for fill components can be reserved. The computa-
tion then proceeds with the storage structure remaining static (unaltered).
Thus, the three problems of i) finding a suitable ordering, ii) setting up
the appropriate storage scheme, and iii) the actual numerical computation,
can be isolated as separate objects of study, as well as separate computer
software modules, as depicted in Figure 1.3.1.

This independence of tasks has a number of distinct advantages. It en-
courages software modularity, and, in particular, allows us to tailor storage
methods to the given task at hand. For example, the use of lists to store
matrix subscripts may be quite appropriate for an implementation of an
ordering algorithm, but decidedly inappropriate in connection with actually
storing the matrix or its factors. In the same vein, knowing that we can use a
storage scheme in a static manner during the factorization sometimes allows
us to select a method which is very efficient in terms of storage require-
ments, but would be a disaster in terms of bookkeeping overhead if it had to
be altered during the factorization. Finally, in many engineering design ap-
plications, numerous different positive definite matrix problems having the
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Set up the
Find the |_,| data structure | | Plfi?lirﬁctﬁe
permutation P for L where ;
T T computation
PAP =LL

Figure 1.3.1: Sequence of tasks for sparse Cholesky factorization.

same structure must be solved. Obviously, the ordering and storage scheme
set-up only needs to be performed once, so it is desirable to have these tasks
isolated from the actual numerical computation.

In numerous practical situations matrix problems arise which are unsym-
metric but have symmetric structure, and for which it can be shown that
pivoting for numerical stability is not required when Gaussian elimination is
applied. Almost all the ideas and algorithms described in this book extend
immediately to this class of problems. Some hints on how this can be done
are provided in Exercise 4.6.1 on page 103, Chapter 4.

1.4 TIterative Versus Direct Methods

Numerical methods for solving systems of linear equations fall into two gen-
eral classes, iterative and direct. A typical iterative method involves the
initial selection of an approximation *) to @, and the determination of a
sequence (2, ®(®), ... such that lim;, ., %) = @. Usually the calculation
of ¢t involves only A, b, and one or two of the previous iterates. In
theory, when we use an iterative method we must perform an infinite num-
ber of arithmetic operations in order to obtain @, but in practice we stop
the iteration when we believe our current approximation is acceptably close
to ®. On the other hand, in the absence of rounding errors, direct methods
provide the solution after a finite number of arithmetic operations have been
performed.

Which class of method is better? The question cannot be answered in
general since it depends upon how we define “better,” and also upon the
particular problem or class of problems to be solved. Iterative methods are
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attractive in terms of computer storage requirements since their implemen-
tations typically require only A, b, (¥ and perhaps one or two other vectors
to be stored. On the other hand, when A is factored, it typically suffers some
fill-in, so that the filled matriz F = L + L” has nonzeros in positions which
are zero in A. Thus, it is often true that direct methods for sparse systems
require more storage than implementations of iterative methods. The ac-
tual ratio depends very much on the problem being solved, and also on the
ordering used.

A comparison of iterative and direct methods in terms of computational
requirements is even more complicated. As we have seen, the ordering used
can dramatically affect the amount of arithmetic performed using Gaussian
elimination. The number of iterations performed by an iterative scheme
depends very much on the characteristics of A, and on the sometimes delicate
problem of determining, on the basis of computable quantities, when ® is
“close enough” to «.

In some situations, such as in the design of some mechanical devices, or
the simulation of some time-dependent phenomena, many systems of equa-
tions having the same coefficient matrix must be solved. In this case, the
cost of the direct scheme may be essentially that of solving the triangular
system given the factorization, since the factorization cost amortized over
all solutions may be negligible. In these situations it is also often the case
that the number of iterations required by an iterative scheme is quite small,
since a good starting vector () is often available.

The above remarks should make it clear that unless the question of which
class of method should be used is posed in a quite narrow and well defined
context, it is either very complicated or impossible to answer. Our justifica-
tion for considering only direct methods in this book is that several excellent
references dealing with iterative methods are already available (Varga [4],
Young [57]), while there is no such comparable reference known to the au-
thors for direct methods for large sparse systems. In addition, there are
situations where it can be shown quite convincingly that direct methods are
far more desirable than any conceivable iterative scheme.
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Chapter 2

Fundamentals

2.1 Introduction

In this chapter we examine the basic numerical algorithm used through-
out the book to solve symmetric positive definite matrix problems. The
method, known as Cholesky’s method, was discussed briefly in Section 1.2.
In what follows we prove that the factorization always exists for positive
definite matrices, and examine several ways in which the computation can
be performed. Although these are mathematically and (usually) numerically
equivalent, they differ in the order in which the numbers are computed and
used. These differences are important with respect to computer implementa-
tion of the method. We also derive expressions for the amount of arithmetic
performed by the method.

As we indicated in Section 1.2, when Cholesky’s method is applied to a
sparse matrix A, it generally suffers some fill-in, so that its Cholesky factor
L has nonzeros in positions which are zero in A. For some permutation
matrix P, we can instead factor PAP” into j}j}T, and L may be much
more attractive than L, according to some criterion. In Section 2.4 we
discuss some of these criteria, and indicate how practical implementation
factors complicate the comparison of different methods.

2.1.1 Notations

The reader is assumed to be familiar with the elementary theory and prop-
erties of matrices as presented in (Stewart [50]). In this section, we shall
describe the matrix notations used throughout the book.

13
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We shall use bold face capital italic letters for matrices. The entries of
a matrix will be represented by lower case italic letters with two subscripts.
For example, let A be an n by n matrix. Its (¢, 7)-th element is denoted by
a;;. The number n is called the order of the matrix A.

A vector will be denoted by a lower case bold italic letter and its elements
by lower case letters with a single subscript. Thus, we have

Up,

a vector of length n.

For a given matrix A, its i-th row and ¢-th column are denoted by A;, and
A,; respectively. When A is symmetric, we have A;, = Az; fori=1,---,n.

We shall use I, to represent the identity matriz of order n; that is, the
matrix with all entries zero except for ones on the diagonal.

In sparse matrix analysis, we often need to count the number of nonze-
ros in a vector or matrix. We use n(0) to denote the number of nonzero
components in O, where O stands for a vector or a matrix. Obviously,

n(I,) = n.

We also often need to refer to the number of members in a set 5; we denote
this number by |5|.

Let f(n) and g(n) be functions of the independent variable n. We use
the notation

f(n) = 0(g(n))

if for some constant K and all sufficiently large n,
‘M‘ <K
g(n)

We say that f(n) has at most the order of magnitude of g(n). This is a

useful notation in the analysis of sparse matrix algorithms, since often we

are only interested in the dominant term in arithmetic and nonzero counts.
For example, if f(n) = tn® + in? — 2n, we can write

f(n) = O(n).



2.1. INTRODUCTION 15

For large enough n, the relative contribution from the terms %nz and —%n
is negligible.

Expressions such as f(n) above arise in counting arithmetic operations
or numbers of nonzeros, and are often the result of some fairly complicated
summations. Since we are usually only concerned with the dominant term,
a very common device used to simplify the computation is to replace the
summation by an integral sign. For example, for large n,

i(% +k)(n— k)~ /On(2n + E)(n — k)dk.

k=1

Exercises

2.1.1) Compute directly the sum Y ; ; ¢*(n — ¢), and also approximate it
using an integral, as described at the end of this section.

2.1.2) Compute directly the sum Y. , E;‘;{H(z +j), and also approximate
it using a double integral.

2.1.3) Let A and B be two n by n sparse matrices. Show that the number
of multiplications required to compute C = AB is given by

2.1.4) Let B be a given m by n sparse matrix. Show that the product B'B
can be computed using

33 n(BL)(BL) +1)

multiplications.

2.1.5) A common scheme to store a sparse vector has a main storage array
which contains all the nonzero entries in the vector, and an accom-
panying vector which gives the subscripts of the nonzeros. Let u and
v be two sparse vectors of size n stored in this format. Consider the

computation of the inner product w = uTv.

a) If the subscript vectors are in ascending (or descending) order,
show that the inner product can be done using only O(n(u) +
n(v)) comparisons.
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b) What if the subscripts are in random order?

¢) How would you perform the computation if the subscripts are in
random order and a temporary real array of size n with all zero
entries is provided?

2.2 The Factorization Algorithm

2.2.1 Existence and Uniqueness of the Factorization

A symmetric matrix A is positive definite if 27 Az > 0 for all nonzero vectors
®. Such matrices arise in many applications; typically 7 Az represents the
energy of some physical system which is positive for any configuration «. In
a positive definite matrix A the diagonal entries are always positive since

T f— ..
e; Ae; = a,;,

where e; is the i-th characteristic vector, the components of which are all
zeros except for a one in the ¢-th position. This observation will be used in
proving the following factorization theorem due to Cholesky (Stewart [50]).

Theorem 2.2.1 If A is an n by n symmetric positive definite matriz, it has
a unique triangular factorization LLT, where L is a lower triangular matriz
with positive diagonal entries.

Proof: The proof is by induction on the order of the matrix A. The result
is certainly true for one by one matrices since a,; is positive.

Suppose the assertion is true for matrices of order n — 1. Let A be a
symmetric positive definite matrix of order n. It can be partitioned into the

form
d o7
A_(v ﬂ)’

where d is a positive scalar and H is an n — 1 by n — 1 submatrix. The
partitioned matrix can be written as the product

vd o0 1 0 \/E%
%In_l 0 H o I,. )/’

where H = H — #. Clearly the matrix H is symmetric. It is also positive
definite since for any nonzero vector @ of length n — 1,

- d T _xTv B vl
A T & d — T _ v
(-2 “’)(vﬂ)( z ) “’(H d)“’
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= 2"He,

which implies 27 Ha > 0. By the induction assumption, H has a triangular
factorization L gy LII'{ with positive diagonals. Thus, A can be expressed as

Vd o 1 0 1 0 vd Y
2 L. 0 Ly 0 Ly 0 I,

(A )

U

vi e )\ o Ly
= LL".
It is left to the reader to show that the factor L is unique. a

If we apply the result to the matrix example
4 8
8 25 J’
2 0 2 4
4 3 0 3 /°

It is appropriate here to point out that there is a closely related fac-
torization of a symmetric positive definite matrix (Martin [40]). Since the
Cholesky factor L has positive diagonal elements, one can factor out a diag-
onal matrix D'/? from L, yielding L = LD'? whence we have

we obtain the factors

A=LDL . (2.2.1)

In the above matrix example, this alternative factorization is

10 4 0 1 2

21 09 01 /°
This factorization is as easy to compute as the original, and can be obtained
without square root calculation (see Exercise 2.2.4 on page 25). We do

not use it in our book because in some circumstances it leads to certain
disagreeable asymmetries in calculations involving partitioned matrices.
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2.2.2 Computing the Factorization

Theorem 2.2.1 guarantees the existence and uniqueness of the Cholesky fac-
tor for a symmetric positive definite matrix, but the order and the way in
which the components of the factor L are actually computed can vary. In
this section, we examine some different ways in which L can be computed;
these options are important because they provide us with flexibility in the
design of storage schemes for the sparse matrix factor L.

The constructive proof of Theorem 2.2.1 suggests a computational scheme
to determine the factor L. It is the so-called outer product form of the algo-
rithm. The scheme can be described step by step in matrix terms as follows.

_ _ _ dy ”f
A_AO_HO_(v1 H, (2.2.2)
_ [(vd o Lo (Ve gk
Y I, J\o &, -uY o I

B 1 0 T
_Ll(oﬂl)Ll

= LA L7,
1 0 o
1 0
Al:(o Hl): 0 d v7
V2 2
1 0 0 10 0 1 0 0
—_ ,vg"
= 0 \v/dz 0 0 1 ~ Ova 0 1/d2 e
0 Vo I, , 0 0 H,- R o 0 I,
= L,A,L7,

A, ,=L,I,L.

Here, for 1 < 7 < n, d; is a positive scalar, v; is a vector of length n — i,
and H; is an n — i by n — ¢ positive definite symmetric matrix.
After n steps of the algorithm, we have

A=LL,---L,LT...LILT = LL",
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where it can be shown (see Exercise 2.2.6 on page 26 ) that
L=L +Ly+---+L,—(n-1)I,. (2.2.3)

Thus, the ¢-th column of L is precisely the ¢-th column of L;.

In this scheme, the columns of L are computed one by one. At the same
time, each step involves the modification of the submatrix H; by the outer
product v;v7 /d; to give H;, which is simply the submatrix remaining to
be factored. The access to the components of A during the factorization is
depicted as follows.

no longer accessed

modified

— factoring column

Figure 2.2.1: Access pattern in the outer product formulation of the Cholesky
factorization algorithm.

An alternative formulation of the factorization process is the bordering
method. Suppose the matrix A is partitioned as

M u

where the symmetric factorization L ML:E\J of the n — 1 by n — 1 leading
principal submatrix M has already been obtained. (Why is M positive
definite?) Then the factorization of A is given by

A:(I;J\Q{I ‘;)(sz_r ’:), (2.2.4)
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where
w=Lyru (2.2.5)

and

t=(s — wlw)'?

(Why is s — wTw positive?)
Note that the factorization L p s LCE\J of the submatrix M is also obtained
by the bordering technique. So, the scheme can be described as follows.
Fori:=1,2,---,n,
11,1 o li,l a; 1
Solve : : =

li—l,l li—l,i—l li,i—l a; ;-1

i-1 1/2
Compute [, ; = (ai,i — Z lfyk) .
k=1

In this scheme, the rows of L are computed one at a time; the part of
the matrix remaining to be factored is not accessed until the corresponding
part of L is to be computed. The sequence of computations can be depicted
as follows.

computed and accessed

accessed and modified

not yet accessed

Figure 2.2.2: Access pattern in the bordering method.

The final scheme for computing the components of L is the inner product
form of the algorithm. It can be described as follows.
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Forj=1,2,---,n

i1 1/2
Compute [; ; = (aj,j - Z lz»’k) .
k=1

Fori=73+1,7+2,---,n

j—1
Compute [, ; = (ai,j - Zli,kl',k) /-
k=1

These formulae can be derived directly by equating the elements of A to the
corresponding elements of the product LL”.

Like the outer product version of the algorithm, the columns of L are
computed one by one, but the part of the matrix remaining to be factored
is not accessed during the scheme. The sequence of computations and the
relevant access to the components of A (or L) is depicted as follows.

not accessed

computed and accessed

— accessed and modified

Figure 2.2.3: Access pattern in the inner product formulation of the Cholesky
factorization algorithm.

The latter two formulations can be organized so that only inner products
are involved. This can be used to improve the accuracy of the numerical
factorization by accumulating the inner products in double precision. On
some computers, this can be done at little extra cost.
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2.2.3 Sparse Matrix Factorization

As we have seen in Chapter 1, when a sparse matrix is factored, it usually
suffers some fill-in; that is, the lower triangular factor L has nonzero compo-
nents in positions which are zero in the original matrix. Recall in Section 1.2
the factorization of the matrix example

41 2 3 2

1 200 0

A=12 03 0 0

200 2 0

2 0 0 0 16

Its triangular factor L is given by

2 0 0 00
0.5 0.5 0 00
L= 1 -1 1 00
0.25 —-0.25 —-0.5 0.5 0
1 -1 -2 -3 1

so that the matrix A suffers fill at asy, @43, a4s, @59, as3 and as,. This
phenomenon of fill-in, which is usually ignored in solving dense systems,
plays a crucial role in sparse elimination.

The creation of nonzero entries can be best understood using the outer-
product formulation of the factorization process. At the ¢-th step, the sub-
matrix H; is modified by the matrix v;v7 /d; to give H,. As a result, the
submatrix H; may have nonzeros in locations which are zero in H;. In the
example above,

o0 0
. 030 0
Hl_oogo
0 0 0 16

and it is modified at step 1 to give (to three significant figures)

H]_ - ﬂl_

(121 2)

e
N N =
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25 -5 —-.126 -5
-5 2 =25 -1
—-.125 —-.25 563 —.25
-5 -1 -.25 15

If zeros are exploited in solving a sparse system, fill-in affects both the
storage and computation requirements. Recall that 7(0) is the number of
nonzero components in 0, where O stands for a vector or a matrix. Clearly,
from (2.2.2) and (2.2.3), the number of nonzeros in L is given by

n—1

(L) =n+ ) n(v). (2.2.6)

=1

In the following theorem, and throughout the book, we measure arith-
metic requirements by the number of multiplicative operations (multiplica-
tions and divisions), which we simply refer to as “operations.” The majority
of the arithmetic performed in matrix operations involves sequences of arith-
metic operations which occur in multiply-add pairs, so the number of addi-
tive operations is about equal to the number of multiplicative operations.

Theorem 2.2.2 The number of operations required to compute the triangu-
lar factor L of the matriz A s given by

%ni n(vi)(n(v:) + 3) = %ni:(n(L*i) —1)(n(L.:) +2). (2.2.7)

i=1 i=1

Proof: The three formulations of the factorization differ only in the order in
which operations are performed. For the purpose of counting operations, the
outer-product formulation (2.2.2) is used. At the i-th step, n(v;) operations
are required to compute v;//d;, and $7(v;)(n(v;)+1) operations are needed
to form the symmetric matrix

() ()

The result follows from summing over all the steps. a

For the dense case, the number of nonzeros in L is

-n(n+1) (2.2.8)
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and the arithmetic cost is

1 1 1 2
= Zz(z +3)= En?’ + 5n2 - 3™ (2.2.9)

Consider also the Cholesky factorization of a symmetric positive definite
tridiagonal matrix, an example of a sparse matrix. It can be shown (see
Chapter 5) that if L is its factor,

(L) =2, fori=1,---,n—1.
In this case, the number of nonzeros in L is
n(L) =2n—1,
and the arithmetic cost of computing L is

;i 1(4) = 2(n — 1).

=1

Comparing these results with the counts for the dense case, we see a
dramatic difference in storage and computational costs.

The costs for solving equivalent sparse systems with different orderings
can also be very different. As illustrated in Section 1.2, the matrix example
A at the beginning of this section can be ordered so that it does not suffer
any fill-in at all! The permutation matrix used is

0 00 01
00010
P=|00100
01000
100 00

which reverses the ordering of A when applied. We obtain the permuted
matrix

16 0 0 0 2
i 0 o0 !
PAP"=| 0 0 3 0 2
0 00 L1

2 121 4
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This simple example illustrates that a judicious choice of P can result
in dramatic reductions in fill-in and arithmetic requirements. Therefore, in
solving a given linear equation problem

Az = b,

the general procedure involves first finding a permutation or ordering P of
the given problem. Then the system is expressed as

(PAP")(Pz) = Pb

and Cholesky’s method is applied to the symmetric positive definite matrix
PAPT yielding the triangular factorization LL”. By solving the equivalent
permuted system, we can often achieve a reduction in the computer storage
and execution time requirements.

Exercises

2.2.1) Show that the Cholesky factorization for a symmetric positive defi-
nite matrix is unique.

2.2.2) Let A be an n by n symmetric positive definite matrix. Show that

a) any principal submatrix of A is positive definite,
b) A is nonsingular and A™" is also positive definite,

C) maxlsis” a;; = maXlSi’an |a,]|
2.2.3) Let A be a symmetric positive definite matrix. Show that

a) BT AB is positive definite if and only if B is non-singular,

[ 2)

is positive definite if and only if s > u” A 'u.

b) the augmented matrix

2.2.4) Write out equations similar to those in (2.2.2) and (2.2.3) which yield
the factorization LDL”, where L is now lower triangular with ones
on the diagonal, and D is a diagonal matrix with positive diagonal
elements.
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2.2.5) Let E and F be two n by n lower triangular matrices which for some
k (1 <k < n) satisfy

ej; = lforj>k
ei; = Ofori>jandj>k
fij = lforj<k
fij = O0fori>jandj <k

The case when n = 6 and k = 3 is depicted below.

X 1

X X o 01 o

X X X 0 01
E_><><><1 F_000x

x x x 0 1 0 0 0 x x

x x x 0 0 1 0 0 0 x x x

Show that EF = E + F — I, and hence prove that (2.2.3) holds.

2.2.6) Give an example of a symmetric matrix which does not have a tri-
angular factorization LL” and one which has more than one factor-
ization.

2.3 Solving Triangular Systems

2.3.1 Computing the Solution

Once we have computed the factorization, we must solve the triangular sys-
tems Ly = b and LT® = y. In this section, we consider the numerical
solution of triangular systems.

Consider the n by n linear system

Tz =05>

where T is nonsingular and triangular. Without loss of generality, we assume
that T is lower triangular. There are two common ways of solving the system,
which differ only in the order in which the operations are performed.

The first one involves the use of inner-products and the defining equations
are given by:
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Fori:=1,2,---,n,
i-1
T, = (bi - Zti,kl‘k) [tii- (2.3.1)
k=1

The sequence of computations is depicted by the diagram in Figure 2.3.1.

no longer
/ accessed
| / / computed and
/ / accessed

LS

being
computed

not yet

accessed

Figure 2.3.1: Access pattern in the inner product formulation of the trian-
gular solution algorithm.

The second method uses the matrix components of T' in the same way
as the outer-product version of the factorization. The defining equations are
as follows.

Fori:=1,2,---,n,
z, = b/t

b; 11 b; 11 tit1,
: — : — : (2.3.2)
bn bn tn,i
Note that this scheme lends itself to exploiting sparsity in the solution .
If b, turns out to be zero at the beginning of the i-th step, z; is zero and
the entire step can be skipped. The access to components of the system is
shown as follows.
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no longer
accessed

// computed and

accessed

\\§ being

AN computed

NN NN
7
7

not yet
accessed

L

Figure 2.3.2: Access pattern in the outer product formulation of the trian-
gular solution algorithm.

The former solution method accesses the components of the lower tri-
angular matrix row by row and therefore lends itself to row-wise storage
schemes. If the matrix is stored column by column, the latter method is
more appropriate. It is interesting to note that this column oriented method
is often used to solve the upper triangular system

LTz =y,

where L is a lower triangular matrix stored using a row-wise scheme.

2.3.2 Operation Counts

We now establish some simple results about solving triangular systems. They
will be helpful later in obtaining operation counts.
Consider the solution of
Tx =0>,

where T is nonsingular and lower triangular.

Lemma 2.3.1 The number of operations required to solve for ® s

Z{U(T*i) | z; # 0}
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Proof: It follows from (2.3.2) that if z; # 0, the i-th step requires n(T.;)
operations. a

Corollary 2.3.2 If the sparsity of the solution vector ® s not exploited
(that is, & is assumed to be full), then the number of operations required to
compute @ is n(T).

Thus, it follows that the operation count for solving T® = b, when T
and ® are full, is
%n(n +1). (2.3.3)

The following results give some relationships between the structure of
the right hand side b and the solution @ of a lower triangular system.
Lemma 2.3.3 and Corollary 2.3.5 appeal to a no-cancellation assumption;
that is, whenever two nonzero quantities are added or subtracted, the re-
sult is nonzero. This means that in the analysis we ignore any zeros which
might be created through exact cancellation. Such cancellation rarely oc-
curs, and in order to predict such cancellation we would have to know the
numerical values of T' and b. Such a prediction would be difficult in general,
particularly in floating point arithmetic which is subject to rounding error.

Lemma 2.3.3 With the no-cancellation assumption, if b; # 0 then z; # 0.

Proof: Since T is non-singular, ¢;; # 0 for 1 < ¢ < n. The result then follows
from the no-cancellation assumption and the defining equation (2.3.1) for ;.
a

Lemma 2.3.4 Let @ be the solution to Te = b. Ifb, = 0 for 1 < i <k,
then z; = 0 for 1 <37 < k.

Corollary 2.3.5 With the no-cancellation assumption, n(b) < n(=).

Exercises

2.3.1) Use Lemma 2.3.1 to show that factorization by the bordering scheme
requires

1 n—1
3 > (L) = 1)(n(Lwi) +2)
=1
operations.

2.3.2) Show that the inverse of a nonsingular lower triangular matrix is
lower triangular (use Lemma 2.3.4).
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2.3.3)

2.3.4)

2.3.5)

2.3.6)

2.3.7)

2.3.8)

CHAPTER 2. FUNDAMENTALS

Let T be a nonsingular lower triangular matrix with the propagation
property, that is, ¢, ;1 # 0 for 2 < ¢ < n.

a) Show that in solving T® = b, if b; # 0 then z; # 0 for i < j < n.

b) Show that T™' is a full lower triangular matrix.

Does Lemma 2.3.1 depend upon the no-cancellation assumption? Ex-
plain. What about Theorem 2.2.2 and Lemma 2.3.47

Prove a result analogous to Lemma 2.3.4 for upper triangular matri-
ces.

Suppose you have numerous n by n lower triangular systems of the
form Ly = b to solve, where L and b are both sparse. It is known
that the solution y is also sparse for these problems. You have a
choice of two storage schemes for L, as illustrated by the 5 by 5
example in Figure 2.3.3; one is column oriented and one is row ori-
ented. Which one would you choose, and why would you choose it?
If you wrote a Fortran program to solve such systems using your
choice of data structures, would the execution time be proportional
to the number of operations performed? Explain. (Assume that the
number of operations performed is at least O(n).)

Let L and W be n by n non-sparse lower triangular matrices, with
nonzero diagonal elements. Approximately how many operations are

required to compute L™'W ? How many operations are required to
T ?
compute W~ W 1

Suppose that n = 1 + k(p — 1) for some positive integer k, and
that W is an n by p full (pseudo) lower triangular matrix. That is,
W has zeros above position 1+ (¢ — 1)k in column 7 of W, and is
nonzero otherwise. An example with n = 7 and p = 4 appears below.
Roughly how many operations are required to compute W W, in
terms of n and p 7

X

X o
X X

X X

X X X
X X X
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3
0 2 0
L=12 0 4
0 3 9 5
00 7 0 7
Scheme 1
1121 3|2 3 4|3 5 column subscripts
31212 4(3 9 5|7 7T numerical values
‘ ‘ ‘ |
1 2 3 5 8 10 index vector
Scheme 2
1 312 4|3 4 5|45 row subscripts
3 2|12 3(4 9 7|5 |7 numerical values
‘ |
1 3 5 8 9 10 index vector

Figure 2.3.3: Two storage schemes for a 5 by 5 lower triangular matrix L.
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2.3.9) Suppose L is a nonsingular n by n lower triangular matrix, and W is
as described in Exercise 2.3.8. Approximately how many operations
are required to compute LW, as a function of n and p?

2.3.10) a) Suppose A = LL”, where L is as in Exercise 2.3.9 and 5(L.;) >
2,1 < ¢ < n. Assuming the no-cancellation assumption, show
that computing A~" by solving LW = I and LT Z = W yields
a full matrix.

b) Suppose A is unsymmetric with triangular factorization LU,
where L is unit lower triangular and U is upper triangular.
State the conditions and results analogous to those in a) above.

2.4 Some Practical Considerations

The objective of studying sparse matrix techniques for solving linear systems
is to reduce cost by exploiting sparsity of the given system. We have seen
in Section 2.2.3 that it is possible to achieve drastic reductions in storage
and arithmetic requirements, when the solutions of dense and tridiagonal
systems are compared.

There are various kinds of sparse storage schemes, which differ in the way
zeros are exploited. Some might store some zeros in exchange for a simpler
storage scheme; others exploit all the zeros in the system. In Chapters 4 to
8, we discuss the commonly used sparse schemes for solving linear systems.

The choice of a storage method naturally affects the storage require-
ment, and the use of ordering strategies (choice of permutation matrix P).
Moreover, it has significant impact on the implementation of the factoriza-
tion and solution, and hence on the complexity of the programs and the
execution time.

However, irrespective of what sparse storage scheme is used, there are
four distinct phases that can be identified in the entire computational pro-
cess.

Step 1 (Ordering) Find a “good” ordering (permutation P) for the given
matrix A, with respect to the chosen storage method.

Step 2 (Storage allocation) Determine the necessary information about the
Cholesky factor L of PAPT to set up the storage scheme.

Step 3 (Factorization) Factor the permuted matrix PAP” into LL”.
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Step 4 (Triangular solution) Solve Ly = b and L7z = y. Then set @ =
Pz

Even with a prescribed storage method, there are many ways for find-
ing orderings, determining the corresponding storage structure of L, and
performing the actual numerical computation. We shall refer to a sparse
storage scheme and an associated ordering-allocation-factorization-solution
combination collectively as a solution method.

The most commonly cited objectives for choosing a solution method are
to a) reduce computer storage, b) reduce computer execution time or c)
reduce some combination of storage and execution which reflects the way
charges are assessed to the user of the computer system. Although there are
other criteria which sometimes govern the choice of method, these are the
main ones and serve to illustrate the complications involved in evaluating a
strategy.

In order to be able to declare that one method is better than another
with respect to one of the measures cited above, we must be able to evaluate
precisely that measure for each method, and this evaluation is substantially
more complicated than one would expect. We deal first with the computer
storage criterion.

2.4.1 Storage Requirements

Computer storage used for sparse matrices typically consists of two parts,
primary storage used to hold the numerical values, and overhead storage,
used for pointers, subscripts and other information needed to record the
structure of the matrix and to facilitate access to the numerical values. Since
we must pay for computer storage regardless of how it is used, any evaluation
of storage requirements for a solution method must include a description of
the way the matrix or matrices involved are to be stored, so that the storage
overhead can be included along with the primary storage in the storage
requirement. The comparison of two different strategies with respect to the
storage criterion may involve basically different data structures, having very
different storage overheads. Thus, a method which is superior in terms of
reducing primary storage may be inferior when overhead storage is included
in the comparison. This point is illustrated pictorially in Figure 2.4.1.

As a simple example, consider the two orderings of a matrix problem in
Figure 2.4.2, along with their corresponding factors L and L. The elements
of the lower triangle of L (excluding the diagonal) are stored row by row in
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Primary Overhead

Primary Overhead

Figure 2.4.1: Primary/Overhead storage for two different methods.

a single array, with a parallel array holding their column subscripts. A third
array indicates the position of each row, and a fourth array contains the
diagonal elements of L. The matrix L is stored using the so-called envelope
storage scheme, described in Chapter 4. Nonzeros in A are denoted by x,
with % denoting fill-in components in L or L.

The examples in Figures 2.4.2 and 2.4.3 illustrate some important points
about orderings and storage schemes. On the surface, ordering 1, corre-
sponding to A appears to be better than ordering 2 since it yields no fill-in
at all, whereas the latter ordering causes two fill components. Moreover,
the storage scheme used for L appears to be inferior to that used for L,
since the latter actually ignores some sparsity, while all the sparsity in L
is exploited. However, because of differences in overhead, the second or-
dering/storage combination yields the lower total storage requirement. Of
course the differences here are trivial, but the point is valid. As we increase
the sophistication of our storage scheme, exploiting more and more zeros, the
primary storage decreases, but the overhead usually increases. There is usu-
ally a point where it pays to ignore some zeros, because the overhead storage
required to exploit them is more than the decrease in primary storage.

To summarize, the main points in this section are:

1. Storage schemes for sparse matrices involve two components: primary
storage and overhead storage.

2. Comparisons of ordering strategies must take into account the storage
scheme to be used, if the comparison is to be practically relevant.
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X X X
X X X
X X X
X X X
A= 8 8 — 8 =
X X X
X X X X X X X
X X X X X X X
X X X X X X X
| X X X X X ] | X X X X
->< X ) ->< )
X X X
X X X X X X X
X X X
A: X X X X :> X X :L
X X X X X
X X X X X X
X X X X X ®><
X X X X
| X x | ><®><_

Figure 2.4.2: Two different orderings for a sparse matrix A, along with the
sparsity patterns of their respective triangular factors L and L.
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Storage scheme for L
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diagonal
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primary storage 19
overhead storage 20
total storage 39

Storage scheme for L

1 1:31 l:ll
1 :‘ {32 {22
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Figure 2.4.3: Storage schemes for the matrices L and L of Figure 2.4.2.
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2.4.2 Execution Time

We now turn to computer execution time as a criterion. It is helpful in
the discussion to consider the four steps in the entire computation process:
ordering, allocation, factorization and solution.

As we shall see in Chapter 9, the execution times required to find dif-
ferent orderings can vary dramatically. But even after we have found the
ordering, there is much left to do before we can actually begin the numer-
ical computation. We must set up the appropriate storage scheme for L,
and in order to do this we must determine its structure. This allocation
step also varies in cost, depending on the ordering and storage scheme used.
Finally, as we shall see through the numerous experiments supplied in Chap-
ter 9, differences in storage schemes can lead to substantial differences in the
arithmetic operations-per-second output of the factorization and triangular
solution subroutines. Normally, the execution of a sparse matrix program
will be (or should be) roughly proportional to the amount of arithmetic per-
formed. However, differences in orderings and data structures can lead to
large differences in the constant of proportionality. Thus, arithmetic op-
eration counts may not be a very reliable measure for comparing solution
methods, or at best must be used with care. The constant of proportionality
is affected not only by the data structure used, but also by the computer
architecture, compiler, and operating system.

In addition to the variation in the respective costs of executing each
of the steps above, comparisons of different strategies often depend on the
particular context in which a problem is being solved. If the given matrix
problem is to be solved only once, a comparison of strategies should surely
include the execution time required to produce the ordering and set up the
storage scheme.

However, sometimes many different problems having the same structure
must be solved, and it may be reasonable to ignore this initialization cost
in comparing methods, since the bulk of the execution time involves the
factorization and triangular solutions. In still other circumstances, many
systems differing only in their right hand sides must be solved. In this
case, it may be reasonable to compare strategies simply on the basis of their
respective triangular solution times.

To summarize, the main points of the section are:

1. The overall solution of A® = b involves four basic steps. Their relative
execution times in general vary substantially over different orderings
and storage schemes.
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2. Depending on the problem context, the execution times of some of the

steps mentioned above may be practically irrelevant when comparing
methods.

Exercises

2.4.1)

2.4.2)

Suppose you have a choice of two methods (method 1 and method
2) for solving a sparse system of equations Az = b and the crite-
rion for the choice of method is execution time. The ordering and
allocation steps for method 1 require a total of 20 seconds, while the
corresponding time for method 2 is only 2 seconds. The factorization
time for method 1 is 6 seconds and the solve time is .5 seconds, while
for method 2 the corresponding execution times are 10 seconds and
1.5 seconds.

a) What method would you choose if the system is to be solved only
once?

b) What method would you choose if twelve systems Az = b, hav-
ing the same sparsity structure but different numerical values
in A and b are to be solved?

c¢) What is your answer to b) if only the numerical values of the
right side b differ among the different systems?

Suppose for a given class of sparse positive definite matrix problems
you have a choice between two orderings, “turtle” and “hare.” Your
friend P.C.P. (Pure Complexity Pete, Esq.), shows that the turtle or-
dering yields triangular factors having 7,(n) ~ n®2+n—./n nonzeros,
where n is the size of the problem. He also shows that the corre-
sponding function for the hare ordering is n,(n) = 7.75nlog,(1/n +
1) — 24n 4 11.5/nlog,(v/n + 1) + 11y/n+ .751log,(1/n 4+ 1). Another
friend, C.H.H. (Computer Hack Harold), implements linear equa-
tion solvers which use storage schemes appropriate for each ordering.
Harold finds that for the hare implementation he needs one integer
data item (a subscript) for each nonzero element of L, together with
3 pointer arrays of length n. For the turtle implementation, the
overhead storage is only n pointers.

a) Suppose your choice of methods is based strictly on the total
computer storage used to hold L, and that integers and floating
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point numbers each require one computer word. For what values
of n would you use the hare implementation?

b) What is your answer if Harold changes his programs so that
integers are packed three to a computer word?
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Chapter 3

Some Graph Theory
Notation and Its Use in the
Study of Sparse Symmetric
Matrices

3.1 Introduction

In this chapter we introduce a few basic graph theory notions, and estab-
lish their correspondence to matrix concepts. Although rather few results
from graph theory have found direct application to the analysis of sparse
matrix computations, the notation and concepts are convenient and helpful
in describing algorithms and identifying or characterizing matrix structure.
Nevertheless, it is easy to become over-committed to the use of graph theory
in such analyses, and the result is often to obscure some basically simple
ideas in exchange for notational elegance. Thus, although we may sacri-
fice uniformity, where it is appropriate and aids the presentation, we will
give definitions and results in both graph theory and matrix terms. In the
same spirit, our intention is to introduce most graph theory notions only as
they are required, rather than introducing them all in this section and then
referring to them later.

41
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3.2 Basic Terminology and Some Definitions

For our purposes, a graph G = (X, E) consists of a finite set of nodes or
vertices together with a set F of edges, which are unordered pairs of vertices.
An ordering {labelling} o of G = (X, E) is simply a mapping of {1,2,...,n}
onto X, where n denotes the number of nodes of G. Unless we specifically
state otherwise, a graph will be unordered; the graph G labelled by a will
be denoted by G* = (X<, E).

Since our objective in introducing graphs is to facilitate the study of
sparse matrices, we now establish the relationship between graphs and ma-
trices. Let A be an n by n symmetric matrix. The ordered graph of A,
denoted by QA = (XA,EA) is one for which the n vertices of QA are

numbered from 1 to n, and {z;,z,} € EA if and only if a;; = a;; # 0,7 # j.
Here z; denotes the node of XA with label i. Figure 3.2.1 illustrates the
structure of a matrix and its labelled graph. We denote the i-th diagonal
element of a matrix by circle i to emphasize its correspondence with node 2
of the corresponding graph. Off-diagonal nonzeros are depicted by Xx.

[ @ X X T
X @ X X
X ® X
x @
X ® X
| X x ® i
Matrix A Graph QA

Figure 3.2.1: A matrix and its labelled graph, with x denoting a nonzero
entry of A.

For any n by n permutation matrix P # I, the unlabelled graphs of A
and PAPT are the same but the associated labellings are different. Thus,
the unlabelled graph of A represents the structure of A without suggest-
ing any particular ordering. It represents the equivalence class of matrices
PAPT, where P is any n by n permutation matrix. Finding a “good” per-
mutation for A can be regarded as finding a good labelling for its graph.
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Figure 3.2.2 illustrates these points.

x @ x X
x ® x
x @ x
x ® x
i X x @ |
QAQ"
[ © s ] 2 (1) 3
X ® x
x x @ X
x X ®
I x ®©
PAPT gPAPT

Figure 3.2.2: Graph of Figure 3.2.1 with different labellings, and the corre-
sponding matrix structures. Here P amd @ denote permutation matrices.

Some graph theory definitions involve unlabelled graphs. In order to
interpret these definitions in matrix terms, we must have a matrix to refer
to, and this immediately implies an ordering on the graph. Although this
should not cause confusion, the reader should be careful not to attach any
significance to the particular ordering chosen in our matrix examples and
interpretations. When we refer to “the matrix corresponding to G,” we
must either specify some ordering a of G, or understand that some arbitrary
ordering is assumed.

Two nodes z and y in G are adjacent if {z,y} € E. For Y C X, the
adjacent set of Y, denoted by Adj(Y), is

Adj(Y)={z € X -V |{e,y} € E,yc Y}. (3.2.1)
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Here and elsewhere in this book, the notation ¥ C X means that ¥ may
be equal to X. When Y is intended to be a proper subset of X, we will
explicitly indicate so. In words, Adj(Y) is simply the set of nodes in G
which are not in Y but are adjacent to at least one node in Y. Figure 3.2.3
illustrates the matrix interpretation of Adj(Y). For convenience, the set ¥
has been labelled consecutively. When Y is the single node y, we will write
Adj(y) rather than the formally correct Adj({y}).

@ X X
X @ X X
X @ X -
X @ i
X @ X
X x ® )~
Matrix A Graph QA

Y = {iB]_,iBz}, Ad](Y) = {133,134, iBG}

Figure 3.2.3: An illustration of the adjacent set of a set ¥ C X.

For Y C X, the degree of Y, denoted by Deg(Y), is simply the number
|Adj(Y')|, where |S| denotes the number of members in the set §. Again,
when Y is a single node y we write Deg(y) rather than Deg({y}). For
example, in Figure 3.2.3, Deg(z,) = 3.

A subgraph G' = (X', E’) of G is a graph for which X' C X and E’' C E.
For Y C X, the section graph G(Y') is the subgraph (Y, E(Y)), where

E(Y)={{z,y} cE|z€Y,ycY}. (3.2.2)

In matrix terms, the section graph G(Y) is the graph of the matrix obtained
by deleting all rows and columns from the matrix of G except those corre-
sponding to Y. This is illustrated in Figure 3.2.4.

A section graph is said to be a clique if the nodes in the subgraph are
pairwise adjacent. In matrix terms, a clique corresponds to a full submatrix.
For example G({z2,24}) is a clique.
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o] O—®
x ®
of ©
Matrix of G(Y) g(y)

Y = {1327 L3, 136}

Figure 3.2.4: Example of a section graph G(Y') and the matrix correspon-
dence. The original graph G is that of Figure 3.2.1.

The example in Figure 3.2.4 illustrates a concept we now explore, namely
that of the connectedness of a graph. For distinct nodes # and y in G, a
path from z to y of length [ > 1 is an ordered set of [ + 1 distinct nodes
(v1,v2y...,v41) such that v;y; € Adj(v;), 2 = 1, 2,...,] with v; = 2 and
viy1 = y. A graph is connected if every pair of distinct nodes is joined
by at least one path. Otherwise G is disconnected, and consists of two or
more connected components. In matrix terms, it should be clear that if G is
disconnected and consists of k£ connected components and each component is
labelled consecutively, the corresponding matrix will be block diagonal, with
each diagonal block corresponding to a connected component. The graph
G(Y) in Figure 3.2.4 is so ordered, and the corresponding matrix is block
diagonal. Figure 3.2.5 shows a path in a graph and its interpretation in
matrix terms.

Finally, the set Y C X is a separator of the connected graph G if the sec-
tion graph G(X —Y) is disconnected. Thus, for example, Y = {23, 24, 25} is a
separator of the graph of Figure 3.2.5, since G(X —Y') has three components
having node sets {z;}, {2;}, and {z¢, z}.

Exercises

3.2.1) A symmetric matrix A is said to be reducible if there exists a per-
mutation matrix P such that

T _ [ Au O
PAP—(O Azz)'
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Path: {24, s, 23, 25, 21}

Figure 3.2.5: A path in a graph and the corresponding matrix interpretation.

Otherwise, A is said to be irreducible. Show that a symmetric matrix
A is irreducible if and only if its associated graph QA is connected.

3.2.2) Let A be a symmetric matrix. Show that the matrix A has the
propagation property (see Exercise 2.3.3 on page 30 ) if and only if

there exists the path (z1,2,,...,2,) in the associated graph GA.

3.2.3) Characterize the graphs associated with the matrices in Figure 3.2.6.

3.3 Computer Representation of Graphs

In general, the performances of graph algorithms are quite sensitive to the
way the graphs are represented. For our purposes, the basic operation used
is that of retrieving adjacency relations between nodes. So, we need a rep-
resentation which provides the adjacency properties of the graph and which
is economical in storage.

Let G = (X, E) be a graph with n nodes. An adjacency list for z € X isa
list containing all the nodes in Adj(z). An adjacency structure for G is simply
the set of adjacency lists for all z € X. Such a structure can be implemented
quite simply and economically by storing the adjacency lists sequentially in
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(xxxxxxxxxx- ’-><>< x ]
X X X X X X
X X X X X X
X X X X X X
X X X X X X
a) b)
X X X X X X
X X X X X X
X X X X X X
X X X X X X
| X X X X X X X X x x | | X x X |
(x x ]
X X
X X
X X
X X
c)
X X
X X
X X
X X
| X X X X X X X X x x |

Figure 3.2.6: Examples of matrices with very different graphs.




48 CHAPTER 3. GRAPH THEORY NOTATION

a one-dimensional array ADJNCY along with an index array X4DJ of length
n + 1 containing pointers to the beginning of each adjacency list in ADIJNCY.
An example is shown in Figure 3.3.1. It is often convenient for programming
purposes to have an extra entry in XADJ such that XADJ(n + 1) points to the
next available storage location in ADJNCY, as shown in Figure 3.3.1. Clearly
the total storage requirement for this storage scheme is then | X |+ 2|E| + 1.

ADJNCY [2 61342523615

T

XADJ |1 3 6 8 91113
node number 1 2 3 4 5 6

Figure 3.3.1: Example of an adjacency structure.

To examine all the neighbors of a node, the following program segment
can be used.

NBRBEG = XADJ(NODE)
NBREND = XADJ(NODE + 1) - 1
IF (NBREND .LT. NBRBEG) GO TD 200

DO 100 I = NBRBEG, NBREND
NABOR = ADJNCY(I)

100 CONTINUE

200

Although our implementations involving graphs use the storage scheme
described above, several others are often used. A common storage scheme
is a simple connection table, having n rows and m columns, where m =
max{Deg(z) | z € X}. The adjacency list for node i is stored in row ¢. This
storage scheme may be quite inefficient if a substantial number of the nodes
have degrees less than m. An example of a connection table for the graph
of Figure 3.3.1 is given in Figure 3.3.2.

The first two schemes described have a distinct disadvantage. Unless the
degrees of the nodes are known a prior:, it is difficult to construct the storage
scheme when the graph is provided as a list of edges because we do not know
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Node Neighbours
1 2 6 -
2 1 3 4
3 2 5 -
4 2 - -
5 3 6 -
6 1 5 -

Figure 3.3.2: Connection table for the graph of Figure 3.3.1. Unused posi-
tions in the table are indicated by —.

the ultimate size of the adjacency lists. We can overcome this difficulty by
introducing a link field. Figure 3.3.3 illustrates an example of such a scheme
for the graph of Figure 3.3.1. The pointer HEAD(7) starts the adjacency list
for node ¢, with NBRS containing a neighbor of node 7 and LINK containing
the pointer to the location of the next neighbor of node i. For example, to
retrieve the neighbors of node 5, we retrieve HEAD(5) which is 8. We then
examine NBRS(8) which yields 3, one of the neighbors of node 5. We then
retrieve LINK(8), which is 2, implying that the next neighbor of node 5 is
NBRS(2), which is 6. Finally, we discover that LINK(2) = —b5, which indicates
the end of the adjacency list for node 5. (In general, a negative link of —3
indicates the end of the adjacency list for node i.) The storage requirement
for this graph representation is | X |+ 4| E/|, which is substantially more than
the adjacency list scheme we use in our programs.

Provided there is enough space in the arrays NBRS and LINK, new edges
can be added with ease. For example, to add the edge {3, 6} to the adjacency
structure, we would adjust the adjacency list of node 3 by setting LINK(13)
to 1, NBRS(13) to 6, and HEAD(3) to 13. The adjacency list of node 6 would
be similarly changed by setting LINK(14) to 5, NBRS(14) to 3, and HEAD(6)
to 14.

3.4 Some General Information on the Subroutines
which Operate on Graphs
Numerous subroutines that operate on graphs are described in subsequent

chapters. In all these subroutines, the graph G = (X, E) is stored using the
integer array pair (XADJ, ADJNCY), as described in Section 3.3. In addition,
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HEAD NBRS  LINK
1110 1] 2 11
216 2|6 -5
3|1 3|2 -1
4 |12 413 7
5| 8 - 5|1 9
6|5 6|1 4
7|4 -2
------ - 8|3 2 f---
915 -6
10| 6 3
11| 5 -3
121 2 -4

Figure 3.3.3: Adjacency linked lists for the graphs of Figure 3.3.1.
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many of the subroutines share other common parameters. In order to avoid
repeatedly describing these parameters in subsequent chapters, we discuss
their role here, and refer to them later as required.

It should be clear that the mere fact that a graph is stored using the
(XADJ, ADJNCY) array pair tmplies a particular labelling of the graph. This
ordering will be referred to as the original numbering, and when we refer
to “node ¢,” it is this numbering we mean. When a subroutine finds a new
ordering, the ordering is stored in an array PERM, where PERM(7) = k means
the original node number k is the ¢-th node in the new ordering. We often
use a related permutation vector INVP of length n (the inverse permutation)
which satisfies INVP(PERM(Z)) = ¢. That is, INVP(k) gives the position in
PERM where the node originally numbered k resides.

It is necessary in many of our algorithms to perform operations only on
certain section subgraphs of the graph G. To implement these operations,
many of our subroutines have an integer array MASK, of length n, which is
used to prescribe such a subgraph. The subroutines only consider those
nodes ¢ for which MASK(Z) # 0. Figure 3.4.1 contains an example illustrating
the role of the integer array MASK.

MASK(%) @ )
®» ®

Graph G, labelled
as in Figure 3.3.1.

Subgraph of G
prescribed by MASK

S O B W N .

O R = O

Figure 3.4.1: An example showing how the array MASK can be used to pre-
scribe a subgraph of G.

Finally, some of our subroutines have a single node number, usually called
ROOT, as an argument, with MASK(ROOT)# 0. These subroutines typically
operate on the connected component of the section subgraph prescribed by
MASK which contains the node ROOT. That is, the combination of ROOT and
MASK determine the connected subgraph of G to be processed. We will often
use the phrase “the component prescribed by RO0T and MASK” to refer to this
connected subgraph. For example, the combination of ROOT= 2 along with
the array MASK and graph G in Figure 3.4.1 would specify the graph shown
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in Figure 3.4.2.

Figure 3.4.2: The subgraph of the graph in Figure 3.4.1 prescribed by
ROOT = 2 and MASK.

To summarize, some frequently used parameters in our subroutines, along
with their contents are listed as follows:

(X4DJ, ADJNCY) the array pair which stores the graph in its original order-
ing. The original labels of the nodes adjacent to node ¢ are found in
ADINCY(k), XADJ(z) < k < XADJ(¢ + 1), with XADI(n + 1) = 2|E| + 1.

PERM an integer array of length n containing a new ordering.
INVP an integer array of length n containing the inverse of the permutation.

MASK an integer array of length n used to prescribe a section subgraph of G.
Subroutines ignore nodes for which MASK(Z) = 0.

ROOT a node number for which MASK(ROOT)# 0. The subroutine usually
operates on the component of the subgraph specified by MASK which
contains the node ROOT.

Exercises

3.4.1) Suppose we represent a graph G = (X, E) using a lower adjacency
structure. That is, instead of storing the entire Adj(z) for each node
z, we only store those nodes in Adj(z) with labels larger than that
of z. For example, the graph of Figure 3.3.1 could be represented as
shown in Figure 3.4.3, using the pair of arrays LADJ and XLADJ.

Design a subroutine that transforms a lower adjacency structure to
the entire adjacency structure. Assume you have an array LADJ of



3.4. GENERAL INFORMATION ON THE GRAPH SUBROUTINES 53

LADJ 2 613 4|5 |6

XLADJ 1 3 5 6 6 717 7

node number 1 2 3 4 5 6

Figure 3.4.3: The lower adjacency structure of the graph of Figure 3.3.1.

3.4.2)

3.4.3)

3.4.4)

length 2|F| containing the lower adjacency structure in its first |E|
positions, and the array XLADJ. In addition, you have a temporary
array of length |X|. When the subroutine completes execution, the
arrays XLADJ and LADJ should contain the elements of XADJ and
ADJNCY as described in Section 3.3.

Suppose a disconnected graph G = (X, E) is stored in the pair of
arrays XADJ and ADJNCY, as described in Section 3.3. Design a sub-
routine which accepts as input a node z € X, and returns the nodes
in the connected component of G which contains #. Be sure to de-
scribe the parameters of the subroutine, and any auxiliary storage
you require.

Suppose a (possibly disconnected) graph G = (X, E) is stored in the
pair of arrays XADJ and ADJNCY as described in Section 3.2. Suppose
a subset Y C X is specified by an integer array MASK of length n
as described in Section 3.4. Design and implement a subroutine
which accepts as input the number n, the arrays XADJ, ADJNCY, and
MASK, and returns the number of connected components in the section
subgraph G(Y). You may need a temporary array of length n in order
to make your implementation simple and easy to understand.

Suppose the graph of the matrix A is stored in the array pair (XADJ,
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3.4.5)

3.4.6)

3.4.7)

3.4.8)
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ADJNCY), as described in Section 3.3, and suppose the arrays PERM
and INVP correspond to the permutation matrices P and P7, as
described in Section 3.4. Write a subroutine to list the column sub-
script of the first nonzero element in each row of the matrix PAPT.

Your subroutine should also print the number of nonzeros to the left
of the diagonal in each row of PAPT.

Design a subroutine as described in Exercise 3.4.4 on page 53, with
the additional feature that it only operates on the submatrix of
PAPT specified by the array MASK.

Suppose a graph is to be input as a sequence of edges (pairs of node
numbers), and the size of the adjacency lists is not known before-
hand. Design and implement a subroutine called INSERT which could
be used to construct the linked data structure as exemplified by Fig-
ure 3.3.3. Be sure to describe the parameter list carefully, and con-
sider how the arrays are to be initialized. You should not assume
that | X | and |E| are known beforehand. Be sure to handle abnormal
conditions, such as when the arrays are not large enough to accom-
modate all the edges, repeated input of the same edge, etc.

Suppose the graph of a matrix A is stored in the array pair (XADJ,
ADJNCY), as described in Section 3.3. Design and implement a sub-
routine which accepts as input this array pair, along with two node
numbers ¢ and 7, and determines whether there is a path joining them
in the graph. If there is, then the subroutine returns the length of a
shortest such path; otherwise it returns zero. Describe any tempo-
rary arrays you need.

Design and implement a subroutine as described in Exercise 3.4.7
on page 54, with the additional feature that it only operates on the
subgraph specified by the array MASK.



Chapter 4

Band and Envelope Methods

4.1 Introduction

In this chapter we consider one of the simplest methods for solving sparse sys-
tems, the band schemes and the closely related envelope or profile methods.

Loosely speaking, the objective is to order the matrix so that the nonzeros
in PAPT are clustered “near” the main diagonal. Since this property is
retained in the corresponding Cholesky factor L, such orderings appear to
be attractive in reducing fill, and are widely used in practice (Cuthill [9],
Felippa [15], Melosh and Bamford [41]).

Although these orderings are often far from optimal in the least-arith-
metic or least-fill senses, they are often an attractive practical compromise.
In general the programs and data structures needed to exploit the spar-
sity that these orderings provide are relatively simple; that is, the storage
and computational overhead involved in using the orderings tends to be
small compared to more sophisticated orderings. (Recall our remarks in
Section 2.4.) The orderings themselves also tend to be much cheaper to ob-
tain than more (theoretically) efficient orderings. For small problems, and
even moderate size problems which are to be solved only a few times, the
methods described in this chapter should be seriously considered.

4.2 The Band Method

Let A be an n by n symmetric positive definite matrix, with entries a;;. For
the ¢-throw of A,7=1,2,.---,n, let

fi(A) = min{j | aij # 0},

55
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and
B:(A)=1i— fi(A).

The number f;(A) is simply the column subscript of the first nonzero com-
ponent in row 7 of A. Since the diagonal entries a;; are positive, we have

fi(A) <iand 3;(A) > 0.
Following Cuthill and McKee, we define the bandwidth of A by !

B(A) = max{f;(A)|1<i<n}
= max{|i — j| | a;; # 0}.

The number §;(A) is called the i-th bandwidth of A. We define the band of
A as
Band(A) = {{3,j} |0 <i—j < B(A)}, (4.2.1)

which is the region within S(A) locations of the main diagonal. Unordered
pairs {¢,7} are used in (4.2.1) instead of ordered pairs because A is sym-
metric. The matrix example in Figure 4.2.1 has a bandwidth of 3. Matrices
with a bandwidth of one are called tridiagonal matrices.

mww»—tw»—n»—n’;‘
e
wwwwo»—to’;‘
e

-] O O = W N | =,

Figure 4.2.1: Example showing f;(A) and §;(A).

Implicit in the use of the band method is that zeros outside Band(A) are
ignored; zeros inside the band are usually stored, although often exploited

1Other authors define the bandwidth of A to be 26(A) + 1.
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as far as the actual computation is concerned. This exploitation of zeros is
possible in the direct solution because

Band(A) = Band(L + L"),

a relation that will be proved in Section 4.3 when the envelope method is
considered.

A common method for storing a symmetric band matrix A is the so-
called diagonal storage scheme (Martin [40]). The B(A) sub-diagonals of
the lower triangle of A which comprise Band(A) and the main diagonal
of A are stored as the columns of an n by (8(A) + 1) rectangular array,
as shown in Figure 4.2.2. This storage scheme is very simple, and is quite
efficient as long as §3;(A) does not vary too much with s.

a1

ag symmetric

0 ags

Matrix A = g1 0 ayq
Gs53 (dss QO35
Qg3 0 0 Qgg
0 ar arw arr
- - - an
- — Q21 Q22
— 0 0 ags
Storage Array asy, 0 0 ayq
0 ass asy ass
agg 0 0 aee
| 0 arps are arr i

Figure 4.2.2: The diagonal storage scheme.

Theorem 4.2.1 The number of operations required to factor the matriz A
having bandwidth B, assuming Band(L + L") is full, is

1 s 2
55(54‘3)”—?—5 —gﬂ-
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Proof: The result follows from Theorem 2.2.2 and the observation that

N B+l for1<i<n-p
n(L*,)—{ n—i+1 forn-B<i<n

a

Theorem 4.2.2 Let A be as in Theorem 4.2.1. Then the number of opera-
tions required to solve the matriz problem Ax = b, given the Cholesky factor
L of A, s

2(8+1L)n - B(B +1).

Proof: The result follows from Theorem 2.2.2 and the definition of n(L.;)
given in the proof of Theorem 4.2.1. a
As mentioned above, the attraction of this approach is its simplicity.
However, it has some potentially serious weaknesses. First, if 8,(A) varies
widely with ¢, the diagonal storage scheme illustrated in Figure 4.2.2 will
be inefficient. Moreover, as we shall see later, there are some very sparse
problems which can be solved very efficiently, but which cannot be ordered
to have a small bandwidth (see Figure 4.3.3). Thus, there are problems for
which band methods are simply inappropriate. Perhaps the most persua-
sive reason for not being very enthusiastic about band schemes is that the
envelope schemes discussed in the next section share all the advantages of
simplicity enjoyed by band schemes, with very few of the disadvantages.

Exercises

4.2.1) Suppose A is an n by n symmetric positive definite matrix with
bandwidth 3. You have two sets of numerical subroutines for solving
Ax = b. One set stores A (over-written by L during the factor-
ization) as a full lower triangular matrix by storing the rows of the
lower triangular part row by row in a one dimensional array, in the
sequence aqq, G, d22, 431, *** Qnn_1, Gnn. Lhe other set of sub-
routines stores A (again over-written by L during the factorization)
using the diagonal storage scheme described in this section. For a
given A and n, which scheme would you use if you were trying to
minimize storage requirements?

4.2.2) Consider the star graph of n nodes, as shown in Figure 4.3.3(a).
Prove that any ordering of this graph yields a bandwidth of at least

[(n—1)/2].
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4.3 The Envelope Method

4.3.1 Matrix Formulation

A slightly more sophisticated scheme for exploiting sparsity is the so-called
envelope or profile method, which simply takes advantage of the variation
in B;(A) with 7. The envelope of A, denoted by Env(A), is defined by

Env(A) = {{i,j} |0 <i—7 < B;(A)}.
In terms of the column subscripts f;(A), we have
Env(A) = {{s,5}| fi(A) <j < i}

The quantity |Env(A)| is called the profile or envelope size of A, and is
given by

|[Env(A)| = i B:(A).

Env(A)

Figure 4.3.1: Nlustration of the envelope of A. Circled elements denote fill
elements of L.

Lemma 4.3.1
Env(A) = Env(L + L7).

Proof: We prove the lemma by induction on the dimension n. Assume that
the result holds for n — 1 by n — 1 matrices. Let A be an n by n symmetric

matrix partitioned as
M u
A=
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where s is a scalar, u is a vector of lengthn—1,and M isann—1byn—1
nonsingular matrix factored as L s LCE\J' By the inductive assumption, we

have Env(M) = Env(Lps + L:}'W) If LL” is the symmetric factorization
of A, the triangular factor L can be partitioned as

L 0
where t is a scalar, and w is a vector of length n — 1. It is then sufficient to

show that f,(A) = f.(L + L7).

From (2.2.4), the vectors u and w are related by
Lpajw = u.
But u; = 0 for 1 < i < f,(A) and the entry u; (A is nonzero. By Lem-

mas 2.3.3 and 2.3.4, we have w; = 0 for 1 < i < f,(A) and w, A # 0.
Hence f,(A) = f,(L + L), so that

Env(A) = Env(L + L7).

Theorem 4.3.2
Env(A) C Band(A).

Proof: It follows from the definitions of Band and Env. a
Lemma 4.3.1 justifies the exploitation of zeros outside the envelope or the
band region. Assuming that only those zeros outside Env(A) are exploited,
we now determine the arithmetic cost in performing the direct solution. In
order to compute operation counts, it is helpful to introduce the notion of
frontwidth. For a matrix A, the i-th frontwidth of A is defined to be

w;(A) = |{k | k > i and az; # 0 for some [ < 3}|.

Note that w;(A) is simply the number of “active” rows at the i-th step in
the factorization; that is, the number of rows of the envelope of A, which
intersect column ¢. The quantity

w(A) = max{w;(A4) |1 <7< n}

is usually referred to as the frontwidth or wave front of A (Irons [31],
Melosh [41]). Figure 4.3.2 illustrates these definitions.

The relevance of the notion of frontwidth in the analysis of the envelope
method is illustrated by the following.



4.3. THE ENVELOPE METHOD 61

-XX y b i wi(A) ﬂi(A)
1 2 0
o CZ) 2 1 1
X X X
AI ><®0><><0 3 3 0
4] 2 3
><><><®><
0®><>< 5 2 2
8 6 1 3
| ><><><_ 7 0 2

Figure 4.3.2: Illustration of the ¢-th bandwidth and frontwidth.

Lemma 4.3.3
|Env(A)| = Z%’(A)-
i=1

Theorem 4.3.4 If only those zeros outside the envelope are exploited, the
number of operations required to factor A into LLT is given by

3D w(A)(wi(4) +3),

and the number of operations required to solve the system Ax = b, given the

factorization LLT is

2) (wi(A) +1).

=1

Proof: If we treat the envelope of A as full, the number of nonzeros in
L.; is simply w;(A) + 1. The result then follows from Theorem 2.2.2 and
Lemma 2.3.1. a

Although profile schemes appear to represent a rather minor increase in
sophistication over band schemes, they can sometimes lead to quite spectac-
ular improvements. To see this, consider the example in Figure 4.3.3 showing
two orderings of the same matrix.

It is not hard to verify that the number of operations required to factor
the minimum profile ordered matrix, and the number of nonzeros in the
corresponding factor are both O(n), as is the bandwidth. On the other
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Nl

Figure 4.3.3: Star graph of n nodes.

X X X X
X X X X
X X X X
X X X X
X X X X X X X X X X X
X X X X
X X X X
X X X X
| X X X X X X X X X ] | X X ]

Ordering corresponding
to numbering the
center node last

Minimum bandwidth
ordering

Figure 4.3.4: Minimum profile ordering and minimum band ordering for the
star graph on n nodes with n = 9.
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hand, the minimum bandwidth ordering yields an O(n®) operation count
and an L having O(n?) nonzeros.

Although this example is contrived, numerous practical examples exist
where envelope schemes are much more efficient than band schemes. For
some examples, see Liu and Sherman [38].

4.3.2 Graph Interpretation

For an n by n symmetric matrix A, let its associated undirected graph be
¢4 = (x4, E4),

where the node set is labelled as implied by A:
XA ={z1, -, Tp}-

To provide insight into the combinatorial nature of the envelope method, it
is important to give graph theoretic interpretation to the matrix definitions
introduced in the previous subsection.

Theorem 4.3.5 Fori < j, {i,j} € Env(A) if and only if x; € Adj({z4,---,2;}).
Proof: If z; € Adj({z1,---,2;}), then a;; # 0 for some k < 7 so that
fi(A) <iand {7,j} € Env(A).

Conversely, if f;(A) < ¢ < j, this means z; € Adj(azf,(A)) which implies
z; € Adj({z1, -+, 2}). O
Corollary 4.3.6 Fori=1,---,n, w;(A) = |Adj({z1,---,2:})|.
Proof: From the definition of w;(A), we have

wi(A) = {7 >i[{ij} € Env(A)},

so that the result follows from Theorem 4.3.5. a
Consider the matrix example and its associated labelled graph in Fig-
ure 4.3.5. The respective adjacent sets are

Adj(z1) = {22, 24},

Adj({z1, z2}) {za},
Adj({z1, 22, 23}) {z4, 25,26},
Adj({z1, 22, 23,24}) {5, 26},
Adj({z1, -+, 25}) {26, 27},
Adj({@1,- -+, z6}) {z7},
Adj({z1,---,27}) = ¢.
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Compare them with the row subscripts of the envelope entries in each col-
umn.

Figure 4.3.5: A matrix and its associated labelled graph.

The set Adj({z1,---,2;}) shall be referred to as the i-th front of the
labelled graph, and its size the i-th frontwidth (as before).

Exercises

4.3.1) Prove that
D (AN (A) +3) € 3 A(ANAA) +9),

4.3.2) A symmetric matrix A is said to have the monotone profile property
if f;(A) < f;(A) for j < i. Show that for monotone profile matrices,

LD A)el4) +8) = D A(ANB(A) +3).

4.3.3) Prove that the following conditions are equivalent.
a) for 1 < < mn, the section graphs G({z,---,2;}) are connected
b) for 2 <i<n, f;(A) <.

4.3.4) (Full Envelope) Prove that the matrix L + L” has a full envelope if
fi(A) < ifor 2 <4 < n. Show that L + L7 has a full envelope for
monotone profile matrix A.
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4.3.5) Let L be an n by n lower triangular matrix with bandwidth g < n,
and let V be an n by p (pseudo) lower triangular matrix as defined
in Exercise 2.3.8 on page 30. Approximately how many operations
are required to compute L™ 'V?

4.3.6) Let {z,---,2,} be the nodes in the graph GA associated with a
symmetric matrix A. Show that the following conditions are equiv-
alent.

a) Env(A) is full,
b) Adj({z1,---,2;}) C Adj(z;) for 1 < i < n,
c) Adj({z1,---,2;}) U {z;} is a clique for 1 <7 < n.

4.3.7) Show that if the graph gA is connected, then w;(A) # 0 for 1 <7 <
n—1.

4.4 Envelope Orderings

4.4.1 The Reverse Cuthill-McKee Algorithm

Perhaps the most widely used profile reduction ordering algorithm is a vari-
ant of the Cuthill-McKee ordering. In 1969, Cuthill and McKee [10] pub-
lished their algorithm which was primarily designed to reduce the bandwidth
of a sparse symmetric matrix.

The scheme makes use of the following observation. Let y be a labelled
node, and z an unlabelled neighbor of y. To minimize the bandwidth of the
row associated with z, it is apparent that the node z should be ordered as
soon as possible after y. Figure 4.4.1 illustrates this point.

The Cuthill-McKee scheme may be regarded as a method that reduces
the bandwidth of a matrix via a local minimization of the 3;’s. This sug-
gests that the scheme can be used as a method to reduce the profile > 3; of
a matrix. George [17], in his study of the profile methods, discovered that
the ordering obtained by reversing the Cuthill-McKee ordering often turns
out to be much superior to the original ordering in terms of profile reduc-
tion, although the bandwidth remains unchanged. He called this the reverse
Cuthill-McKee ordering (RCM). It has since been proved that the reverse
scheme is never inferior, as far as envelope storage and envelope operation
counts are concerned (Liu and Sherman [38]).
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Labelled

Figure 4.4.1: Effect on bandwidth of numbering node z after node y, when
they are connected.

We describe the RCM algorithm for a connected graph as follows. (The
task of determining the starting node in Step 1 is considered in the next
section.)

Step 1 Determine a starting node r and assign #; « r.

Step 2 (Main loop) For i = 1,---,n, find all the unnumbered neighbors of
the node z; and number them in increasing order of degree.

Step 3 (Reverse ordering) The reverse Cuthill-McKee ordering is given by
Y1, Y2, "+ Yn Where y; = @,y for e =1,---,n.

In the case when the graph QA is disconnected, we can apply the above
algorithm to each connected component of the graph. For a given starting
node, the algorithm is relatively simple and we go through it in the following
example.

Suppose the node “g” in Figure 4.4.2 is picked as the starting node,
that is #; = ¢g. Figure 4.4.3 illustrates how nodes are numbered in Step 2
of the algorithm. The resulting reverse Cuthill-McKee ordering is given in
Figure 4.4.4, and the envelope size is 22.

The effectiveness of the ordering algorithm depends quite crucially on
the choice of the starting node. In the example, if we pick node “a” instead
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Figure 4.4.2: Graph to which the RCM algorithm is to be applied.

Unnumbered
i Node z; neighbors in
increasing ordering of

degree
1 g h,e,b, f
2 h -
3 e c
4 b j
5 f a,d
6 c —
7 J -
8 a —
9 d 7
10 7 -

Figure 4.4.3: Table showing numbering in Step 2 of the RCM algorithm.
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symmetric

Figure 4.4.4: The final ordering and corresponding matrix structure.

as the starting node, we get a smaller profile of 18. In Section 4.4.3, we
present an algorithm which experience has shown to provide a good starting
node for the Cuthill-McKee algorithm.

We now establish a rough complexity bound for the execution time of the
RCM algorithm, assuming that a starting node is provided. The underlying
assumption here is that the execution time of the sorting algorithm used
is proportional to the number of operations performed, where an operation
might be a comparison, or a retrieval of a data item from the adjacency
structure used to store the graph.

Theorem 4.4.1 If linear insertion is used for sorting, the time complexity
of the RCM algorithm is bounded by O(m |E|), where m is the mazimum
degree of any node.

Proof: The major cost is obviously due to Step 2 of the algorithm, since
Step 3 can be done in O(n) time. For some constant ¢, sorting ¢ elements
using linear insertion requires ct? operations [1]. Thus, the overall time spent
in sorting is less than

¢ Z |Deg(z)* < em Z |Deg(z)| = 2cm |E|.

zeX zeX

For each index in Step 2, we have to examine the neighbors of node 7, in
order to retrieve the unnumbered ones for sorting by degree. This sweep
through the adjacency structure requires 2 || operations. The computation



4.4. ENVELOPE ORDERINGS

69

Figure 4.4.5: The RCM ordering of the example of Figure 4.4.2, using a

different starting node.

Figure 4.4.6: Diagram showing the effect of reversing the orderings indicated

in Figure 4.4.1.
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of the degrees of the nodes requires a further 2 |E| operations. Thus, the
RCM algorithm requires at most

4 |E| 4+ 2em |E| + n operations,

where the last term represents the time required to reverse the ordering. O

4.4.2 Finding a Starting Node

We now turn to the problem of finding a starting node for the RCM algo-
rithm. We consider this problem separately because its solution is useful
in connection with several other algorithms we consider in this book. In
all cases the objective is to find a pair of nodes which are at maximum
or near maximum “distance” apart (defined below). Substantial experience
indicates that such nodes are good starting nodes for several ordering algo-
rithms, including the RCM algorithm.

Recall from Section 3.2 that a path of length k£ from node z4 to z; is
an ordered set of distinct vertices (2o, #1,- -, 2y ), where z; € Adj(z;,,) for
0 < i< k—1. The distance d(z,y) between two nodes z and y in the
connected graph G = (X, E) is simply the length of a shortest path joining
nodes ¢ and y. Following Berge [3], we define the eccentricity of a node
to be the quantity

{(z) = max{d(z,y) |y € X} (4.4.1)

The diameter of G is then given by
0(9) = max{{(z) |z € X},

or equivalently

6(9) = max{d(z,y) | 2,y € X}.

A node z € X is said to be a peripheral node if its eccentricity is equal
to the diameter of the graph, that is, if £(z) = §(G). Figure 4.4.7 shows a
graph having 8 nodes, with a diameter of 5. The nodes z,, 5 and z; are
peripheral nodes.

With this terminology established, our objective in this subsection is to
describe an efficient heuristic algorithm for finding nodes of high eccentric-
ity. We emphasize that the algorithm is not guaranteed to find a peripheral
node, or even one that is close to being peripheral. Nevertheless, the nodes
found usually do have high eccentricity, and are good starting nodes for the
algorithms that employ them. Futhermore, except for some fairly trivial
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Figure 4.4.7: An 8-node graph G with §(G) =5

situations, there seems to be no reason to expect that peripheral nodes are
any better as starting nodes than those found by this algorithm. Finally, in
many situations it is probably too expensive to find peripheral nodes even
if it were known to be desirable to use them, since the best known algo-
rithm for finding them has a time complexity bound of O(|X||E|) (Smyth
and Benzi [49]). For most sparse matrix applications this bound would be
O(|X|2). In what follows, we will refer to nodes produced by this algorithm
as pseudo-peripheral nodes.

We now introduce some notation and terminology which is useful in
describing the algorithm. The reader may find it helpful to review the def-
initions of adjacent set, degree, section graph and connected component,
introduced in Section 3.2. A key construct in the algorithm is the rooted
level structure (Arany et al. [2]). ? Given a node z € X, the level structure
rooted at z is the partitioning L(z) of X satisfying

L(z) = {Lo(z), Li(2),- -+, Lya)(2)}, (4.4.2)

where
Lo(z) = {2z}, Li(z) = Adj(Lo(z)),

and
Li(z) = Adj(L;_1(z)) — Li_2(2), ©=2,3,---,{(). (4.4.3)

The eccentricity £(z) of z is called the length of L(z), and the width w(z)

2 A general level structure is a partitioning £ = {Lo, L1,---, L} where Adj(Lo) C L1,
Adj(L2) C Loy and Adj(Li) C Li—y ULij1,i=2,3,--+,£ — 1.
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of L(z) is defined by
w(z) = max{|L;(z)| | 0 <7 < {(z)}. (4.4.4)

In Figure 4.4.8 we show a rooted level structure of the graph of Figure 4.4.7,
rooted at the node z¢. Note that £(zs) = 3 and w(ze) = 3.

Lo(ze) = {26}

L1(136) = {mla 338}

Lz(il's) = {l'za L3, 134}

La(il's) = {l'sa 137}

Figure 4.4.8: A level structure, rooted at zg, of the graph of Figure 4.4.7.

We are now ready to describe the pseudo-peripheral node finding algo-
rithm which is essentially a modification of an algorithm due to Gibbs et
al. [30]. For details on why these modifications were made, see George and
Liu [26]. Using our level structure notation just introduced, the algorithm
is as follows.

Step 1 (Initialization): Choose an arbitrary node » in X.

Step 2 (Generate a level structure): Construct the level structure rooted

at r: L(r) = {Lo(r), L1(r), -+, Lyry(r)}
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Step 3 (Shrink last level): Choose a node z in Ly, )(r) of minimum degree.
Step 4 (Generate a level structure):

a) Construct the level structure rooted at :

b) If {(z) > £(r), set r — z and go to Step 3.
Step 5 (Finished): The node z is a pseudo-peripheral node.

Computer subroutines FNROOT and ROOTLS, which implement this algo-
rithm, are presented and discussed in the next subsection. An example
showing the operation of the algorithm is given in Figure 4.4.9. Nodes in
level ¢ of the level structures are labelled with the integer 7.

LT

o ; ;
@/@<@ L

Figure 4.4.9: An example of the application of the pseudo-peripheral node
finding algorithm.
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4.4.3 Subroutines for Finding a Starting Node

In this subsection we present and describe a pair of subroutines which im-
plement the algorithm of the previous section. In these subroutines, as well
as those in Sections 4.4.4 and 4.5.2, several input parameters are the same,
and have already been described in Section 3.4. The reader might find it
useful to review that section before proceeding.

ROOTLS (ROOTed Level Structure)

The purpose of this subroutine is to generate a level structure of the con-
nected component specified by the input parameters ROOT, MASK, XADJ, and
ADJNCY, as described in Section 3.4. On exit from the subroutine, the level
structure generated is rooted at ROOT, and is contained in the array pair
(XLS, LS), with nodes at level k given by LS(7), XLS(k) < j < XLS(k + 1).
The number of levels is provided by the variable NLVL. Note that since For-
tran does not allow zero subscripts, we cannot have a “zero level,” so k here
corresponds to level L_; in the level structure £(R0O0T) in Section 4.4.2.
Thus, NLVL is one greater than the eccentricity of ROOT.

The subroutine finds the nodes level by level; a new level is obtained
for each execution of the loop DO 400 .... As each new node is found (in
executing the loop DO 300 ...), the node number is placed in the array LS,
and its corresponding MASK value is set to zero so it will not be put in LS
more than once. After the level structure has been generated, the values of
MASK for the nodes in the level structure are reset to 1 (by executing the loop
DO 500 ...).
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6. C

7. € PURPOSE - ROOTLS GENERATES THE LEVEL STRUCTURE ROOTED

8. C AT THE INPUT NODE CALLED ROOT. ONLY THOSE NODES FOR

9. C WHICH MASK IS NONZERO WILL BE CONSIDERED.

10. C

11. C INPUT PARAMETERS -

12. C ROOT - THE NODE AT WHICH THE LEVEL STRUCTURE IS TO

13. C BE ROOTED.

14. C (XADJ, ADJNCY) - ADJACENCY STRUCTURE PAIR FOR THE

15. C GIVEN GRAPH.

16. C MASK - IS USED TO SPECIFY A SECTION SUBGRAPH. NODES
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17. ¢ WITH MASK(I)=0 ARE IGNORED.

18. C

19. C OUTPUT PARAMETERS -

20. C NLVL - IS THE NUMBER OF LEVELS IN THE LEVEL STRUCTURE.
21. C (XLS, LS) - ARRAY PAIR FOR THE ROOTED LEVEL STRUCTURE.
22, C

23, Cakokeokoke e s alie sl ek ok ok ok sk ok ek ek ke e ke e ke e e e e se e se e se e se ke se ke ke ok ok ke ok ko ek ek ke e ke o e e e e e e e
24, C

25, SUBROUTINE ROOTLS ( ROOT, XADJ, ADJNCY, MASK, NLVL, XLS, LS )
26. C

27 . Cakakeokokeoe s alie sl ek ok ok ok sk ok ek ek ke e ke e ke e se e e se e se e se e se e se ke ke ok ok ok ok ko ek ek ke e ke e e e e e e e e
28. C

29. INTEGER ADJNCY(1), LS(1), MASK(1), XLS(1)
30. INTEGER XADJ(1), I, J, JSTOP, JSTRT, LBEGIN,
31. 1 CCSIZE, LVLEND, LVSIZE, NBR, NLVL,
32. 1 NODE, ROOT

33. C
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36. C

36. € @ —mmmmmmmmmme o
37. ¢ INITIALIZATION ...

38. € = @ mmmmmmmmmm—e o

39. MASK (ROOT) = 0

40. LS(1) = ROOT

41, NLVL = 0

42, LVLEND = 0

43, CCSIZE = 1

44, € mm e
45, ¢ LBEGIN IS THE POINTER TO THE BEGINNING OF THE CURRENT
46. C LEVEL, AND LVLEND POINTS TO THE END OF THIS LEVEL.
47, € mm e
48, 200 LBEGIN = LVLEND + 1

49, LVLEND = CCSIZE

50. NLVL = NLVL + 1

51. XLS(NLVL) = LBEGIN

B2. € e

53. ¢ GENERATE THE NEXT LEVEL BY FINDING ALL THE MASKED

54. ¢ NEIGHBORS OF NODES IN THE CURRENT LEVEL.

BE. € e

56. DO 400 I = LBEGIN, LVLEND

57. NODE = LS(I)

58. JSTRT = XADJ(NODE)

59. JSTOP = XADJ(NODE + 1) - 1

60. IF ( JSTOP .LT. JSTRT ) GO TO 400

61. DO 300 J = JSTRT, JSTOP

62. NBR = ADJNCY(J)

63. IF (MASK(NBR) .EQ. 0) GO TO 300



76 CHAPTER 4. BAND AND ENVELOPE METHODS

64. CCSIZE = CCSIZE + 1
65. LS(CCSIZE) = NBR

66. MASK (NBR) = 0

67. 300 CONTINUE

68. 400 CONTINUE

69. € @ e

70. ¢ COMPUTE THE CURRENT LEVEL WIDTH.

71. ¢ IF IT IS NONZERO, GENERATE THE NEXT LEVEL.

72, € e

73. LVSIZE = CCSIZE - LVYLEND

74. IF (LVSIZE .GT. 0 ) GO TO 200

76, € e
76. € RESET MASK TO ONE FOR THE NODES IN THE LEVEL STRUCTURE.
TT. € e
78. XLS(NLVL+1) = LVLEND + 1

79. DD 500 I = 1, CCSIZE

80. NODE = LS(I)

81. MASK (NODE) = 1

82. 500 CONTINUE

83. RETURN

84. END

FNROOT (FiNd ROOT)

This subroutine finds a pseudo-peripheral node of a connected component of
a given graph, using the algorithm described in Section 4.4.2. The subroutine
operates on the connected component specified by the input arguments ROOT,
MASK, XADJ, and ADJNCY, as we described in Section 3.4.

The first call to ROOTLS corresponds to Step 2 of the algorithm. If the com-
ponent consists of a single node or a chain with ROOT as its endpoint, then
ROOT is a peripheral node and LS contains its corresponding rooted level
structure, so execution terminates. Otherwise, a node of minimum degree
in the last level is found (Step 3 of the algorithm; DO 300 ... loop of the
subroutine). The new level structure rooted at this node is generated (the
call to ROOTLS with label 400) and the termination test (Step 4.b of the algo-
rithm) is performed. If the test fails, control transfers to statement 100 and
the procedure is repeated. On exit, ROOT is the node number of the pseudo-
peripheral node, and the array pair (XLS, LS) contains the corresponding
rooted level structure.
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3. Caekkokokokk FNROOT ..... FIND PSEUDO-PERIPHERAL NODE ek ek ok o
4, Cokokokeolesteakkeak ok ok ok ook ook ke o ke o ke o se e se e se e e e e ke ok ok ke ok ke ok ke ok ke e ke e ke o e e e o e s e e s ek ok
5. Caleakokok ke oe seofe s skesle i ek kel ok bk ke ok b ek ek ke o ke o se e se e se s e e e e ks ok ke ok ok ke ok ke ok ke e ke e e e e e e e e
6. C

7. € PURPOSE - FNROOT IMPLEMENTS A MODIFIED VERSION OF THE

8. C SCHEME BY GIBBS, POOLE, AND STOCKMEYER TO FIND PSEUDO-
9. C PERIPHERAL NODES. IT DETERMINES SUCH A NODE FOR THE

10. C SECTION SUBGRAPH SPECIFIED BY MASK AND ROOT.

11. C

12. C INPUT PARAMETERS -

13. C (XADJ, ADJNCY) - ADJACENCY STRUCTURE PAIR FOR THE GRAPH.
14. C MASK - SPECIFIES A SECTION SUBGRAPH. NODES FOR WHICH

15. C MASK IS ZERO ARE IGNORED BY FNROOT.

16. C

17. ¢ UPDATED PARAMETER -

18. C ROOT - ON INPUT, IT (ALONG WITH MASK) DEFINES THE

19. C COMPONENT FOR WHICH A PSEUDO-PERIPHERAL NODE IS
20. C TO BE FOUND. ON OUTPUT, IT IS THE NODE OBTAINED.
21. C

22, C OUTPUT PARAMETERS -

23. C NLVL - IS THE NUMBER OF LEVELS IN THE LEVEL STRUCTURE
24, C ROOTED AT THE NODE ROOT.

26, C (XLS,LS) - THE LEVEL STRUCTURE ARRAY PAIR CONTAINING

26. C THE LEVEL STRUCTURE FOUND.

27. C

28. C PROGRAM SUBROUTINES -

29. C ROOTLS.

30. C

31, Ckokeokokeokeseakele i ek ok ok ok sk ok ek ook ke e ke e ke e e e e se e se e se e e ke se ke ke ok ok ok ko ek ek ke e ke e e e e e e e e
32. C

33. SUBROUTINE FNROOT ( ROOT, XADJ, ADJNCY, MASK, NLVL, XLS, LS )
34. C

35, Cakokokoke e s akie sl ek ok ok sk ok sk ok ek ook ke e ke e ke e e e e se e se e se e se ke se sk ke ke ok ok ok ko ke ok e ok ke e ke o e e e e e e e
36. C

37. INTEGER ADJNCY(1), LS(1), MASK(1), XLS(1)

38. INTEGER XADJ(1), CCSIZE, J, JSTRT, K, KSTOP, KSTRT,
39. 1 MINDEG, NABOR, NDEG, NLVL, NODE, NUNLVL,
40. 1 ROOT

41. C

42, 3k 3k 3k ok ok ok ok sk 3k ok ok sk sk oe e ke ke e e e sk 3k ok o sk e e e ke ke e ke o sk 3k 3k o sk e e e ke ke ke ok o sk 3k 3k o sk ke e e ke ke ke ok o sk 3k ke ok
43. C

e
45. ¢ DETERMINE THE LEVEL STRUCTURE ROOTED AT ROOT.

R

a7. CALL ROOTLS ( RODOT, XADJ, ADJNCY, MASK, NLVL, XLS, LS )
48. CCSIZE = XLS(NLVL+1) - 1

49. IF ( NLVL .EQ. 1 .OR. NLVL .EQ. CCSIZE ) RETURN
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BO. € e
51. ¢ PICK A NODE WITH MINIMUM DEGREE FROM THE LAST LEVEL.
B2. € e
53. 100 JSTRT = XLS (NLVL)

54. MINDEG = CCSIZE

55. ROOT = LS(JSTRT)

56. IF ( CCSIZE .EQ. JSTRT ) GO TO 400

57. DO 300 J = JSTRT, CCSIZE

58. NODE = LS(J)

59. NDEG = 0

60. KSTRT = XADJ(NODE)

61. KSTOP = XADJ(NODE+1) - 1

62. DO 200 K = KSTRT, KSTOP

63. NABOR = ADJNCY(X)

64. IF ( MASK(NABOR) .GT. 0 ) NDEG = NDEG + 1
65. 200 CONTINUE

66. IF ( NDEG .GE. MINDEG ) GO TO 300

67. ROOT = NODE

68. MINDEG = NDEG

69. 300 CONTINUE

70. € e

71. ¢ AND GENERATE ITS ROOTED LEVEL STRUCTURE.

72, € e

73. 400 CALL ROOTLS ( ROOT, XADJ, ADJNCY, MASK, NUNLVL, XLS, LS )
74. IF (NUNLVL .LE. NLVL) RETURN

75. NLVL = NUNLVL

76. IF ( NLVL .LT. CCSIZE ) GO TO 100

77. RETURN

78. END

4.4.4 Subroutines for the Reverse Cuthill-McKee Algorithm

In this subsection we describe the three subroutines DEGREE, RCM, and GENRCM,
which together with the subroutines of the previous section provide a com-
plete implementation for the RCM algorithm described in Section 4.4.1. The
roles of the input parameters ROOT, MASK, XADJ, ADJNCY, and PERM are as de-
scribed in Section 3.4. The control relationship among the subroutines is
given in Figure 4.4.10.

DEGREE

This subroutine computes the degrees of the nodes in a connected component
of a graph. The subroutine operates on the connected component specified
by the input parameters RO0T, MASK, XADJ, and ADJNCY.
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GENRCM

FNROOT RCM

ROOTLS DEGREE

Figure 4.4.10: Control relation of subroutines for the reverse Cuthill-McKee
algorithm.

Beginning with the first level (containing only RO0T), the degrees of the nodes
are computed one level at a time (loop DO 400 I = ...). As the neighbors
of these nodes are examined (loop DO 200 J = ...), those which are not
already recorded in LS are put in that array, thus generating the next level
of nodes. When a node is put in LS, its corresponding value of XADJ has its
sign changed, so that the node will only be recorded once. (This function
was performed using MASK in the subroutine ROOTLS, but here MASK must be
maintained in its input form so that the degree will be computed correctly).
The variable CCSIZE contains the number of nodes currently in LS. After all
nodes have been found, and their degrees have been computed, the nodes in
LS are used to reset the signs of the corresponding elements of XADJ to their

original values (loop DO 500 I = ...).
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3. Ckkkkkkoks DEGREE ..... DEGREE IN MASKED COMPONENT sk
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6. C

7. C PURPOSE - THIS ROUTINE COMPUTES THE DEGREES OF THE NODES
8. ¢C IN THE CONNECTED COMPONENT SPECIFIED BY MASK AND ROOT.
9. ¢ NODES FOR WHICH MASK IS ZERD ARE IGNORED.
10. C
11. C INPUT PARAMETER -
12. C ROOT - IS THE INPUT NODE THAT DEFINES THE COMPONENT.
13. € (XADJ, ADJNCY) - ADJACENCY STRUCTURE PAIR.

C

-
S

MASK - SPECIFIES A SECTION SUBGRAPH.
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OUTPUT PARAMETERS -
DEG - ARRAY CONTAINING THE DEGREES OF THE NODES IN
THE COMPONENT.
CCSIZE-SIZE OF THE COMPONENT SPECIFED BY MASK AND ROOT

WORKING PARAMETER -
LS - A TEMPORARY VECTOR USED TO STORE THE NODES OF THE
COMPONENT LEVEL BY LEVEL.

QOO aaaoaaaaaa

C ok ke ke ok ok ok ek e s sk e ok ok e ke o o o ke ke o o o o 3 ke sk ok e ok ok e ek o o o ok ke o o o o ke
C
SUBROUTINE DEGREE ( ROOT, XADJ, ADJNCY, MASK,
1 DEG, CCSIZE, LS )
C
C ok ke ke ok ok ok ek e s sk e ok ok e ke o o o ke ke o o o o 3 ke sk ok e ok ok e ek o o o ok ke o o o o ke
C
INTEGER ADJNCY(1), DEG(1), LS(1), MASK(1)
INTEGER XADJ(1), CCSIZE, I, IDEG, J, JSTOP, JSTRT,

1 LBEGIN, LVLEND, LVSIZE, NBR, NODE, ROOT
¢
(G 3k ke ke ake 3k fe afe o af¢ ake e afe ok afe ake ke ake sk afe ok afe ake 3k ok 3k afe 3k 3k ake 3k e 3k 3k 3k 3k e 3k e 3k 3 e 3 e afe o afe e h¢ afe e afe o ah¢ ake e ok 3k afe ake ke ok e ke
¢
c _________________________________________________
¢ INITIALIZATION ...
¢ THE ARRAY XADJ IS USED AS A TEMPORARY MARKER TO
¢ INDICATE WHICH NODES HAVE BEEN CONSIDERED SO FAR.
c _________________________________________________
LS(1) = ROOT
XADJ(ROOT) = -XADJ(ROOT)
LVLEND = 0
CCSIZE = 1
c _____________________________________________________
¢ LBEGIN IS THE POINTER TO THE BEGINNING OF THE CURRENT
¢ LEVEL, AND LVLEND POINTS TO THE END OF THIS LEVEL.
c _____________________________________________________
100 LBEGIN = LYLEND + 1
LVLEND = CCSIZE
c _______________________________________________
¢ FIND THE DEGREES OF NODES IN THE CURRENT LEVEL,
¢ AND AT THE SAME TIME, GENERATE THE NEXT LEVEL.
c _______________________________________________

DO 400 I = LBEGIN, LVLEND
NODE = LS(I)
JSTRT = -XADJ(NODE)
JSTOP = IABS(XADJ(NODE + 1)) - 1
IDEG = 0
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62. IF ( JSTOP .LT. JSTRT ) GO TO 300

63. DO 200 J = JSTRT, JSTOP

64. NBR = ADJNCY(J)

65. IF ( MASK(NBR) .EQ. 0 ) GO TO 200
66. IDEG = IDEG + 1

67. IF ( XADJ(NBR) .LT. 0 ) GO TO 200
68. XADJ(NBR) = -XADJ(NBR)

69. CCSIZE = CCSIZE + 1

70. LS(CCSIZE) = NBR

71. 200 CONTINUE

72. 300 DEG(NODE) = IDEG

73. 400 CONTINUE

T4, € = e
75. € COMPUTE THE CURRENT LEVEL WIDTH.

76. € IF IT IS NONZERO , GENERATE ANOTHER LEVEL.
TT. € e
78. LVSIZE = CCSIZE - LVYLEND

79. IF ( LVSIZE .GT. 0 ) GO TO 100

80. € = e
81. ¢ RESET XADJ TO ITS CORRECT SIGN AND RETURN.
82. € = e
83. DD 500 I = 1, CCSIZE

84. NODE = LS(I)

85. XADJ(NODE) = -XADJ(NODE)

86. 500 CONTINUE

87. RETURN

88. END

RCM (Reverse Cuthill-McKee)

This subroutine applies the RCM algorithm described in Section 4.4.1 to
a connected component of a subgraph. It operates on a connected compo-
nent specified by the input parameters RO0T, MASK, XADJ, and ADJINCY. The
starting node is ROOT.

Since the algorithm requires the degrees of the nodes in the component,
the first step is to compute those degrees by calling the subroutine DEGREE.
The nodes are found and ordered in a level by level fashion; a new level is
numbered each time the loop D0 600 I = ... is executed. The loop DO 200
I = ... finds the unnumbered neighbors of a node, and the remainder of
the DO 600 loop implements a linear insertion sort to order those neighbors
in increasing order of degree. The new ordering is recorded in the array
PERM as explained in Section 3.4. The final loop (DO 700 I = ...) reverses
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the ordering, so that the reverse Cuthill-McKee ordering, rather than the

CHAPTER 4. BAND AND ENVELOPE METHODS

standard Cuthill-McKee ordering is obtained.

Note that just as in the subroutine ROOTLS, MASK(¢) is set to zero as node ¢ is
recorded. However, unlike ROOTLS, the subroutine RCM does not restore MASK
to its original input state. The values of MASK corresponding to the nodes
of the connected component that has been numbered remain set to zero on

exit from the subroutine.
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PURPOSE - RCM NUMBERS A CONNECTED COMPONENT SPECIFIED BY
MASK AND ROOT, USING THE RCM ALGORITHM.
THE NUMBERING IS TO BE STARTED AT THE NODE ROOT.

INPUT PARAMETERS -
ROOT - IS THE NODE THAT DEFINES THE CONNECTED
COMPONENT AND IT IS USED AS THE STARTING
NODE FOR THE RCM ORDERING.
(XADJ, ADJNCY) - ADJACENCY STRUCTURE PAIR FOR
THE GRAPH.

UPDATED PARAMETERS -
MASK - ONLY THOSE NODES WITH NONZERO INPUT MASK
VALUES ARE CONSIDERED BY THE ROUTINE. THE
NODES NUMBERED BY RCM WILL HAVE THEIR
MASK VALUES SET TO ZERO.

OUTPUT PARAMETERS -
PERM - WILL CONTAIN THE RCM ORDERING.
CCSIZE - IS THE SIZE OF THE CONNECTED COMPONENT
THAT HAS BEEN NUMBERED BY RCHM.

WORKING PARAMETER -
DEG - IS A TEMPORARY VECTOR USED TO HOLD THE DEGREE
OF THE NODES IN THE SECTION GRAPH SPECIFIED
BY MASK AND ROOT.

PROGRAM SUBROUTINES -
DEGREE.
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C

SUBROUTINE RCM ( ROOT, XADJ, ADJNCY, MASK,

PERM, CCSIZE, DEG )
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C

C

INTEGER ADJNCY(1), DEG(1), MASK(1), PERM(1)

INTEGER XADJ(1), CCSIZE, FNBR, I, J, JSTOP,
JSTRT, K, L, LBEGIN, LNBR, LPERM,
LVLEND, NBR, NODE, ROOT

3k 3k 3k ok ok ok ok sk 3k ok ok sk sk oe e ke ke e e e sk 3k ok o sk e e e ke ke e ke o sk 3k 3k o sk e e e ke ke ke ok o sk 3k 3k o sk ke e e ke ke ke ok o sk 3k ke ok

C

QaQ aQ

Q QaaaaQ

Qo

100

FIND THE DEGREES OF THE NODES IN THE

COMPONENT SPECIFIED BY MASK AND ROOT.

CALL DEGREE ( ROOT, XADJ, ADJNCY, MASK, DEG,
CCSIZE, PERM )

MASK (ROOT) = 0

IF ( CCSIZE .LE. 1 ) RETURN

LVLEND = 0

LNBR = 1

LBEGIN AND LVLEND POINT TO THE BEGINNING AND

THE END OF THE CURRENT LEVEL RESPECTIVELY.

LBEGIN = LVLEND + 1

LVLEND = LNBR

DO 600 I = LBEGIN, LVLEND

NODE = PERM(I)
JSTRT = XADJ(NODE)
JSTOP = XADJ(NODE+1) - 1
FIND THE UNNUMBERED NEIGHBORS OF NODE.
FNBR AND LNBR POINT TO THE FIRST AND LAST
UNNUMBERED NEIGHBORS RESPECTIVELY OF THE CURRENT
NODE IN PERM.
FNBR = LNBR + 1
DO 200 J = JSTRT, JSTOP
NBR = ADJNCY(J)
IF ( MASK(NBR) .EQ. 0 ) GO TO 200
LNBR = LNBR + 1
MASK(NBR) = 0
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86. PERM(LNBR) = NBR

87. 200 CONTINUE

88. IF ( FNBR .GE. LNBR ) GO TO 600

89. € e
90. ¢ SORT THE NEIGHBORS OF NODE IN INCREASING
91. ¢ ORDER BY DEGREE. LINEAR INSERTION IS USED.
92. € e
93. K = FNBR

94. 300 L=K

95. K=K+ 1

96. NBR = PERM(K)

97. 400 IF ( L .LT. FNBR ) GO TO 500

98. LPERM = PERM(L)

99. IF ( DEG(LPERM) .LE. DEG(NBR) ) GO TO 500
100. PERM(L+1) = LPERM

101. L=L-1

102. GO TO 400

103. 500 PERM(L+1) = NBR

104. IF ( K .LT. LNBR ) GO TO 300

105. 600 CONTINUE

106. IF (LNBR .GT. LVLEND) GO TO 100

107. € = mmm e

108. ¢ WE NOW HAVE THE CUTHILL MCKEE ORDERING.

109. ¢ REVERSE IT BELOW ...

110, € = e

111. K = CCSIZE/2

112. L = CCSIZE

113. DD 700 I =1, K

114, LPERM = PERM(L)

115. PERM(L) = PERM(I)

116. PERM(I) = LPERM

117. L=L-1

118. 700 CONTINUE

119. RETURN

120. END

GENRCM (GENeral RCM)

This subroutine finds the RCM ordering of a general disconnected graph. It
proceeds through the graph, and calls the subroutine RCM to number each
connected component. The inputs to the subroutine are the number of nodes
(or equations) NEQNS, and the graph in the array pair (XADJ, ADJNCY). The
arrays MASK and XLS are working arrays, used by the subroutines FNROOT
and RCM, which are called by GENRCM.
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The subroutine begins by setting all values of MASK to 1 (loop DO 100 I =
...). It then loops through MASK until it finds an ¢ for which MASK(Z) = 1;
node ¢ along with MASK, XADJ, and ADJINCY will specify a connected subgraph
of the original graph G. The subroutines FNROOT and RCM are then called
to order the nodes of that subgraph. (Recall that the numbered nodes will
have their MASK values set to zero by RCM.) Note that NUM points to the first
free position in the array PERM, and is updated after each call to RCM. The
actual parameter in GENRCM corresponding to PERM in RCM is PERM(NUM); that
is, PERM in RCM corresponds to the last NEQNS - NUM + 1 elements of PERM
in GENRCM. Note also that these same elements of PERM are used to store the
level structure in FNROOT. They correspond to the array LS in the execution
of that subroutine.

After the component is ordered, the search for another 4 for which MASK(7) #
0 resumes, until either the loop is exhausted, or NEQNS nodes have been
numbered.

1. Cokesteateakeokok ook oe oo oe sefesefe e ke se e se ke ke ke ok ok ok b ek ek ke o ke o ke o se e se s e e e e ke sk ok o ke ok ke ok ok e o
2. Caleakokok ke e seofe s sesle ke ek ek ok ok ok ok ok ek ek ke o ke o se e se e se e e e e e ke ke ok ok ke ok ke ok ke e ke e e e e e e e e
3.  Cakxkkkkkkk  GENRCM ..... GENERAL REVERSE CUTHILL MCKEE  *%%kskak*
4, Cokokokeolesteakkeak ok ok ok ook ook ke o ke o ke o se e se e se e e e e ke ok ok ke ok ke ok ke ok ke e ke e ke o e e e o e s e e s ek ok
5. Caleakokok ke oe seofe s skesle i ek kel ok bk ke ok b ek ek ke o ke o se e se e se s e e e e ks ok ke ok ok ke ok ke ok ke e ke e e e e e e e e
6. C

7. € PURPOSE - GENRCM FINDS THE REVERSE CUTHILL-MCKEE

8. C ORDERING FOR A GENERAL GRAPH. FOR EACH CONNECTED

9. C COMPONENT IN THE GRAPH, GENRCM OBTAINS THE ORDERING

10. C BY CALLING THE SUBROUTINE RCM.

11. C

12. C INPUT PARAMETERS -

13. C NEQNS - NUMBER OF EQUATIONS

14. C (XADJ, ADJNCY) - ARRAY PAIR CONTAINING THE ADJACENCY
15. C STRUCTURE OF THE GRAPH OF THE MATRIX.

16. C

17. ¢ OUTPUT PARAMETER -

18. C PERM - VECTOR THAT CONTAINS THE RCM ORDERING.

19. C
20. C WORKING PARAMETERS -
21. C MASK - IS USED TO MARK VARIABLES THAT HAVE BEEN
22, C NUMBERED DURING THE ORDERING PROCESS. IT IS
23. C INITIALIZED TO 1, AND SET TO ZERO AS EACH NODE
24, C IS NUMBERED.
26, C XLS - THE INDEX VECTOR FOR A LEVEL STRUCTURE. THE
26. C LEVEL STRUCTURE IS STORED IN THE CURRENTLY
27. C UNUSED SPACES IN THE PERMUTATION VECTOR PERM.

C

[
[oe]
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29. C PROGRAM SUBROUTINES -
30. C FNROOT, RCM.
31. C

32, Cakokokokeokesealie sl ek ok ok ok sk ok ek ek ke e ke e ke e e e e se e se e se e se e se ke ke ok ok ok ko ke ok ek ke e ke o e e e e e e e
33. C
34. SUBROUTINE GENRCM ( NEQNS, XADJ, ADJNCY, PERM, MASK, XLS )
36. C
36, Cakokokoke ke sealie sl ek ok ok ok sk ok ek ek ke e ke e ke e e e e se e se e se e se sk se ke ke ok ok ok ko ek ek ke e ke o e e e e e e e
37. ¢C

38. INTEGER ADJNCY(1), MASK(1), PERM(1), XLS(1)
39. INTEGER XADJ(1), CCSIZE, I, NEQNS, NLVL,
40. 1 NUM, ROOT

41. C

42, 3k 3k 3k ok ok ok ok sk 3k ok ok sk sk oe e ke ke e e e sk 3k ok o sk e e e ke ke e ke o sk 3k 3k o sk e e e ke ke ke ok o sk 3k 3k o sk ke e e ke ke ke ok o sk 3k ke ok
43. C

44, DO 100 I = 1, NEQNS
45. MASK(I) = 1
46. 100 CONTINUE
47. NUM = 1
48. DO 200 I = 1, NEQNS
49. € e
50. C FOR EACH MASKED CONNECTED COMPONENT
Bl. C e
52. IF (MASK(I) .EQ. 0) GO TO 200
53. ROOT = I
B4, C e
55. C FIRST FIND A PSEUDO-PERIPHERAL NODE ROOT.
56. C NOTE THAT THE LEVEL STRUCTURE FOUND BY
57. C FNROOT IS STORED STARTING AT PERM(NUM).
58. C THEN RCM IS CALLED TO ORDER THE COMPONENT
59. C USING ROOT AS THE STARTING NODE.
60. C e
61. CALL FNROOT ( ROOT, XADJ, ADJNCY, MASK,
62. 1 NLVL, XLS, PERM(NUM) )
63. CALL RCM ( ROOT, XADJ, ADJNCY, MASK,
64. 1 PERM(NUM), CCSIZE, XLS )
65. NUM = NUM + CCSIZE
66. IF (NUM .GT. NEQNS) RETURN
67. 200 CONTINUE
68. RETURN
69. END

Exercises

4.4.1) Let the graph associated with a given matrix be the n by n grid
graph. Here is the case when n = 5.
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Figure 4.4.11: A 5 by b grid.

a) Show that if the reverse Cuthill-McKee algorithm starts at a
corner node, the profile is 2n® + O(n?).

b) What if the scheme starts at the center node?

4.4.2) Give an example where the algorithm of Section 4.4.2 will fail to find
a peripheral node. Find a large example which is particularly bad,
say some significant fraction of | X | from the diameter. The authors
do not know of a large example where the execution time will be
greater than O(|E|). Can you find one?

4.4.3) The original pseudo-peripheral node finding algorithm of Gibbs et. al (1976b)
did not have a “shrinking step;” Steps 3 and 4 were as follows:

Step 3: (Sort the last level): Sort the nodes in Ly, )(r) in order of
increasing degree.

Step 4: (Test for termination): For ¢ € L,,)(r) in order of increas-
ing degree, generate

l:(a}) = {Lo(m)7 Ll(m)a e '7LZ(Z)(m)}'
If {(z) > £(r), set r — @ and go to Step 3.

Give an example to show that the execution time of this algorithm
can be greater than O(|E|). Answer the first two questions in Exer-
cise 4.4.2 on page 87 for this algorithm.

4.4.4) Suppose we delete Step 3 of the algorithm of Section 4.4.1. The
ordering given by z,, @,, - - -, 2, is called the Cuthill-McKee ordering.
Let A, be the matrix ordered by this algorithm. Show that
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4.4.5)

4.4.6)

4.4.7)
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a) the matrix A. has the monotone profile property (see Exer-
cise 4.3.2 on page 64 ),

b) in the graph QAC, forl<z<n
Ad]({a},, ) mn}) C {mfi(Ac)’ ey}

Show that Env(A,) = Env(A,) if and only if the matrix A, has
the monotone profile property. Here A, is the matrix ordered by the
algorithm of Section 4.4.1, and A, is as described in Exercise 4.4.4
on page 87.

What ensures that the pseudo-peripheral node finding algorithm de-
scribed in Section 4.4.2 terminates?

Consider the n by n symmetric positive definite system of equations
Az = b derived from an s by s finite element mesh as follows. The
mesh consists of (s — 1)? small squares, as shown in Figure 4.4.10
for s = 5, each mesh square has a node at its vertices and midsides,
and there is one variable z; associated with each node. For some
labelling of the n = 3s* — 2s nodes, the matrix A has the property
that a;; # 0 if and only if z; and z; are associated with the same
mesh square.

We have a choice of two orderings, a; and aj, as shown in Fig-
ure 4.4.12. The orderings are similar in that they both number the
nodes mesh line by mesh line. Their difference is essentially that a;
numbers nodes on each horizontal mesh line and on the vertical lines
immediately above it at the same time, while oy numbers nodes on
a horizontal line along with nodes on the vertical lines immediately
below it at the same time, as depicted by the dashed lines in the
diagrams.

a) What is the bandwidth of A, for orderings o; and a,?

b) Suppose the envelope method is used to solve Az = b, using
orderings a; and a,. Let 6; and 6, be the corresponding arith-
metic operation counts, and let ; and 7, be the corresponding
storage requirements. Show that for large s,

01 = 684 + 0(33)
0, = 13.55*+0(s%)
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m = 65°+0(s%)
e = 9%+ 0(s%).

Orderings a; and a, resemble the type of ordering produced
by the RCM and standard Cuthill-McKee ordering algorithms
respectively; the results above illustrate the substantial differ-
ences in storage and operation counts the two orderings can
produce. For more details see Liu and Sherman [38]

4.4.8) (King Ordering) King [33] has proposed an algorithm for reducing
the profile of a symmetric matrix. His algorithm for a connected
graph can be described as follows.

Step 1 (Initialization) Determine a pseudo-peripheral node r and
assign z; « r.

Step 2 (Mainloop)Fori=1,---,n—1,find anodey € Adj({zy1,---,2;})
with minimum

|Ad]({m17 ters Ly y})| .
Number the node y as #;,.

Step 3 (FEwit) The King ordering is given by z, &3, - - -, &p.

This algorithm reduces the profile by a local minimization of the fron-
twidth. Implement this algorithm for general disconnected graphs.
Run your program on the matrices in test set #1 of Chapter 9. Com-
pare the performance of this algorithm with that of RCM.

4.5 Implementation of the Envelope Method

4.5.1 An Envelope Storage Scheme

The most commonly used storage scheme for the envelope method is the
one proposed by Jennings [32]. For each row in the matrix, all the entries
from the first nonzero to the diagonal are stored. These row portions are
stored in contiguous locations in a one dimensional array. However, we use
a modification of this scheme, in which the diagonal entries are stored in a
separate vector. An advantage of this variant scheme is that it lends itself
readily to the case when A is unsymmetric; this point is pursued in an
exercise at the end of this chapter.
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The scheme has a main storage array ENV which contains the envelope entries
of each row in the matrix. An auxiliary index vector XENV of length n is used
to point to the start of each row portion. For uniformity in indexing, we set
XENV(n + 1) to |[Env(A)| 4+ 1. In this way, the index vector XENV allows us
to access any nonzero component conveniently. The mapping from Env(A)
to {1,2,---,|Env(A)|} is given by:

{i,5} — XENV(i + 1) — (5 — j).

In other words, a component a,; within the envelope region of A is found in
ENV(XENV(: + 1) — (¢ — j)). Figure 4.5.1 illustrates the storage scheme. For
example, to retrieve ag,, we have

XENV(7) — (6 — 4) = 8

so that ag, is stored in the 8-th element of the vector ENV.
A more frequently used operation is to retrieve the envelope portion of a
row. This can be done conveniently as follows.

JSTRT = XENV(IROW)

JSTOP = XENV(IROW+1) - 1

IF (JSTOP.LT.JSTRT) GO TO 200

DO 100 J = JSTRT, JSTOP
ELEMNT = ENV(J)

100 CONTINUE
200 .

The primary storage of the scheme is |[Env(A)|+n and the overhead storage
is n + 1. The data structure for the storage scheme can be set up in O(|E|)
time and the subroutine FNENV, discussed in the next subsection, performs
this function.
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a1
Qg symmetric
a3z Q33
Q43 Q44
Q53 Q55
L Qg2 Qg4 Gge |
DIAG a11 Gz Q33 Q44 a5 Oes
ENV as1 0 |[@43 53 0 |Gs2 0 Qdssa 0

XENV 1 1 1 3 4 6 10

Figure 4.5.1: Example of the envelope storage scheme.
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4.5.2 The Storage Allocation Subroutine FNENV (FiNd ENVe-
lope)

In this section we describe the subroutine FNENV. This subroutine accepts as
input the graph of the matrix A, stored in the array pair (XADJ, ADJNCY),
along with the permutation vector PERM and its inverse INVP (discussed in
Section 3.4). The objective of the subroutine is to compute the components
of the array XENV discussed in Section 4.5.1, which is used in connection with
storing the factor L of PAPT. Also returned is the value ENVSZE, which
is the envelope size of L and equals XENV(NEQNS + 1) — 1. Here as before,
NEQNS is the number of equations or nodes.

The subroutine is straightforward and needs little explanation. The loop
DO 200 I = ... processes each row; the index of the first nonzero in the
i-th row (IFIRST) of PAP” is determined by the loop DO 100 J = .... At
the end of each execution of the loop DO 100 J = ..., ENVSZE is suitably
updated. Note that PERM and INVP are used since the array pair (XADJ,
ADJNCY) stores the structure of A, but the structure of L we are finding
corresponds to PAPT,

1. Cokesteateakeokok ook oe oo oe sefesefe e ke ke ke ke ke ok ke ok b ek ek ke o ke o ke o se e e e e e e e e sk ok o ke ok e ok o
2, Caleakeokok ke e seofe e sle e ek ke ok ek ke ok b ek ek ke o ke o se e se e se e e e e e sk ok ok ok ke ok ke ok ke e ke e e e e o e
3. Coaeskokokokeoksook ek s ok k FNENV ..... FIND ENVELOPE sk ke e ek ok ok ok o se o e
4, Cokokokeotesteakkak ok ok ok ook ook ke o ke o ke o se e se e se e e e ke ek ok ok ko ek ke e ke e ke o se e e e e s e e s s
5. Cakeakokokoke o seofe e skele i ek ksl ok bk bk b ek ek ke o ke o se e se e se e e e e e ks ke ok ke ok ok ke ok ke ok ke e ke e e e e o e
6. C

7. € PURPOSE - FINDS THE ENVELOPE STRUCTURE OF A& PERMUTED

8. C MATRIX.

9. C

10. C INPUT PARAMETERS -

11. C NEQNS - NUMBER OF EQUATIONS

12. C (XADJ, ADJNCY) - ARRAY PAIR CONTAINING THE ADJACENCY
13. C STRUCTURE OF THE GRAPH OF THE MATRIX.

14. C PERM,INVP - ARRAYS CONTAINING PERMUTATION DATA ABOUT
15. C THE REORDERED MATRIX.

16. C

17. ¢ OUTPUT PARAMETERS -

18. C XENV - INDEX VECTOR FOR THE LEVEL STRUCTURE

19. C TO BE USED TO STORE THE LOWER (OR UPPER)
20. C ENVELOPE OF THE REORDERED MATRIX.
21. C ENVSZE - IS EQUAL TO XENV(NEQNS+1) - 1.
22, C BANDW - BANDWIDTH OF THE REORDERED MATRIX.
23. C
24, Cakokokoke e s alie i ek ok ok ok sk ok ek ek ke e ke e ke e e e e se e se e se ke se ke se ke ke ok ok ok ok ko ke ok ek ke e ke e e e e o e

N
o

C



94 CHAPTER 4. BAND AND ENVELOPE METHODS
26. SUBROUTINE FNENV ( NEQNS, XADJ, ADJNCY, PERM, INVP,
27. 1 XENV, ENVSZE, BANDW )

28. ¢
29, (G % 3k ke 3k e 3k e e 2k 3 3k 2k 3k 3k e e 3k e 3k 2k e 3k 4 e 3k ok e 2k ke 3 2k e 3k 3k e 3k 2k e 3 2k 3k 3 4 3k 3k e e 2k e e 2k e 3 A e 3k e e ok %k K
30. ¢
31. INTEGER ADJNCY(1), INVP(1), PERM(1)
32. INTEGER XADJ(1), XENV(1), BANDW, I, IBAND,
33. 1 IFIRST, IPERM, J, JSTOP, JSTRT, ENVSZE,
34. 1 NABOR, NEQNS
35. ¢
36. (G % 3k ke 3k e 3k e e 2k 3 3k 2k 3k 3k e e 3k e 3k 2k e 3k 4 e 3k ok e 2k ke 3 2k e 3k 3k e 3k 2k e 3 2k 3k 3 4 3k 3k e e 2k e e 2k e 3 A e 3k e e ok %k K
37. ¢
38. BANDW = 0
39. ENVSZE = 1
40. DO 200 I = 1, NEQNS
41, XENV(I) = ENVSZE
42, IPERM = PERM(I)
43, JSTRT = XADJ(IPERM)
44, JSTOP = XADJ(IPERM + 1) - 1
45, IF ( JSTOP .LT. JSTRT ) GO TO 200
46. C e
47. ¢ FIND THE FIRST NONZERO IN ROW I.
48. C e
49, IFIRST = I
50. DO 100 J = JSTRT, JSTOP
51. NABOR = ADJNCY(J)
52. NABOR = INVP(NABOR)
53. IF ( NABOR .LT. IFIRST ) IFIRST = NABOR
54. 100 CONTINUE
55. IBAND = I - IFIRST
56. ENVSZE = ENVSZE + IBAND
57. IF ( BANDW .LT. IBAND ) BANDW = IBAND
58. 200 CONTINUE
59. XENV (NEQNS+1) = ENVSZE
60. ENVSZE = ENVSZE - 1
61. RETURN
62. END
4.6 The Numerical Subroutines ESFCT, ELSLV and

EUSLV

In this section we describe the subroutines which perform the numerical fac-
torization and solution, using the envelope storage scheme described in Sec-
tion 4.5.1. We describe the triangular solution subroutines ELSLV (Envelope-
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Lower-SoLVe) and EUSLV (Envelope-Upper-SoLVe) before the factorization
subroutine ESFCT (Envelope-Symmetric-FaCTorization) because ELSLYV is used
by ESFCT.

4.6.1 The Triangular Solution Subroutines ELSLV and EUSLV.

These subroutines carry out the numerical solutions of the lower and upper
triangular systems
Ly=0»

and
LTz =y,

respectively, where L is a lower triangular matrix stored as described in
Section 4.5.1.

There are several important features of ELSLV which deserve explanation. To
begin, the position (IFIRST) of the first nonzero in the right hand side (RHS)
is determined. With this initialization, the program then loops (DO 500 I
= ...) over the rows IFIRST, IFIRST+1, - --, NEQNS of L, using the inner
product scheme described in Section 2.3.1. However, the program attempts
to exploit strings of zeros in the solution; the variable LAST is used to store
the index of the most recently computed nonzero component of the solution.
(The solution overwrites the input right hand side array RHS.)

The reader is urged to simulate the subroutine’s action on the problem de-
scribed by Figure 4.6.1 to verify that only the nonzeros denoted by ® are
actually used by the subroutine ELSLYV.

Note that LAST simply allows us to skip certain rows; we still perform some
multiplications with zero operands in the DO 300 K ... loop, but on most
machines a test to avoid such a multiplication is more costly than going
ahead and doing it.

The test and adjustment of IBAND just preceding the DO 300 ... loop also
requires some explanation. In some circumstances ELSLV is used to solve
a lower triangular system where the coefficient matrix to be used is only a
submatriz of the matrix passed to ELSLV in the array pair (XENV, ENV), as
depicted in Figure 4.6.2. Some of the rows of the envelope protrude outside
the coefficient matrix to be used, and IBAND is appropriately adjusted to
account for them. In the example in Figure 4.6.2, L is actually 16 by 16,
and if the system we wish to solve is the submatrix indicated by the 11
by 11 system with right hand side RHS, we would solve it by executing the
statement
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X X
X ® X X
® B X

& X . X
® ® x N x
X
X X
X X Q X X
®®® x
| 00 ® ®® 8 | En [ ]
L Solution Right hand
side
(XENV, ENV) (RHS) (RHS)

Figure 4.6.1: Elements of L actually used by ELSLV are denoted by ®.
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CALL ELSLV ( 11, XENV(5), ENV, DIAG(5), RHS )

In the subroutine, XENV(5) is interpreted as XENV(1), XENV(6) becomes
XENV(2), etc. This “trick” is used heavily by the subroutine ESFCT, which
calls ELSLY.

_ - right
X
x coefficient matrix solution h.and
side
X to be used
x | |
X X
X X
X X
X X X
X X X X X X .
X X o
X X X X X X X
X X X
X X X X X
X X X X X X
|X X X X X
| X X X X | o o

Figure 4.6.2: An example illustrating the use of ELSLYV.

(G 3k ke ke ake 3k e afe sk afe ake e afe 3k ke ake e ok sk afe ake ke ake ok ok ok afe ok 3k ake 3k o 3k 3k 3k 3k e 3k o 3k 3 e 3k e a4 3 e 3 e afe o af¢ e 4¢ afe e ok afe ke ake ke ok
(G 3k ke ke ake 3k e afe sk afe ake e afe 3k ke ake e ok sk afe ake ke ake ok ok ok afe ok 3k ake 3k o 3k 3k 3k 3k e 3k o 3k 3 e 3k e a4 3 e 3 e afe o af¢ e 4¢ afe e ok afe ke ake ke ok
ook e ke e ok ELSLV ..... ENVELOPE LOWER SOLVE  seskoksksesskksk
(G 3k ke ke ake 3k e afe sk afe ake e afe 3k ke ake e ok sk afe ake ke ake ok ok ok afe ok 3k ake 3k o 3k 3k 3k 3k e 3k o 3k 3 e 3k e a4 3 e 3 e afe o af¢ e 4¢ afe e ok afe ke ake ke ok
(G 3k ke ke ake 3k e afe sk afe ake e afe 3k ke ake e ok sk afe ake ke ake ok ok ok afe ok 3k ake 3k o 3k 3k 3k 3k e 3k o 3k 3 e 3k e a4 3 e 3 e afe o af¢ e 4¢ afe e ok afe ke ake ke ok

PURPOSE - THIS SUBROUTINE SOLVES A LOWER TRIANGULAR
SYSTEM L. X = RHS. THE FACTOR L IS STORED IN THE
ENVELOPE FORMAT.

W W0 N, W N

[y
o

C
C
C
C
C
C

[y
[y

INPUT PARAMETERS -
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12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22,
23.
24,
25,
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44.
45.
46.
47.
48.
49.
50.
51.
52,
53.
54.
55.
56.
57.
58.
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NEQNS - NUMBER OF EQUATIONS.
(XENV, ENV) - ARRAY PAIR FOR THE ENVELOPE OF L.
DIAG - ARRAY FOR THE DIAGONAL OF L.

UPDATED PARAMETER -
RHS - ON INPUT, IT CONTAINS THE RIGHT HAND VECTOR.
ON RETURN, IT CONTAINS THE SOLUTION VECTOR.
0PS - DOUBLE PRECISION VARIABLE CONTAINED IN THE
LABELLED COMMON BLOCK OPNS. ITS VALUE IS
INCREASED BY THE NUMBER OF OPERATIONS
PERFORMED BY THIS SUBROUTINE.

OO oo aaaaaan

€k ke ok ok ok ok ek e s sk e ok ok e ol o o o ok ke e o o ok 3 3 ke ek ok e o ok e ke o o o o ke o o o ok
C
SUBROUTINE ELSLV ( NEQNS, XENV, ENV, DIAG, RHS )

C
€k ke ok ok ok ok ek e s sk e ok ok e ol o o o ok ke e o o ok 3 3 ke ek ok e o ok e ke o o o o ke o o o ok
C

DOUBLE PRECISION COUNT, OPS

COMMON /SPKOPS/ OPS

REAL DIAG(1), ENV(1), RHS(1), S

INTEGER XENV(1), I, IBAND, IFIRST, K, KSTOP,

1 KSTRT, L, LAST, NEQNS

C
€k ke ok ok ok ok ek e s sk e ok ok e ol o o o ok ke e o o ok 3 3 ke ek ok e o ok e ke o o o o ke o o o ok
C

c _________________________________________________
¢ FIND THE POSITION OF THE FIRST NONZERO IN RHS AND
¢ PUT IT IN IFIRST.
c _________________________________________________
IFIRST = 0
100 IFIRST = IFIRST + 1
IF ( RHS(IFIRST) .NE. 0.0E0 ) GO TO 200
IF ( IFIRST .LT. NEQNS ) GO TO 100
RETURN
200 LAST = 0
c _______________________________________________
¢ LAST CONTAINS THE POSITION OF THE MOST RECENTLY
¢ COMPUTED NONZERO COMPONENT OF THE SOLUTION.
c _______________________________________________
D0 500 I = IFIRST, NEQNS
IBAND = XENV(I+1) - XENV(I)
IF ( IBAND .GE. I ) IBAND =1 -1
S = RHS(I)
L = I - IBAND
RHS(I) = 0.0E0
c ______________________________________________
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59. ¢ ROW OF THE ENVELOPE IS EMPTY, OR CORRESPONDING
60. ¢ COMPONENTS OF THE SOLUTION ARE ALL ZEROS.

61. € = e
62. IF ( IBAND .EQ. 0 .OR. LAST .LT. L ) GO TO 400
63. KSTRT = XENV(I+1) - IBAND

64. KSTOP = XENV(I+1) - 1

65. DO 300 X = KSTRT, KSTOP

66. S = 8 - ENV(K)#*RHS(L)

67. L=L+1

68. 300 CONTINUE

69. COUNT = IBAND

70. OPS = OPS + COUNT

71. 400 IF ( S .EQ. 0.0E0 ) GO TO 500

72. RHS(I) = S/DIAG(I)

73. OPS = OPS + 1.0DO

74. LAST = I

75. 500 CONTINUE

76. RETURN

77. END

We now turn to a description of the subroutine EUSLV, which solves the
problem LT« = y, with L stored using the same storage scheme as that
used by ELSLV. This means that we have convenient access to the columns
of L7, and sparsity can be exploited completely, as discussed in Section 2.3.1,
using an outer product form of the computation. The i-th column of L7 is
used in the computation only if the ¢-th element of the solution is nonzero.
Just as in ELSLV, the subroutine EUSLYV can be used to solve upper triangular
systems involving only a submatrix of L contained in the array pair (XENV,
ENV), using techniques analogous to those we described above. The value
of IBAND is appropriately adjusted for those columns of LT that protrude
outside the part of L actually being used.

All the subroutines which perform numerical computation contain a labelled
COMMON block SPKOPS, which has a single variable 0PS. Each subroutine
counts the number of operations (multiplications and divisions) it performs,
and increments the value of 0PS accordingly. Thus, if the user of the subrou-
tines wishes to monitor the number of operations performed, he can make
the same common block declaration in his calling program and examine the
value of OPS.

The variable 0PS has been declared to be double precision to avoid the
possibility of serious rounding error in the computation of operation counts.
Our subroutines may be used to solve very large systems, so OPS may easily
assume values as large as 10® or 10°, even though 0PS may be incremented in



100 CHAPTER 4. BAND AND ENVELOPE METHODS

each subroutine by relatively small numbers. On many computers, if single
precision is used, the floating point addition of a small number (say less
than 10) to 10® will again yield 10%. (Try it, simulating 6 digit floating point
arithmetic!) Using double precision for 0PS makes serious rounding error in
the operation count very unlikely.

1. Cokesteateakeokok ook oe oo oe sefesefe e ke ke ke ke ke ok ke ok b ek ek ke o ke o ke o se e e e e e e e e sk ok o ke ok e ok o
2, Caleakeokok ke e seofe e sle e ek ke ok ek ke ok b ek ek ke o ke o se e se e se e e e e e sk ok ok ok ke ok ke ok ke e ke e e e e o e
3. Cakxkokokokskaskakk EUSLY ..... ENVELOPE UPPER SOLVE Fe ok e ek ok ok ok o ok
4, Cokokokeotesteakkak ok ok ok ook ook ke o ke o ke o se e se e se e e e ke ek ok ok ko ek ke e ke e ke o se e e e e s e e s s
5. Cakeakokokoke o seofe e skele i ek ksl ok bk bk b ek ek ke o ke o se e se e se e e e e e ks ke ok ke ok ok ke ok ke ok ke e ke e e e e o e
6. C

7. € PURPOSE - THIS SUBROUTINE SOLVES AN UPPER TRIANGULAR

8. C SYSTEM U X = RHS. THE FACTOR U IS STORED IN THE

9. C ENVELOPE FORMAT.

10. C

11. C INPUT PARAMETERS -

12. C NEQNS - NUMBER OF EQUATIONS.

13. C (XENV, ENV) - ARRAY PAIR FOR THE ENVELOPE OF U.

14. C DIAG - ARRAY FOR THE DIAGONAL OF U.

15. C

16. C UPDATED PARAMETER -

17. ¢ RHS - ON INPUT, IT CONTAINS THE RIGHT HAND SIDE.

18. C ON OUTPUT, IT CONTAINS THE SOLUTION VECTOR.

19. C 0PS - DOUBLE PRECISION VARIABLE CONTAINED IN THE
20. C LABELLED COMMON BLOCK OPNS. ITS VALUE IS
21. C INCREASED BY THE NUMBER OF OPERATIONS

22, C PERFORMED BY THIS SUBROUTINE.

23. C

24, Cakokokoke e s alie i ek ok ok ok sk ok ek ek ke e ke e ke e e e e se e se e se ke se ke se ke ke ok ok ok ok ko ke ok ek ke e ke e e e e o e
26, C

26. SUBROUTINE EUSLV ( NEQNS, XENV, ENV, DIAG, RHS )

27. C

28, Cakokokokeokesealeie e ek ok ok ok o ek ek ke e ke e ke e e e e se e se e se e s ke se ke ke ok ok ok ok ko ek ek ke e ke e e e e o e
29. C

30. DOUBLE PRECISION COUNT, OPS

31. COMMON /SPKOPS/ OPS

32. REAL DIAG(1), ENV(1), RHS(1), S

33. INTEGER XENV(1), I, IBAND, K, KSTOP, KSTRT, L,

34. 1 NEQNS

36. C

36, Cakokokokeokesealeie i ek ko sk ok sk o ek ek ke e ke e ke e e e e se e se e se e se ke se ke ke ok ok ok ok ko ke ok ek ke e ke e e e e o e
37. ¢C

38. I = NEQNS + 1

39. 100 I=I-1
40. IF ( I .EQ. 0 ) RETURN
41. IF ( RHS(I) .EQ. 0.0E0 ) GO TO 100
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42, S = RHS(I)/DIAG(I)

43, RHS(I) = S

44, OPS = OPS + 1.0DO

45, IBAND = XENV(I+1) - XENV(I)

46. IF ( IBAND .GE. I ) IBAND =TI - 1
47. IF ( IBAND .EQ. 0 ) GO TO 100
48, KSTRT = I - IBAND

49, KSTOP = I - 1

50. L = XENV(I+1) - IBAND

51. DO 200 X = KSTRT, KSTOP

52. RHS(K) = RHS(K) - S*ENV(L)
53. L=L+1

54. 200 CONTINUE

55. COUNT = IBAND

56. OPS = OPS + COUNT

57. GO TO 100

58. END

4.6.2 The Factorization Subroutine ESFCT

In this section we describe some details about the numerical factorization
subroutine ESFCT, which computes the Cholesky factorization LL” of a
given matrix A, stored using the envelope storage scheme described in Sec-
tion 4.5.1. The variant of Cholesky’s method used is the bordering method
(see Section 2.2.2).

Recall that if A is partitioned as

where M is the leading principal submatrix of A and L ML:E\J isits Cholesky
factorization, then the factor of A is given by

Ly ©

where Lpysw = u and t = (s — wTw)'/2. Thus, the Cholesky factor of A
can be computed row by row, working with successively larger matrices M,
beginning with the one by one matrix a;;. The main point of interest in
ESFCT concerns the exploitation of the fact that the vectors u are “short”
because we are dealing with an envelope matrix.
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Referring to Figure 4.6.3, suppose the first ¢ — 1 steps of the factorization
have been completed, so that the leading (¢ —1) x (¢ — 1) principal submatrix
of A has been factored. (Thus, the statements preceeding the loop DO 300 I
= 2, ... have been executed, and the loop DO 300 I = 2, ... has been
executed ¢ — 2 times.) In order to compute row ¢ of L, we must solve the
system of equations Lpyw = u.

7 I

Figure 4.6.3: Sketch showing the way sparsity is exploited in ESFCT; only L
enters into the computation of w from .

However, it is clear from the picture (and from Lemmas 2.3.1 and 2.3.4)
that only part of L ps is involved in the computation, namely that part of
L pr labelled L. Thus ELSLV is called with the size of the triangular system
specified as IBAND, the size of @ (and L ), and IFIRST is the index in L of
the first row of L.
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3. Coeskokokokok ESFCT ..... ENVELOPE SYMMETRIC FACTORIZATION %%%%*
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5. Cakeakokokoke o seofe e skele i ek ksl ok bk bk b ek ek ke o ke o se e se e se e e e e e ks ke ok ke ok ok ke ok ke ok ke e ke e e e e o e
6. C

7. € PURPOSE - THIS SUBROUTINE FACTORS A POSITIVE DEFINITE

8. C MATRIX A INTO L*L(TRANSPOSE). THE MATRIX A IS STORED
9. C IN THE ENVELOPE FORMAT. THE ALGORITHM USED IN THE
10. C STANDARD BORDERING METHOD.
11. C
12. C INPUT PARAMETERS -
13. C NEQNS - NUMBER OF EQUATIONS.
14. C XENV - THE ENVELOPE INDEX VECTOR.

C
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UPDATED PARAMETERS -
ENV - THE ENVELOPE OF L OVERWRITES THAT OF A.
DIAG - THE DIAGONAL OF L OVERWRITES THAT OF A.
IFLAG - THE ERROR FLAG. IT IS SET TO 1 IF A ZERO OR
NEGATIVE SQUARE ROOT IS DETECTED DURING THE
FACTORIZATION.

PROGRAM SUBROUTINES -
ELSLV.

QOO aaaoaaaaaa

(ke ek e ok sk ook e ook okl ks ook ke e o ek o ok ek ok s ook ol ook sk ook sk ook ek o ke ke o sk e ok e e ok o
C
SUBROUTINE ESFCT ( NEQNS, XENV, ENV, DIAG, IFLAG )
C
(ke ek e ok sk ook e ook okl ks ook ke e o ek o ok ek ok s ook ol ook sk ook sk ook ek o ke ke o sk e ok e e ok o
C
DOUBLE PRECISION COUNT, OPS
COMMON /SPKOPS/ OPS
REAL DIAG(1), ENV(1), S, TEMP
INTEGER XENV(1), I, IBAND, IFIRST, IFLAG, IXENV,
1 J, JSTOP, NEQNS
C
(ke ek e ok sk ook e ook okl ks ook ke e o ek o ok ek ok s ook ol ook sk ook sk ook ek o ke ke o sk e ok e e ok o
C
IF ( DIAG(1) .LE. 0.0E0 ) GO TO 400
DIAG(1) = SQRT(DIAG(1))
IF ( NEQNS .EQ. 1 ) RETURN

c ________________________________________________
¢ LOOP OVER ROWS 2,3,..., NEQNS OF THE MATRIX
c ________________________________________________
DO 300 I = 2, NEQNS
IXENV = XENV(I)
IBAND = XENV(I+1) - IXENV
TEMP = DIAG(I)
IF ( IBAND .EQ. 0 ) GO TO 200
IFIRST = I - IBAND
c _______________________________________
¢ COMPUTE ROW I OF THE TRIANGULAR FACTOR.
c _______________________________________
CALL ELSLV ( IBAND, XENV(IFIRST), ENV,
1 DIAG(IFIRST), ENV(IXENV) )
JSTOP = XENV(I+1) - 1
DO 100 J = IXENYV, JSTOP
S = ENV(J)
TEMP = TEMP - $*$
100 CONTINUE

200 IF ( TEMP .LE. 0.0E0 ) GO TO 400

103
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63. DIAG(I) = SQRT(TEMP)
64. COUNT = IBAND
65. OPS = OPS + COUNT
66. 300 CONTINUE
67. RETURN
68. € e
69. C SET ERROR FLAG - NON POSITIVE DEFINITE MATRIX.
T0. € e
71. 400 IFLAG = 1
72. RETURN
73. END

Exercises

4.6.1) Suppose A has symmetric structure but A # AT, and assume that

Gaussian elimination applied to A is numerically stable without piv-
oting. The bordering equations for factoring A, analogous to those
used by ESFCT in Section 4.6.2, are as follows.

M v

_ [ Lpgr O _(Um 9

Lparg =, U:}'Ww:u, t=s5—wg.

Here L is now unit lower triangular (ones on the diagonal), and of
course L £ U”.

a) Using ELSLV as a base, implement a Fortran subroutine EL1SLV
that solves unit lower triangular systems stored using the enve-
lope storage scheme.

b) Using ESFCT as a base, implement a Fortran subroutine EFCT
that factors A into LU, where L and U7 are stored using the
envelope scheme.

¢) What subroutines do you need to solve Az = b, where A is as
described in this question? Hints:

i) Very few changes in ELSLV and ESFCT are required.
i) Your implementation of EFCT should use EL1SLV and ELSLV.
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4.6.2) Suppose L and b have the structure shown in Figure 4.6.4, where
L is stored in the arrays XENV, ENV, and DIAG, as described in Sec-
tion 4.5.1. How many arithmetic operations will ELSLV perform in
solving L& = b? How many will EUSLV perform in solving L @ = b?

- 4 -
X X
X X X X
X
X X
X X X
X
X
X X X
| x X X x x x 1 L
L b

Figure 4.6.4: An example of a sparse triangular system.

4.7 Additional Notes

Our lack of enthusiasm for band orderings is due in part to the fact that
we only consider “in core” methods in our book. Band orderings are attrac-
tive if auxiliary storage is to be used, since it is quite easy to implement
factorization and solution subroutines which utilize auxiliary storage, pro-
vided about (8 + 1)/2 main storage locations are available (Felippa [16]).
Wilson et al. [565] describe an out-of-core band-oriented scheme which re-
quires even less storage; their program can execute even if there is only
enough storage to hold two columns of the band of L. Another context
in which band orderings are important is in the use of so-called minimal
storage band methods (Sherman [47]). The basic computational scheme is
similar to those which use auxiliary storage, except that the columns of L
are computed, used, and then “thrown away,” instead of being written on
auxiliary storage. The parts of L needed later are recomputed.

Several other algorithms for producing low profile orderings have been pro-
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posed. Levy [35] describes an algorithm which picks nodes to number on
the basis of minimum increase in the envelope size. King [33] has proposed
a similar scheme, except that the candidates for numbering are restricted to
those having at least one numbered neighbor, and therefore requires a start-
ing node. More recently, several algorithms more closely related to the one
described in this chapter have been proposed (Gibbs et al. [30], Gibbs [29]).

Several researchers have described “frontal” or “wavefront” techniques to
exploit the variation in the bandwidth when using auxiliary storage (Melosh
and Bamford [41], Irons [31]). These schemes require only about w(w +
1)/2 main storage locations rather than 8(8 4 1)/2 for the band schemes,
although the programs tend to be substantially more complicated as a result.
These ideas have been proposed in the context of solving finite element
equations, and a second novel feature the methods have is that the equations
are generated and solved in tandem.

It has been shown that given a starting node, the RCM algorithm can be
implemented to run in O(|E|) time (Chan and George [8]). Since each edge
of the graph must be examined at least once, this new method is apparently
optimal.

A set of subroutines which are similar to ELSLV, EUSLV, and ESFCT is provided
in Eisenstat et al. [13].



Chapter 5

General Sparse Methods

5.1 Introduction

In this chapter we consider methods which, unlike those of Chapter 4, at-
tempt to exploit all the zero elements in the triangular factor L of A. The
ordering algorithm we study in this chapter is called the minimum degree
algorithm (Rose [44]). It is a heuristic algorithm for finding an ordering
for A which suffers low fill when it is factored. This algorithm has been
used widely in industrial applications, and enjoys a good reputation. The
computer implementations of the allocation and numerical subroutines are
adapted from those of the Yale Sparse Matrix Package (Eisenstat [13]).

5.2 Symmetric Factorization

Let A be a symmetric sparse matrix. The nonzero structure of A is defined
by

Nonz(A) = {{3,j} | a;; # 0 and 7 # j}.
Suppose the matrix is factored into LL” using the Cholesky factorization
algorithm. The filled matriz F(A) of A is the matrix sum L + L. When

the matrix under study is clear from context, we use F rather than F(A).
Its corresponding structure is then

Nonz(F) = {{i,j} | L;; # 0 and 7 # j}.

Recall that throughout our book, we assume that exact numerical cancella-
tion does not occur, so for a given nonzero structure Nonz(A), the corre-

107
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sponding Nonz(F) is completely determined. That is, Nonz(F') is indepen-

dent of the numerical quantities in A.
This no-cancellation assumption immediately implies that

Nonz(A) C Nonz(F),
and the fill of the matrix A can then be defined as
Fill(A) = Nonz(F) — Nonz(A).

For example, consider the matrix in Figure 5.2.1, where fill-in entries are
indicated by +. The corresponding sets are given by

Nonz(A) = {{1,5},{1,8},{2,4},{2,5},{3,8},{4,7},{5,6},{6,8},{8,9}}
Fill(A) = {{4,5},{5,7},{5,8},{6,7},{7,8}}.

In the next section, we shall consider how F'ill(A) can be obtained from

Nonz(A).

-® X X
@ X X
® X
X ® ® X
X x ® 6 x ®E
x ® © x
x © ® O ©
X X ®><®><
I x @

Figure 5.2.1: A matrix example of Nonz and Fill.

5.2.1 Elimination Graph Model

We now relate the application of symmetric Gaussian elimination to A, to

corresponding changes in its graph G Recall from Chapter 2 that the
first step of the outer product version of the algorithm applied to an n X n
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symmetric positive definite matrix A = Ag can be described by the equation:

d, v7T
A = A,=H,= ( vi I?ll ) (5.2.1)
Voo Ia-a 0 H, o I,
= LA LT,
where i
H, = H, - ”Zl : (5.2.2)

The basic step is then recursively applied to H;, H,, and so on. Making
the usual assumption that exact cancellation does not occur, equation (5.2.2)
implies that the jk-th entry of H is nonzero if the corresponding entry in
H, is already nonzero, or if both (v1); # 0 and (vy1), # 0. Of course both
situations may prevail, but when only the latter one does, some fill-in occurs.
This phenomenon is illustrated pictorially in Figure 5.2.2. After the first step
of the factorization is completed, we are left with the matrix H, to factor.

Figure 5.2.2: Pictorial illustration of fill-in in the outer-product formulation.

Following Parter [43] and Rose [44], we now establish a correspondence be-
tween the transformation of Hy to H; and the corresponding changes to
their respective graphs. As usual, we denote the graphs of Hy(= A) and
H, by QH ° and QH t respectively, and for convenience we denote the node
a(z) by z;, where o is the labelling of QA implied by A. Now as shown in
the example of Figure 5.2.3, the graph of H; is obtained from that of H|
by:

1) deleting node #; and its incident edges
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2) adding edges to the graph so that nodes in Adj(z,) are pairwise adjacent
s oH
in Gtt1,

The recipe is due to Parter [43].
Thus, as observed by Rose, symmetric Gaussian elimination can be inter-
preted as generating a sequence of elimination graphs

gr = gHi = (X2, B2), i=1,2,--,n-1,

where G is obtained from G ; according to the procedure described above.
When « is clear from context, we use G; instead of GZ. The example in
Figure 5.2.3 illustrates this vertex elimination operation. The darker lines
depict edges added during the factorization. For example, the elimination
of the node 2, in the graph G, generates three fill-in edges {23, 24}, {24, 26},
{z3, 26} in G, since {23, 24, 24} is the adjacent set of z, in G;.

Let L be the triangular factor of the matrix A. Define the filled graph of
QA to be the symmetric graph QF = (XF,EF), where F = L + L”. Here
the edge set EF consists of all the edges in EA together with all the edges
added during the factorization. Obviously, XF = XA, The edge sets EF
and EA are related by the following lemma due to Parter [43]. Its proof is
left as an exercise.

Lemma 5.2.1 The unordered pair {z;,z;} € EF if and only if {z;,2;} €
EA or {z;, 21} € EF and {zr,2;} € EF for some k < min{z, j}.

The notion of elimination graphs allows us to interpret the step by step
elimination process as a sequence of graph transformations. Moreover, the
set of edges added in the elimination graphs corresponds to the set of fill-ins.
Thus, for the example in Figure 5.2.3, the structures of the corresponding
matrix F = L + L7 and the filled graph QF are given in Figure 5.2.4.
Note that the filled graph QF can easily be constructed from the sequence
of elimination graphs. Finding ¢F is important because it contains the
structure of L. We need to know it if we intend to use a storage scheme
which exploits all the zeros in L.

5.2.2 Modelling Elimination By Reachable Sets

Section 5.2.1 defines the sequence of elimination graphs

g0—>g1—>"'—>gn—1



5.2. SYMMETRIC FACTORIZATION 111

) X X X
Go g H, = X X X
9 e X X X ®
gl e le X X
@ 6 5 X X X
1 < ® x ©
G, m_|® < ©
6 ® ® x x
4
x ® ®
g3 H3: ® X X
6 ® x x
G Ho=| i]
g5 @ H5:[x]

Figure 5.2.3: The sequence of elimination graphs.
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X X X X ®

><><®><®

x ® x ® ®

><®><><

| x ® ® ® x x|
F=L+I” gF

Figure 5.2.4: The filled graph and matrix of the example on Figure 5.2.3.

and provides a recursive characterization of the edge set £ F 1t is often help-
ful, both in theoretical and computational terms, to have characterizations
of G; and EF directly in terms of the original graph QA. Our objective in
this section is to provide such characterizations using the notion of reachable
sets.

Let us first study the way the fill edge {z4, 25} is formed in the example of
Figure 5.2.3. In G;, there is the path

(1347 Ly, mG)a

so that when 2, is eliminated, the edge {z4, ¢} is created. However, the
edge {z,, 26} is not present in the original graph; it is formed from the path

(ﬁza Ly, 136)

when z; is eliminated from Go. On combining the two, we see that the path
(24,22, 21, 2¢) in the original graph is really responsible for the filled edge
{#4,26}. This motivates the use of reachable sets, which we now introduce
(George [27]).

Let S be a subset of the node set with z ¢ 5. The node  is said to be
reachable from a node y through § if there exists a path (y,vy,---, vz, 2)
from y to @ such that v; € § for 1 < ¢ < k. Note that k& can be zero, so that
any adjacent node of y not in § is reachable from y through S.

The reachable set of y through §, denoted by Reach(y, S), is then defined
to be

Reach(y,S) = {x ¢ S |  is reachable from y through S}. (5.2.3)
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To illustrate the notion of reachable sets, we consider the example in Fig-
ure 5.2.5. If § = {54, 33, 83, 84}, we have

Reach(y, S) = {a, b, c},
since we can find the following paths through § :
(ya 525 84, CL),

(v,0),
(ya 315 C).

(Do)

A N
(33
O

Figure 5.2.5: Example to illustrate the reachable set concept.

The following theorem characterizes the filled graph by reachable sets.
Theorem 5.2.2

EF = {{a,,2;} | 2; € Reach(z, {21,220 -, i1 }) ).

Proof: Assume z; € Reach(z;,{®1, -, 2;_1}). By definition, there exists
a path (z;, 91, -,y 2;) in GA with yp € {1, -,z 1 for 1 <k <t If
t =0 ort =1, the result follows immediately from Lemma 5.2.1. If £ > 1, a
simple induction on ¢, together with Lemma 5.2.1 shows that {z;,z;} € EF.
Conversely, assume {z;,z;} € EF and < j. The proof is by induction on
the subscript i. The result is true for ¢ = 1, since {z;,2z,} € EF implies
{z;,z;} € EA, Suppose the assertion is true for subscripts less than 1.
If {z;,2;} € EA, there is nothing to prove. Otherwise, by Lemma 5.2.1,
there exists a k& < min{¢,j} such that {z;, 2} € EF and {z;, 2} € EF.
By the inductive assumption, a path can be found from z; to z, passing
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through z; in the section graph QA({:L'l, -+, 2} U {z;,2z;}) which implies
that z; € Reach(z;, {z1,---,2,_1}). a
In terms of the matrix, the set Reach(z;,{z1,---,2;_1}) is simply the set
of row subscripts that correspond to nonzero entries in the column vector
L,;. For example, let the graph of Figure 5.2.5 be ordered as shown in
Figure 5.2.6.

OO DG

Figure 5.2.6: A labelling of the graph of Figure 5.2.5.

If S; = {&1,---,2;}, it is not difficult to see from the definition of reachable
set that

( ) = {zs,zs}

( ) {24, 25}

( ) {zs}

( ) = {zs 27}
Reach(zs, S;) = {ze, 27,28}

( ) = {zrzs}

( ) {zs}

( ) {zo}

(20, 55) = ¢
It then follows from Theorem 5.2.2 that the structure of the corresponding
L is given by the matrix in Figure 5.2.7.
We have thus characterized the structure of L directly in terms of the struc-
ture of A. More importantly, there is a convenient way of characterizing the
elimination graphs introduced in Section 5.2.1 in terms of reachable sets.

Let Go,G1,---,G,_1 be the sequence of elimination graphs as defined by the
nodes 1,23, - -, Z,, and consider the graph G, = (X;, E;). We then have
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Figure 5.2.7: Structure of a Cholesky factor L.

Theorem 5.2.3 Let y be a node in the elimination graph G; = (X, E;).
The set of nodes adjacent to y in G; s given by

Reach(y, {®1,...,2;})
where the Reach operator is applied to the original graph G,.

Proof: The proof can be done by induction on <. a
Let us re-examine the example in Figure 5.2.3. Consider the graphs G, and

Gs.

Go G»
Figure 5.2.8: The graphs G, and G,.

Let Sy = {@1,2,}. It is clear that
Reach(zs,5,) = {za, 25,26},
Reach(4,5,) = {zs,z6},
Reach(zs,5,) = {zs,z6},
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and

Reach(ze, S,) = {3, 4, 5},
since we have paths
(133, L2, 134)a
(133, Loy L1, Jﬁe)a

and
(234, L2y L1, 136)

in the graph Go. These reach sets are precisely the adjacent sets in the graph
Ga-

The importance of reachable sets in sparse elimination lies in Theorem 5.2.3.
Given a graph G = (X, F) and an elimination sequence 2y, Z,,...,2,, the
whole elimination process can be described implicitly by this sequence and
the Reach operator. This can be regarded as an implicit model for elim-

ination, as opposed to the ezplicit model using elimination graphs (Sec-
tion 5.2.1).

Exercises

5.2.1) For any nonzero structure Nonz(A), can you always find a matrix
A" so that its filled matrix F" has identical logical and numerical
nonzero structures? Why?

5.2.2) Consider the star graph with 7 nodes (Figure 4.3.3). Assuming that
the centre node is numbered first, determine the sequence of elimi-
nation graphs.

5.2.3) For a given labelled graph gA = (XA,EA), show that
Reach(z;, {x1, 22, -, 2;_1}) C Adj({z1, 22, -+, 2:}),
and hence conclude that Fill(A) C Env(A).
5.2.4) Show that the section graph
GA(Reach(z;, {@1, -+, 21 }) U {2:})

is a clique in the filled graph QF.
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5.2.5) (Rose [44]) A graph is triangulated if for every cycle (21, 22, -, 21, 1)
of length [ > 3, there is an edge joining two non-consecutive vertices
in the cycle. (Such an edge is called a chord of the cycle.) Show that
the following conditions are equivalent.

a) the graph GA is triangulated

b) there exists a permutation matrix P such that

Fil(PAP") = ¢

5.2.6) Show that the graph gFA) is triangulated. Give a permutation
P such that Fill[(PF(A)P") = ¢. Hence, or otherwise, show that
Nonz(F(A)) = Nonz(F(F(A))).

5.2.7) Let § C T and y ¢ T. Show that
Reach(y, S) C Reach(y,T)UT.

5.2.8) Let y ¢ S. Define the neighborhood set of y in S to be
Nbrhd(y, S) =
{s € § | s is reachable from y through a subset of §}.
Let 2 ¢ §. Show that, if
Adj(z) C Reach(y,S)U Nbrhd(y, S)U {y},
then

a) Nbrhd(z,S)C Nbrhd(y,S)
b) Reach(z,S) C Reach(y,S5)U {y}.

5.2.9) Prove Theorem 5.2.3.

5.3 Computer Representation of Elimination Graphs

As discussed in Section 5.2, Gaussian elimination on a sparse symmetric
linear system can be modelled by the sequence of elimination graphs. In
this section, we study the representation and transformation of elimination
graphs on a computer. These issues are important in the implementation of
general sparse methods.
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5.3.1 Explicit and Implicit Representations

Elimination graphs are, after all, symmetric graphs so that they can be rep-
resented explicitly using one of the storage schemes described in Section 3.3
However, what concerns us is that the implementation should be tailored for
elimination, so that the transformation from one elimination graph to the
next in the sequence can be performed easily.

Let us review the transformation steps. Let G; be the elimination graph
obtained from eliminating the node #; from G, _;. The adjacency structure
of G, can be obtained as follows.

Step 1 Determine the adjacent set Adjg, ,(;) in G;_;.

Step 2 Remove the node z; and its adjacent list from the adjacency struc-
ture.

Step 3 For each node y € Adjg, ,(#;), the new adjacent set of y in G, is
given by merging the subsets

Adjg,_,(y) — {z;} and Adjg,_, (@:) — {y}-

The above is an algorithmic formulation of the recipe by Parter (Section 5.2.1)
to effect the transformation. There are two points that should be mentioned
about the implementation. First, the space used to store Adjg, ,(;) in the
adjacency structure can be re-used after Step 2. Secondly, the explicit adja-
cency structure of G, may require much more space than that of G,_;. For
example, in the star graph of n nodes (Figure 4.3.3), if the centre node is
to be numbered first and G, = (Xo, Eo) and G; = (X, E;) are the corre-
sponding elimination graphs, it is easy to show that (see Exercise 5.2.2 on
page 116 )
| Eo| = O(n)

and

|Ey| = O(n?).

In view of these observations a very flexible data structure has to be used in
the explicit implementation to allow for the dynamic change in the structure
of the elimination graphs. The adjacency linked list structure described in
Section 3.3 is a good candidate.

Any explicit computer representation has two disadvantages. First, the flex-
ibility in the data structure often requires significant overhead in storage
and execution time. Secondly, the maximum amount of storage required is
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unpredictable. Enough storage is needed for the largest elimination graph G;
that occurs. (Here “largest” refers to the number of edges, rather than the
number of nodes.) This may exceed greatly the storage requirement for the
original G,. Futhermore, this maximum storage requirement is not known
until the end of the entire elimination process.

Theorem 5.2.3 provides another way to represent elimination graphs. They
can be stored implicitly using the original graph G and the eliminated subset
S;. The set of nodes adjacent to y in G; can then be retrieved by generating
the reachable set Reach(y,S;) in the original graph. This implicit represen-
tation does not have any of the disadvantages of the explicit method. It has
a small and predictable storage requirement and it preserves the adjacency
structure of the given graph.

However, the amount of work required to determine reachable sets can be in-
tolerably large, especially at the later stages of elimination when |5;| is large.
In the next section, we shall consider another model which is more suitable
for computer implementation, but still retains many of the advantages of
using reachable sets.

5.3.2 Quotient Graph Model

Let us first consider elimination on the graph given in Figure 5.2.6. After
the elimination of the nodes z;, #,, z3, 4, 5 the corresponding elimina-
tion graph is given in Figure 5.3.1. Shaded nodes are those that have been
eliminated.

e s e Wy
Qijij \
O——5 O
O O

Figure 5.3.1: A graph example and its elimination graph.

Let S = {2,235, 23,24, 25}. In the implicit model, to discover that z¢ €

Reach(zr, S), the path

(237, Lgy Ly T, 136)
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has to be traversed. Similarly, s € Reach(zr, S) because of the path

(237, Lay Loy Ty Ly, 138)-

Note that the lengths of the two paths are 4 and 5 respectively.
We make two observations:

a) the amount of work to generate reachable sets can be reduced if the
lengths of paths to uneliminated nodes are shortened.

b) if these paths are shortened to the extreme case, we get the explicit
elimination graphs which have undesirable properties as mentioned in
the previous section.

We look for a compromise. By coalescing connected eliminated nodes, we
obtain a new graph structure that serves our purpose. For example, in
Figure 5.3.1, there are two connected components in the graph G(5), whose
node sets are

{1317 Ly, L4, 135} and {233}

By forming two “supernodes,” we obtain the graph as given in Figure 5.3.2.

&
ONoNo

Figure 5.3.2: Graph formed by coalescing connected eliminated nodes.

For convenience, we set Z5 = {2, 23, 24,25} and Z3 = {23} to denote these
connected components in 5. With this new graph, we note that the paths

(237, fSa 136)

and

(237, fSa 138)
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are of length two and they lead us from the node z; to zg and g respectively.
In general, if we adopt this strategy all such paths are of length less than or
equal to two. This has the obvious advantage over the reachable set approach
on the original graph, where paths can be of arbitrary lengths (less than n).
What is then its advantage over the explicit elimination graph approach?
In the next section we shall show that this approach can be implemented
in-place; that is, it requires no more space than the original graph structure.
In short, this new graph structure can be used to generate reachable sets (or
adjacent sets in the elimination graph) quite efficiently and yet it requires a
fixed amount of storage.
To formalize this model for elimination, we introduce the notion of quotient
graphs. Let G = (X, E) be a given graph and let P be a partition on its
node set X :

P = {I/laY%"'aY;J}‘
That is, Jk = 17Y;, = X and Y; NY; = ¢ for ¢ # j. We define the quotient
graph of G with respect to P to be the graph (P, £), where {Y,,Y;} € £ if
and only if Adj(Y;) NY; # ¢. Often, we denote this graph by G/P.
For example, the graph in Figure 5.3.2 is the quotient graph of the one in
Figure 5.3.1 with respect to the partitioning

{331, L2y L,y 335}, {233}, {mﬁ}a {137}, {mS}a {139}.

The notion of quotient graphs will be treated in more detail in Chapter 6
where partitioned matrices are considered. Here, we study its role in mod-
elling elimination. The new model represents the elimination process as a
sequence of quotient graphs.

Let G = (X, FE) be a given graph and consider a stage in the elimination
where 5 is the set of eliminated nodes. We now associate a quotient graph
with respect to this set 5 as motivated by the example in Figure 5.3.2. Define
the set

c(s) = (5.3.1)
{C C 5|G(C)is a connected component in the subgraph G(5)},

and the partitioning on X,
C(S)={{y}|ye X -Sruc(s). (5.3.2)
This uniquely defines the quotient graph
g/c($),
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which can be viewed as the graph obtained by coalescing connected sets in
S. Figure 5.3.2 is the resulting quotient graph for § = {2, z,, 23, 24, Z5}.

We now study the relevance of quotient graphs in elimination. Let z;, ,,..., 2,
be the sequence of node elimination in the given graph G. As before, let

Si :{231,132,---,131»}, 1 <2< n.

For each i, the subset §; induces the partitioning C(S;) and the corresponding
quotient graph ) )

In this way, we obtain a sequence of quotient graphs
g1_>g2_>..._>gn

from the node elimination sequence. Figure 5.3.3 shows the sequence for the
graph example of Figure 5.3.1. For notational convenience, we use y instead
of {y} for such “supernodes” in C(S;).

The following theorem shows that quotient graphs of the form (5.3.3) are
indeed representations of elimination graphs.

Theorem 5.3.1 Foryc X — §;,
ReaChG(ya Sz) = ReaChg,(ya C(Sz))

Proof: Consider u € Reachg(y, S;). If the nodes y and u are adjacent in G,
so are y and u in G;. Otherwise, there exists a path

(ya S1y '75t7u)

in G where {s,...,s:} C §;. Let G(C) be the connected component in G(5;)
containing {s;}. Then we have the path

(y,C,u)

in G; so that u € Reachg (y,C(5;)).
Conversely, consider any u € Reachg‘(y, C(S;)). There exists a path

(ya 017' : '7Ct7u)

in G; where {Cy,...,C} C C(S5;). If t = 0, y and u are adjacent in the
original graph G. If t > 0, by definition of connected components, ¢ cannot
be greater than one; that is, the path must be

(y7 07 u)7
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Figure 5.3.3: A sequence of quotient graphs.

5
oNG

=0 =6
®




124 CHAPTER 5. GENERAL SPARSE METHODS

so that we can obtain a path from y to u through C in the graph G. Hence
u € Reachg(y, S;).

a

The determination of reachable sets in the quotient graph G; is straightfor-
ward. For a given node y ¢ C(S;), the following algorithm returns the set
Reachg‘(y,C(Si)).

Step 1 (Initialization) R — ¢.

Step 2 (Find reachable nodes)

for z € Adjg (y) do
if z € C(5;)
then R — RU Adjg ()
else R — RU {z}.

Step 3 (Ez:it) The reachable set is given in R.

The connection between elimination graphs and quotient graphs (5.3.3) is
quite obvious. Indeed, we can obtain the structure of the elimination graph
G; from that of G; by the simple algorithm below.

Step 1 Remove supernodes in C(5;) and their incident edges from the quo-
tient graph.

Step 2 For each C € C(S;), add edges to the quotient graph so that all
adjacent nodes of C' are pairwise adjacent in the elimination graph.

To illustrate the idea, consider the transformation of G, to G, for the example
in Figure 5.3.3. The elimination graph G, is given in Figure 5.3.4.
In terms of implicitness, the quotient graph model lies in between the reach-
able set approach and the elimination graph model as a vehicle for repre-
senting the elimination process.

Reachable set

. . Quotient Elimination
on original —

N
graph graph graph

The correspondence between the three models is summarized in Table 5.3.1.
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Figure 5.3.4: From quotient graph to elimination graph.

Implicit Quotient Explicit
Model Model Model
Representation S1 g G1
S G, Ga
Sn_1 Grn1 On-1
Adjacency Reach(y, 8;) Reachg (y,C(5:)) Adjg ()

Table 5.3.1: Correspondence among the elimination models.
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5.3.3 Implementation of the Quotient Graph Model

Consider the quotient graph G = G/C(S) induced by the eliminated set S.
For notational convenience, if s € 5, we use the notation 5 to denote the
connected component in the subgraph G(5), containing the node s. For
example, in the quotient graph of Figure 5.3.2,

Ts =1 = Ty = T4 = {21, 20, 4, 25}.

On the other hand, for a given C' € C(5), we can select any node z from
C and use z as a representative for C, that is, Z = C. Before we discuss
the choice of representative in the implementation, we establish some results
that can be used to show that the model can be implemented in-place; that
is, in the space provided by the adjacency structure of the original graph.

Lemma 5.3.2 Let G = (X,E) and C C X where G(C) is a connected
subgraph. Then

> [Adj(z)] > |Adj(C)| + 2(IC] - 1).

zeC

Proof: Since G(C) is connected, there are at least |C| — 1 edges in the
subgraph. These edges are counted twice in ), . |Adj(z)| and hence the
result. O
Let 2;,2,,...,2, be the node sequence and 5; = {z1,...,2;}, 1 < i < n.
For 1 <i < n,let

Gi = G/C(5:) = (C(5:), €:)-

Lemma 5.3.3 Lety € X — 5;. Then
|Adj(y)| > |Adig (v)|.

Proof: This follows from the inequality

|4dig (v)| > |Adig,,,(v)

for y € X — 5;;1. The problem of verifying this inequality is left as an
exercise. a

Theorem 5.3.4

max |&;| < |E].
1<i<n
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Proof: Consider the quotient graphs G; and G, ;. If z;,, is isolated in the
subgraph G(S;,1), clearly |€;.1| = |E;|- Otherwise the node ;. is merged
with some components in §; to form a new component in §5;,;. The results
of Lemmas 5.3.2 and 5.3.3 apply, so that

|Eita| < |Ei].

Hence, in all cases,
|Eit1] < |Ei

and the result follows. a
Theorem 5.3.4 shows that the sequence of quotient graphs produced by elim-
ination requires no more space than the original graph structure. On coa-
lescing a connected set C' into a supernode, we know from Lemma 5.3.2 that
there are enough storage locations for Adj(C') from those of Adj(z), z € C.
Moreover, for |C| > 1, there is a surplus of 2(|C| — 1) locations, which can
be used for links or pointers.

Figure 5.3.5 is an illustration of the data structure used to represent Adjg (),
in the quotient graph G, where C = {a, b, c}. Here, zero signifies the end of
the neighbor list in G.

r-——"

A 4
T
RN

r-——"

Original Sturcture Quotient Structure

Figure 5.3.5: Data structure for quotient graphs.

Note that in the example, the node “a” is chosen to be the representative
for C = {a,b,c}. In the computer implementation, it is important to choose
a unique representative for each C € C(.9), so that any reference to C' can
be made through its representative.
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Let &, 2s,..., 2, be the node sequence, and C' € C(§). We choose the node
z, € C to be the representative of C', where

r =max{j | z; € C}. (5.3.4)

That is, z, is the node in C last eliminated.

So far, we have described the data structure of the quotient graphs and how
to represent supernodes. Another important aspect in the implementation of
the quotient graph model for elimination is the transformation of quotient
graphs due to node elimination. Let us now consider how the adjacency
structure of G, can be obtained from that of G, ; when the node =z, is
eliminated. The following algorithm performs the transformation.

Step 1 (Preparation) Determine the sets

R = Reachg (z;,C(5i-1))-

Step 2 (Form new supernode and partitioning) Form
C(S:)) = (C(Si-1)—-T)u{z}.
Step 3 (Update adjacency)
Adjg (z,) = R
Fory € R, Adjg (y) {z.}UAdjg  (y) — (T U{z:}).

Let us apply this algorithm to transform G, to G5 in the example of Fig-
ure 5.3.3. In G,
0(54) = {iz]_, 553, 554}.

On applying Step 1 to the node 25, we obtain
T = {517 1_34}

and

R = {zg, 27, 25}

Therefore, the new “supernode” is given by

Zs = {25} U Ty UZy = {21, T2, T4, 25}
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Figure 5.3.6: Adjacency representation.

and the new partitioning is
0(55) = {53,55}.

Finally, in Step 3 the adjacency sets are updated and we get
Ad]gs(iﬁe) = {555,%8}

Adig (27) = {5}
Ad]gs(ﬁg) = {£37 1_357 Ly 239},

and
Ad]g5(£5) =R= {iBG, L7, iBg}.

The effect of the quotient graph transformation on the data structure can be
illustrated by an example. Consider the example of Figure 5.3.3, where we
assume that the adjacency structure is represented as shown in Figure 5.3.6.
Figure 5.3.7 shows some important steps in producing quotient graphs for
this example. The adjacency structure remains unchanged when the quotient
graphs G;, G, and G3 are formed. To transform G; to G,4, the nodes z, and
x4 are to be coalesced, so that in G,, the new adjacent set of node z, contains
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O3

Gy (9)

&

Ge (9)

(mm] ignored [ ] end of list modified

Figure 5.3.7: An in-place quotient graph transformation.
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that of the subset {z,, #,} in the original graph, namely {5, z;}. Here, the
last location for the adjacent set of z, is used as a link. Note also that in
the adjacent list of node zj5, the neighbor z, has been changed to z, in G,
since node #, becomes the representative of the component subset {z,,z4}.
The representations for G5 and Gg in this storage mode are also included in
Figure 5.3.7.

This way of representing quotient graphs for elimination will be used in the
implementation of the minimum degree ordering algorithm, to be discussed
in the Section 5.5

Exercises

5.3.1) a) Design and implement a subroutine called REACH which can be
used to determine the reachable set of a given node ROOT through
a subset §. The subset is given by an array SFLAG, where a node
i belongs to S if SFLAG(%) is nonzero. Describe the parameters
of the subroutine and any auxiliary storage you require.

b) Suppose a graph is stored in the array pair (XADJ, ADJNCY).
For any given elimination sequence, use the subroutine REACH to
print out the adjacency structures of the sequence of elimination
graphs.

5.3.2) Let C(S;) be as defined in (5.3.2) and show that |C(S;,1)| < [C(S:)].
5.3.3) Prove the inequality that appears in the proof of Lemma 5.3.3.
5.3.4) Let X = {C | C € C(S;) for some i}. Show that |X| = n.
5.3.5) Let C € C(S;), and Z, = C where
r =max{j | z; € C}.
Show that

a) Adjg(C) = Reachg(z,, ;).
b) Reachg(z,,5;) = Reachg(z,, S,_1).

5.3.6) Display the sequence {G;} of quotient graphs for the star graph of 7
nodes, where the centre node is numbered first.
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5.4 The Minimum Degree Ordering Algorithm

Let A be a given symmetric matrix and let P be a permutation matrix.
Although the nonzero structures of A and PAPT are different, their sizes
are the same: |[Nonz(A)| = ‘Nonz(PAPT)‘. However, the crucial point
is that there may be a dramatic difference between |Nonz(F(A))| and
‘Nonz(F(PAPT))‘ for some permutation P. The example in Figure 4.3.3
illustrates this fact.

Ideally, we want to find a permutation P* that minimizes the size of the
nonzero structure of the filled matrix:

‘Nonz(F(P*AP*T))‘ = min ‘Nonz(F(PAPT))‘ .

So far, there is no efficient algorithm for getting such an optimal P* for
a general symmetric matrix. Indeed, the problem been shown to be very
difficult — a so-called NP-complete problem (Yannakakis [56]). Thus, we have
to rely on heuristics which will produce an ordering P with an acceptably
small but not necessarily minimum ‘N onz(F(PAPT))‘.

By far the most popular fill-reducing scheme used is the minimum de-
gree algorithm (Tinney [53]), which corresponds to the Markowitz scheme
(Markowitz [39]) for unsymmetric matrices. The scheme is based on the
following observation, which is depicted in Figure 5.4.1.

Suppose {z,...,2;_1} have been labelled. The number of nonzeros in the
filled graph for these columns is fixed. In order to reduce the number of
nonzeros in the i-th column, it is apparent that in the submatrix remaining
to be factored, the column with the fewest nonzeros should be moved to
become column i. In other words, the scheme may be regarded as a method
that reduces the fill of a matrix by a local minimization of n(L.;) in the
factored matrix.

5.4.1 The Basic Algorithm

The minimum degree algorithm can be most easily described in terms of
ordering a symmetric graph. Let Go = (X, E) be an unlabelled graph. Using
the elimination graph model, the basic algorithm is as follows.

Step 1 (Initialization) i — 1.

Step 2 (Minimum degree selection)In the graph G, ; = (X;_1, E;_1), choose
a node z; of minimum degree.
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Figure 5.4.1: Motivation of the minimum degree algortihm.

Step 3 (Graph transformation) Form the new elimination graph G, = (X, E;)
by eliminating the node z; from G,_;.

Step 4 (Loop or stop) i — i+ 1. If i > | X|, stop. Otherwise, go to Step 2.

As an illustration of the algorithm, we consider the graph in Figure 5.4.2.
The way the minimum degree algorithm is carried out for this example is
shown step by step in Figure 5.4.3. Notice that there can be more than one
node with the minimum degree at a particular step. Here we break the ties
arbitrarily. However, different tie-breaking strategies give different versions
of the minimum degree algorithm.

5.4.2 Description of the Minimum Degree Algorithm Using
Reachable Sets

The use of elimination graphs in the minimum degree algorithm provides the
mechanism by which we select the next node to be numbered. Each step of
the algorithm involves a graph transformation, which is the most expensive
part of the algorithm in terms of implementation. These transformations can
be eliminated if we can provide an alternative way to compute the degrees
of the nodes in the elimination graph.

Theorem 5.2.3 provides a mechanism for achieving this through the use of
reachable sets. With this connection, we can restate the minimum degree
algorithm as follows.
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Figure 5.4.2: A minimum degree ordering for a graph.

Step 1 (Initialization) S — ¢. Deg(z) — |Adj(z)|, for z € X.

Step 2 (Minimum degree selection) Pick anode y € X — § where Deg(y) =
min,ex_s Deg(z). Number the node y next and set T — S U {y}.

Step 3 (Degree update) Deg(u) «— |Reach(u,T)| for u e X — T.

Step 4 (Loop or stop) If T = X, stop. Otherwise, set § «— T and go to
Step 2.

This approach uses the original graph structure throughout the entire pro-
cess. Indeed, the algorithm can be carried out with only the adjacency
structure

Go = (X, E).

It is appropriate here to point out that in the degree update step of the
algorithm, it is not necessary to recompute the sizes of the reachable sets for
every node in X —T, since most of them remain unchanged. This observation
is formalized in the following lemma. Its proof follows from the definition of
reachable sets and is left as an exercise.

Lemma 5.4.1 Lety ¢ S and T = S U {y}. Then

Reach(z, S) for © ¢ Reach(y, S)

Reach(z,T) = { Reach(z, §)U Reach(y, 5) — {z,y} otherwise
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Figure 5.4.3: Numbering in the minimum degree algorithm.
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In the example of Figure 5.4.3, consider the stage when node d is being
eliminated.

Figure 5.4.4: Elimination of node d from G, at stage 3.

We have § = {a, c}, so that Reach(d, S) = {b, g}. Therefore, the elimination
of d only affects the degrees of the nodes b and g. By this observation, Step 3
in the algorithm can be restated as

Step 3 (Degree update)

Deg(u) < |Reach(u,T)|, for u € Reach(y, S).

Corollary 5.4.2 Lety, 5, T be as in Lemma 5.4.1. Forz €¢ X — T,
|Reach(z,T)| > |Reach(z, S)| — 1.

Proof: The result follows directly from Lemma 5.4.1. a

5.4.3 An Enhancement

As the algorithm stands, one node is numbered each time the loop is ex-
ecuted. However, when a node y of minimum degree is found at Step 2,
it is often possible to detect that a subset of nodes may automatically be
numbered next, without carrying out any minimum degree search.

Let us begin the study by introducing an equivalence relation. Consider a
stage in the elimination process, where § is the set of eliminated nodes. Two
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nodes z,y € X — 5 are said to be indistinguishable with respect to elimination
if

Reach(z,S)U {z} = Reach(y, S)U {y}. (5.4.1)
(Henceforth, it should be understood that nodes referred to as “indistin-
guishable” are indistinguishable with respect to elimination.)
Consider the graph example in Figure 5.4.5. The subset 5 contains 36
shaded nodes. (This is an actual stage that occurs when the minimum
degree algorithm is applied to this graph.) We note that the nodes a, b and
¢ are indistinguishable with respect to elimination, since Reach(a, S)U {a},

Reach(b, S)U {b} and Reach(c, S)U {c} are all equal to

{a7b7c7d7e7 f7g7h7j7k}'

There are two more groups that can be identified as indistinguishable. They
are

{j7 k}’

and

{f,9}

We now study the implication of this equivalence relation and its role in the
minimum degree algorithm. As we shall see later, this notion can be used
to speed up the execution of the minimum degree algorithm.

Theorem 5.4.3 Letz,yc X — 5. If

Reach(z,S)U {z} = Reach(y, S)U {y},
then for all X — {z,y} DT D S,

Reach(z,T)U {2z} = Reach(y,T)U {y}.

Proof: Obviously, z € Reach(y, S) C Reach(y,T)UT, (see Exercise 5.2.7 on
page 117 ) so that # € Reach(y,T). We now want to show that Reach(z,T) C
Reach(y,T)U {y}. Consider z € Reach(z,T). There exists a path

(masla"'astaz)

where {s;,...,s;} C T. If all 5; € S, there is nothing to prove. Otherwise,
let s; be the first node in {s;,...,s;} not in S, that is

s; € Reach(z,5)NT.
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Figure 5.4.5: An example displaying indistinguishable nodes.
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This implies s; € Reach(y, 5) and hence z € Reach(y,T). Together, we have
Reach(z,T)U {2z} C Reach(y,T)U {y}.

The inclusion in the other direction follows from symmetry, yielding the
result. a

Corollary 5.4.4 Let z,y be indistinguishable with respect to the subset §.
Then for T O S,
|Reach(z,T)| = |Reach(y,T)|.

In other words, if two nodes become indistinguishable at some stage of the
elimination, they remain indistinguishable until one of them is eliminated.
Moreover, the following theorem shows that they can be eliminated together
in the minimum degree algorithm.

Theorem 5.4.5 If two nodes become indistinguishable at some stage in the
mintmum degree algorithm. then they can be eliminated together in the al-
gorithm.

Proof: Let z,y be indistinguishable after the elimination of the subset 5.
Assume that z becomes a node of minimum degree after the set T' D S has
been eliminated, that is,

|Reach(z,T)| < |Reach(z,T)| for all z € X —T.

Then, by Corollary 5.4.4,

|Reach(y,T U {})| |Reach(y, T) — {z}|
|Reach(y,T)| -1

= |Reach(z,T)| — 1.

Therefore, for all z € X — T U {2}, by Corollary 5.4.2,

|Reach(y, T U {z})| < |Reach(z,T)| -1
< |Reach(z,T U {z})|.

In other words, after the elimination of the node z, the node y becomes a
node of minimum degree. a
These observations can be exploited in the implementation of the minimum
degree algorithm. After carrying out a minimum degree search to determine



140 CHAPTER 5. GENERAL SPARSE METHODS

the next node y € X — § to eliminate, we can number immediately after y
the set of nodes indistinguishable from y.

In addition, in the degree update step, by virtue of Corollary 5.4.4, work
can be reduced since indistinguishable nodes have the same degree in the
elimination graphs. Once nodes are identified as being indistinguishable,
they can be “glued” together and treated as a single supernode thereafter.

For example, Figure 5.4.6 shows two stages in the eliminations where su-
pernodes are formed from indistinguishable nodes. For simplicity, the elim-
inated nodes are not shown. After the elimination of the indistinguishable
set {a, b, c}, all the nodes have identical reachable sets so that they can be
merged into one.

Figure 5.4.6: Indistinguishable nodes in two stages of elimination for the
example in Figure 5.4.5.

In general, to identify indistinguishable nodes via the definition (5.4.1) is
time consuming. Since the enhancement does not require the merging of all
posstble indistinguishable nodes, we look for some simple, easily-implemented
condition. In what follows, a condition is presented which experience has
shown to be very effective. In most cases, it identifies all indistinguishable
nodes.

Let G = (X, F) and S be the set of eliminated nodes. Let G(C;) and G(C5)
be two connected components in the subgraph G(.9); that is,

C1,C> € C(9).
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Lemma 5.4.6 Let R, = Adj(C1), and Ry, = Adj(C,). Ify € R N Ry, and
then Reach(y, S)U {y} = R, UR,.

Proof: Let ¢ € R, U R,. Assume ¢ € R; = Adj(C;). Since G(C1) is
a connected component in G(5), we can find a path from y to = through

C; C S. Therefore, z € Reach(y, S)U {y}.
On the other hand, y € R; U R, by definition. Moreover, if € Reach(y, 5),
there exists a path from y to z through $:

(ya 815829 %% St m)

Ift = 0, then z € Adj(y) — S C Ry U R,. Otherwise, if t > 0, 5; €
Adj(y)NS C C;UC,. This means {s,...,s:} is a subset of either C; or C,
so that # € R; U R,. Hence Reach(y,S)U {y} C R, U R,. a

\

Figure 5.4.7: Finding indistinguishable nodes.

Theorem 5.4.7 Let C,Cy5 and R, R, be as in Lemma 5.4.6. Then the
nodes in

are indistinguishable with respect to the eliminated subset §.

Proof: It follows from Lemma 5.4.6. a
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Corollary 5.4.8 ForycY,
|Reach(y, S)| = |R1 U Ry| — 1.

Theorem 5.4.7 can be used to merge indistinguishable nodes in the intersec-
tion of the two reachable sets R, and R,. The test can be simply done by
inspecting the adjacent set of nodes in the intersection R; N R,.

This notion of indistinguishable nodes can be applied to the minimum degree
algorithm. The new enhanced algorithm can be stated as follows.

Step 1 (Initialization) S «— ¢,

Deg(z) = |Adj(z)|, for z € X.

Step 2 (Selection) Pick a node y € X — § such that

Deg(y) = min Deg(z).

Step 3 (Elimination) Number the nodes in
Y ={z € X — § | « is indistinguishable from y}
next in the ordering.
Step 4 (Degree update ) For u € Reach(y,S)-Y
Deg(u) = |Reach(u, 5UY)|
and identify indistinguishable nodes in the set Reach(y,S)—Y.

Step 5 (Loop or stop) Set § — SUY. If § = X, stop. Otherwise, go to
Step 2.

5.4.4 Implementation of the Minimum Degree Algorithm

The implementation of the minimum degree algorithm presented here incor-
porates the notion of indistinguishable nodes as described in the previous
sections. Nodes identified as indistinguishable are merged together to form
a supernode. They will be treated essentially as one node in the remainder
of the algorithm. They share the same adjacent set, have the same degree,
and can be eliminated together in the algorithm. In the implementation,
this supernode will be referenced by a representative of the set.
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The algorithm requires the determination of reachable sets for degree update.
The quotient graph model (Section 5.3.2) is used for this purpose to improve
the overall efficiency of the algorithm. In effect, eliminated connected nodes
are merged together and the computer representation of the sequence of
quotient graphs (Section 5.3.3) is utilized.

It should be emphasized that the idea of quotient (or merging nodes into
supernodes) is applied here in two different contexts.

a) eliminated connected nodes to facilitate the determination of reachable
sets.

b) uneliminated indistinguishable nodes to speed up elimination.

This is illustrated in Figure 5.4.8. It shows how the graph of Figure 5.4.5
is stored conceptually in this implementation by the two forms of quotient.
The shaded double-circled nodes denote supernodes that have been elimi-
nated, while blank double-circled supernodes represent those formed from
indistinguishable nodes.

In this subsection, we describe a set of subroutines, which implement the
minimum degree algorithm as presented earlier. Some of the parameters
used are the same as those discussed in Chapter 3. We shall briefly review
them here and readers are referred to Section 3.4 for details.

The graph G = (X, F) is stored using the integer array pair (XADJ, ADJNCY),
and the number of variables in X is given by NEQNS. The resulting minimum
degree ordering is stored in the vector PERM, while INVP returns the inverse
of this ordering.

This collection of subroutines requires some working vectors to implement
the quotient graph model and the notion of indistinguishable nodes. The
current degrees of the nodes in the (implicit) elimination graph are kept in
the array DEG. The DEG value for nodes that have been eliminated is set to
—1.

In the representation of the sequence of quotient graphs, connected elimi-
nated nodes are merged to form a supernode. As mentioned in Section 5.4.2,
for the purpose of reference, it is sufficient to pick a representative from the
supernode. If G(C) is such a connected component, we always choose the
node z € C last eliminated to represent C'. This implies that the remaining
nodes in C' can be ignored in subsequent quotient graphs.

The same remark applies to indistinguishable groups of uneliminated nodes.
For each group, only the representative will be considered in the present
quotient structure.
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Figure 5.4.8: A quotient graph formed from two types of supernodes.
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The working vector MARKER is used to mark those nodes that can be ignored
in the adjacency structure. The MARKER values for such nodes are set to —1.
This vector is also used temporarily to facilitate the generation of reachable
sets.

Two more arrays QSIZE and QLINK are used to completely specify indistin-
guishable supernodes. If node ¢ is the representative, the number of nodes
in this supernode is given by QSIZE( ¢ ) and the nodes are given by

i, QLINK(3), QLINK(QLINK(%)),:--.

Figure 5.4.9 illustrates the use of the vectors QSIZE, QLINK and MARKER. The
nodes {2,5,8} form an indistinguishable supernode represented by node 2.
Thus, the MARKER values of 5 and 8 are —1. On the other hand, {3, 6,9} forms
an eliminated supernode. Its representative is node 9 so that MARKER(3) and
MARKER(6) are —1.

QLINK QSIZE MARKER

[ LI T 1]
[ S

Llel T 1=l [ fed
(5 S A P A

€0 00 ~1 O T Lo b =
[=
? S—

Figure 5.4.9: Hlustration of the role of QLINK, QSIZE and MARKER working
vectors.

There are five subroutines in this set, namely GENQMD, QUDRCH, QMDQT, QMDUPD,
and QMDMRG. Their control relationship is as shown in Figure 5.4.10. They
are described in detail in this Figure.

GENQMD (GENeral Quotient Minimum Degree algorithm)

The purpose of this subroutine is to find the minimum degree ordering for
a general disconnected graph. It operates on the input graph as given by
NEQNS and (XADJ, ADJNCY), and returns the ordering in the vectors PERM
and INVP. On return, the adjacency structure will be destroyed because it is
used by the subroutine to store the sequence of quotient graph structures.
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GENQMD

QMDRCH QMDUPD QMDQT

QMDMRG QMDRCH

Figure 5.4.10: Control relation of subroutines for the minimum degree algo-
rithm.

The subroutine begins by initializing the working arrays QSIZE, QLINK, MARKER
and the DEG vector. It then prepares itself for the main loop of the algorithm.
In the main loop the subroutine first determines a node of minimum degree
by the technique of threshold searching. It keeps two variables THRESH and
MINDEG. Any node with its current degree equal to the value of THRESH is one
with minimum degree in the elimination graph. The variable MINDEG keeps
the lowest degree greater than the threshold value THRESH, and it is used to
update the value of THRESH.

Having found a node NODE of minimum degree, GENQMD then determines the
reachable set of NODE through eliminated supernodes by calling the sub-
routine QMDRCH. The set is contained in the vector RCHSET and its size in
RCHSZE. The nodes indistinguishable from NODE are then retrieved via the
vector QLINK, and numbered (eliminated).

Next, the nodes in the reachable set have their degree updated and at the
same time more indistinguishable nodes are identified. In the program, this
is done by calling the subroutine QMDUPD. Afterwards, the threshold value is
also updated.

Before the program loops back for the next node of minimum degree, the
quotient graph transformation is performed by the subroutine QMDQT. The
program exits when all the nodes in the graph have been numbered.
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Chkskdeskkrks  GENQMD .. ... QUOT MIN DEGREE ORDERING  sokssckskokss
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PURPOSE - THIS ROUTINE IMPLEMENTS THE MINIMUM DEGREE
ALGORITHM. IT MAKES USE OF THE IMPLICIT REPRESENT-
ATION OF THE ELIMINATION GRAPHS BY QUOTIENT GRAPHS,
AND THE NOTION OF INDISTINGUISHABLE NODES.

CAUTION - THE ADJACENCY VECTOR ADJNCY WILL BE
DESTROYED.

INPUT PARAMETERS -
NEQNS - NUMBER OF EQUATIONS.
(XADJ, ADJNCY) - THE ADJACENCY STRUCTURE.

OUTPUT PARAMETERS -
PERM - THE MINIMUM DEGREE ORDERING.
INVP - THE INVERSE OF PERM.

WORKING PARAMETERS -

DEG - THE DEGREE VECTOR. DEG(I) IS NEGATIVE MEANS
NODE I HAS BEEN NUMBERED.

MARKER - A MARKER VECTOR, WHERE MARKER(I) IS
NEGATIVE MEANS NODE I HAS BEEN MERGED WITH
ANOTHER NODE AND THUS CAN BE IGNORED.

RCHSET - VECTOR USED FOR THE REACHABLE SET.

NBRHD - VECTOR USED FOR THE NEIGHBORHOOD SET.

QSIZE - VECTOR USED TO STORE THE SIZE OF
INDISTINGUISHABLE SUPERNODES.

QLINK - VECTOR TO STORE INDISTINGUISHABLE NODES,
I, QLINK(I), QLINK(QLINK(I)) ... ARE THE
MEMBERS OF THE SUPERNODE REPRESENTED BY I.

PROGRAM SUBROUTINES -
QMDRCH, QMDQT, QMDUPD.

[ T+ T+ o~ B T~ T - T 0~ T - Y - T - TR -~ Y o JOY - TN -~ Y o TR - TR - K o~ Yo T - K - Yo TR - K -~ RO o T -~ K -~ B o B o B - B - B o |

3k 3k 3k ok ok ok ok sk 3k ok o sk sk e e ke ke e ke e sk 3k sk o sk e e e e ke ke ok e sk 3k 3k oe o ke ke e e ke ke ok ok sk 3k 3k oe o ke e e e ke ke ok ok sk 3k 3k o ok
C

C
SUBROUTINE GENQMD ( NEQNS, XADJ, ADJNCY, PERM, INVP, DEG,
1 MARKER, RCHSET, NBRHD, QSIZE, QLINK,
1 NOFSUB )

C

(ke ke e ks ook e ok okl ks ok sk e ok e ol ook ok s ok okl ks ook sk ook e e o ko sk ok sk o sk ook e ok o
C
INTEGER ADJNCY(1), PERM(1), INVP(1), DEG(1), MARKER(1),
1 RCHSET (1), NBRHD(1), QSIZE(1), QLINK(1)
INTEGER XADJ(1), INODE, IP, IRCH, J, MINDEG, NDEG,
1 NEQNS, NHDSZE, NODE, NOFSUB, NP, NUM, NUMP1,
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52. 1 NXNODE, RCHSZE, SEARCH, THRESH
53. ¢

54, (G 3k ke ke ake 3k e afe 3k fe afe e afe ake ke ake e afe ok ahe ake fe ok ok afe ake ke ake ok afe 3k ok 3k 3k ake 3k o 3k 3k 2k 3k e 3k 3 e 3k e 3k 3 ¢ e ¢ 3k e a4 e 4¢ 2k e afe oe e ake e ok
56. ¢

B6. € e
57. € INITIALIZE DEGREE VECTOR AND OTHER WORKING VARIABLES.
B8. € e
59. MINDEG = NEQNS

60. NOFSUB = 0

61. DO 100 NODE = 1, NEQNS

62. PERM(NODE) = NODE

63. INVP (NODE) = NODE

64. MARKER (NODE) = 0

65. QSIZE(NODE) =1

66. QLINK(NODE) = 0

67. NDEG = XADJ(NODE+1) - XADJ(NODE)

68. DEG(NODE) = NDEG

69. IF ( NDEG .LT. MINDEG ) MINDEG = NDEG

70. 100 CONTINUE

71. NUM = 0

T2, € e
73. ¢ PERFORM THRESHOLD SEARCH TO GET A NODE OF MIN DEGREE.
74. € VARIABLE SEARCH POINTS TO WHERE SEARCH SHOULD START.
T6. € e
76. 200 SEARCH = 1

77. THRESH = MINDEG

78. MINDEG = NEQNS

79. 300 NUMP1 = NUM + 1

80. IF ( NUMP1 .GT. SEARCH ) SEARCH = NUMP1

81. DO 400 J = SEARCH, NEQNS

82. NODE = PERM(J)

83. IF ( MARKER(NODE) .LT. 0 ) GOTO 400

84. NDEG = DEG (NODE)

85. IF ( NDEG .LE. THRESH ) GO TO 500

86. IF ( NDEG .LT. MINDEG ) MINDEG = NDEG
87. 400 CONTINUE

88. GO TO 200

89. € e
90. ¢ NODE HAS MINIMUM DEGREE. FIND ITS REACHABLE SETS BY
91. ¢ CALLING QMDRCH.

92. € e
93. 500 SEARCH = J

94. NOFSUB = NOFSUB + DEG (NODE)

95. MARKER(NODE) = 1

96. CALL QMDRCH (NODE, XADJ, ADJNCY, DEG, MARKER,

97. 1 RCHSZE, RCHSET, NHDSZE, NBRHD )

98. € e
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99. ¢ ELIMINATE ALL NODES INDISTINGUISHABLE FROM NODE.
100. ¢ THEY ARE GIVEN BY NODE, QLINK(NODE), .

101, € = e
102. NXNODE = NODE

103. 600 NUM = NUM + 1

104. NP = INVP(NXNODE)

105. IP = PERM(NUM)

106. PERM(NP) = IP

107. INVP(IP) = NP

108. PERM(NUM) = NXNODE

109. INVP (NXNODE) = NUM

110. DEG (NXNODE) = - 1

111. NXNODE = QLINK(NXNODE)

112. IF (NXNODE .GT. 0) GOTO 600

113. ¢

114. IF ( RCHSZE .LE. 0 ) GO TO 800

115, € e
116. ¢ UPDATE THE DEGREES OF THE NODES IN THE REACHABLE
117. ¢ SET AND IDENTIFY INDISTINGUISHABLE NODES.

118. € e
119. CALL QMDUPD ( XADJ, ADJNCY, RCHSZE, RCHSET, DEG,
120. 1 QSIZE, QLINK, MARKER, RCHSET(RCHSZE+1),
121. 1 NBRHD (NHDSZE+1) )

122, € e

123. ¢ RESET MARKER VALUE OF NODES IN REACH SET.

124, ¢ UPDATE THRESHOLD VALUE FOR CYCLIC SEARCH.

125, ¢ ALSO CALL QMDQT TO FORM NEW QUOTIENT GRAPH.

126. € e

127. MARKER (NODE) = 0

128. DO 700 IRCH = 1, RCHSZE

129, INODE = RCHSET (IRCH)

130. IF ( MARKER(INODE) .LT. 0 ) GOTO 700

131. MARKER (INODE) = 0

132. NDEG = DEG (INODE)

133. IF ( NDEG .LT. MINDEG ) MINDEG = NDEG
134, IF ( NDEG .GT. THRESH ) GOTO 700

135. MINDEG = THRESH

136. THRESH = NDEG

137. SEARCH = INVP(INODE)

138. 700 CONTINUE

139. IF ( NHDSZE .GT. 0 ) CALL QMDQT ( NODE, XADJ,
140. 1 ADJNCY, MARKER, RCHSZE, RCHSET, NBRHD )

141. 800 IF ( NUM .LT. NEQNS ) GO TO 300

142, RETURN

143. END
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QMDRCH (Quotient MD ReaCHable set)

This subroutine determines the reachable set of a given node ROOT through
the set of eliminated nodes. The adjacency structure is assumed to be stored
in the quotient graph format as described in Section 5.3.3. On exit, the
reachable set determined is placed in the vector RCHSET and its size is given
by RCHSZE. As a byproduct, the set of eliminated supernodes adjacent to
ROOT is returned in the set NBRHD with its size NHDSZE. Nodes in these two
sets will have their MARKER values set to nonzero.

This is an exact implementation of the algorithm in Section 5.3.2. After
initialization, the loop DO 600 ... considers each neighbor of the node
ROOT. If the neighbor is a representative of an eliminated supernode, its own
adjacent set in the quotient graph is included into the reachable set in the

DO 500 ... loop. Otherwise, the neighbor itself is included.
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3. Coedkadokakokokokk QMDRCH ..... QUOT MIN DEG REACH SET e e e e e A ok ok Kok
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6. C
7. C PURPOSE - THIS SUBROUTINE DETERMINES THE REACHABLE SET OF
8. C A NODE THROUGH A GIVEN SUBSET. THE ADJACENCY STRUCTURE
9. C IS ASSUMED TO BE STORED IN A QUOTIENT GRAPH FORMAT.
10. C
11. € INPUT PARAMETERS -
12. € ROOT - THE GIVEN NODE NOT IN THE SUBSET.
13. € (XADJ, ADJNCY) - THE ADJACENCY STRUCTURE PAIR.
14. € DEG - THE DEGREE VECTOR. DEG(I) LT 0 MEANS THE NODE
15. C BELONGS TO THE GIVEN SUBSET.
16. C
17. C OUTPUT PARAMETERS -
18. C (RCHSZE, RCHSET) - THE REACHABLE SET.
19. C (NHDSZE, NBRHD) - THE NEIGHBORHOOD SET.
20. C
21. C UPDATED PARAMETERS -
22. C MARKER - THE MARKER VECTOR FOR REACH AND NBRHD SETS.
23. C GT 0 MEANS THE NODE IS IN REACH SET.
24, C LT 0 MEANS THE NODE HAS BEEN MERGED WITH
25. C OTHERS IN THE QUOTIENT OR IT IS IN NBRHD SET.
26. C
27. G 2k ke ok 3k ke fe ok ok 3k he e e ok e 3k ok 2k e e e e ok 2k 3k 2he e e e e 3k 2 ke e e e ok ok 3k 3k 2 e ke e 3k ok 2k ke e e e ok e 3k ek ke e e ok ok 3k ke ke
28. C
29 SUBROUTINE QMDRCH ( ROOT, XADJ, ADJNCY, DEG, MARKER,
30. 1 RCHSZE, RCHSET, NHDSZE, NBRHD )
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¢
(G 3k ke ke ake 3k fe afe o af¢ ake e afe ok afe ake ke ake sk afe ok afe ake 3k ok 3k afe 3k 3k ake 3k e 3k 3k 3k 3k e 3k e 3k 3 e 3 e afe o afe e h¢ afe e afe o ah¢ ake e ok 3k afe ake ke ok e ke
¢
INTEGER ADJNCY(1), DEG(1), MARKER(1),
1 RCHSET(1), NBRHD(1)
INTEGER XADJ(1), I, ISTRT, ISTOP, J, JSTRT, JSTOP,
1 NABOR, NHDSZE, NODE, RCHSZE, ROOT
¢
(G 3k ke ke ake 3k fe afe o af¢ ake e afe ok afe ake ke ake sk afe ok afe ake 3k ok 3k afe 3k 3k ake 3k e 3k 3k 3k 3k e 3k e 3k 3 e 3 e afe o afe e h¢ afe e afe o ah¢ ake e ok 3k afe ake ke ok e ke
¢
c _________________________________________
¢ LOOP THROUGH THE NEIGHBORS OF ROOT IN THE
¢ QUOTIENT GRAPH.
c _________________________________________
NHDSZE = 0
RCHSZE = 0
ISTRT = XADJ(ROOT)
ISTOP = XADJ(ROOT+1) - 1
IF ( ISTOP .LT. ISTRT ) RETURN
DO 600 I = ISTRT, ISTOP
NABOR = ADJNCY(I)
IF ( NABOR .EQ. 0 ) RETURN
IF ( MARKER(NABOR) .NE. 0 ) GO TO 600
IF ( DEG(NABOR) .LT. 0 ) GO TO 200
c _____________________________________
¢ INCLUDE NABOR INTO THE REACHABLE SET.
c _____________________________________
RCHSZE = RCHSZE + 1
RCHSET (RCHSZE) = NABOR
MARKER (NABOR) = 1
GO TO 600
c _____________________________________
¢ NABOR HAS BEEN ELIMINATED. FIND NODES
¢ REACHABLE FROM IT.
c _____________________________________
200 MARKER (NABOR) = -1

NHDSZE = NHDSZE + 1
NBRHD (NHDSZE) = NABOR
300 JSTRT = XADJ(NABOR)
JSTOP = XADJ(NABOR+1) - 1
DO 500 J = JSTRT, JSTOP
NODE = ADJNCY(J)
NABOR = - NODE
IF (NODE) 300, 600, 400

400 IF ( MARKER(NODE) .NE. 0 ) GO TO 500

RCHSZE = RCHSZE + 1
RCHSET(RCHSZE) = NODE

151



152 CHAPTER 5. GENERAL SPARSE METHODS

78. MARKER (NODE) = 1
79. 500 CONTINUE

80. 600 CONTINUE

81. RETURN

82. END

QMDQT (Quotient MD Quotient graph Transformation)

This subroutine performs the quotient graph transformation on the adja-
cency structure (XADJ, ADJINCY). The new eliminated supernode contains
the node ROOT and the nodes in the array NBRHD, and it will be represented
by ROOT in the new structure. Its adjacent set in the new quotient graph is
given in (RCHSZE, RCHSET).

After initialization, the new adjacent set in (RCHSZE, RCHSET) will be placed
in the adjacency list of ROOT in the structure (DO 200 ...). If there is not
enough space, the program will use the space provided by the nodes in the
set NBRHD. We know from Section 5.3.3 that there are always enough storage
locations.

Before exit, the representative node ROOT is added to the neighbor list of

each node in RCHSET. This is done in the DO 600 ... loop.

1. C 2k ke o 3k ke e ok ok 3k 2fe ke e ok e 3k ok 2k e e e e ok 3k 3k 2k e e e ok 2k 3k he e e e e 3k ok 2k e e e ok o 3k 3k 2k e ke e e ok 2k 3k ke e e ok ok Kk
2. C 2k ke o 3k ke e ok ok 3k 2fe ke e ok e 3k ok 2k e e e e ok 3k 3k 2k e e e ok 2k 3k he e e e e 3k ok 2k e e e ok o 3k 3k 2k e ke e e ok 2k 3k ke e e ok ok Kk
3. Coedkadokakokok QuDQT ..... QUOT MIN DEG QUOT TRANSFORM skakakskakk
4, C 2k ke o 3k ke e ok ok 3k 2fe ke e ok e 3k ok 2k e e e e ok 3k 3k 2k e e e ok 2k 3k he e e e e 3k ok 2k e e e ok o 3k 3k 2k e ke e e ok 2k 3k ke e e ok ok Kk
5. C 2k ke o 3k ke e ok ok 3k 2fe ke e ok e 3k ok 2k e e e e ok 3k 3k 2k e e e ok 2k 3k he e e e e 3k ok 2k e e e ok o 3k 3k 2k e ke e e ok 2k 3k ke e e ok ok Kk
6. C

7. C PURPOSE - THIS SUBROUTINE PERFORMS THE QUOTIENT GRAPH

8. C TRANSFORMATION AFTER A NODE HAS BEEN ELIMINATED.

9. C

10. C INPUT PARAMETERS -

11. € ROOT - THE NODE JUST ELIMINATED. IT BECOMES THE

12. € REPRESENTATIVE OF THE NEW SUPERNODE.

13. € (XADJ, ADJNCY) - THE ADJACENCY STRUCTURE.

14. € (RCHSZE, RCHSET) - THE REACHABLE SET OF ROOT IN THE
15. C OLD QUOTIENT GRAPH.

16. C NBRHD - THE NEIGHBORHOOD SET WHICH WILL BE MERGED

17. C WITH ROOT TO FORM THE NEW SUPERNODE.

18. C MARKER - THE MARKER VECTOR.

19. C
20. C UPDATED PARAMETER -
21 C ADJNCY - BECOMES THE ADJNCY OF THE QUOTIENT GRAPH.

C

N
N
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C

C

SUBROUTINE QMDQT ( ROOT, XADJ, ADJNCY, MARKER,

RCHSZE, RCHSET, NBRHD )

sk 3k 3k ok ok ok ke sk 3k ok ok sk 3k e e ke ke e ke fe 3k 3k ok sk sk e e e ke ke e e e sk 3k ok sk sk e e e ke ke e e e 3k ok ok ok sk e oe o ke ke e ok ek ke

C

C

INTEGER ADJNCY(1), MARKER(1), RCHSET(1), NBRHD(1)
INTEGER XADJ(1), INHD, IRCH, J, JSTRT, JSTOP, LINK,
NABOR, NODE, RCHSZE, ROOT

sk 3k 3k ok ok ok ke sk 3k ok ok sk 3k e e ke ke e ke fe 3k 3k ok sk sk e e e ke ke e e e sk 3k ok sk sk e e e ke ke e e e 3k ok ok ok sk e oe o ke ke e ok ek ke

C

[

QaQaaQ

100

200

300

400

IRCH = 0
INHD = 0
NODE = ROOT

JSTRT = XADJ(NODE)
JSTOP = XADJ(NODE+1) - 2
IF ( JSTOP .LT. JSTRT ) GO TO 300

DO 200 J = JSTRT, JSTOP
IRCH = IRCH + 1
ADJNCY(J) = RCHSET (IRCH)
IF ( IRCH .GE. RCHSZE ) GOTO 400
CONTINUE

ADJNCY (JSTOP+1)
NODE = - LINK
IF ( LINK .LT. 0 ) GOTO 100

INHD = INHD + 1

NODE = NBRHD (INHD)

ADJNCY(JSTOP+1) = - NODE

GO TO 100
ALL REACHABLE NODES HAVE BEEN SAVED. END THE ADJ LIST.
ADD ROOT TO THE NBR LIST OF EACH NODE IN THE REACH SET.
ADJINCY (J+1)
DO 600 IRCH = 1, RCHSZE

NODE = RCHSET (IRCH)

IF ( MARKER(NODE) .LT. 0 ) GOTO 600
JSTRT = XADJ(NODE)
JSTOP = XADJ(NODE+1) - 1

-
(=
=
=
1]

1]
o
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70. DO 500 J = JSTRT, JSTOP

71. NABOR = ADJNCY(J)

72. IF ( MARKER(NABOR) .GE. 0 ) GD TO 500
73. ADJNCY(J) = ROOT

74. GOTD 600

75. 500 CONTINUE

76. 600 CONTINUE

77. RETURN

78. END

QMDUPD (Quotient MD UPDate)

This subroutine performs the degree update step in the minimum degree
algorithm. The nodes whose new degrees are to be determined are given
by the pair (NLIST, LIST). The subroutine also merges indistinguishable
nodes in this subset by using Theorem 5.4.7.

The first loop DO 200 ... and the call to the subroutine QMDMRG determine
groups of indistinguishable nodes in the given set. They will be merged
together and have their degrees updated.

For those nodes not being merged, the loop DO 600 ... determines their
new degrees by calling the subroutine QUDRCH. The vectors RCHSET and NBRHD
are used as temporary arrays.

1. Cokesteateakokok seok e oo oesefe sefe se e sfe e e e e e ok ke ok ke ok ke ok b ek ek ke o e o se e se e se e e e e ke sk ok ok ok o e o o
2, Caleakokok ke oeseoke s sesle e ke ke ok ok ok sk ok ek ek ke ek e e e e e e se e se e se ke se ke ke ke ok ok ok ko ek ke e ke e ke o e e e
3. Cakxkokokokskaskakk QMDUPD ..... QUOT MIN DEG UPDATE ke o e e ok ok ok e ok o
4, Cokokokeokeseakakak ok ok ok ook ook ke o ke o ke o se e se e e se e se s sk sl ke ke ke ok ok ok ok ek ek ke o ke o ke o e e e e e e e e sk
5. Caleakokok ke o seoke s aleie ke ke ke ok ok ok sk ok ek ek ke ek e se e e e e se e se e se ke se ke ke ke ke ok ke b ok ek ke e ke e ke o e e e
6. C

7. € PURPOSE - THIS ROUTINE PERFORMS DEGREE UPDATE FOR A SET

8. C OF NODES IN THE MINIMUM DEGREE ALGORITHM.

9. C

10. C INPUT PARAMETERS -

11. C (XADJ, ADJNCY) - THE ADJACENCY STRUCTURE.

12. C (NLIST, LIST) - THE LIST OF NODES WHOSE DEGREE HAS TO
13. C BE UPDATED.

14. C

15. C UPDATED PARAMETERS -

16. C DEG - THE DEGREE VECTOR.

17. ¢ QSIZE - SIZE OF INDISTINGUISHABLE SUPERNODES.

18. C QLINK - LINKED LIST FOR INDISTINGUISHABLE NODES.

19. C MARKER - USED TO MARK THOSE NODES IN REACH/NBRHD SETS.
20. C
21 C WORKING PARAMETERS -
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RCHSET - THE REACHABLE SET.
NBRHD - THE NEIGHBORHOOD SET.

PROGRAM SUBROUTINES -
QMDMRG .

Qo aaaQ

C ok ke ke ok ok ok ek e s sk e ok ok e ke o o o ke ke o o o o 3k ke sk ok e ok ok e ke o o o ok ke o o o o o ke
C

SUBROUTINE QMDUPD ( XADJ, ADJNCY, NLIST, LIST, DEG,

1 QSIZE, QLINK, MARKER, RCHSET, NBRHD )
C
C ok ke ke ok ok ok ek e s sk e ok ok e ke o o o ke ke o o o o 3k ke sk ok e ok ok e ke o o o ok ke o o o o o ke
C

INTEGER ADJNCY(1), LIST(1), DEG(1), MARKER(1),

1 RCHSET (1), NBRHD(1), QSIZE(1), QLINK(1)
INTEGER XADJ(1), DEGO, DEG1, IL, INHD, INODE, IRCH,
1 J, JSTRT, JSTOP, MARK, NABOR, NHDSZE, NLIST,
1 NODE, RCHSZE, ROOT
¢
(G 3k ke ke ake 3k e afe 3k fe afe e afe ake ke ake e afe ok ahe ake fe ok ok afe ake ke ake ok afe 3k ok 3k 3k ake 3k o 3k 3k 2k 3k e 3k 3 e 3k e 3k 3 ¢ e ¢ 3k e a4 e 4¢ 2k e afe oe e ake e ok
¢
c ________________________________________________
¢ FIND ALL ELIMINATED SUPERNODES THAT ARE ADJACENT
¢ TO SOME NODES IN THE GIVEN LIST. PUT THEM INTO
¢ (NHDSZE, NBRHD) . DEGO CONTAINS THE NUMBER OF
¢ NODES IN THE LIST.
c ________________________________________________
IF ( NLIST .LE. 0 ) RETURN
DEGO = 0
NHDSZE = 0
DO 200 IL = 1, NLIST
NODE = LIST(IL)
DEGO = DEGO + QSIZE(NODE)
JSTRT = XADJ(NODE)
JSTOP = XADJ(NODE+1) - 1
DO 100 J = JSTRT, JSTOP
NABOR = ADJNCY(J)
IF ( MARKER(NABOR) .NE. 0 .OR.
1 DEG(NABOR) .GE. 0 ) GO TO 100
MARKER (NABOR) = - 1
NHDSZE = NHDSZE + 1
NBRHD (NHDSZE) = NABOR
100 CONTINUE
200 CONTINUE
c ____________________________________________
¢ MERGE INDISTINGUISHABLE NODES IN THE LIST BY

C CALLING THE SUBROUTINE QMDMRG.
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69. € = e
70. IF ( NHDSZE .GT. 0 )

71. 1 CALL QMDMRG ( XADJ, ADJNCY, DEG, QSIZE, QLINK,
72. 1 MARKER, DEGO, NHDSZE, NBRHD, RCHSET,
73. 1 NBRHD (NHDSZE+1) )

T4, € e
75. € FIND THE NEW DEGREES OF THE NODES THAT HAVE NOT BEEN
76. € MERGED.

TT. € e
78. D0 600 IL = 1, NLIST

79. NODE = LIST(IL)

80. MARK = MARKER (NODE)

81. IF ( MARK .GT. 1 .OR. MARK .LT. 0 ) GO TO 600
82. MARKER (NODE) = 2

83. CALL QMDRCH ( NODE, XADJ, ADJNCY, DEG, MARKER,
84. 1 RCHSZE, RCHSET, NHDSZE, NBRHD )
85. DEG1 = DEGO

86. IF ( RCHSZE .LE. 0 ) GO TO 400

87. DO 300 IRCH = 1, RCHSZE

88. INODE = RCHSET(IRCH)

89. DEG1 = DEG1 + QSIZE(INODE)

90. MARKER (INODE) = 0

91. 300 CONTINUE

92. 400 DEG(NODE) = DEG1 - 1

93. IF ( NHDSZE .LE. 0 ) GO TO 600

94. DO 500 INHD = 1, NHDSZE

95. INODE = NBRHD (INHD)

96. MARKER (INODE) = 0

97. 500 CONTINUE

98. 600 CONTINUE

99. RETURN

100. END

QMDMRG (Quotient MD MeRGe)

This subroutine implements a check for the condition (5.4.2) to determine
indistinguishable nodes. Let C'y, Cs, Ry, R» and Y be as in Lemma 5.4.6. The
subroutine assumes that C'; and R, have already been determined elsewhere.
Nodes in R, have their MARKER values set to 1.

There may be more than one C, input to QMDMRG. They are contained in
(NHDSZE, NBRHD), where each NBRHD(:) specifies one eliminated supernode
(that is, connected component).

The loop DO 1400 ... applies the condition on each given connected com-
ponent. It first determines the set R, — R, in (RCHSZE, RCHSET) and the
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intersection set R, N R, in (NOVRLP, OVRLP) in the loop DO 600

each node in the intersection, the condition (5.4.2) is tested in the loop DO
... If the condition is satisfied, the node is included in the merged
supernode by placing it in the QLINK vector. The size of the new supernode

1100

is also computed.

BB W W W WW W W W WWNDNDDNDDNDDNDDNDDNDNDNR R B = e
RO W W0 N U WNERER O WO OO WNERE O WO N0 U WwNDRr O

W0 N U W N =

(G 3k ke ke ake 3k e afe 3k fe afe e afe ake ke ake e afe ok ahe ake fe ok ok afe ake ke ake ok afe 3k ok 3k 3k ake 3k o 3k 3k 2k 3k e 3k 3 e 3k e 3k 3 ¢ e ¢ 3k e a4 e 4¢ 2k e afe oe e ake e ok
(G 3k ke ke ake 3k e afe 3k fe afe e afe ake ke ake e afe ok ahe ake fe ok ok afe ake ke ake ok afe 3k ok 3k 3k ake 3k o 3k 3k 2k 3k e 3k 3 e 3k e 3k 3 ¢ e ¢ 3k e a4 e 4¢ 2k e afe oe e ake e ok
ook e ke e ok QMDMRG ..... QUOT MIN DEG MERGE —
(G 3k ke ke ake 3k e afe 3k fe afe e afe ake ke ake e afe ok ahe ake fe ok ok afe ake ke ake ok afe 3k ok 3k 3k ake 3k o 3k 3k 2k 3k e 3k 3 e 3k e 3k 3 ¢ e ¢ 3k e a4 e 4¢ 2k e afe oe e ake e ok
(G 3k ke ke ake 3k e afe 3k fe afe e afe ake ke ake e afe ok ahe ake fe ok ok afe ake ke ake ok afe 3k ok 3k 3k ake 3k o 3k 3k 2k 3k e 3k 3 e 3k e 3k 3 ¢ e ¢ 3k e a4 e 4¢ 2k e afe oe e ake e ok

PURPOSE - THIS ROUTINE MERGES INDISTINGUISHABLE NODES IN
THE MINIMUM DEGREE ORDERING ALGORITHM.
IT ALSO COMPUTES THE NEW DEGREES OF THESE
NEW SUPERNODES.

INPUT PARAMETERS -
(XADJ, ADJNCY) - THE ADJACENCY STRUCTURE.
DEGO - THE NUMBER OF NODES IN THE GIVEN SET.
(NHDSZE, NBRHD) - THE SET OF ELIMINATED SUPERNODES
ADJACENT TO SOME NODES IN THE SET.

UPDATED PARAMETERS -
DEG - THE DEGREE VECTOR.
QSIZE - SIZE OF INDISTINGUISHABLE NODES.
QLINK - LINKED LIST FOR INDISTINGUISHABLE NODES.
MARKER - THE GIVEN SET IS GIVEN BY THOSE NODES WITH
MARKER VALUE SET TO 1. THOSE NODES WITH DEGREE
UPDATED WILL HAVE MARKER VALUE SET TO 2.

WORKING PARAMETERS -
RCHSET - THE REACHABLE SET.
OVRLP - TEMP VECTOR TO STORE THE INTERSECTION OF TWO
REACHABLE SETS.

[ T+ B o B o B o o N - O BN B - B -0~ K - DK - K - Y - B - B - T - B - B - K - K o~ K - K o~ Y-

(ke ke e ks ook e ok okl ks ok sk e ok e ol ook ok s ok okl ks ook sk ook e e o ko sk ok sk o sk ook e ok o
C
SUBROUTINE QMDMRG ( XADJ, ADJNCY, DEG, QSIZE, QLINK,
1 MARKER, DEGO, NHDSZE, NBRHD, RCHSET,
1 OVRLP )
C
(ke ke e ks ook e ok okl ks ok sk e ok e ol ook ok s ok okl ks ook sk ook e e o ko sk ok sk o sk ook e ok o
C
INTEGER ADJNCY(1), DEG(1), QSIZE(1), QLINK(1),
1 MARKER (1) , RCHSET (1), NBRHD(1), OVRLP(1)
INTEGER XADJ(1), DEGO, DEG1, HEAD, INHD, IOV, IRCH,
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42, 1 J, JSTRT, JSTOP, LINK, LNODE, MARK, MRGSZE,
43, 1 NABOR, NHDSZE, NODE, NOVRLP, RCHSZE, ROOT
44, ¢

45, (G 3k ke ke ake 3k e afe 3k fe afe e afe ake ke ake e afe ok ahe ake fe ok ok afe ake ke ake ok afe 3k ok 3k 3k ake 3k o 3k 3k 2k 3k e 3k 3 e 3k e 3k 3 ¢ e ¢ 3k e a4 e 4¢ 2k e afe oe e ake e ok
46. C

47. ¢ mmmmmmmmmem o

48. ¢ INITIALIZATION ...

49, ¢ = mmmmmmmmmmm

50. IF ( NHDSZE .LE. 0 ) RETURN

51. DO 100 INHD = 1, NHDSZE

52. ROOT = NBRHD (INHD)

53. MARKER (ROOT) = 0

54. 100 CONTINUE

BE. € e
56. C LOOP THROUGH EACH ELIMINATED SUPERNODE IN THE SET
57. € (NHDSZE, NBRHD) .

3 A
59. DO 1400 INHD = 1, NHDSZE

60. ROOT = NBRHD (INHD)

61. MARKER (ROOT) = - 1

62. RCHSZE = 0

63. NOVRLP = 0

64. DEGLI =0

65. 200 JSTRT = XADJ(ROOT)

66. JSTOP = XADJ(ROOT+1) - 1

67. € = e
68. ¢ DETERMINE THE REACHABLE SET AND ITS INTERSECT-
69. ¢ ION WITH THE INPUT REACHABLE SET.

70. € e
71. DO 600 J = JSTRT, JSTOP

72. NABOR = ADJNCY(J)

73. ROOT = - NABOR

74. IF (NABOR) 200, 700, 300

75. €

76. 300 MARK = MARKER (NABOR)

77. IF ( MARK ) 600, 400, 500

78. 400 RCHSZE = RCHSZE + 1

79. RCHSET (RCHSZE) = NABOR

80. DEG1 = DEG1 + QSIZE(NABOR)

81. MARKER (NABOR) = 1

82. GOTD 600

83. 500 IF ( MARK .GT. 1 ) GOTO 600

84. NOVRLP = NOVRLP + 1

85. OVRLP (NOVRLP) = NABOR

86. MARKER (NABOR) = 2

87. 600 CONTINUE

88. € mmmmm e
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Q

700

800

QaQaaQ

900

1000

1100

1200

1300
1400

END

FROM THE OVERLAPPED SET, DETERMINE THE NODES
THAT CAN BE MERGED TOGETHER.
HEAD = 0
MRGSZE = 0
DO 1100 IOV = 1, NOVRLP
NODE = OVRLP (IOV)
JSTRT = XADJ(NODE)
JSTOP = XADJ(NODE+1) - 1
DO 800 J = JSTRT, JSTOP
NABOR = ADJNCY(J)
IF ( MARKER(NABOR) .NE. 0 ) GOTO 800
MARKER (NODE) = 1
GOTO 1100
CONTINUE
NODE BELONGS TO THE NEW MERGED SUPERNODE.
UPDATE THE VECTORS QLINK AND QSIZE.
MRGSZE = MRGSZE + QSIZE(NODE)
MARKER (NODE) = - 1
LNODE = NODE
LINK = QLINK(LNODE)
IF ( LINK .LE. 0 ) GOTO 1000
LNODE = LINK
GOTD 900
QLINK (LNODE) = HEAD
HEAD = NODE
CONTINUE
IF ( HEAD .LE. 0 ) GOTO 1200
QSIZE(HEAD) = MRGSZE
DEG (HEAD) = DEGO + DEG1 - 1
MARKER (HEAD) = 2

ROOT = NBRHD (INHD)
MARKER (ROOT) = 0
IF ( RCHSZE .LE. 0 ) GOTO 1400
DO 1300 IRCH = 1, RCHSZE
NODE = RCHSET (IRCH)
MARKER (NODE) = 0
CONTINUE

CONTINUE
RETURN

159
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Exercises

5.4.1) Let z; be the node selected from G; ; in the minimum degree algo-
rithm. Let y € Adjg,_,(=;) with

Degg,(y) = Degg,_,(z;) — 1.
Show that y is a node of minimum degree in G;.

5.4.2) Let #; and G;_; be as in Exercise 5.4.1 on page 160, and y € Adjg,_,(2;).
Prove that if

Adjg,_,(y) C Adjg;_,(2:) U {2:}

then y is a node of minimum degree in G;.

5.5 Sparse Storage Schemes

5.5.1 The Uncompressed Scheme

The data structure for the general sparse methods should only store (logical)
nonzeros of the factored matrix. The scheme discussed here is oriented to the
inner-product formulation of the factorization algorithm (see Section 2.2.2)
and can be found in, for example, Gustavson (1972) and Sherman (1975).
The scheme has a main storage array LNZ which contains all the nonzero
entries in the lower triangular factor. A storage location is provided for each
logical nonzero in the factor. The nonzeros in L, excluding the diagonal,
are stored column after column in LNZ. An accompanying vector NZSUB is
provided, which gives the row subscripts of the nonzeros. In addition, an
index vector XLNZ is used to point to the start of nonzeros in each column
in LNZ (or equivalently NZSUB). The diagonal entries are stored separately in
the vector DIAG.

To access a nonzero component a,; or /;;, there is no direct method of cal-
culating the corresponding index in the vector LNZ. Some testing on the
subscripts in NZSUB has to be done. The following portion of a program can
be used for that purpose. Note that any entry not represented by the data
structure is zero.

KSTRT = XLNZ(J)
KSTOP = XLNZ(J+1) - 1
ATIJ = 0.0

IF (KSTOP.LT.KSTRT) GO TO 300
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l75 l76 l77

Figure 5.5.1: A 7 by 7 matrix A and its factor L.

DO 100 X = KSTRT, KSTOP
IF (NZSUB(X).EQ.I) GO TO 200
100 CONTINUE
GO TO 300
200 AIJ = LNZ(K)
300

Although this scheme is not particularly well suited for random access of
nonzero entries, it lends itself quite readily to sparse factorization and solu-
tion. The primary storage of the scheme is |Nonz(F')| + n for the vectors
LNZ and DIAG, and the overhead storage is |[Nonz(F')| + n for NZSUB and
XLNZ.

5.5.2 Compressed Scheme

This scheme, which is a modification of the uncompressed scheme, is due to
Sherman [47]. The motivation can be provided by considering the minimum
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DIAG Q11 Az Q33 Q44 G55 Qes Q77
NZSUB 2 4|45 6|56 7|7
LNZ A21 Q41| (0 |As53 Qe3|qsa| 0 Qrs5|Gre
1
——
XLNZ 1 3 4 6 7 9 10
Factorization
DIAG lin by lgs las lss lge Irr
NZSUB 2 4|45 6|56 7|7
LNZ lyy Ly |las | sz log | Isa | les l75 | l76
1
——
XLNZ 1 3 4 6 7 9 10

Figure 5.5.2: Uncompressed data storage scheme for the matrix and its factor
in Figure 5.5.1.
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degree ordering as discussed in Section 5.4.3. We saw that it was possible
to simultaneously number or eliminate a set Y of nodes. The nodes in Y
satisfy the indistinguishable condition

Reach(z, S)U {z} = Reach(y, S)U {y},

for all z,y € Y. In terms of the matrix factor L, this means all the row
subscripts below the block corresponding to Y are identical, as shown in
Figure 5.5.3.

Y
——~

XXX XXX

XXX XXX
XXX XXX

XXX XXX

Figure 5.5.3: Motivation for the compressed storage scheme.

If the structure is stored using the uncompressed scheme, the row subscripts
of all but the first column in this block are final subsequences of that of the
previous column. Naturally, the subscript vector NZSUB can be compressed
so that redundant information is not stored. It is done by removing the row
subscripts for a column if they appear as a final subsequence of the previous
column.

In exchange for the compression, we need to have an auxiliary index vector
XNZSUB which points to the start of row subscripts in NZSUB for each col-
umn. The compressed scheme for the example in Figure 5.5.1 is shown in
Figure 5.5.4.
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DIAG Q11 Az Q33 Q44 G55 Qes Q77
LNZ A21 Q41| () |As53 Q63 |Asa| (0 Crs5|Ave
1

——
XLNZ 1 3 4 6 7 9 10
NZSUB 2 4|5 6 |bH |6 7

1

—

XNZSUB 1 2 3 b5 6 7 8

Figure 5.5.4: Compressed storage scheme for the matrix in Figure 5.5.1.
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In this case, the way to access a nonzero entry in the (¢, 7)-th position is as

follows.
KSTRT = XLNZ(J)
KSTOP = XLNZ(J+1) - 1
ATIJ = 0.0

IF (KSTOP.LT.KSTRT) GO TO 300
KSUB = XNZSUB(J)
DO 100 X = KSTRT, KSTOP
IF(NZSUB(KSUB).EQ.I) GO TO 200
KSUB = KSUB + 1
100 CONTINUE
GO TO 300
200 AIJ = LNZ(K)
300

In the compressed scheme, the primary storage remains the same, but the
overhead storage is changed and it is less than or equal to |[Nonz(F')| 4 2n.
The example given is too small to bring out the significance of the compressed
scheme. In Table 5.5.1, we provide some numbers that are obtained from nine
larger problems which comprise one of the test sets considered in Chapter 9.
The ordering which was used in generating these results was provided by
a minimum degree algorithm similar to the one described in the previous
section. Typically, for problems of this size and larger, the overhead storage
is reduced by at least fifty percent, compared to the uncompressed scheme.

5.5.3 On Symbolic Factorization

As its name implies, symbolic factorization is the process of simulating the
numerical factorization of a given matrix A in order to obtain the zero-
nonzero structure of its factor L. Since the numerical values of the matrix
components are of no significance in this connection, the problem can be
conveniently studied using a graph theory approach.

Let G* = (X, E) be an ordered graph, where | X*| = n and for convenience
let a(i) = #;. In view of Theorem 5.2.2, symbolic factorization may be
regarded as determination of the sets

Reach(z;, {z1,++,2;1}), t=1,--+,n.
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Number of |Nonz(A)| |Nonz(F)| Overhead for Overhead for

Equations Uncompressed Compressed
936 2664 13870 14806 6903
1009 2928 19081 20090 8085
1089 3136 18626 19715 8574
1440 4032 19047 20487 10536
1180 3285 14685 15865 8436
1377 3808 16793 18170 9790
1138 3156 15592 16730 8326
1141 3162 15696 16837 8435
1349 3876 23726 25075 10666

Table 5.5.1: Comparison of uncompressed and compressed storage schemes.
The primary storage is equal to the overhead for the uncompressed scheme.

Define §; = {z1,...,2:}.

We prove the following result about reachable sets.

Lemma 5.5.1

Reach(z;,5,_1) = Adj(z;)U
(U{Reach(zr, Sx_1) | z; € Reach(zy, Sx_1)}) — S;.

Proof: Let j > i. Then by Lemma 5.2.1 and Theorem 5.2.2
F
z; € Reach(z;, S;—1) < {z;,2;}€FE

= {z;,z,} € EA, or {z;, 2} € EF and {z;, 2} € EF for some k <
< &; € Adj(z;) or z;,z; € Reach(zy, Sx_1) for some k.

The lemma then follows. O
Lemma 5.5.1 suggests an algorithm for finding the reachable sets (and hence
the structure of the factor L ). It may be described as follows.

Step 1 (Initialization) for k =1,...,n do

Reach(zy, Sx_1) — Adj(er) — Sx_1.

Step 2 (Symbolic factorization)
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for k=1,2,...,ndo
if z; € Reach(zy, Sx_1) then
Reach(z;, S;_1) «— Reach(z;, S;_1)U
Reach(zy, Sk_1) — Si.

A pictorial illustration of the scheme is shown in Figure 5.5.5. This scheme is
hardly satisfactory, since it essentially simulates the entire factorization, and
its cost will be proportional to the operation count as given in Theorem 2.2.2.
Let us look into possible ways of improving the efficiency of the algorithm.

N

™N

AW

OO\
NN\

Figure 5.5.5: Merging of reachable sets to obtain Reach(z;, S;_1).

Consider the stage when the set §;_; = {2;,...,2;,_1} has been eliminated.
For the purpose of this discussion, assume that z; has two connected com-
ponents in G(S;_1) adjacent to it. Let their node sets be C; and C,.
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7
//

Figure 5.5.6: Determination of the reachable set of z;.

In this case, it can be seen that
Reach(wz;, S;_1) = Adj(z;) U Adj(C1) U Adj(C,) — ;.

However, representatives z,, and z,, can be chosen from C; and C, respec-
tively so that

Adj(Cy) = Reach(z,,, Sr,-1)
and

Adj(C,) = Reach(z,,, S,,-1).

(See Exercise 5.3.5 on page 131.) Indeed, the representative is given by
(5.3.4); specifically, the node in the component last eliminated. In this way,
the reachable set can be written as

Reach(z;, S;—1) = Adj(z;) U

Reach(z,,, S.,_1) U Reach(z,,, Sr,_1) — 5;.
Thus, instead of having to merge many reachable sets as given in Lemma 5.5.1,
we can select representatives. The ideas presented below are motivated by

this observation.
For k=1,...,n, define

my, = min{j | #; € Reach(zy, S,_1) U {@}}. (5.5.1)

In terms of the matrix, m;, is the subscript of the first nonzero in the column
vector L,; excluding the diagonal component.

Lemma 5.5.2

Reach(zy, Sx_1) C Reach(@m,, Smy—1) U {@m, }-
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Proof: For any z; € Reach(zy, Sx_1), then k < my < 4. If © = my, there is
nothing to prove. Otherwise, by Lemma 5.2.1 and Theorem 5.2.2,

z; € Reach(@m,, Smy—1)-

O
Lemma 5.5.2 has the following important implication. For z; € Reach(zs, Sk_1)
and ¢ > my, it is redundant to consider Reach(zy, Si_1) in determining
Reach(z;, 5;_1) in the algorithm, since all the reachable nodes via z; can be
found in Reach(@m,, Sm,—1). Thus, it is sufficient to merge the reachable
sets of some representative nodes. Figure 5.5.7 shows the improvement on
the example in Figure 5.5.5. Lemma 5.5.1 can be improved as follows.

Theorem 5.5.3
Reach(z;, 5;_1) = Adj(z;) U (U{Reach(azk, Sk_1) | my = z}) - S;.
k
Proof: Consider any #; with z; € Reach(zy, Sx_1). Putting m(k) = my,
we have an ascending sequence of subscripts bounded above by 7 :
k< m(k) < m(m(k)) <m?(k) <---<i.

There exists an integer p such that m?*'(k) = <. It follows from Lemma 5.5.2
that

Reach(a}k, Sk—l) — S, C Reach(azm(k), Sm(k)—l) — S,
C
C Reach(mmp(k), Smp(k)_l) - 5.

The result then follows. a
Consider the determination of Reach(zs,S4) in the graph example of Fig-
ure 5.5.8. If Lemma 5.5.1 is used, we see that the sets

Reach(zy, 50),
Reach(z,, S1),

and

Reach(zs, S3)

have to be merged with Adj(z5). On the other hand, by Theorem 5.5.3, it
is sufficient to consider

Reach(zy, So)
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AN
\ ks
x AN
\{3
0
N
X 0{

OO\
OO\

Figure 5.5.7: Improvement in merging reachable sets for Reach(z;, S;_1).

(O—(0—2—06—O
k | my | Reach(zy, Sk_1)
@ 9 e 1] 5 Ty, Tg
2| 4 Ty, T5
3] 8 g
9 41 b Ty, Ty

Figure 5.5.8: Illustration of my.
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and

Reach(z,, S3).
Note that m, = 4 and

Reach(zs, S1) = {®4, 25} C Reach(zq, S3) U {z4}.
The symbolic factorization algorithm can now be refined as:

Step 1 (Initialization)

fork=1,...,ndo
Reach(zy, Sx_1) = Adj(z) — Si.

Step 2 (Symbolic Factorization)

for k=1,2,...,ndo
m = min{j | z; € Reach(zy, Sx_1)}
Reach(@p,, Sm—1) — Reach(@m, Sm—_1)U
(Reach(zy, Sk_1) — {Zm}-

Theorem 5.5.4 Symbolic factorization can be performed in O(‘EF ‘) oper-
ations.

Proof: For each column k, the value m; is unique. This means that
Reach(zy, Sx_1) is accessed only when Reach(@.,,,Sm,—1) is being deter-
mined. That is, the set Reach(zy, Sx_1) is examined exactly once through-
out the entire process. Moreover, the union of two reachable sets can be
performed in time proportional to the sum of their sizes (see Exercise 5.5.3

on page 178 ). Therefore, symbolic factorization can be done in O(‘EF‘)
operations, where ‘EF‘ = Y %_. |Reach(zy, Sk_1)|- O

5.5.4 Storage Allocation for the Compressed Scheme and the
Subroutine SMBFCT

In this section, we describe the subroutine which performs symbolic factor-
ization as described in the previous section. The result of the process is a
data structure for the compressed scheme of Section 5.5.2.

The implementation is due to Eisenstat et. al. [13], and can be found in the
Yale Sparse Matrix Package. Essentially, it implements the refined algorithm
as described in the previous section, with a rearrangement of the order in
which reachable sets are merged together.
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Step 1 (Initialization) for i = 1,---,n do R; = ¢.

Step 2 (Symbolic Factorization)

for k=1,2,...,ndo
Reach(z;, S5;_1) = Adj(z;) — S;
for k € R; do
Reach(z;, S;_1) «— Reach(z;, S;_1)U
Reach(zy, Sx_1) — S;
m = min{j | z; € Reach(z;, 5;_1)}
R, — R, U{z;}.

In this algorithm, the set R; is used to accumulate the representatives whose
reachable sets affect that of #;. There is an immediate result from Theo-
rem 5.5.3 that can be used to speed up the algorithm. Moreover, it is useful
in setting up the compressed storage scheme.

Corollary 5.5.5 If there is only one my = 2, and
Ad](%,) — S, C ReaCh(ﬁk, Sk—l)

then
Reach(z;, 5;_1) = Reach(@y, Sx_1) — {a:}.

The subroutine SMBFCT accepts as input the graph of the matrix stored
in the array pair (XADJ, ADJNCY), together with the permutation vector
PERM and its inverse INVP. The objective of the subroutine is to set up the
data structure for the compressed sparse scheme; that is, to compute the
compressed subscript vector NZSUB and the index vectors XLNZ and XNZSUB.
Also returned are the values MAXLNZ and MAXSUB which contain the number
of off-diagonal nonzeros in the triangular factor and the number of subscripts
for the compressed scheme respectively.

Three working vectors RCHLNK, MRGLNK and MARKER are used by the sub-
routine SMBFCT. The vector RCHLNK is used to facilitate the merging of the
reachable sets, while the vector MRGLNX is used to keep track of the non-
overlapping representative sets { R;} as introduced above. The vector MARKER
is used to detect the condition as given in Corollary 5.5.5.

The subroutine begins by initializing the working vectors MRGLNK and MARKER.
It then executes the main loop finding the reachable set for each node. The
set Adj(xzy) — Sy is first determined and assigned to the vector RCHLNK. At
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the same time, the condition in Corollary 5.5.5 is tested. If it is satisfied,
the merging of reachable sets can be skipped. Otherwise, based on the in-
formation in MRGLNK, previous reachable sets are merged into RCHLNK. With
the new reachable set completely formed in RCHLNK, the subroutine checks
for possible compression of subscripts and sets up the corresponding portion
of the data structure accordingly. Finally, it updates the vector MRGLNK to
reflect the changes in the sets {R,}.

By merging a set of carefully selected reachable sets, the subroutine SMBFCT is
able to find a new reachable set in a very efficient manner. Since the number
of subscripts required in the compressed scheme is not known beforehand,
the size of the vector NZSUB may not be large enough to accommodate all the
subscripts. In that case, the subroutine will abort and the error flag FLAG
will be set to 1.

1. Cokesteateakokok seok e oo oesefe sefe se e sfe e e e e e ok ke ok ke ok ke ok b ek ek ke o e o se e se e se e e e e ke sk ok ok ok o e o o
2, Caleakokok ke oeseoke s sesle e ke ke ok ok ok sk ok ek ek ke ek e e e e e e se e se e se ke se ke ke ke ok ok ok ko ek ke e ke e ke o e e e
3. Caekakokokoksdokok SMBFCT ..... SYMBOLIC FACTORIZATION ek e ek ko ok
4, Cokokokeokeseakakak ok ok ok ook ook ke o ke o ke o se e se e e se e se s sk sl ke ke ke ok ok ok ok ek ek ke o ke o ke o e e e e e e e e sk
5. Caleakokok ke o seoke s aleie ke ke ke ok ok ok sk ok ek ek ke ek e se e e e e se e se e se ke se ke ke ke ke ok ke b ok ek ke e ke e ke o e e e
6. C

7. € PURPOSE - THIS ROUTINE PERFORMS SYMBOLIC FACTORIZATION

8. C ON A PERMUTED LINEAR SYSTEM AND IT ALSO SETS UP THE

9. C COMPRESSED DATA STRUCTURE FOR THE SYSTEM.

10. C

11. C INPUT PARAMETERS -

12. C NEQNS - NUMBER OF EQUATIONS.

13. C (XADJ, ADJNCY) - THE ADJACENCY STRUCTURE.

14. C (PERM, INVP) - THE PERMUTATION VECTOR AND ITS INVERSE.
15. C

16. C UPDATED PARAMETERS -

17. ¢ MAXSUB - SIZE OF THE SUBSCRIPT ARRAY NZSUB. ON RETURN,
18. C IT CONTAINS THE NUMBER OF SUBSCRIPTS USED

19. C
20. C OUTPUT PARAMETERS -
21. C XLNZ - INDEX INTO THE NONZERO STORAGE VECTOR LNZ.
22, C (XNZSUB, NZSUB) - THE COMPRESSED SUBSCRIPT VECTORS.
23. C MAXLNZ - THE NUMBER OF NONZEROS FOUND.
24, C FLAG - ERROR FLAG. POSITIVE VALUE INDICATES THAT.
26, C NZSUB ARRAY IS TOO SMALL.
26. C
27. C WORKING PARAMETERS -
28. C MRGLNK - A VECTOR OF SIZE NEQNS. AT THE KTH STEP,
29. C MRGLNK (K) , MRGLNK (MRGLNK(K)) , .........
30. C IS A LIST CONTAINING ALL THOSE COLUMNS L(*,J)
31 C WITH J LESS THAN K, SUCH THAT ITS FIRST OFF-
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DIAGONAL NONZERO IS L(K,J). THUS, THE

NONZERO STRUCTURE OF COLUMN L(*,K) CAN BE FOUND
BY MERGING THAT OF SUCH COLUMNS L(*,J) WITH

THE STRUCTURE OF A(*,K).

RCHLNK - A VECTOR OF SIZE NEQNS. IT IS USED TO ACCUMULATE
THE STRUCTURE OF EACH COLUMN L(*,K). AT THE
END OF THE KTH STEP,

RCHLNK (K) , RCHLNK (RCHLNK(X)), ........
IS THE LIST OF POSITIONS OF NONZEROS IN COLUMN K
OF THE FACTOR L.

MARKER - AN INTEGER VECTOR OF LENGTH NEQNS. IT IS USED
TO TEST IF MASS SYMBOLIC ELIMINATION CAN BE
PERFORMED. THAT IS, IT IS USED TO CHECK WHETHER
THE STRUCTURE OF THE CURRENT COLUMN K BEING
PROCESSED IS COMPLETELY DETERMINED BY THE SINGLE
COLUMN MRGLUK (K).

[ T+ T o TN o I o B o BN -~ B -~ A - Y - T - K - B - Y - Y - - Y -

(G 3k ke ke ake 3k e afe 3k fe afe e afe ake ke ake e afe ok ahe ake fe ok ok afe ake ke ake ok afe 3k ok 3k 3k ake 3k o 3k 3k 2k 3k e 3k 3 e 3k e 3k 3 ¢ e ¢ 3k e a4 e 4¢ 2k e afe oe e ake e ok
¢
SUBROUTINE SMBFCT ( NEQNS, XADJ, ADJNCY, PERM, INVP,
1 XLNZ, MAXLNZ, XNZSUB, NZSUB, MAXSUB,
1 RCHLNK, MRGLNK, MARKER, FLAG )
¢
(G 3k ke ke ake 3k e afe 3k fe afe e afe ake ke ake e afe ok ahe ake fe ok ok afe ake ke ake ok afe 3k ok 3k 3k ake 3k o 3k 3k 2k 3k e 3k 3 e 3k e 3k 3 ¢ e ¢ 3k e a4 e 4¢ 2k e afe oe e ake e ok
¢
INTEGER ADJNCY(1), INVP(1), MRGLNK(1), NZSUB(1),
1 PERM(1), RCHLNK (1), MARKER(1)
INTEGER XADJ(1), XLNZ(1), XNZSUB(1),
FLAG, I, INZ, J, JSTOP, JSTRT, K, KNZ,
KXSUB, MRGK, LMAX, M, MAXLNZ, MAXSUB,
NABOR, NEQNS, NODE, NP1, NZBEG, NZEND,
RCHM, MRKFLG

[ =Y

C
3k 3k 3k ok ok ok ok sk 3k ok o sk sk e e ke ke e ke e sk 3k sk o sk e e e e ke ke ok e sk 3k 3k oe o ke ke e e ke ke ok ok sk 3k 3k oe o ke e e e ke ke ok ok sk 3k 3k o ok
C

Q QQ
[
=
(]
3
=
=
=
=
N
=
3
[
Q
=

1
NZEND = 0
XLNZ(1) = 1
DO 100 K = 1, NEQNS
MRGLNK(K) = 0
MARKER(K) = 0
100 CONTINUE
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QaaaaQ

200

300

350
400

OF NONZEROS IN COLUMN K ACCUMULATED IN RCHLNK.

NP1 = NEQNS + 1
DO 1500 K = 1, NEQNS

KNZ = 0
MRGK = MRGLNK (K)
MRKFLG = 0

MARKER(K) = K
IF (MRGK .NE. 0 ) MARKER(K) = MARKER (MRGK)
XNZSUB(K) = NZEND
NODE = PERM(K)
JSTRT = XADJ(NODE)
JSTOP = XADJ(NODE+1) - 1
IF (JSTRT.GT.JSTOP) GO TO 1500
USE RCHLNK TO LINK THROUGH THE STRUCTURE OF
A(*,K) BELOW DIAGONAL
RCHLNK (K) = NP1
DO 300 J = JSTRT, JSTOP
NABOR = ADJNCY(J)
NABOR = INVP (NABOR)
IF ( NABOR .LE. K ) GO TO 300
RCHM = K
M = RCHM
RCHM = RCHLNK (M)
IF ( RCHM .LE. NABOR ) GO TO 200
KNZ = KNZ+1
RCHLNK (M) = NABOR
RCHLNK (NABOR) = RCHM
IF ( MARKER(NABOR) .NE. MARKER(K) ) MRKFLG =
CONTINUE

LMAX = 0

IF ( MRKFLG .NE. 0 .OR. MRGK .EQ. 0 ) GO TO 350
IF ( MRGLNK(MRGK) .NE. 0 ) GO TO 350

XNZSUB(K) = XNZSUB(MRGK) + 1

KNZ = XLNZ(MRGK+1) - (XLNZ(MRGK) + 1)

GO TO 1400

=
1]

MRGLNK (I)
IF (I.EQ.0) GO TO 800

175

1
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INZ = XLNZ(I+1) - (XLNZ(I)+1)
JSTRT = XNZSUB(I) + 1
JSTOP = XNZSUB(I) + INZ
IF (INZ.LE.LMAX) GO TO 500
LMAX = INZ
XNZSUB(K) = JSTRT

RCHM = K
DO 700 J = JSTRT, JSTOP
NABOR = NZSUB(J)

M = RCHM

RCHM = RCHLNK (M)
IF (RCHM.LT.NABOR) GO TO 600
IF (RCHM.EQ.NABOR) GO TO 700
KNZ = KNZ+1
RCHLNK (M) = NABOR
RCHLNK (NABOR) = RCHM
RCHM = NABOR
CONTINUE
GO TO 400

IF (KNZ.EQ.LMAX) GO TO 1400

IF (NZBEG.GT.NZEND) GO TO 1200
I = RCHLHNK (K)
DO 900 JSTRT=NZBEG ,NZEND
IF (NZSUB(JSTRT)-I) 900, 1000, 1200
CONTINUE
G0 TO 1200
XNZSUB(K) = JSTRT
DO 1100 J=JSTRT,NZEND
IF (NZSUB(J).NE.I) GO TO 1200
I = RCHLNK(I)
IF (I.GT.NEQNS) GO TO 1400
CONTINUE
NZEND = JSTRT - 1
COPY THE STRUCTURE OF L(*,K) FROM RCHLNK
TO THE DATA STRUCTURE (XNZSUB, NZSUB).

NZBEG = NZEND + 1
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173. NZEND = NZEND + KNZ

174. IF (NZEND.GT.MAXSUB) GO TO 1600

175. I=K

176. DO 1300 J=NZBEG,NZEND

177. I = RCHLNK(I)

178. NZSUB(J) = I

179. MARKER(I) = K

180. 1300 CONTINUE

181. XNZSUB(K) = NZBEG

182. MARKER(K) = K

183, € e
184. ¢ UPDATE THE VECTOR MRGLNK. NOTE COLUMN L(*,K) JUST FOUND
185. ¢ IS REQUIRED TO DETERMINE COLUMN L(%*,J), WHERE

186. € L(J,K) IS THE FIRST NONZERO IN L(*,K) BELOW DIAGONAL.
187. € e
188. 1400 IF (KNZ.LE.1) GO TO 1500

189. KXSUB = XNZSUB(K)

190. I = NZSUB(KXSUB)

191. MRGLNK (K) = MRGLNK(I)

192. MRGLNK(I) = K

193. 1500 XLNZ (K+1) = XLNZ(X) + KNZ

194. MAXLNZ = XLNZ(NEQNS) - 1

195. MAXSUB = XNZSUB (NEQNS)

196. XNZSUB (NEQNS+1) = XNZSUB(NEQNS)

197. FLAG = 0

198. RETURN

199, € mmmm e
200. € ERROR - INSUFFICIENT STORAGE FOR NONZERO SUBSCRIPTS.
201, € m e
202. 1600 FLAG =1

203. RETURN

204. END

Exercises

5.5.1) Let A be a matrix satisfying f;(A) < 7 for 2 < ¢ < n. Show that for
each k < n, my = k+1. Hence or otherwise, show that for 1 < ¢ < n,

Reach(z;, 5;_1) = (Adj(2;) U Reach(z;_1,5;_2)) — .

5.5.2) Let A be a band matrix with bandwidth 3. Assume that the matrix
has a full band.

a) Compare the uncompressed and compressed sparse storage schemes
for A.



178 CHAPTER 5. GENERAL SPARSE METHODS

b) Compare the two symbolic factorization algorithms as given by
Lemma 5.5.1 and Theorem 5.5.3.

5.5.3) Let R, and R, be two given sets of integers whose values are less
than or equal to n. Assume that a temporary array of size n with
all zero entries is provided. Show that the union R, U R, can be
determined in time proportional to |R;| + | R.].

5.6 The Numerical Subroutines for Factorization
and Solution

In this section, we describe the subroutines that perform the numerical fac-
torization and solution for linear systems stored using the compressed sparse
scheme. The factorization subroutine GSFCT (for general sparse symmetric
factorization) uses the inner product form of the factorization algorithm.
Since the nonzeros in the lower triangle of A (or the factor L ) are stored
column by column, the inner product version of the algorithm must be im-
plemented to adapt to this storage mode. The implementation GSFCT is a
minor modification of the one in the Yale Sparse Matrix Package.

The Subroutine GSFCT (General sparse Symmetric FaCTorization)

The subroutine GSFCT accepts as input the data structure of the compressed
scheme (XLNZ, XNZSUB, NZSUB) and the primary storage vectors DIAG and
LNZ. The vectors DIAG and LNZ, on input, contain the nonzeros of the matrix
A. On return, the nonzeros of the factor L are overwritten on those of the
matrix A. The subroutines use three temporary vectors LINK, FIRST and
TEMP, all of size n.

To compute a column L.; of the factor, the columns that are involved in the
formation of L., are exactly those L.; with [;; # 0. The modification can
be done one column at a time as follows:

for L,; with [;; # 0 do
L L L;
— — lij .
At step 4, all the columns that affect L,; are given by the list LINK(2),
LINK(LINK(%)),:. To minimize subscript searching, a work vector FIRST is
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FIRST — 5T T T 7
//;//
/R770717
/R770717

7717
A A M A
LINK 1

Figure 5.6.1: Illustration of the use of FIRST and LINK in GSFCT.
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used so that FIRST(j) points to the location in the storage vector LNZ, where

the nonzero [;; resides for j = LINK(:), LINK(LINK(3)), :. In this way, the
modification of L,; by L.; can start at the location FIRST(j) in LNZ. The
third working vector TEMP is used to accumulate the modifications to the
column L.;.

The subroutine GSFCT begins by initializing the working vectors LINK and
TEMP. The loop DO 600 J ... processes each column. It accumulates the
modifications to the current column in the variable DIAGJ and the vector
TEMP. At the same time, it updates the temporary vectors FIRST and LINK.
Finally, the modification is applied to the entries in the present column.

1. (G 3k ke ke ake 3k fe afe o af¢ ake e afe ok afe ake ke ake sk afe ok afe ake 3k ok 3k afe 3k 3k ake 3k e 3k 3k 3k 3k e 3k e 3k 3 e 3 e afe o afe e h¢ afe e afe o ah¢ ake e ok 3k afe ake ke ok e ke
2. (G 3k ke ke ake 3k fe afe o af¢ ake e afe ok afe ake ke ake sk afe ok afe ake 3k ok 3k afe 3k 3k ake 3k e 3k 3k 3k 3k e 3k e 3k 3 e 3 e afe o afe e h¢ afe e afe o ah¢ ake e ok 3k afe ake ke ok e ke
3. Codedskdk GSFCT ..... GENERAL SPARSE SYMMETRIC FACT Akedeokde ok
4, (G 3k ke ke ake 3k fe afe o af¢ ake e afe ok afe ake ke ake sk afe ok afe ake 3k ok 3k afe 3k 3k ake 3k e 3k 3k 3k 3k e 3k e 3k 3 e 3 e afe o afe e h¢ afe e afe o ah¢ ake e ok 3k afe ake ke ok e ke
5. (G 3k ke ke ake 3k fe afe o af¢ ake e afe ok afe ake ke ake sk afe ok afe ake 3k ok 3k afe 3k 3k ake 3k e 3k 3k 3k 3k e 3k e 3k 3 e 3 e afe o afe e h¢ afe e afe o ah¢ ake e ok 3k afe ake ke ok e ke
6. C

7. € PURPOSE - THIS SUBROUTINE PERFORMS THE SYMMETRIC

8. ¢ FACTORIZATION FOR A GENERAL SPARSE SYSTEM, STORED IN

9. C THE COMPRESSED SUBSCRIPT DATA FORMAT.

10. ¢

11. ¢ INPUT PARAMETERS -

12. ¢ NEQNS - NUMBER OF EQUATIONS.

13. ¢ XLNZ - INDEX VECTOR FOR LNZ. XLNZ(I) POINTS TO THE

14, ¢ START OF NONZEROS IN COLUMN I OF FACTOR L.

15. ¢ (XNZSUB, NZSUB) - THE COMPRESSED SUBSCRIPT DATA

16. ¢ STRUCTURE FOR FACTOR L.

17. ¢

18. ¢ UPDATED PARAMETERS -

19. ¢ LNZ - ON INPUT, CONTAINS NONZEROS OF A, AND ON
20. ¢ RETURN, THE NONZEROS OF L.
21. ¢ DIAG - THE DIAGONAL OF L OVERWRITES THAT OF 4.
22. ¢ IFLAG - THE ERROR FLAG. IT IS SET TO 1 IF A ZERO OR
23. ¢ NEGATIVE SQUARE ROOT OCCURS DURING THE
24, ¢ FACTORIZATION.
25. ¢ 0PS - A DOUBLE PRECISION COMMON PARAMETER THAT IS
26. € INCREMENTED BY THE NUMBER OF OPERATIONS
27. ¢ PERFORMED BY THE SUBROUTINE.
28. ¢
29. ¢ WORKING PARAMETERS -
30. ¢ LINK - AT STEP J, THE LIST IN
31. ¢ LINK(J), LINK(LINK(I))y «evvennennn
32. ¢ CONSISTS OF THOSE COLUMNS THAT WILL MODIFY
33. ¢ THE COLUMN L(*,J).

¢

w
N

FIRST - TEMPORARY VECTOR TO POINT TO THE FIRST
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35.
36.
37.
38.
39.
40.
41.
42.
43.
44.
45.
46.
47.
48.
49.
50.
51.
52,
53.
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66.
67.
68.
69.
70.
71.
72.
73.
74.
75.
76.
77.
78.
79.
80.
81.

NONZERO IN EACH COLUMN THAT WILL BE USED
NEXT FOR MODIFICATION.
TEMP - A TEMPORARY VECTOR TO ACCUMULATE MODIFICATIONS.

QaaaaQ

(G 3k ke ke ake 3k fe afe o af¢ ake e afe ok afe ake ke ake sk afe ok afe ake 3k ok 3k afe 3k 3k ake 3k e 3k 3k 3k 3k e 3k e 3k 3 e 3 e afe o afe e h¢ afe e afe o ah¢ ake e ok 3k afe ake ke ok e ke
¢
SUBROUTINE GSFCT ( NEQNS, XLNZ, LNZ, XNZSUB, NZSUB, DIAG,
1 LINK, FIRST, TEMP, IFLAG )
¢
(G 3k ke ke ake 3k fe afe o af¢ ake e afe ok afe ake ke ake sk afe ok afe ake 3k ok 3k afe 3k 3k ake 3k e 3k 3k 3k 3k e 3k e 3k 3 e 3 e afe o afe e h¢ afe e afe o ah¢ ake e ok 3k afe ake ke ok e ke
¢
DOUBLE PRECISION COUNT, OPS
COMMON /SPKOPS/ OPS
REAL DIAG(1), LNZ(1), TEMP(1), DIAGJ, LJK
INTEGER LINK(1), NZSUB(1)
INTEGER FIRST(1), XLNZ (1), XNZSUB(1),
1 I, IFLAG, II, ISTOP, ISTRT, ISUB, J,
1 K, KFIRST, NEQNS, NEWK
¢
(G 3k ke ke ake 3k fe afe o af¢ ake e afe ok afe ake ke ake sk afe ok afe ake 3k ok 3k afe 3k 3k ake 3k e 3k 3k 3k 3k e 3k e 3k 3 e 3 e afe o afe e h¢ afe e afe o ah¢ ake e ok 3k afe ake ke ok e ke
¢

C
C INITIALIZE WORKING VECTORS ...
c ______________________________
DO 100 I = 1, NEQNS
LINK(I) = 0
TEMP (I) = 0.0E0
100 CONTINUE

c ____________________________________________

C COMPUTE COLUMN L(*,J) FOR J = 1, , NEQNS

c ____________________________________________
DO 600 J = 1, NEQNS

c ___________________________________________

C FOR EACH COLUMN L(*,K) THAT AFFECTS L(*,J).

c ___________________________________________

DIAGJ = 0.0E0
NEWK = LINK(J)
200 K = NEWK
IF ( K .EQ. 0 ) GO TO 400
NEWK = LINK(K)
OUTER PRODUCT MODIFICATION OF L(*,J) BY
L(*,K) STARTING AT FIRST(K) OF L(*,K).
KFIRST = FIRST(K)
LJK = LNZ(KFIRST)
DIAGJ = DIAGJ + LJK*LJK

QaQ aQ
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82. OPS = OPS + 1.0DO

83. ISTRT = KFIRST + 1

84. ISTOP = XLNZ(K+1) - 1

85. IF ( ISTOP .LT. ISTRT ) GO TO 200

86. € e
87. ¢ BEFORE MODIFICATION, UPDATE VECTORS FIRST,
838. ¢ AND LINK FOR FUTURE MODIFICATION STEPS.
89. € e
90. FIRST(K) = ISTRT

91. I = XNZSUB(K) + (KFIRST-XLNZ(K)) + 1

92. ISUB = NZSUB(I)

93. LINK(K) = LINK(ISUB)

94. LINK(ISUB) = K

95. € e
96. C THE ACTUAL MOD IS SAVED IN VECTOR TEMP.
97. € e
98. DO 300 II = ISTRT, ISTOP

99. ISUB = NZSUB(I)

100. TEMP (ISUB) = TEMP(ISUB) + LNZ(II)=*LJK
101. I=I+1

102. 300 CONTINUE

103. COUNT = ISTOP - ISTRT + 1

104. OPS = OPS + COUNT

105. GO TO 200

106. € = e
107. ¢ APPLY THE MODIFICATIONS ACCUMULATED IN TEMP TO
108. ¢ COLUMN L(*,J).

109. € = e
110. 400 DIAGJ = DIAG(J) - DIAGJ

111. IF ( DIAGJ .LE. 0.0E0 ) GO TO 700

112. DIAGJ = SQRT(DIAGJ)

113. DIAG(J) = DIAGJ

114, ISTRT = XLNZ(J)

115. ISTOP = XLNZ(J+1) - 1

116. IF ( ISTOP .LT. ISTRT ) GO TO 600

117. FIRST(J) = ISTRT

118. I = XNZSUB(J)

119. ISUB = NZSUB(I)

120. LINK(J) = LINK(ISUB)

121. LINK(ISUB) = J

122, DO 500 II = ISTRT, ISTOP

123. ISUB = NZSUB(I)

124, LNZ(II) = ( LNZ(II)-TEMP(ISUB) ) / DIAGJ
125, TEMP (ISUB) = 0.0E0

126. I=I+1

127. 500 CONTINUE

128. COUNT = ISTOP - ISTRT + 1
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129. 0PS = 0PS + COUNT

130. 600 CONTINUE

131. RETURN

132. ¢ = —-mmmmmmmm
133. € ERROR - ZERO OR NEGATIVE SQUARE ROOT IN FACTORIZATION.
134. ¢ —mmmmmmmmmm o
135. 700 IFLAG = 1

136. RETURN

137. END

5.6.1 The Subroutine GSSLV (General sparse Symmetric
SoLVe)

The subroutine GSSLYV is used to perform the numerical solution of a factored
system, where the matrix is stored in the compressed subscript sparse format
as discussed in Section 5.5.2. It accepts as input the number of equations
NEQNS, together with the data structure and numerical components of the
matrix factor. This includes the compressed subscript structure (XNZSUB,
NZSUB), the diagonal components DIAG of the factor and the off-diagonal
nonzeros in the factor stored in the array pair (XLNZ, LNZ).

Since the nonzeros in the lower triangular factor are stored column by col-
umn, the solution method should be arranged so that access to the com-
ponents is made column-wise. The forward substitution uses the “outer-
product” form, whereas the backward substitution loop performs the solu-
tion by “inner-products” as discussed in Section 2.3.1 in Chapter 2.

1. Cokesteateakeokok ook oe oo oe sefesefe e ke se e se ke ke ke ok ok ok b ek ek ke o ke o ke o se e se s e e e e ke sk ok o ke ok ke ok ok e o
2. Caleakokok ke e seofe s sesle ke ek ek ok ok ok ok ok ek ek ke o ke o se e se e se e e e e e ke ke ok ok ke ok ke ok ke e ke e e e e e e e e
3. Cakxkokokokok GSSLV ..... GENERAL SPARSE SYMMETRIC SOLVE ek ek ko
4, Cokokokeolesteakkeak ok ok ok ook ook ke o ke o ke o se e se e se e e e e ke ok ok ke ok ke ok ke ok ke e ke e ke o e e e o e s e e s ek ok
5. Caleakokok ke oe seofe s skesle i ek kel ok bk ke ok b ek ek ke o ke o se e se e se s e e e e ks ok ke ok ok ke ok ke ok ke e ke e e e e e e e e
6. C
7. € PURPOSE - TO PERFORM SOLUTION OF A FACTORED SYSTEM, WHERE
8. C THE MATRIX IS STORED IN THE COMPRESSED SUBSCRIPT
9. C SPARSE FORMAT.
10. C
11. C INPUT PARAMETERS -
12. C NEQNS - NUMBER OF EQUATIONS.
13. C (XLNZ, LNZ) - STRUCTURE OF NONZEROS IN L.
14. C (XNZSUB, NZSUB) - COMPRESSED SUBSCRIPT STRUCTURE.
15. C DIAG - DIAGONAL COMPONENTS OF L.
16. C

C

[ury
-~

UPDATED PARAMETER -
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18.
19.
20.
21.
22,
23.
24,
25,
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44.
45.
46.
47.
48.
49.
50.
51.
52,
53.
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.

CHAPTER 5. GENERAL SPARSE METHODS

C RHS - ON INPUT, IT CONTAINS THE RHS VECTOR, AND ON
C OUTPUT, THE SOLUTION VECTOR.
C

(G 3k ke ke ake 3k fe afe o af¢ ake e afe ok afe ake ke ake sk afe ok afe ake 3k ok 3k afe 3k 3k ake 3k e 3k 3k 3k 3k e 3k e 3k 3 e 3 e afe o afe e h¢ afe e afe o ah¢ ake e ok 3k afe ake ke ok e ke
¢
SUBROUTINE GSSLV ( NEQNS, XLNZ, LNZ, XNZSUB, NZSUB,
1 DIAG, RHS )
¢
(G 3k ke ke ake 3k fe afe o af¢ ake e afe ok afe ake ke ake sk afe ok afe ake 3k ok 3k afe 3k 3k ake 3k e 3k 3k 3k 3k e 3k e 3k 3 e 3 e afe o afe e h¢ afe e afe o ah¢ ake e ok 3k afe ake ke ok e ke
¢
DOUBLE PRECISION COUNT, OPS
COMMON /SPKOPS/ OPS
REAL DIAG(1), LNZ(1), RHS(1), RHSJ, S
INTEGER NZSUB(1)
INTEGER XLNZ(1), XNZSUB(1), I, II, ISTOP,
1 ISTRT, ISUB, J, JJ, NEQNS
¢
(G 3k ke ke ake 3k fe afe o af¢ ake e afe ok afe ake ke ake sk afe ok afe ake 3k ok 3k afe 3k 3k ake 3k e 3k 3k 3k 3k e 3k e 3k 3 e 3 e afe o afe e h¢ afe e afe o ah¢ ake e ok 3k afe ake ke ok e ke
¢

DO 200 J = 1, NEQNS
RHSJ = RHS(J) / DIAG(J)
RHS(J) = RHSJ
ISTRT = XLNZ(J)
ISTOP = XLNZ(J+1) - 1
IF ( ISTOP .LT. ISTRT ) GO TO 200
I = XNZSUB(J)
DO 100 II = ISTRT, ISTOP
ISUB = NZSUB(I)
RHS(ISUB) = RHS(ISUB) - LNZ(II)*RHSJ
I=I+1
100 CONTINUE
200 CONTINUE
COUNT = 2% (NEQNS + ISTOP)
OPS = OPS + COUNT

Q QQ
|
Q
=
=
=
=
o
3
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=

c _________________________
¢ BACKWARD SUBSTITUTION
c _________________________
J = NEQNS
DO 500 JJ = 1, NEQNS
S = RHS(J)

ISTRT = XLNZ(J)

ISTOP = XLNZ(J+1) - 1

IF ( ISTOP .LT. ISTRT ) GO TO 400
I = XNZSUB(J)
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65. DO 300 II = ISTRT, ISTOP
66. ISUB = NZSUB(I)

67. S =S - LNZ(II)=*RHS(ISUB)
68. I=I+1

69. 300 CONTINUE

70. 400 RHS(J) = S / DIAG(J)

71. J=7J-1

72. 500 CONTINUE

73. RETURN

74. END

5.7 Additional Notes

The element model (George [18], Eisenstat [14]) is also used in the study of
elimination. It models the factorization process in terms of the clique struc-
ture in the elimination graphs. It is motivated by finite element applications,
where the clique structure of the matrix graph arises in a natural way. The
model is closely related to the quotient graph model studied in Section 5.3.
An implementation of the minimum degree algorithm using the element
model can be found in George and McIntyre [28]. In [27] the authors have
implemented the minimum degree algorithm using the implicit model via
reachable sets on the original graph. Refinements have been included to
speed up the execution time.

There are other ordering algorithms that are designed to reduce fill-in. The
mintmum deficiency algorithm (Rose [44]) numbers a node next if its elim-
ination incurs the least number of fills. It involves substantially more work
than the minimum degree algorithm and experience has shown that in prac-
tice the ordering produced is rarely much better than the one produced by
the minimum degree algorithm.

In (George [20]), a different storage scheme is proposed for general sparse
orderings. It makes use of the observation that off-diagonal nonzeros form
dense blocks. Only a few items of information are needed to store each non-
null block, and standard dense matrix methods can be used to operate on
them.
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Chapter 6

Quotient Tree Methods for

Finite Element and Finite
Difference Problems

6.1 Introduction

In this and the subsequent two chapters we study methods designed primarily
for matrix problems arising in connection with finite difference and finite
element methods for solving various problems in structural analysis, fluid
flow, elasticity, heat transport and related problems (Zienkiewicz [58]). For
our purposes here, the problems we have in mind can be characterized as
follows.

Let M be a planar mesh consisting of the union of triangles and/or quadri-
laterals called elements, with adjacent elements sharing a common side or a
common vertex. There is a node at each vertex of the mesh A, and there
may also be nodes lying on element sides and element faces, as shown in
the example of Figure 6.1.1. Associated with each node is a variable #; and
for some labelling of the nodes or variables from 1 to n, we define a finite
element system Ax = b associated with M as one where A is symmetric
and positive definite and for which a,; # 0 implies variables z; and z; are
associated with nodes of the same element. The graph associated with A
will be referred to as the finite element graph associated with M, as shown
in Figure 6.1.1.

In many practical settings, this definition of “finite element system” is not
quite general enough, since sometimes more than one variable is associated

187
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An 8 node finite element The finite element graph

mesh M associated with M

Figure 6.1.1: An 8 node finite element mesh and its associated finite element
graph.

with some or all of the nodes. However, our definition captures the essen-
tial features of such problems and simplifies the presentation of the ideas.
Moreover, the extension of the basic ideas to the more general case is im-
mediate, and since our algorithms and programs operate on the associated
graph, they work for the general case anyway.

Finite element matrix problems are often solved using the band or profile
methods described in Chapter 4, and for relatively small problems these
methods are often the most efficient, particularly for one-shot problems
where the relatively high cost of finding low fill orderings offsets their lower
arithmetic and storage costs. For fairly large problems, and/or in situa-
tions where numerous problems having identical structure must be solved,
the more sophisticated orderings which attempt to minimize fill, such as the
minimum degree ordering of Chapter 5 or the nested dissection orderings of
Chapter 8, are attractive.

The methods of Chapters 4 and 5 in a sense represent extremes in the “so-
phistication spectrum;” the envelope methods do not attempt to exploit
much of the structure of A and L, while the methods of Chapter 5 attempt
to exploit it all. In this chapter we investigate methods which lie somewhere
in between these two extremes, and for certain sizes and types of finite ele-
ment problems, they turn out to be more efficient than either of the other
two strategies. The ordering times and the operation counts are usually com-
parable with envelope orderings, but the storage requirements are usually
substantially lower.
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6.2 Solution of Partitioned Systems of Equations

The methods we consider in this chapter rely heavily on the use of partitioned
matrices, and some techniques to exploit sparsity in such systems. All the
partitionings we consider will be symmetric in the sense that the row and
column partitionings will be identical.

6.2.1 Factorization of a Block Two by Two Matrix

In order to illustrate most of the important ideas about computations in-
volving sparse partitioned matrices, we consider a block two by two linear

B V ®q b,
FO(E)() e

where B and C are 7 by r and s by s submatrices respectively, with r4s = n.
The Cholesky factor L of A, correspondingly partitioned, is given by

Lg O
L= B ) : (6.2.2)
( w' Lo

system Ax = b:

where Lp and L are the Cholesky factors of the matrices B and C =
C—-VTB™'V respectively, and W = L_B1 V. Here the “modification matrix”
subtracted from C to obtain C can be written as

viBlv = VTL‘BTLEV -WwWTw.

The determination of the factor L can be done as described below. For rea-
sons which will be obvious later in this section we refer to it as the symmetric
block factorization scheme.

Step 1 Factor the matrix B into LBLTB.

Step 2 Solve the triangular systems

LgW =V,

Step 3 Modify the submatrix remaining to be factored:
C=C-W'W.

Step 4 Factor the matrix C into LCLI(';«.
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This computational sequence is depicted pictorially in Figure 6.2.1.

Does this block-oriented computational scheme have any advantage over the
ordinary step by step factorization, in terms of operations? The following
result is quoted from George [19].

Theorem 6.2.1 The number of operations required to compute the factor
L of A is the same whether the step by step elimination scheme or the
symmetric block factorization scheme is used.

Intuitively, the result holds because the two methods perform exactly the
same numerical operations, but in a different order. There is, however,
a different way to perform the block factorization, where the arithmetic
requirement may decrease or increase. The alternative way depends on the
observation that the modification matrix VX B™'V can be computed in two
distinctly different ways, namely as the conventional product

(VL) LBgV)=W'W, (6.2.3)

or as

VILG(LgV))=VI(LgW)=V'W. (6.2.4)

We shall refer to this latter way of performing the computation as the asym-
metric block factorization scheme.

The difference in the two computations hinges on the cost of computing
WTW compared to the cost of solving LTBW = W, and then computing
VITW. As an example illustrating the difference in the arithmetic cost, con-
sider a partitioned matrix A having the structure indicated in Figure 6.2.2.
Since the matrix W is full (see Exercise 2.3.3 on page 30), by Corollary 2.3.2,
the cost of solving the equations LTBW = W is 4 x 19 = 76. The cost of
computing VIW is 10, yielding a total of 86. On the other hand, the cost
of computing WTW is 10 x 10 = 100.

In addition to potentially reducing arithmetic operations, this asymmetric
scheme may allow us to substantially reduce storage requirements over that
for the standard scheme. The key observation is that we do not need W
in order to solve for #, provided that V is available. Whenever we need
to compute a product such as W%z or Wz, we can do so by computing
VT(L_BTZ) or L_Bl(Vz); that is, we solve a triangular system and multiply
by a sparse matrix. If V' is much sparser than W, as it often is, we save
storage and perhaps operations as well. The important point to note in
terms of computing the factorization is that if we plan to discard W anyway,
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7

=N

// accessed only

Factorization of B into LgL%.

Solution of the system LgW = V.

Computation of C = C — WTW.

Factorization of C' into LoLZ.

not accessed accessed and
and not modified modified

Figure 6.2.1: Diagram indicating the sequence of computations for the sym-
metric block factorization scheme, and the modes in which the data is pro-

cessed.
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x X X X X x OOXRYROO®| x
X X X X X x OOXRXXOO®| x x
X X X X X x WOOVOVYOOO®| x x x
[ X X X x x| | < OOEOEXOOEO®| «x x x x |

Figure 6.2.2: Structure of a 2 by 2 partitioned matrix A and its Cholesky
factor L.

computing C' in the asymmetric fashion implied by (6.2.4) allows us to avoid

ever storing W. We can compute the product VI W one column at a time,
discarding each as soon as it has been used to modify a column of C. Only
one temporary vector of length r is required. By comparison, if we compute
VIB 'V as WTW, there appears to be no way to avoid storing all of W
at some point, even if we do not intend to retain it for later use.

This asymmetric version of the factorization algorithm can be described as
follows.

Step 1 Factor the matrix B into LBLTB.
Step 2 For each column v = V,; of V,

2.1) Solve Lgw = v.
2.2) Solve LTBﬁJ = w.
2.3) Set C,; = C,; — V' .

Step 3 Factor the matrix C into LCLI(';«.
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Of course, the symmetry of C is exploited in forming C.,; in Step 2.3. Re-
gardless of which of the above ways we actually employ in calculating the
product VI B™'V, there is still some freedom in the order in which we cal-
culate the components. Assuming that we compute the lower triangle, we
can compute the elements row by row or column by column, as depicted in
Figure 6.2.3; each requires a different order of access to the columns of W
or V.

A

column by column row by row

Figure 6.2.3: Diagram showing the access to columns of W or V, when the
lower triangle of VX B™'V is computed column by column and row by row.

6.2.2 Triangular Solution of a Block Two by Two System

With the Cholesky factor of the partitioned matrix available, the solution of
the linear system is straightforward, as shown below.

Forward Solve

Solve Lpy, = b;.
Compute l~)2 = by, — WTyl.
Solve Loy, = b,.

Backward Solve
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Solve L%wz =vy,.

Compute 9, = y, — Wea,.

Solve LTBwl =9y,.
This solution method will be referred to as the standard solution scheme.
However, as we noted in Section 6.2.1, it may be desirable to discard W in
favour of storing only V', and use the definition W = L_BlV whenever we
need to operate with the matrix W. If we do this, we obtain the following

algorithm, which we refer to as the implicit solution scheme. Here ¢, is a
temporary vector.

Forward Solve

Solve Lpy, = b;.
Solve LTBt1 =vy,.
Compute l~)2 =b, — VT,
Solve Loy, = b,.

Backward Solve

Solve L%wz =vy,.
Solve Lgt, = Va,.
Compute 9, = y; — ;.
Solve LTBwl =9y,.

In the implicit scheme, only the submatrices
{LB’ Lc, vV}
are required, compared to
{Lp,Lc, W}
in the standard scheme. By Corollary 2.3.5,
n(V) < n(W)

and for sparse matrices, V may have substantially fewer nonzeros than W.
In the matrix example of Figure 6.2.2,

n(V)=4
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while
n(W) = 40.

Thus, in terms of primary storage requirements, the use of the implicit so-
lution scheme may be quite attractive.

In terms of operations, the relative merits of the two schemes depend on the
sparsity of the matrices L g, V and W. Since the cost of computing Wz is
(W) and the cost of computing L_Bl(Vz) is n(V')+n(Lpg), we easily obtain
the following result. Here, the sparsity of the vector z is not exploited.

Lemma 6.2.2 The cost of performing implicit solution is no greater than
that of doing the standard block solution if and only if n(V') + n(Lg) <

n(W).

In the next section, we shall extend these ideas to block p by p linear systems,
for p > 2. In sparse partitioned systems, it is typical that the asymmetric
version of block factorization and the implicit form of the solution is superior
in terms of computation and storage. Thus, we consider only this version in
the remainder of this chapter.

Exercises

6.2.1) Let A be a symmetric positive definite block two by two matrix of

the form
B V

where both B and C are m by m and tridiagonal, and V is diagonal.
In your answers to the question below, assume m is large, and ignore
low order terms in your operation counts.

a) Denote the triangular factor of A by

L:(LBT o )
w' Lo

Describe the nonzero structures of L g, L and W.

b) Determine the number of operations (multiplications and divi-
sions) required to compute L using the symmetric and asym-
metric factorization algorithms described in Section 6.2.1.
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¢) Compare the costs of the explicit and implicit solution schemes
of Section 6.2.2 for this problem, where you may assume that
the right hand side b in the matrix problem A® = b is full.

d) Answer a), b) and c) above when B and C are full, and V is
diagonal.

e) Answer a), b) and c) above when B and C are full, and V is
null except for its first row, which is full.

The asymmetric factorization scheme can be viewed as computing
the factorization shown below.

r _
Aa- (B V)_(Isls O I W
v’ ¢ vl Lely J\ o I

where W = B™'V, and it is understood that the factors of B and C
are stored, rather than B and C. Write down explicit and implicit
solution procedures analogous to those described in Section 6.2.2, us-
ing this factorization. Is there any reduction in the operation counts
over those of Section 6.2.2?7 What about storage requirements if we
store the off-diagonal blocks of the factors in each case?

Prove Theorem 6.2.1.

Quotient Graphs, Trees, and Tree Partition-
ings

It should be clear that the success of the implicit solution scheme we consid-
ered in Section 6.2.2 was due to the very simple form of the off-diagonal block
W. For a general p by p partitioned matrix the off-diagonal blocks of its fac-

tor will not have such a simple form; to discard them in favor of the original
block of A, and then to effectively recompute them when needed, would in
general be prohibitively costly in terms of computation. This immediately

leads us to ask what characteristics a partitioned matrix should have in or-
der that the off-diagonal blocks of its factor have this simple form. In this
section we answer this question, and lay the foundations for an algorithm
for finding such partitionings.
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6.3.1 Partitioned Matrices and Quotient Graphs

We have already established the connection between symmetric matrices and
graphs. In this section we introduce some additional graph theory ideas to
allow us to deal with partitioned matrices.

Let A be partitioned into p* submatrices A;;, 1 < 4,5 < p, and suppose
we view each block as a single component which is zero if the block is null,
and nonzero otherwise. We can then associate a p-node graph with the p
by p block matrix A, having edges joining nodes if the corresponding off-
diagonal blocks are non-null. Figure 6.3.1 illustrates these ideas. Note that
just as in the scalar case, an ordering of this new graph is implied by the
matrix to which it corresponds. Also just as before, we are interested in
finding partitionings and orderings of unlabelled graphs. This motivates the
definition of quotient graphs, which we introduced in Chapter 5.

-><>< ><><-
X X X X
X | X
X X X
X X X
X X
X X X
| X X X

Figure 6.3.1: A partitioned matrix A, the implied partitioning of the node
set of its graph, and the graph of its zero-nonzero block structure.

Let G = (X, E) be a given unlabelled graph, and let P be a partition of its
node set X:
P = {IflaY%"'aY;J}'

Recall from Chapter 5 that the quotient graph of G with respect to P is the
graph (P, €), where {Y;,Y;} € £ if and only if Adj(Y;)NY; # ¢. We denote
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this graph by G/P.

Note that our definition of quotient graph is for an unlabelled graph. An
ordering a of G is said to be compatible with a partitioning P of G if each
member Y; of P is numbered consecutively by a. Clearly orderings and
partitionings of graphs corresponding to partitioned matrices must have this
property. An ordering o which is compatible with P induces or implies
an ordering on G/P; conversely, an ordering ap of G/P induces a class
of orderings on G which are compatible with P. Figure 6.3.2 illustrates
these notions. Unless we explicitly state otherwise, whenever we refer to an
ordering of a partitioned graph, we assume that the ordering is compatible
with the partitioning, since our interest is in ordering partitioned matrices.

Labelling of G/P induced by the

original ordering in Figure 6.3.1

OO D@
H—@

A different ordering compatible with P

Figure 6.3.2: An example of induced orderings for the graph example in
Figure 6.3.1.

In general, when we perform (block) Gaussian elimination on a partitioned
matrix, zero blocks may become nonzero. That is, “block fill” may occur
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just as fill occurs in the scalar case. For example, in the partitioned matrix
of Figure 6.3.1, there are two null off-diagonal blocks which will become
non-null after factorization. The structure of the triangular factor is given
in Figure 6.3.3.

><®><
. OO ®lx ® «
| ®|® o~

Figure 6.3.3: Structure of the factor of the matrix in Figure 6.3.1.

However, for a given partitioning of a symmetric matrix, the way block
fill occurs does not necessarily correspond exactly to the scalar situation. In
other words, we cannot simply carry out symbolic elimination on the quotient
graph, and thereby obtain the block structure of the factor L. What this
provides is the worst case fill, which of course could always happen, since
each non-null block could be full. Figure 6.3.4 illustrates this point.

Thus, symbolically factoring the quotient graph of a partitioned matrix may
yield a higher block fill than actually occurs. Intuitively, the reason is clear:
the elimination model assumes that the product of two nonzero quantities
will always be nonzero, which is true for scalars. However, it is quite possible
to have two non-null matrices whose product is logically zero.

6.3.2 Trees, Quotient Trees, and Tree Partitionings

A tree T = (X, E) is a connected graph with no cycles. It is easy to verify
that for a tree T', | X| = |E|+ 1, and every pair of distinct nodes is connected
by exactly one path. A rooted tree node of T called the root. Since every
pair of nodes in T is connected by exactly one path, the path from » to any
node z € X is unique. If this path passes through y, then z is a descendant
of y, and y is an ancestor of z. If {#,y} € FE, then @ is a son of y and y is
a father of z. If Y consists of a node y and all its descendants, the section
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[« « x x 1 [« 1
X X X X
x| x x
x| x x| x
X X x X X
A= X X — L = X X
x X X x & x
X X X X
X X X X x O®| x
X X X X X
| x X x x| | x X x x|

O O
5o e

GA/P Filled graph of G*/P GL+eT /P

Figure 6.3.4: Example showing that symbolic elimination on G/P may over-
estimate block fill.
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graph T'(Y') is a subtree of T. Note that the ancestor-descendant relationship
is only defined for rooted trees. These notions are illustrated in Figure 6.3.5.

Toot

father of d

@ 0 @

tree 7 subtree of 7

Figure 6.3.5: A rooted tree 7 and a subtree.

A monotone ordering each node is numbered before its father. Obviously
the root must be numbered last. Given an unrooted tree T, an ordering « is
monotone if it is monotone for the rooted tree (a(|X|),T). The significance
of monotonely ordered trees is that the corresponding matrices suffer no fill
during their factorization. The following lemma is due to Parter [43].

Lemma 6.3.1 Let A be an n by n symmetric matriz whose labelled graph
is a monotonely ordered tree. If A = LL”, where L is the Cholesky factor
of A, then a;; = 0 smplies [;; = 0,7 > j.

The proof is left as an exercise.
Lemma 6.3.2 Let A and L be as in Lemma 6.3.1. Thenl;; = a;;/l;;, 1> j.

Proof: Recall from Section 2.2.2, that the components of L are given by

j-1
L = (aij - Zlikljk) TR
k=1

To prove the result we show that Ei: l;ixl;x = 0. Suppose for a contradiction

that l;,1;,, # 0 for some m satisfying 1 < m < j — 1. By Lemma 6.3.1, this
means that a;,,a;, # 0, which implies nodes 7 and j are both connected to
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node m in the corresponding tree, with ¢ > m and j > m. But this implies
that the tree is not monotonely ordered. a
Lemmas 6.3.1 and 6.3.2 are not as significant as they might at first seem
because matrices which arise in applications seldom have graphs which are
trees. Their importance lies in the fact that they extend immediately to
partitioned matrices.

Suppose A is as before, partitioned into p® submatrices A;;, 1 < ¢,j <
p, and let L;; be the corresponding submatrices of its Cholesky factor L.
Suppose further that the labelled quotient graph of the partitioned matrix
A is a monotonely ordered tree, as illustrated in Figure 6.3.6. Then it is
straightforward to verify the analog of Lemma 6.3.2 for such a partitioned
matrix, that is L,;; = Aiij_jT = (Lj_j1 A;;)T for each non-null submatrix A;;
in the lower triangle of A. When a partitioning P of a graph G is such that
G/P is a tree, we call P a tree partitioning of G.

We have now achieved what we set out to do, namely, to determine the
characteristics a partitioned matrix must have in order to apply the ideas
developed in Section 6.2. The answer is that we want its labelled quotient
graph to be a monotonely ordered tree. If it has this property, we can
reasonably discard all the off-diagonal blocks of L, saving only its diagonal
blocks and the off-diagonal blocks of the lower triangle of A.

6.3.3 Asymmetric Block Factorization and Implicit Block So-
lution of Tree-partitioned Systems

Let A be p by p partitioned with blocks A;;,1 < ¢,57 < p, and L;; be
the corresponding blocks of L for ¢ > j. If the quotient graph of A is
a monotonely ordered tree, there is exactly one non-null block below the
diagonal block in A and L (Why?); let this block be 4,, , 1 <k <p—1.
The asymmetric block factorization algorithm for such problems is as follows.

Step 1 For k=1,2,---,p — 1 do the following

1.1) Factor Ag;.

1.2) For each column u of Ay ,,, solve Ayv = u, compute w =
A;‘:’ 4, U and subtract it from the appropriate column of A, ,,-

Step 2 Factor A,,.

A pictorial illustration of the modification of A,, ,, is shown in Figure 6.3.7.
Note that in the algorithm, temporary storage for the vectors u and w of
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[ X X X X 1
X X X
X X X X
X X X X
- X N i P = {{1,2}, {3,4,5}, {6,7}, {8,9,10}}
X X X
X X X X
X X X X
X X X
| N i

g4 G4/ P

Figure 6.3.6: Illustration of a partitioned matrix, its graph, and its quotient
graph which is a tree.
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Ak,k Ak,ltk
1
1
1
Aﬂkyk Aﬂkyﬂk

7/

Figure 6.3.7: Pictorial illustration of asymmetric block factorization.
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length equal to the largest block size is all that is needed. (The vector v
can overwrite u.) Of course, the symmetry of the diagonal blocks can be
exploited.

The implicit solution scheme for such block systems is also straightforward.
Here t and # are temporary vectors which can share the same space.

Forward implicit block solve: (Ly = b)

Step 1 For k=1,---,p— 1, do the following:

1.1) Solve Ly, = by.

1.2) Solve Lt = y,.

1.3) Compute b,, « b, — A}
Step 2 Solve Ly, = b,.

y/-’fkt'

Backward implicit block solve: (L™ ® = y)

Step 1 Solve L;fpwp =Y,
Step 2 Fork=p—1,p—2,---,1 do the following:
2.1) Compute t = Ay ,, @,,.
2.2) Solve Lyt = t.
2.3) Replace y, «— y, — 1.
2.4) Solve L, @; = y,.
Figure 6.3.8 gives the steps on the forward block solve of a block four by
four system.

Exercises

6.3.1) Prove Lemma 6.3.1.

6.3.2) Let QF/'P = ('P,EF) be the quotient graph of the filled graph of
G with respect to a partitioning P, and let (G/P)F = ('P,EF) be
the filled graph of G/P. The example in Figure 6.3.4 shows that eF
may have fewer members than E’F That is, the block structure of
the factor L of a partitioned matrix A may be sparser than the filled
graph of the quotient graph G/P would suggest. Show that if the di-

agonal blocks of L have the propagation property (see Exercise 2.3.3
on page 30), then the filled graph of G/P will correctly reflect the

L F
block structure of L. That is, show that EF = & in this case.
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2N
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N
|/
t

/
/

k=3
/|
i 4
N U 7T\ é
[N || % accessed
k=4 ||
modified
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Figure 6.3.8: Forward implicit block solve for a block 4 by 4 system.
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L F
6.3.3) Let EF and £ Dbe as defined in Exercise 6.3.2 on page 205, for the
labelled graph G, and partitioning P = {Y;,Y>,---,Y,}.

a) Prove that if the subgraphs G(Y;), ¢ = 1,2,---,p are connected,
then EF = E’F

b) Give an example to show that the converse need not hold.

¢) Prove that if the subgraphs Q(UﬁzlYQ), Il =1,2,---,p— 1 are
connected, then EF = E’F

6.3.4) A tree partitioning P = {Y;,Y>,---,Y,} of a graph G = (X, E) is
mazimal if there does not exist a tree partitioning @ = {Z,, Z,, -, Z;}
such that p < t, and for each ¢, Z; C Y} for some 1 < k < p. In
other words, it is maximal if we cannot subdivide one or more of the
Y;’s and still maintain a quotient tree. Suppose that for every pair
of distinct nodes in any Y;, there exist two distinct paths between «

and y:

T T, Loy Ly Y
and

TyY1sY2s 5 Yty Y
such that

S=U{ZzeP|zicz1<i<s}

T=|\[{zePlypcz1<i<t}
are disjoint. Show that P is maximal.

6.3.5) Let A be a block tridiagonal matrix,

A11 V2
vl A, V,
A= VI As
. Vp
V> A

where each A;; is an m by m square full matrix and each V; is a
diagonal matrix.
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a) What is the arithmetic cost for performing the asymmetric block
factorization? How does it compare with that of the symmetric
version?

b) What if each submatrix V'; has this sparse form

X X o XX,
o :

Assume m is large, and ignore low order terms in your calculations.

6.4 A Quotient Tree Partitioning Algorithm

6.4.1 A Heuristic Algorithm

The results of Section 6.3 suggest that we would like to find a partitioning
P = {%,Ys,---,Y,} with as many members as possible, consistent with the
requirement that G/P be a tree. In this section we provide an algorithm for
finding a tree partitioning of a graph.

The algorithm we propose is closely related to level structures (see Sec-
tion 4.4), so we begin by observing the connection between a level structure
on a graph and the partitioning it induces on the corresponding matrix. Let
GA be the unlabelled graph associated with A, and let £ = {Lo, Ly, -+, L;}

be a level structure in QA. From the definition of level structure, it is clear
that the quotient graph G/L is a chain, so if we number the nodes in each
level L; consecutively, from Ly to L;, the levels of £ induce a block tridiag-
onal structure on the correspondingly ordered matrix. An example appears
in Figure 6.4.1.

The algorithm we will ultimately present in this section begins with a rooted
level structure and then attempts to make the partitioning finer by refining
the levels of the level structure. Let £ = {Ly, L1,---, L;} be a rooted level
structure and let P = {Y¥;,Y,,---,Y,} be the partitioning obtained by sub-
dividing each L; as follows. Letting B, be the section graph prescribed by

!
Bi=¢|JL|, (6.4.1)
each L; is partitioned according to the sets specified by

{Y|Y=L,nC,G(C)is a connected component of B,}. (6.4.2)
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Figure 6.4.1: Block tridiagonal partitioning induced by a level structure.

Figure 6.4.2 illustrates this refinement for a simple graph.
Consider the refinement on L, = {d, e}. Note that

Bz = g({da eaiaga f7 h})

and it has two connected components with node sets:

{d,4, 9}
and
{e, f,h}.
Therefore, the level L, can be partitioned according to (6.4.2) into {d} and

{e}-

We are now ready to describe the algorithm for finding a tree partitioning.
Our description makes use of the definition SPAN(Y'), which is defined for
a subset Y of X by

SPAN(Y) = {z € X | there exists a path from y
to z, for some y € Y'}. (6.4.3)

When Y is a single node y, SPAN(Y) is simply the connected component
containing y.
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0 Ly : {a}

0 ° Ly :{b,c}
Q e L,:{d,e}

:{f,9,h,i}

w

c G/P

Figure 6.4.2: An example showing the refined partitioning P obtained from
the level structure L.

The algorithm we now describe makes use of a stack, and thereby avoids
explicitly finding the connected components of the B; which appeared in
the description of the level refinement (6.4.2). We assume that we are given
a root r for the rooted level structure to be refined. We discuss the choice
of r later in this section.

Step 0 (Initialization): Empty the stack. Generate the level structure
L(r) = {Lo,L1,Ly,- -+, Ly,)} rooted at r, and choose any node y €
Ly,y. Set I =I(r) and § = {y}.

Step 1 (Pop stack): If the node set T on the top of the stack belongs to L;,
pop T and set § «— SUT.

Step 2 (Form possible partition member): Determine the set Y = SPAN(S)
in the subgraph G(L;). If | < I(r) and some node in Adj(Y)N L;;; has
not yet been placed in a partition member, go to Step 5.

Step 3 (New partition member): Put ¥ in P.

Step 4 (Next level): Determine the set § = Adj(Y)NL;_,, and set | — [—1.
If I > 0, go to Step 1, otherwise stop.

Step 5 (Partially formed partition member): Push § onto the stack. Pick
Yiy1 € Adj(Y) N Ly, and trace a path y41, Y2, --* Yige, Where
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yl+i € LH_i a.Ild Ad](yl-l—t) N Ll-l—t-l—]. - ¢. Set S - {yH_t} a.nd l — l‘l‘ t,
and then go to Step 2.

The example in Figure 6.4.4, taken from George and Liu [23] illustrates
how the algorithm operates. The level structure rooted at node 1 is refined
to obtain a quotient tree having 10 nodes. In the example, ¥; = {20},
Y, = {18,19}, Y, = {16}, Y, = {10,15}, Y5 = {9,14,17}, and Y5 = {5,11},
with Ly = Y; UYs, Ly =Y, UY,,and Lg = Y; UY;.

In order to complete the description of the tree partitioning algorithm we
must specify how to find the root node r for the level structure. We obtain r
and L£(r) by using the subroutine FNROOT, described in Section 4.4.3. Since
we want a partitioning with as many members as possible, this seems to be a
sensible choice since it will tend to provide a level structure having relatively
many levels.

6.4.2 Subroutines for Finding a Quotient Tree Partitioning

In this section, a set of subroutines which implements the quotient tree
algorithm is discussed. The parameters NEQNS, XADJ and ADJNCY, as before,
are used to store the adjacency structure of the given graph. The vector PERM
returns the computed quotient tree ordering. In addition to the ordering,
the partitioning information is returned in the variable NBLKS and the vector
XBLK. The number of partition blocks is given in NBLKS, while the node
numbers of a particular block, say block k, are given by

{PERM(j) | XBLK(k) < j < XBLK(k + 1)}

Figure 6.4.6 contains the representation of the quotient tree ordering for the
example in Figure 6.4.3.

As we see from the example, the vector XBLK has size NBLKS + 1. The last
extra pointer is included so that blocks can be retrieved in a uniform manner.
In the example, to obtain the fifth block, we note that

XBLK(5) = T,
XBLK(6) = 10.

Thus, the nodes in this block are given by PERM(7), PERM(8) and PERM(9).
There are seven subroutines in this set, two of which have been considered
in detail in Chapter 4. We first consider their control relationship as shown
in Figure 6.4.7.
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| |

Figure 6.4.3: A graph, rooted level structure, and refined quotient tree.
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k Partitioning Y: Level | Adjacent Set Stack
1 ) {20} 6 {18,19} @
2 % {18,19} 5 {14,17} %)
3 % {16} 6 {10,15} {14,17}

¥
4 % {10,15} 5 {9,14} {14,17}
¥y)
5 ¥s) {9,14,17} 4 {8,13} )
¥y @)
¥y @
6 ;) (o {5,11} 4 {6,12} {8,13}
¥y @)
¥y @
7 ¥y) {8,13,12,6} 3 {4,7} 0
¥y o)
¥y @)
¥y @

Figure 6.4.4: Numbering in the refined quotient tree algorithm.




214 CHAPTER 6. QUOTIENT TREE METHODS
k Partitioning Y: Level | Adjacent Set Stack
8 ¥y {47} 2 {2,3} 0

¥y
¥)
¥) )
¥ ©)
9 %) 23 | 1 1 0
¥
¥y
etc.
10 Y10 {1} 0 0 o
¥
¥
¥y
¥ ®)
etc.

Figure 6.4.5: Continuation of Figure 6.4.4.
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PERM:  [20[18 19]16[10 159 141711 5[8 1312 6[4 7[2 3[1]

[ —
XBLK: |1 2 4 5 7 10121618 20 21
|

NBLKS: 10

Figure 6.4.6: An example of the data structure for a partitioning.

GENRQT
FNLVLS RQTREE
FNROOT FNSPAN COPYSI
ROOTLS

Figure 6.4.7: Control relation of subroutines for the refined quotient tree
algorithm.
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The subroutines FNROOT and ROOTLS are used to determine a pseudo-peripheral
node of a connected component of a given graph. For details of these two sub-
routines, readers are referred back to Section 4.4.3. The subroutine COPYSI
is a simple utility program that copies an integer array into another one. (A
listing of the subroutine appears after that of RQTREE.) We now describe in
detail the remaining subroutines in this group.

GENRQT (GENeral Refined Quotient Tree)

This subroutine is the driver subroutine for finding the quotient tree ordering
of a general disconnected graph. It goes through the graph and calls the
subroutine RQTREE to number each connected component in the graph. It
requires three working arrays XLS, LS and NODLVL. The array pair (XLS, LS)
is used by FNLVLS to obtain a level structure rooted at a pseudo-peripheral
node, while the vector NODLVL is used to store the level number of nodes in
the level structure.

The subroutine begins by initializing the vector NODLVL and the variable
NBLKS. It then goes through the graph until it finds a node 7 not yet num-
bered. Note that numbered nodes have their NODLVL values set to zero. This
node ¢ together with the array NODLVL defines a connected subgraph of the
original graph. The subroutines FNLVLS and RQTREE are then called to order
the nodes of this subgraph. The subroutine returns after it has processed all
the components of the graph.

1. Cokesteateakeokok ook oe oo oe sefesefe e ke se e se ke ke ke ok ok ok b ek ek ke o ke o ke o se e se s e e e e ke sk ok o ke ok ke ok ok e o
2. Caleakokok ke e seofe s sesle ke ek ek ok ok ok ok ok ek ek ke o ke o se e se e se e e e e e ke ke ok ok ke ok ke ok ke e ke e e e e e e e e
3. Cakxkokokokok GENRQT ..... GENERAL REFINED QUOTIENT TREE  #%%ksk**
4, Cokokokeolesteakkeak ok ok ok ook ook ke o ke o ke o se e se e se e e e e ke ok ok ke ok ke ok ke ok ke e ke e ke o e e e o e s e e s ek ok
5. Caleakokok ke oe seofe s skesle i ek kel ok bk ke ok b ek ek ke o ke o se e se e se s e e e e ks ok ke ok ok ke ok ke ok ke e ke e e e e e e e e
6. C

7. € PURPOSE - THIS ROUTINE IS A DRIVER FOR DETERMINING A

8. C PARTITIONED ORDERING FOR A POSSIBLY DISCONNECTED

9. C GRAPH USING THE REFINED QUOTIENT TREE ALGORITHM.

10. C

11. C INPUT PARAMETERS -

12. C NEQNS - NUMBER OF VARIABLES.

13. C (XADJ, ADJNCY) - THE ADJACENCY STRUCTURE.

14. C

15. C OUTPUT PARAMETERS -

16. C (NBLKS, XBLK) - THE QUOTIENT TREE PARTITIONING.

17. ¢ PERM - THE PERMUTATION VECTOR.

18. C

19. C WORKING PARAMETERS -
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20.
21.
22,
23.
24,
25,
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44.
45.
46.
47.
48.
49.
50.
51.
52,
53.
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.

A QUOTIENT TREE PARTITIONING ALGORITHM 217

(XLS, LS) - THIS LEVEL STRUCTURE PAIR IS USED BY
FNROOT TO FIND A PSEUDO-PERIPHERAL NODE.

NODLVL - A TEMPORARY VECTOR TO STORE THE LEVEL
NUMBER OF EACH NODE IN A LEVEL STRUCTURE.

PROGRAM SUBROUTINES -
FNLVLS, RQTREE.

Qoo aaaaaaQ

C ok ke ke ok ok ok ek e s sk e ok ok e ke o o o ke ke o o o o 3 ke sk ok e ok ok e ek o o o ok ke o o o o ke
C

SUBROUTINE GENRQT ( NEQNS, XADJ, ADJNCY, NBLKS, XBLK,

1 PERM, XLS, LS, NODLVL )
C
C ok ke ke ok ok ok ek e s sk e ok ok e ke o o o ke ke o o o o 3 ke sk ok e ok ok e ek o o o ok ke o o o o ke
C

INTEGER ADJNCY(1), LS(1), NODLVL(1), PERM(1),

1 XBLK(1), XLS(1)
INTEGER XADJ(1), I, IXLS, LEAF, NBLKS, NEQNS, NLVL,
1 ROOT

C
3k 3k 3k ok ok ok ok sk 3k ok ok sk sk oe e ke ke e e e sk 3k ok o sk e e e ke ke e ke o sk 3k 3k o sk e e e ke ke ke ok o sk 3k 3k o sk ke e e ke ke ke ok o sk 3k ke ok
C

aQ aQa
[
=
(]
3
=
=
=
=
N
=
3
=
Q
=

DO 100 I = 1, NEQNS
NODLVL(I) = 1
100 CONTINUE

NBLKS = 0
XBLK(1) = 1
c ____________________________________________________
¢ FOR EACH CONNECTED COMPONENT, FIND A ROOTED LEVEL
¢ STRUCTURE, AND THEN CALL RQTREE FOR ITS BLOCK ORDER.
c ____________________________________________________
DO 200 I = 1, NEQNS
IF (NODLVL(I) .LE. 0) GO TO 200
ROOT = I
CALL FNLVLS ( ROOT, XADJ, ADJNCY, NODLVL,
1 NLVL, XLS, LS )
IXLS = XLS(NLVL)
LEAF = LS(IXLS)
CALL RQTREE ( LEAF, XADJ, ADJNCY, PERM,
1 NBLKS, XBLK, NODLVL, XLS, LS )
200 CONTINUE
RETURN

END
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FNLVLS (FiNd LeVeL Structure)

This subroutine FNLVLS generates a rooted level structure for a component,
specified by NODLVL and rooted at a pseudo-peripheral node. In addition, it
also records the level number of the nodes in the level structure.

The connected component is specified by the input parameters RO0T, XADJ,
ADJNCY and NODLVL. The subroutine first calls the subroutine FNROOT to
obtain the required rooted level structure, given by (NLVL, XLS, LS). It
then loops through the level structure to determine the level numbers and

puts them into NODLVL (loop DO 200 LVL = ...).

1. 3k 3k 3k ok ok ok ok sk 3k ok ok sk sk oe e ke ke e e e sk 3k ok o sk e e e ke ke e ke o sk 3k 3k o sk e e e ke ke ke ok o sk 3k 3k o sk ke e e ke ke ke ok o sk 3k ke ok
2. 3k 3k 3k ok ok ok ok sk 3k ok ok sk sk oe e ke ke e e e sk 3k ok o sk e e e ke ke e ke o sk 3k 3k o sk e e e ke ke ke ok o sk 3k 3k o sk ke e e ke ke ke ok o sk 3k ke ok
3. Ckkkkkkxk FNLVLS ..... FIND LEVEL STRUCTURE Feokokokokeokeoke ke ke
4, 3k 3k 3k ok ok ok ok sk 3k ok ok sk sk oe e ke ke e e e sk 3k ok o sk e e e ke ke e ke o sk 3k 3k o sk e e e ke ke ke ok o sk 3k 3k o sk ke e e ke ke ke ok o sk 3k ke ok
5. 3k 3k 3k ok ok ok ok sk 3k ok ok sk sk oe e ke ke e e e sk 3k ok o sk e e e ke ke e ke o sk 3k 3k o sk e e e ke ke ke ok o sk 3k 3k o sk ke e e ke ke ke ok o sk 3k ke ok
6. C

7. C PURPOSE - FNLVLS GENERATES A ROOTED LEVEL STRUCTURE FOR

8. ¢C A MASKED CONNECTED SUBGRAPH, ROOTED AT A PSEUDO-

9. ¢ PERIPHERAL NODE. THE LEVEL NUMBERS ARE RECORDED.

10. C

11. C INPUT PARAMETERS -

12. C (XADJ, ADJNCY) - THE ADJACENCY STRUCTURE.

13. €

14. C OUTPUT PARAMETERS -

15. € NLVL - NUMBER OF LEVELS IN THE LEVEL STRUCTURE FOUND.
16. C (XLS, LS) - THE LEVEL STRUCTURE RETURNED.

17. ¢

18. C UPDATED PARAMETERS -

19. C ROOT - ON INPUT, WITH THE ARRAY NODLVL, SPECIFIES
20. C THE COMPONENT WHOSE PSEUDO-PERIPHERAL NODE IS
21. C TO BE FOUND. ON OUTPUT, IT CONTAINS THAT NODE.
22, C NODLVL - ON INPUT, IT SPECIFIES A SECTION SUBGRAPH.
23. € ON RETURN, IT CONTAINS THE NODE LEVEL NUMBERS.
24, C
26, C PROGRAM SUBROUTINES -
26. C FNROOT.
27. €
28. 3k 3k 3k ok ok ok ok sk 3k ok ok sk sk oe e ke ke e e e sk 3k ok o sk e e e ke ke e ke o sk 3k 3k o sk e e e ke ke ke ok o sk 3k 3k o sk ke e e ke ke ke ok o sk 3k ke ok
29. C
30. SUBROUTINE FNLVLS ( ROOT, XADJ, ADJNCY, NODLVL,
31. 1 NLVL, XLS, LS )
32. ¢C
33. 3k 3k 3k ok ok ok ok sk 3k ok ok sk sk oe e ke ke e e e sk 3k ok o sk e e e ke ke e ke o sk 3k 3k o sk e e e ke ke ke ok o sk 3k 3k o sk ke e e ke ke ke ok o sk 3k ke ok
34. ¢
35. INTEGER ADJNCY(1), LS(1), NODLVL(1), XLS(1)
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36. INTEGER XADJ(1), J, LBEGIN, LVL, LVLEND, NLVL,
37. 1 NODE, ROOT
38. C

39. 3k 3k 3k ok ok ok ok sk 3k ok ok sk sk oe e ke ke e e e sk 3k ok o sk e e e ke ke e ke o sk 3k 3k o sk e e e ke ke ke ok o sk 3k 3k o sk ke e e ke ke ke ok o sk 3k ke ok
40. C

41, CALL FNROOT ( ROOT, XADJ, ADJNCY, NODLVL,
42, 1 NLVL, XLS, LS )
43, DO 200 LYL = 1, NLVL

44, LBEGIN = XLS(LVL)

45, LVLEND = XLS(LVL + 1) - 1
46. DO 100 J = LBEGIN, LVLEND
47. NODE = LS(J)

48, NODLVL (NODE) = LVL

49, 100 CONTINUE

50. 200 CONTINUE

51. RETURN

52. END

RQTREE (Refined Quotient TREE)

This is the subroutine that actually applies the quotient tree algorithm as
described in Section 6.4.1. Throughout the procedure, it maintains a stack
of node subsets. Before going into the details of the subroutine, we first
consider the organization of the stack.

For each node subset in the stack, we need to store its size and the level
number of its nodes. In the storage array called STACK, we store the nodes
in the subset in contiguous locations, and then the subset size and the level
number in the next two locations. We also keep a variable TOPSTK that
stores the current number of locations used in STACK. Figure 6.4.8 contains
an illustration of the organization of the vector STACK.

To push a subset 5 of level 7 into the stack, we simply copy the nodes in
S into the vector STACK starting at location TOPSTK+1. We then enter the
size | S| and the level number ¢ and finally update the value of TOPSTK. On
the other hand, to pop a node subset from the stack, we first obtain the size
of the subset from STACK(TOPSTK-1) and then the subset can be retrieved
from STACK starting at TOPSTK-size-1. The value of TOPSTX is also updated
to reflect the current status of the stack.

We now consider the details of the subroutine RQTREE. It operates on a con-
nected subgraph as specified by LEAF, XADJ, ADJNCY and NODLVL. It implicitly
assumes that a level structure has been formed on this component, where
NODLVL contains the level numbers for its nodes and LEAF is a leaf node in
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the level structure. In a level structure £ = {L¢, L1,---,L;}, a node @ is
said to be a leaf in L if Adj(z)N L;y1 = ¢ where z € L,.

[o]o]
TOPSTK
Initialized STACK
level number level number —‘
‘O‘O‘nodesubseth‘*‘ ‘nodesubseth“‘
size size TOPSTK
STACK

Figure 6.4.8: Organization of the stack in the subroutine RQTREE.

In addition to STACK, the subroutine uses a second working vector ADJS.
This vector is used to store the adjacent set of the current block in the lower
level, and it is a potential subset for the next block.

The subroutine starts by initializing the STACK vector, its pointer TOPSTK
and the variable TOPLVL. The variable TOPLVL is local to the subroutine and
it stores the level number of the top subset in the stack. A leaf block is then
determined by calling the subroutine FNSPAN on the node LEAF. (A leaf block
is a subset Y such that Adj(Y)N L,;4; = ¢ where Y C L;.) It is numbered
as the next block (statement labelled 300).

We then march onto the next lower level (LEVEL = LEVEL - 1 and follow-
ing). The adjacent set of the previous block in this level is used to start
building up the next potential block. If the node subset at the top of the
STACK vector belongs to the same level, it is popped from the stack and
included into the potential block. Then, the subroutine FNSPAN is called
(statement labelled 400) to obtain the span of this subset. If the span does
not have any unnumbered neighbors in the higher level, it becomes the next
block to be numbered. Otherwise, the span is pushed into the stack and
instead a leaf block is determined as the next one to be numbered.

The subroutine goes through all the levels until it comes to the first one. By
this time, all the nodes in the component should have been numbered and
the subroutine returns.
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(G 3k ke ke ake 3k fe afe o af¢ ake e afe ok afe ake ke ake sk afe ok afe ake 3k ok 3k afe 3k 3k ake 3k e 3k 3k 3k 3k e 3k e 3k 3 e 3 e afe o afe e h¢ afe e afe o ah¢ ake e ok 3k afe ake ke ok e ke
(G 3k ke ke ake 3k fe afe o af¢ ake e afe ok afe ake ke ake sk afe ok afe ake 3k ok 3k afe 3k 3k ake 3k e 3k 3k 3k 3k e 3k e 3k 3 e 3 e afe o afe e h¢ afe e afe o ah¢ ake e ok 3k afe ake ke ok e ke
ook ek RQTREE ..... REFINED QUOTIENT TREE ——
(G 3k ke ke ake 3k fe afe o af¢ ake e afe ok afe ake ke ake sk afe ok afe ake 3k ok 3k afe 3k 3k ake 3k e 3k 3k 3k 3k e 3k e 3k 3 e 3 e afe o afe e h¢ afe e afe o ah¢ ake e ok 3k afe ake ke ok e ke
(G 3k ke ke ake 3k fe afe o af¢ ake e afe ok afe ake ke ake sk afe ok afe ake 3k ok 3k afe 3k 3k ake 3k e 3k 3k 3k 3k e 3k e 3k 3 e 3 e afe o afe e h¢ afe e afe o ah¢ ake e ok 3k afe ake ke ok e ke

PURPOSE - THIS SUBROUTINE FINDS A QUOTIENT TREE ORDERING
FOR THE COMPONENT SPECIFIED BY LEAF AND NODLVL.

INPUT PARAMETERS -
(XADJ, ADJNCY) - THE ADJACENCY STRUCTURE.
LEAF - THE INPUT NODE THAT DEFINES THE CONNECTED
COMPONENT. IT IS ALSO A LEAF NODE IN THE
ROOTED LEVEL STRUCTURE PASSED TO RQTREE.
I.E. IT HAS NO NEIGHBOR IN THE NEXT LEVEL.

OUTPUT PARAMETERS -
PERM - THE PERMUTATION VECTOR CONTAINING THE ORDERING.
(NBLKS, XBLK) - THE QUOTIENT TREE PARTITIONING.

UPDATED PARAMETERS -
NODLVL - THE NODE LEVEL NUMBER VECTOR. NODES IN THE
COMPONENT HAVE THEIR NODLVL SET TO ZERO AS
AS THEY ARE NUMBERED.

WORKING PARAMETERS -
ADJS - TEMPORARY VECTOR TO STORE THE ADJACENT SET
OF NODES IN A PARTICULAR LEVEL.
STACK - TEMPORARY VECTOR USED TO MAINTAIN THE STACK
OF NODE SUBSETS. IT IS ORGANISED AS -

PROGRAM SUBROUTINES -
FNSPAN, COPYSI.

[ T T T2 T2~ B T - A -~ T - S - Y - TR -~ Y - Y - T -~ Y -~ Y o B - K o~ o B o T - B o T o T -~ B o B o T - B - B - |

(G 3k ke ke ake 3k fe afe o af¢ ake e afe ok afe ake ke ake sk afe ok afe ake 3k ok 3k afe 3k 3k ake 3k e 3k 3k 3k 3k e 3k e 3k 3 e 3 e afe o afe e h¢ afe e afe o ah¢ ake e ok 3k afe ake ke ok e ke
¢
SUBROUTINE RQTREE ( LEAF, XADJ, ADJNCY, PERM,
1 NBLKS, XBLK, NODLVL, ADJS, STACK )
¢
(G 3k ke ke ake 3k fe afe o af¢ ake e afe ok afe ake ke ake sk afe ok afe ake 3k ok 3k afe 3k 3k ake 3k e 3k 3k 3k 3k e 3k e 3k 3 e 3 e afe o afe e h¢ afe e afe o ah¢ ake e ok 3k afe ake ke ok e ke
¢
INTEGER ADJNCY(1), ADJS(1), NODLVL(1), PERM(1),
1 STACK(1), XBLK(1)
INTEGER XADJ(1), BLKSZE, IP, J, JP, LEAF, LEVEL,
1 NADJS, NBLKS, NODE, NPOP, NULEAF,

( SUBSET NODES, SUBSET SIZE, SUBSET LEVEL )....
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47.
48.
49.
50.
51.
52,
53.
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66.
67.
68.
69.
70.
71.
72.
73.
74.
75.
76.
77.
78.
79.
80.
81.
82.
83.
84.
85.
86.
87.
88.
89.
90.
91.
92,
93.

C
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NUM, TOPLVL, TOPSTK

3k 3k 3k ok ok ok ok sk 3k ok ok sk sk oe e ke ke e e e sk 3k ok o sk e e e ke ke e ke o sk 3k 3k o sk e e e ke ke ke ok o sk 3k 3k o sk ke e e ke ke ke ok o sk 3k ke ok

C

C
C
C

QaQ aQ

Q

Qo

100

200

300

STACK(1) = 0
STACK(2) = 0
TOPSTK = 2
TOPLYL = 0
NUM = XBLK(NBLKS+1) - 1
FORM A LEAF BLOCK, THAT IS, ONE WITH NO NEIGHBORS
IN ITS NEXT HIGHER LEVEL.
LEVEL = NODLVL (LEAF)
NODLVL (LEAF) = 0
PERM(NUM+1) = LEAF
BLKSZE = 1
CALL FNSPAN ( XADJ, ADJNCY, NODLVL, BLKSZE, PERM(NUM+1),
LEVEL, NADJS, ADJS, NULEAF )
IF ( NULEAF .LE. 0 ) GO TO 300
JP = NUM
DD 200 J = 1, BLKSZE
JP=JP + 1
NODE = PERM(JP)
NODLVL (NODE) = LEVEL
CONTINUE
LEAF = NULEAF
GO TO 100

NBLKS = NBLKS + 1
XBLK(NBLKS) = NUM + 1
NUM = NUM + BLKSZE
FIND THE NEXT POSSIBLE BLOCK BY USING THE ADJACENT
SET IN THE LOWER LEVEL AND THE TOP NODE SUBSET (IF
APPROPRIATE) IN THE STACK.
LEVEL = LEVEL - 1
IF ( LEVEL .LE. 0 ) GO TO 500
CALL COPYSI ( NADJS, ADJS, PERM(NUM+1) )
BLKSZE = NADJS
IF ( LEVEL .NE. TOPLVL ) GO TO 400
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94, ¢ 0 e

96. C THE LEVEL OF THE NODE SUBSET AT THE TOP OF THE

96. C STACK IS THE SAME AS THAT OF THE ADJACENT SET.

97. ¢ POP THE NODE SUBSET FROM THE STACK.

98. ¢ 0 @ mmmmmmmmmmm e

99. NPOP = STACK(TOPSTK-1)

100. TOPSTK = TOPSTK - NPOP - 2

101. IP = NUM + BLKSZE + 1

102. CALL COPYSI ( NPOP, STACK(TOPSTK+1), PERM(IP) )

103. BLKSZE = BLKSZE + NPOP

104. TOPLVL = STACK(TOPSTK)

105. 400 CALL FNSPAN ( XADJ, ADJNCY, NODLVL, BLKSZE,

106. 1 PERM(NUM+1) , LEVEL, NADJS, ADJS, NULEAF )

107. IF ( NULEAF .LE. 0 ) GO TO 300

108. ¢ = —mmmmmmmmmmmm e

109. € PUSH THE CURRENT NODE SET INTO THE STACK.

110. ¢ = o —mmmmmmmmmm

111. CALL COPYSI ( BLKSZE, PERM(NUM+1), STACK(TOPSTK+1) )

112, TOPSTK = TOPSTK + BLKSZE + 2

113. STACK (TOPSTK-1) = BLKSZE

114. STACK (TOPSTK) = LEVEL

115. TOPLVL = LEVEL

116. LEAF = NULEAF

117. GO TO 100

118. ¢ = --—mm—————————-

119. € BEFORE EXIT ...

120. ¢ -

121. 500 XBLK (NBLKS+1) = NUM + 1

122, RETURN

123. END
1. Cokesteateakokok seok e oo oesefe sefe se e sfe e e e e e ok ke ok ke ok ke ok b ek ek ke o e o se e se e se e e e e ke sk ok ok ok o e o o
2, Caleakokok ke oeseoke s sesle e ke ke ok ok ok sk ok ek ek ke ek e e e e e e se e se e se ke se ke ke ke ok ok ok ko ek ke e ke e ke o e e e
3. Cakxkokokokskaskakk COPYSI ..... COPY INTEGER VECTOR ke ok e e ok ke o e ok o
4, Cokokokeokeseakakak ok ok ok ook ook ke o ke o ke o se e se e e se e se s sk sl ke ke ke ok ok ok ok ek ek ke o ke o ke o e e e e e e e e sk
5. Caleakokok ke o seoke s aleie ke ke ke ok ok ok sk ok ek ek ke ek e se e e e e se e se e se ke se ke ke ke ke ok ke b ok ek ke e ke e ke o e e e
6. C
7. € PURPOSE - THIS ROUTINE COPIES THE N INTEGER ELEMENTS FROM
8. C THE VECTOR A TO B. (ARRAYS OF SHORT INTEGERS)
9. C

10. C INPUT PARAMETERS -

11. C N - SIZE OF VECTOR A.

12. C A - THE INTEGER VECTOR.

13. C

14. C OUTPUT PARAMETER -

15. C B - THE OUTPUT INTEGER VECTOR.
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16. C

17 . Colesteakokok ke ook oeseofese e sle e se e ke ke ok bk bk ok ek ke o ke o ke o se e se e se e e e e ke ke ok ok ke ok ke ok ke e ke e ke e e e e
18. C

19. SUBROUTINE COPYSI ( N, A, B )

20. C

21, Cakokokokese skl ok ok ok o ok ok ek ek ke o ke o ke o se e se e e e e e ke ke ok ke ok ek ke ok ke e ke e ke o e e e se e e e e s
22, C

23. INTEGER A(1), B(1)
24, INTEGER I, N
26, C

26. 3k 3k 3k ok ok ok ok sk 3k ok o sk sk e e ke ke e ke e sk 3k sk o sk e e e e ke ke ok e sk 3k 3k oe o ke ke e e ke ke ok ok sk 3k 3k oe o ke e e e ke ke ok ok sk 3k 3k o ok
27. C

28. IF ( N .LE. 0 ) RETURN
29. DO 100 I =1, N

30. B(I) = A(I)

31. 100 CONTINUE

32. RETURN

33. END

FNSPAN (FiNd SPAN)

This subroutine is used by the subroutine RQTREE and has several functions,
one of which is to find the span of a set. Let £ = {L¢, Ly,---, L;} be a given
level structure and let .S be a subset in level L;. This subroutine determines
the span of S in the subgraph G(L,) and finds the adjacent set of S in level
L;_;. Moreover, if the span of S has some unnumbered neighbors in level
L;,, the subroutine returns an unnumbered leaf node and in that case, the
span of § may only be partially formed.

Inputs to this subroutine are the graph structure in the array pair (XADJ,
ADJNCY), the level structure stored implicitly in the vector NODLVL, and the
subset (NSPAN, SET) in level LEVEL of the level structure. On return, the
vector SET is expanded to accommodate the span of this given set. The
variable NSPAN will be increased to the size of the span set.

After initialization, the subroutine goes through each node in the partially
spanned set. Here, the variable SETPTR points to the current node in the
span set under consideration. The loop DO 500 J = ... is then executed to
inspect the level numbers of its neighbors. Depending on the level number,
the neighbor is either bypassed or included in the span set or included in
the adjacent set. A final possibility is when the neighbor belongs to a higher
level. In this case, a path through unnumbered nodes is traced down the level
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structure until we hit a leaf node. The subroutine returns after recovering
the nodes in the partially formed adjacent set (loop DO 900 I = ...).

A normal return from FNSPAN will have the span set in (NSPAN, SET) and
the adjacent set in (NADJS, ADJS) completely formed, and have zero in the
variable LEAF.

1. Cokesteateakeokok ook oe oo oe sefesefe e ke se e se ke ke ke ok ok ok b ek ek ke o ke o ke o se e se s e e e e ke sk ok o ke ok ke ok ok e o
2. Caleakokok ke e seofe s sesle ke ek ek ok ok ok ok ok ek ek ke o ke o se e se e se e e e e e ke ke ok ok ke ok ke ok ke e ke e e e e e e e e
3. Coedkdeokakokokokkok FNSPAN ..... FIND SPAN SET e 3 3 3 3k ke o A e e e ke e
4, Cokokokeolesteakkeak ok ok ok ook ook ke o ke o ke o se e se e se e e e e ke ok ok ke ok ke ok ke ok ke e ke e ke o e e e o e s e e s ek ok
5. Caleakokok ke oe seofe s skesle i ek kel ok bk ke ok b ek ek ke o ke o se e se e se s e e e e ks ok ke ok ok ke ok ke ok ke e ke e e e e e e e e
6. C

7. € PURPOSE - THIS SUBROUTINE IS ONLY USED BY RQTREE. ITS

8. C MAIN PURPOSE IS TO FIND THE SPAN OF A GIVEN SUBSET

9. C IN A GIVEN LEVEL SUBGRAPH IN A LEVEL STRUCTURE.

10. C THE ADJACENT SET OF THE SPAN IN THE LOWER LEVEL IS

11. C ALSO DETERMINED. IF THE SPAN HAS AN UNNUMBERED NODE
12. C IN THE HIGHER LEVEL, AN UNNUMBERED LEAF NODE (I.E. ONE
13. C WITH NO NEIGHBOR IN NEXT LEVEL) WILL BE RETURNED.

14. C

15. C INPUT PARAMETERS -

16. C (XADJ, ADJNCY) - THE ADJACENT STRUCTURE.

17. ¢ LEVEL - LEVEL NUMBER OF THE CURRENT SET.

18. C

19. C UPDATED PARAMETERS -
20. C (NSPAN, SET) - THE INPUT SET. ON RETURN, IT CONTAINS
21. C THE RESULTING SPAN SET.

22, C NODLVL - THE LEVEL NUMBER VECTOR. NODES CONSIDERED

23. C WILL HAVE THEIR NODLVL CHANGED TO ZERO.

24, C

26, C OUTPUT PARAMETERS -

26. C (NADJS, ADJS) - THE ADJACENT SET OF THE SPAN IN THE

27. C LOWER LEVEL.

28. C LEAF - IF THE SPAN HAS AN UNNUMBERED HIGHER LEVEL NODE,
29. C LEAF RETURNS AN UNNUMBERED LEAF NODE IN THE LEVEL
30. C STRUCTURE, OTHERWISE, LEAF IS ZERO.

31. C

32. C

33, Ckokeokokeokeseakeie i ek ok ok o ek ook ke e ke e ke e e e e se e se e se e se ke se ke ke ok ok ok ko ke ok ek ke e ke o e e e e e e e
34. C

35. SUBROUTINE FNSPAN ( XADJ, ADJNCY, NODLVL, NSPAN, SET,

36. 1 LEVEL, NADJS, ADJS, LEAF )

37. ¢C

38, Cakokokokeokeseakle i ek ok ok ok ok ek ook ke e ke e ke e e e e se e se e se e se ke se ke ke ok ok ok ko ek ek ke e ke o e e e e e e e
39. C
40. INTEGER ADJNCY(1), ADJS(1), NODLVL(1), SET(1)
41. INTEGER XADJ(1), I, J, JSTOP, JSTRT, LEAF, LEVEL,
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42, 1 LVL, LVLM1, NADJS, NBR, NBRLVL, NODE,
43, 1 NSPAN, SETPTR

44, ¢

45, (G 3k ke ke ake 3k fe afe o af¢ ake e afe ok afe ake ke ake sk afe ok afe ake 3k ok 3k afe 3k 3k ake 3k e 3k 3k 3k 3k e 3k e 3k 3 e 3 e afe o afe e h¢ afe e afe o ah¢ ake e ok 3k afe ake ke ok e ke
46. C

47. ¢ mmmmmmmmmem o

48. ¢ INITIALIZATION ...

49, ¢ = mmmmmmmmmmm

50. LEAF = 0

51. NADJS = 0

52. SETPTR = 0

53. 100 SETPTR = SETPTR + 1

54. IF ( SETPTR .GT. NSPAN ) RETURN

BE. € e

56. C FOR EACH NODE IN THE PARTIALLY SPANNED SET ...

B7. € e

58. NODE = SET(SETPTR)

59. JSTRT = XADJ(NODE)

60. JSTOP = XADJ(NODE + 1) - 1

61. IF ( JSTOP .LT. JSTRT ) GO TO 100

62. € e
63. ¢ FOR EACH NEIGHBOR OF NODE, TEST ITS NODLVL VALUE
64. € e
65. DO 500 J = JSTRT, JSTOP

66. NBR = ADJNCY(J)

67. NBRLVL = NODLVL (NBR)

68. IF (NBRLVL .LE. 0) GO TO 500

69. IF (NBRLVL - LEVEL) 200, 300, 600

70. € e

71. ¢ NBR IS IN LEVEL-1, ADD IT TO ADJS.

72. € e

73. 200 NADJS = NADJS + 1

74. ADJS (NADJS) = NBR

75. GO TO 400

76. € e

77. € NBR IS IN LEVEL, ADD IT TO THE SPAN SET.

78. € e

79. 300 NSPAN = NSPAN + 1

80. SET (SPAN) = NBR

81. 400 NODLVL(NBR) = 0

82. 500 CONTINUE

83. GO TO 100

84. € = e
85. ¢ NBR IS IN LEVEL+1. FIND AN UNNUMBERED LEAF NODE BY
86. ¢ TRACING A PATH UP THE LEVEL STRUCTURE. THEN

87. ¢ RESET THE NODLVL VALUES OF NODES IN ADJS.

88. € = e
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89. 600 LEAF = NBR
90. LVL = LEVEL + 1
91. 700 JSTRT = XADJ(LEAF)
92. JSTOP = XADJ(LEAF+1) - 1
93. DO 800 J = JSTRT, JSTOP
94, NBR = ADJNCY(J)
95. IF ( NODLVL(NBR) .LE. LVL ) GO TO 800
96. LEAF = NBR
97. LVL = LVL + 1
98. GO TO 700
99. 800 CONTINUE
100. IF (NADJS .LE. 0) RETURN
101. LVLM1 = LEVEL - 1
102. DO 900 I = 1, NADJS
103. NODE = ADJS(I)
104. NODLVL (NODE) = LVLM1
105. 900 CONTINUE
106. RETURN
107.
Exercises

6.4.1) Let P = {¥1,Ys,---
algorithm described in Section 6.4.1.

6.5

a) Show that G/P is a quotient tree.

,Y,} be the partitioning of G generated by the

b) Prove that the quotient tree generated by the algorithm of Sec-
tion 6.4.1 is maximal, as defined in Exercise 6.3.4 on page 207.
(Hint: Let Y € P and Y C L;(r), where L;(r) is defined in
Section 6.4.1. Show that for any two nodes z and y in Y,

there exists a path joining them in G(U/Zy L;(r)) and one in

Q(Uizj L;(7)). Then use the result of Exercise 6.3.4 on page 207.)

A Storage Scheme and Storage Allocation Pro-
cedure

In this section we describe a storage scheme which is specially designed for
solving partitioned matrix problems whose quotient graphs are monotonely
The assumption is that all the off-diagonal blocks of the
triangular factor L are to be discarded in favor of the blocks of the original

ordered trees.
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matrix A. In other words, the implicit solution scheme described at the end
of Section 6.3.3 is to be used.

6.5.1 The Storage Scheme

For illustrative purposes we again assume A is partitioned into p? subma-
trices A;;, 1 <14, < p, and let L;; be the corresponding submatrices of L,
where A = LL”. Since we do not know whether A will have the form

Figure 6.5.1: Examples of matrices whose quotient graphs are trees.

(which correspond to quite different quotient trees), or something in between,
the storage scheme must be quite flexible. Define the matrices

Vi = _ , 2<k<p. (6.5.1)

Thus, A can be viewed as follows, where p is chosen to be 5.

Now our computational scheme requires that we store the diagonal blocks
Ly, 1 < k < p, and the non-null off-diagonal blocks of A. The storage
scheme we use is illustrated in Figure 6.5.3. The diagonal blocks of L are
viewed as forming a single block diagonal matrix which is stored using the
envelope storage scheme already described in Section 4.5.1. That is, the
diagonal is stored in the array DIAG, and the rows of the lower envelope are
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[ AL |V, | Vs |
AT | A, V.,
AT, AL | Ags Vs
A,-lr4 A:2P4 Ag't} A44

Arfs Ag‘s A:;,F5 A:fs A55

Figure 6.5.2: A partitioned matrix.

stored using the array pair (XENV, ENV).In addition, an array XBLK of length
p+1 is used to record the partitioning P: XBLK(k) is the number of the first
row of the k-th diagonal block, and for convenience we set XBLK(p+1) = n+1.
The nonzero components of the Vi, 1 < k < p are stored in a single one
dimensional array NONZ, column by column, beginning with those of V,.
A parallel integer array NZSUBS is used to store the row subscripts of the
numbers in NONZ, and a vector XNONZ of length n + 1 contains the positions
in NONZ where each column resides. For programming convenience, we set
XNONZ(n + 1) = n + 1, where 5 denotes the number of components in NONZ.
Note that XNONZ(¢ + 1) = XNONZ(7) implies that the corresponding column
of V', is null.

Suppose XBLK(k) < 7 < XBLK(k+1), and we wish to print the (¢—XBLK(k)+1)-
st column of A,;, where j < k. The following code segment illustrates how
this could be done. The elements of each row in NONZ are assumed to be
stored in order of increasing row subscript.

MSTRT = XNONZ(I)

MSTOP = XNONZ(I+1)-1

IF (MSTOP.LT.MSTRT) GO TO 200

DO 100 M = MSTRT, MSTOP
ROW = NZSUBS(M)
IF (ROW.LT.XBLK(J)) GO TO 100
IF (ROW.GT.XBLK(J+1)) GO TO 200
VALUE = NONZ(M)
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[©1| s
1@ 78

2@

@33 12

3 ® |10
3 ©®

€ 4|13
¥ 14
2 s
5 @3 |

ENV  [1]2[3 0[3 0 0[4]5]

XENV ]

1 12 2 3]3 3 3|5 8 8[9 9]10]

Iz

|
XBLK |1 3 6 10 12 14]

NzsuB |1 2|2[3 8|5 61011

NONZ |6 7[8]9 10[11 12]13[14]

|

XNONZ |1 1 1 1 3 44 44468 9 10

Figure 6.5.3: Example showing the arrays used in the quotient tree storage
scheme.
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WRITE (6,3000) ROW, VALUE
3000 FORMAT (1X,15H ROW SUBSCRIPT=,I3,7H VALUE=,F12.6)
100 CONTINUE
200 CONTINUE

The storage required for the vectors XENV, XBLK, XNONZ and NZSUBS should be
regarded as overhead storage, (recall our remarks in Section 2.4.1) since it is
not used for actual data. In addition we will need some temporary storage to
implement the factorization and solution procedures. We discuss this aspect
in Section 6.6, where we deal with the numerical computation subroutines
TSFCT (Tree Symmetric FaCTorization) and TSSLV (Tree Symmetric SoLVe).

6.5.2 Internal Renumbering of the Blocks

The ordering algorithm described in Section 6.4 determines a tree partition-
ing for a connected graph. So far, we have assumed that nodes within a
block (or a partition member) are labelled arbitrarily. This certainly does
not affect the number of off-block-diagonal nonzeros in the original matrix.
However, since the storage scheme stores the diagonal blocks using the en-
velope structure, the way nodes are arranged within a block can affect the
primary storage for the diagonal envelope. It is the purpose of this section
to discuss an internal numbering strategy and describe its implementation.
The strategy should use some envelope/profile reduction scheme on each
block, and the reverse Cuthill-McKee algorithm, which is simple and quite
effective (see Section 4.4.1), seems to be suitable for this purpose. The
method is described below. Let P = {Y¥7,Y3,---,Y,} be a given monotonely
ordered quotient tree partitioning.

For each blockY; in P, do the following:

Step 1 Determine the subset
U={yeY | Adj(y)N(Y1U---UY;_y) = ¢}.

Step 2 Reorder the nodes in G(U) by the reverse Cuthill-McKee al-
gorithm.

Step 3 Number the nodes in Y; — U after U in arbitrary order.
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The example in Figure 6.5.5 serves to demonstrate the effect of this renum-
bering step. The envelope of the diagonal blocks for the ordering «; has
size 24, whereas the diagonal blocks for a, have only a total of 11 entries in
their envelopes. Indeed, the relabelling can yield a significant reduction of
the storage requirement.

The implementation of this internal-block renumbering scheme is quite straight-
forward. It consists of two new subroutines BSHUFL and SUBRCM, along with
the use of three others which have already been discussed in previous chap-
ters.

BSHUFL

SUBRCM

FNROOT RCM

ROOTLS

Figure 6.5.4: Control relation of subroutines for the refined quotient tree
algorithm.

They are discussed in detail below.

BSHUFL (Block SHUFfLe)

Inputs to this subroutine are the graph structure in (XADJ, ADJNCY), the
quotient tree partitioning in (NBLKS, XBLX) and PERM. The subroutine will
shuffle the permutation vector PERM according to the scheme described earlier
in this section. It needs four working vectors: BNUM for storing the block
number of each node, SUBG for accumulating nodes in a subgraph, and MASK
and XLS for the execution of the subroutine SUBRCM.

The subroutine begins by initializing the working vectors BNUM and MASK
(loopD0 200 X = ...). TheloopDO 500 K = ... goes through each block
in the partitioning. For each block, all those nodes with no neighbors in the
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X X X X

X X X X X

ordering o,

ordering a;

Figure 6.5.5: Example to show the effect of within-block relabelling.
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previous blocks are accumulated in the vector SUBG (loop DO 400 ...). The
variable NSUBG keeps the number of nodes in the subgraph. The subroutine
SUBRCM is then called to renumber this subgraph using the RCM algorithm.
The program returns after all the blocks have been processed.

1. (G 3k ke ke ake 3k e afe sk afe ake e afe 3k ke ake e ok sk afe ake ke ake ok ok ok afe ok 3k ake 3k o 3k 3k 3k 3k e 3k o 3k 3 e 3k e a4 3 e 3 e afe o af¢ e 4¢ afe e ok afe ke ake ke ok
2. (G 3k ke ke ake 3k e afe sk afe ake e afe 3k ke ake e ok sk afe ake ke ake ok ok ok afe ok 3k ake 3k o 3k 3k 3k 3k e 3k o 3k 3 e 3k e a4 3 e 3 e afe o af¢ e 4¢ afe e ok afe ke ake ke ok
3. Caskdokdokdokokx BSHUFL ..... INTERNAL BLOCK SHUFFLE  sekskaksx
4, (G 3k ke ke ake 3k e afe sk afe ake e afe 3k ke ake e ok sk afe ake ke ake ok ok ok afe ok 3k ake 3k o 3k 3k 3k 3k e 3k o 3k 3 e 3k e a4 3 e 3 e afe o af¢ e 4¢ afe e ok afe ke ake ke ok
5. (G 3k ke ke ake 3k e afe sk afe ake e afe 3k ke ake e ok sk afe ake ke ake ok ok ok afe ok 3k ake 3k o 3k 3k 3k 3k e 3k o 3k 3 e 3k e a4 3 e 3 e afe o af¢ e 4¢ afe e ok afe ke ake ke ok
6. C

7. € PURPOSE - TO RENUMBER THE NODES OF EACH BLOCK

8. ¢ S0 AS TO REDUCE ITS ENVELOPE.

9. C NODES IN A BLOCK WITH NO NEIGHBORS IN PREVIOUS

10. ¢ BLOCKS ARE RENUMBERED BY SUBRCM BEFORE THE OTHERS.
11. ¢

12. ¢ INPUT PARAMETERS -

13. ¢ (XADJ, ADJNCY) - THE GRAPH ADJACENCY STRUCTURE.

14, ¢ (NBLKS, XBLK ) - THE TREE PARTITIONING.

15. ¢

16. ¢ UPDATED PARAMETER -

17. ¢ PERM - THE PERMUTATION VECTOR. ON RETURN, IT CONTAINS
18. ¢ THE NEW PERMUTATION.

19. ¢
20. ¢ WORKING VECTORS -
21. ¢ BNUM - STORES THE BLOCK NUMBER OF EACH VARIABLE.

22. ¢ MASK - MASK VECTOR USED TO PRESCRIBE A SUBGRAPH.

23. ¢ SUBG - VECTOR USED TO CONTAIN A SUBGRAPH.

24, ¢ XLS - INDEX VECTOR TO A LEVEL STRUCTURE.

25. ¢

26. € PROGRAM SUBROUTINE -

27. ¢ SUBRCM.

28. ¢

29, (G 3k ke ke ake 3k e afe sk afe ake e afe 3k ke ake e ok sk afe ake ke ake ok ok ok afe ok 3k ake 3k o 3k 3k 3k 3k e 3k o 3k 3 e 3k e a4 3 e 3 e afe o af¢ e 4¢ afe e ok afe ke ake ke ok
30. ¢

31. SUBROUTINE BSHUFL ( XADJ, ADJNCY, PERM, NBLKS, XBLK,
32. 1 BNUM, MASK, SUBG, XLS )

33. ¢

34. (G 3k ke ke ake 3k fe afe s fe ake e afe akeafe ake fe ok ok afe okl ake ok afe 3k ahe ake 3k ake 3k sk ok 3k ake 3k o 3k 3k 3k 3 e 3k 3 4¢ 3 e 3k e afe e e e e afe oe ah¢ afe e ofe ok
35. ¢

36. INTEGER ADJNCY(1), BNUM(1), MASK(1), PERM(1),

37. 1 SUBG(1), XBLK(1), XLS(1)

38. INTEGER XADJ(1), I, IP, ISTOP, ISTRT, J,

39. 1 JSTRT, JSTOP, K, NABOR, NBLKS, NBRBLK,
40. 1 NODE, NSUBG
41. ¢

IS
)

sk 3k 3k ok ok ok ke sk 3k ok ok sk 3k e e ke ke e ke fe 3k 3k ok sk sk e e e ke ke e e e sk 3k ok sk sk e e e ke ke e e e 3k ok ok ok sk e oe o ke ke e ok ek ke
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QaQ aQ

Qo

QaQ aQ

100
200

300

400

500

1
1

IF ( NBLKS .LE. 0 ) RETURN

INITIALIZATION ..... FIND THE BLOCK NUMBER FOR EACH
VARIABLE AND INITIALIZE THE VECTOR MASK.

DO 200 K = 1, NBLKS
ISTRT = XBLK(K)
ISTOP = XBLK(K+1) - 1

DO 100 I = ISTRT,ISTOP

NODE = PERM(I)

BNUM(NODE) = K

MASK (NODE) = 0

CONTINUE

CONTINUE
FOR EACH BLOCK, FIND THOSE NODES WITH NO NEIGHBORS
IN PREVIOUS BLOCKS AND ACCUMULATE THEM IN SUBG.
THEY WILL BE RENUMBERED BEFORE OTHERS IN THE BLOCK.

DO 500 K = 1,NBLKS
ISTRT = XBLK(K)
ISTOP = XBLK(K+1) - 1
NSUBG = 0

DO 400 I = ISTRT, ISTOP
NODE = PERM(I)
JSTRT = XADJ(NODE)
JSTOP = XADJ(NODE+1) - 1
IF (JSTOP .LT. JSTRT) GO TO 400
DO 300 J = JSTRT, JSTOP
NABOR = ADJNCY(J)
NBRBLK = BNUM(NABOR)
IF (NBRBLK .LT. K) GO TO 400
CONTINUE
NSUBG = NSUBG + 1
SUBG (NSUBG) = NODE
IP = ISTRT + NSUBG - 1
PERM(I) = PERM(IP)
CONTINUE
CALL SUBRCM TO RENUMBER THE SUBGRAPH STORED
IN (NSUBG, SUBG).
IF ( NSUBG .GT. 0 )
CALL SUBRCM ( XADJ, ADJNCY, MASK, NSUBG,
SUBG, PERM(ISTRT), XLS )
CONTINUE

235
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90. RETURN
91. END

SUBRCM (SUBgraph RCM)

This subroutine is similar to GENRCM except that it operates on a subgraph.
The subgraph, which may be disconnected, is given in the pair (NSUBG,
SUBG). The arrays MASK and XLS are working vectors used by the subroutines
FNROOT and RCM (see Sections 4.4.3 and 4.4.4).

1. Cokesteateakeokok ook oe oo oe sefesefe e ke se e se ke ke ke ok ok ok b ek ek ke o ke o ke o se e se s e e e e ke sk ok o ke ok ke ok ok e o
2. Caleakokok ke e seofe s sesle ke ek ek ok ok ok ok ok ek ek ke o ke o se e se e se e e e e e ke ke ok ok ke ok ke ok ke e ke e e e e e e e e
3. Cakkokokokoskaesk SUBRCHM ..... REVERSE CM ON SUBGRAPH ek e ek ko ok
4, Cokokokeolesteakkeak ok ok ok ook ook ke o ke o ke o se e se e se e e e e ke ok ok ke ok ke ok ke ok ke e ke e ke o e e e o e s e e s ek ok
5. Caleakokok ke oe seofe s skesle i ek kel ok bk ke ok b ek ek ke o ke o se e se e se s e e e e ks ok ke ok ok ke ok ke ok ke e ke e e e e e e e e
6. C

7. € PURPOSE - THIS ROUTINE FINDS THE RCM ORDERING FOR A

8. C GIVEN SUBGRAPH (POSSIBLY DISCONNECTED).

9. C

10. C INPUT PARAMETERS -

11. C (XADJ, ADJNCY) - ADJACENCY STRUCTURE PAIR FOR THE GRAPH.
12. C (NSUBG, SUBG) - THE GIVEN SUBGRAPH. NSUBG IS THE

13. C THE SIZE OF THE SUBGRAPH, AND SUBG CONTAINS

14. C THE NODES IN IT.

15. C

16. C OUTPUT PARAMETER -

17. ¢ PERM - THE PERMUTATION VECTOR. IT IS ALSO USED

18. C TEMPORARILY TO STORE A LEVEL STRUCTURE.

19. C
20. C WORKING PARAMETERS -
21. C MASK - MASK VECTOR WITH ALL ZEROS. IT IS USED TO
22, C SPECIFY NODES IN THE SUBGRAPH.
23. C XLS - INDEX TO A LEVEL STRUCTURE. NOTE THAT THE LEVEL
24, C STRUCTURE IS STORED IN PART OF PERM.
26, C
26. C PROGRAM SUBROUTINES -
27. C FNROOT, RCM.
28. C
20, Cakokokoke e s alle ke ek ok ok ok o ek ook ke e ke e ke e se e e se e se e se e se e e ke ke ok ok ke ok ke ok ke ok ek ke e ke e e e e e e e e
30. C
31. SUBROUTINE SUBRCM ( XADJ, ADJNCY, MASK, NSUBG, SUBG,
32. 1 PERM, XLS )
33. C
34, Cakokokokeokesieakle sk ek ok ok ok ok ek ook ke e ke e ke e e e e se e se e se e se ke se ke ke ok ok ok ko ek ek ke e ke e e e e e e e e
36. C
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36. INTEGER ADJNCY(1), MASK(1), PERM(1), SUBG(1),

37. 1 XLS(1)

38. INTEGER XADJ(1), CCSIZE, I, NLVL, NODE, NSUBG, NUM
39. ¢

40. 3k 3k 3k ok ok ok ok sk 3k ok ok sk sk oe e ke ke e e e sk 3k ok o sk e e e ke ke e ke o sk 3k 3k o sk e e e ke ke ke ok o sk 3k 3k o sk ke e e ke ke ke ok o sk 3k ke ok
41. C

42. DO 100 I = 1, NSUBG
43. NODE = SUBG(I)

44, MASK (NODE) = 1

45. 100 CONTINUE

46. NUM = 0

a7. DO 200 I = 1, NSUBG

48. NODE = SUBG(I)

49. IF ( MASK(NODE) .LE. 0 ) GO TO 200

5O. C e
51. C FOR EACH CONNECTED COMPONENT IN THE SUBGRAPH,
52. C CALL FNROOT AND RCM FOR THE ORDERING.

B3. C e
54. CALL FNROOT ( NODE, XADJ, ADJNCY, MASK,

55. 1 NLVL, XLS, PERM(NUM+1) )

56. CALL RCM ( NODE, XADJ, ADJNCY, MASK,

57. 1 PERM(NUM+1), CCSIZE, XLS )

58. NUM = NUM + CCSIZE

59. IF ( NUM .GE. NSUBG ) RETURN

60. 200 CONTINUE

61. RETURN

62. END

6.5.3 Storage Allocation and the Subroutines FNTENV, FNOFNZ,
and FNTADJ

We now describe two subroutines FNTENV (FiNd Tree ENVelope) and FNOFNZ
(FiNd OFf-diagonal NonZeros) which are designed to accept as input a graph
G, an ordering a, and a partitioning P, and set up the data structure we
described in Section 6.5.1. In addition, in order to obtain an efficient im-
plementation of the numerical factorization procedure, it is necessary to
construct a vector containing the adjacency structure of the associated quo-
tient tree G/P. This is the function of the third subroutine FNTADJ (FiNd
Tree ADJacency) which we also describe in this section.



238 CHAPTER 6. QUOTIENT TREE METHODS

FNTENV (FiNd Tree ENVelope)

This subroutine finds the envelope structure of the diagonal blocks in a
partitioned matrix. It accepts as input the adjacency structure (XADJ,
ADJNCY), the ordering (PERM, INVP) and the quotient tree partitioning
(NBLKS, XBLK). The structure in XENV produced by FNTENV may not be
exactly the envelope structure of the diagonal blocks, although it always
contains the actual envelope structure. For the sake of simplicity and effi-
ciency, it uses the following observation in the construction of the envelope
structure.

Let P = {Y1,:--,Y,} be the given tree partitioning, and z,,z; € ¥;. If

Adj(zi) N {Y1, -, Vi 1} # ¢

and
Ad](mj) N {1/17 ° '7Yk—1} 7£ ¢7

the subroutine will include {z,,z,} in the envelope structure of the diagonal
blocks.

Although this algorithm can yield an unnecessarily large envelope for the di-
agonal block, (Why? Give an example.) for orderings generated by the RQT
algorithm, it usually comes very close to obtaining the exact envelope. Be-
cause it works so well, we use it rather than a more sophisticated (and more
expensive) scheme which would find the exact envelope. For other quotient
tree ordering algorithms, such as the one-way dissection algorithm described
in Chapter 7, a more sophisticated scheme is required. (See Section 7.4.3.)

1. Cokesteateakokok seok e oo oesefe sefe se e sfe e e e e e ok ke ok ke ok ke ok b ek ek ke o e o se e se e se e e e e ke sk ok ok ok o e o o
2, Caleakokok ke oeseoke s sesle e ke ke ok ok ok sk ok ek ek ke ek e e e e e e se e se e se ke se ke ke ke ok ok ok ko ek ke e ke e ke o e e e
3. Cakxkokokokskaskakk FNTENV ..... FIND TREE DIAGONAL ENVELOPE d%%skak*kx%%
4, Cokokokeokeseakakak ok ok ok ook ook ke o ke o ke o se e se e e se e se s sk sl ke ke ke ok ok ok ok ek ek ke o ke o ke o e e e e e e e e sk
5. Caleakokok ke o seoke s aleie ke ke ke ok ok ok sk ok ek ek ke ek e se e e e e se e se e se ke se ke ke ke ke ok ke b ok ek ke e ke e ke o e e e
6. C

7. € PURPOSE - THIS SUBROUTINE DETERMINES THE ENVELOPE INDEX

8. C VECTOR FOR THE ENVELOPE OF THE DIAGONAL BLOCKS OF A

9. C TREE PARTITIONED SYSTEM.

10. C

11. C INPUT PARAMETERS -

12. C (XADJ, ADJNCY) - ADJACENCY STRUCTURE PAIR FOR THE GRAPH.
13. C (PERM, INVP) - THE PERMUTATION VECTORS.

14. C (NBLKS, XBLK) - THE TREE PARTITIONING.

15. C

16. C OUTPUT PARAMETERS -

17. ¢ XENV - THE ENVELOPE INDEX VECTOR.
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18.
19.
20.
21.
22,
23.
24,
25,
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44.
45.
46.
47.
48.
49.
50.
51.
52,
53.
54.
55.
56.
57.
58.
59.
60.
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62.
63.
64.
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C ENVSZE - THE SIZE OF THE ENVELOPE FOUND.
C
C ok ke ke ok ok ok ek e s sk e ok ok e ke o o o ke ke o o o o 3k ke sk ok e ok ok e ke o o o ok ke o o o o o ke
C
SUBROUTINE FNTENV ( XADJ, ADJNCY, PERM, INVP,
1 NBLKS, XBLK, XENV, ENVSZE )
C
C ok ke ke ok ok ok ek e s sk e ok ok e ke o o o ke ke o o o o 3k ke sk ok e ok ok e ke o o o ok ke o o o o o ke
C
INTEGER ADJNCY(1), INVP(1), PERM(1), XBLK(1)
INTEGER XADJ(1), XENV(1), BLKBEG, BLKEND,
1 I, IFIRST, J, JSTOP, JSTRT, K, KFIRST,
1 ENVSZE, NBLKS, NBR, NODE
C
C ok ke ke ok ok ok ek e s sk e ok ok e ke o o o ke ke o o o o 3k ke sk ok e ok ok e ke o o o ok ke o o o o o ke
C

ENVSZE = 1
c _______________________________________________
¢ LOOP THROUGH EACH BLOCK IN THE PARTITIONING
c _______________________________________________
DO 400 K = 1, NBLKS
BLKBEG = XBLK (K)
BLKEND = XBLK(K+1) - 1
c ______________________________________________
¢ KFIRST STORES THE FIRST NODE IN THE XK-TH BLOCK
¢ THAT HAS A NEIGHBOUR IN THE PREVIOUS BLOCKS.
c ______________________________________________
KFIRST = BLKEND
DO 300 I = BLKBEG, BLKEND
XENV(I) = ENVSZE
NODE = PERM(I)
JSTRT = XADJ(NODE)
JSTOP = XADJ(NODE+1) - 1
IF ( JSTOP .LT. JSTRT ) GO TO 300
c ______________________________________
¢ IFIRST STORES THE FIRST NONZERO IN THE
¢ I-TH ROW WITHIN THE X-TH BLOCK.
c ______________________________________
IFIRST = I
DO 200 J = JSTRT, JSTOP
NBR = ADJNCY(J)
NBR = INVP(NBR)
IF ( NBR .LT. BLKBEG ) GO TO 100
IF ( NBR .LT. IFIRST ) IFIRST = NBR
GO TO 200
100 IF ( KFIRST .LT. IFIRST ) IFIRST = KFIRST

IF ( I .LT. KFIRST ) KFIRST =1
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65. 200 CONTINUE

66. ENVSZE = ENVSZE + I - IFIRST
67. 300 CONTINUE

68. 400 CONTINUE

69. XENV (BLKEND+1) = ENVSZE

70. ENVSZE = ENVSZE - 1

71. RETURN

72. END

FNOFNZ (FiNd OFf-diagonal NonZeros)

The subroutine FNOFNZ is used to determine the structure of the off-block-
diagonal nonzeros in a given partitioned matrix. With respect to the storage
scheme in Section 6.5.1, this subroutine finds the subscript vector NZSUBS
and the subscript or nonzero index vector XNONZ. It also returns a number
in MAXNZ which is the number of off-block-diagonal nonzeros in the matrix.
Input to the subroutine is the adjacency structure of the graph (XADJ,
ADJNCY), the quotient tree ordering (PERM, INVP), the quotient tree par-
titioning (NBLKS, XBLK), and the size of the array NZSUBS, contained in
MAXNZ. The subroutine loops through the blocks in the partitioning. Within
each block, the loop DO 200 J = ... is executed to consider each node in
the block. Each neighbor belonging to an earlier block corresponds to an
off-diagonal nonzero and it is added to the data structure. After the sub-
scripts in a row have been determined, they are sorted (using SORTS1) into
ascending sequence. The subroutine SORTS1 is straightforward and needs no
explanation. A listing of it follows that of FNOFNZ.

Note that if the user does not provide a large enough subscript vector, the
subroutine will detect this from the input parameter MAXNZ. It will continue
to count the nonzeros, but will not store their column subscripts. Before re-
turning, MAXNZ is set to the number of nonzeros found. Thus, the user should
check that the value of MAXNZ has not been increased by the subroutine, as
this indicates that not enough space in NZSUBS was provided.

(G ke e sk ok ok ke ok ke o ke e se e se e se e e e e e e e e e ok ke ok ke ok ke ok ok ek ek ke e e e se e se e se ke e e e ke ke ok ok o e ok o
(G ke e sk ok ok ke ok ke o ke e se e se e se e e e e e e e e e ok ke ok ke ok ke ok ok ek ek ke e e e se e se e se ke e e e ke ke ok ok o e ok o
Coke sk s e ke ok o FNOFNZ ..... FIND OFF-BLOCK-DIAGONAL NONZERODS  skska*x*
(G ke e sk ok ok ke ok ke o ke e se e se e se e e e e e e e e e ok ke ok ke ok ke ok ok ek ek ke e e e se e se e se ke e e e ke ke ok ok o e ok o
(G ke e sk ok ok ke ok ke o ke e se e se e se e e e e e e e e e ok ke ok ke ok ke ok ok ek ek ke e e e se e se e se ke e e e ke ke ok ok o e ok o

QO 1 ®» W N

C
C PURPOSE - THIS SUBROUTINE FINDS THE COLUMN SUBSCRIPTS OF
C THE OFF-BLOCK-DIAGONAL NONZEROS IN THE LOWER TRIANGLE
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OF A PARTITIONED MATRIX.

INPUT PARAMETERS -
(XADJ, ADJNCY) - ADJACENCY STRUCTURE PAIR FOR THE GRAPH.
(PERM, INVP) - THE PERMUTATION VECTORS.
(NBLKS, XBLK) - THE BLOCK PARTITIONING.

OUTPUT PARAMETERS -
(XNONZ, NZSUBS) - THE COLUMN SUBSCRIPTS OF THE NONZEROS
OF A TO THE LEFT OF THE DIAGONAL BLOCKS ARE
STORED ROW BY ROW IN CONTINGUOUS LOCATIONS IN THE
ARRAY NZSUBS. XNONZ IS THE INDEX VECTOR TO IT.

UPDATED PARAMETER -
MAXNZ - ON INPUT, IT CONTAINS THE SIZE OF THE VECTOR
NZSUBS; AND ON OUTPUT, THE NUMBER OF NONZEROS
FOUND.

[ T+ T+ T T T TN - R - K - Y - B -~ K -~ Y - B - T -~ MY o T o B o}

C ok ke ke ok ok ok ek e s sk e ok ok e ke o o o ke ke o o o o 3k ke sk ok e ok ok e ke o o o ok ke o o o o o ke
C

SUBROUTINE FNOFNZ ( XADJ, ADJNCY, PERM, INVP,

1 NBLKS, XBLK, XNONZ, NZSUBS, MAXNZ )
C
C ok ke ke ok ok ok ek e s sk e ok ok e ke o o o ke ke o o o o 3k ke sk ok e ok ok e ke o o o ok ke o o o o o ke
C

INTEGER ADJNCY(1), INVP(1), NZSUBS(1), PERM(1),

1 XBLK (1)

INTEGER XADJ(1), XNONZ(1), BLKBEG, BLKEND, I, J,
1 JPERM, JXNONZ, K, KSTOP, KSTRT, MAXNZ,
1 NABOR, NBLKS, NZCNT

C
3k 3k 3k ok ok ok ok sk 3k ok o sk sk e e ke ke e ke e sk 3k sk o sk e e e e ke ke ok e sk 3k 3k oe o ke ke e e ke ke ok ok sk 3k 3k oe o ke e e e ke ke ok ok sk 3k 3k o ok
C

NZCNT = 1
IF ( NBLKS .LE. 0 ) GO TO 400
c _________________________
¢ LOOP OVER THE BLOCKS
c _________________________
DO 300 I = 1, NBLKS
BLKBEG = XBLK(I)
BLKEND = XBLK(I+1) - 1
c ________________________________________
¢ LOOP OVER THE ROWS OF THE I-TH BLOCK
c ________________________________________

DO 200 J = BLKBEG, BLKEND
XNONZ(J) = NZCNT
JPERM = PERM(J)
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56. KSTRT = XADJ(JPERM)
57. KSTOP = XADJ(JPERM+1) - 1
58. IF ( KSTRT .GT. KSTOP ) GO TO 200
59. € e
60. ¢ LOOP OVER THE NONZEROS OF ROW J
61. €C e
62. DO 100 K = KSTRT, KSTOP
63. NABOR = ADJNCY(K)
64. NABOR = INVP (NABOR)
65. C e
66. C CHECK TO SEE IF IT IS TO THE LEFT OF THE
67. ¢ I-TH DIAGONAL BLOCK.
68. € e
69. IF ( NABOR .GE. BLKBEG ) GO TO 100
70. IF ( NZCNT .LE. MAXNZ ) NZSUBS(NZCNT) = NABOR
71. NZCNT = NZCNT + 1
72. 100 CONTINUE
73. € e
74. € SORT THE SUBSCRIPTS OF ROW J
76. € e
76. JXNONZ = XNONZ(J)
77. IF ( NZCNT - 1 .LE. MAXNZ )
78. 1 CALL SORTS1 (NZCNT - JXNONZ, NZSUBS (JXNONZ))
79. 200 CONTINUE
80. 300 CONTINUE
81. XNONZ (BLKEND+1) = NZCNT
82. 400 MAXNZ = NZCNT - 1
83. RETURN
84. END

1. (G 3k ke ke ake 3k fe afe o af¢ ake e afe ok afe ake ke ake sk afe ok afe ake 3k ok 3k afe 3k 3k ake 3k e 3k 3k 3k 3k e 3k e 3k 3 e 3 e afe o afe e h¢ afe e afe o ah¢ ake e ok 3k afe ake ke ok e ke
2. (G 3k ke ke ake 3k fe afe o af¢ ake e afe ok afe ake ke ake sk afe ok afe ake 3k ok 3k afe 3k 3k ake 3k e 3k 3k 3k 3k e 3k e 3k 3 e 3 e afe o afe e h¢ afe e afe o ah¢ ake e ok 3k afe ake ke ok e ke
3. Coaskdskdokidkkok SORTS1 ..... LINEAR INSERTION SORT Ak Aok Aok ok
4, (G 3k ke ke ake 3k fe afe o af¢ ake e afe ok afe ake ke ake sk afe ok afe ake 3k ok 3k afe 3k 3k ake 3k e 3k 3k 3k 3k e 3k e 3k 3 e 3 e afe o afe e h¢ afe e afe o ah¢ ake e ok 3k afe ake ke ok e ke
5. (G 3k ke ke ake 3k fe afe o af¢ ake e afe ok afe ake ke ake sk afe ok afe ake 3k ok 3k afe 3k 3k ake 3k e 3k 3k 3k 3k e 3k e 3k 3 e 3 e afe o afe e h¢ afe e afe o ah¢ ake e ok 3k afe ake ke ok e ke
6. C

7. € PURPOSE - SORTS1 USES LINEAR INSERTION TO SORT THE

8. ¢ GIVEN ARRAY OF SHORT INTEGERS INTO INCREASING ORDER.

9. C

10. ¢ INPUT PARAMETER -

11. ¢ NA - THE SIZE OF INTEGER ARRAY.

12. ¢

13. ¢ UPDATED PARAMETER -

14, ¢ ARRAY - THE INTEGER VECTOR, WHICH ON OUTPUT WILL BE

15. ¢ IN INCREASING ORDER.

¢

[y
2]
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17 . Colesteakokok ke o ke oeseofese ke se e se ke e ek ok ok ok ke ok ok ek ek ke e e e e e se e se e e ke e ke ks sk ok ok ke ok ke ok o ook
18. C

19. SUBROUTINE SORTS1 ( NA, ARRAY )

20. C

21, Cakokeokoke ke s alie sl ek ok ok ok sk ok ek ek ke e ke e ke e se e e se e se e se e e e se ke ke ok ok ok ko ek ek ke e ke o e e e e e e e
22, C

23. INTEGER ARRAY(1)
24. INTEGER X, L, NA, NODE
25. ¢

26. 3k 3k 3k ok ok ok ok sk 3k ok ok sk sk oe e ke ke e e e sk 3k ok o sk e e e ke ke e ke o sk 3k 3k o sk e e e ke ke ke ok o sk 3k 3k o sk ke e e ke ke ke ok o sk 3k ke ok
27. C

28. IF (NA .LE. 1) RETURN

29. DD 300 K = 2, NA

30. NODE = ARRAY(K)

31. L=K-1

32. 100 IF (L .LT. 1) GO TO 200

33. IF ( ARRAY(L) .LE. NODE ) GO TO 200
34, ARRAY(L+1) = ARRAY(L)
35. L=L-1

36. GO TO 100

37. 200 ARRAY(L+1) = NODE

38. 300 CONTINUE

39. RETURN

40. END

FNTADJ (FiNd Tree ADJacency)

The purpose of this subroutine is to determine the adjacency structure of a
given monotonely-ordered quotient tree. Recall from Section 6.3.2 that the
structure of a monotonely ordered rooted tree is completely characterized
by the Father function, where for a node 2, Father(z) = y means that
y € Adj(z) and that the (unique) path from the root to = goes through y.
Our representation of the structure of our quotient tree is in a vector, called
FATHER, of size p, where p is the number of blocks. Figure 6.5.6 contains
the FATHER vector for the quotient tree ordering in Figure 6.5.5. Note that
FATHER( p ) is always set to zero.

The subroutine FNTADJ accepts as input the adjacency structure of the graph
(X4DJ, ADJNCY),the quotient tree ordering (PERM, INVP), and the quotient
tree partitioning (NBLKS, XBLK). It uses a working vector BNUM of size n to
store the block numbers of the nodes in the partitioning.

The subroutine begins by setting up the BNUM vector for each node (loop DO
200 X = ...). It then loops through each block in the partitioning in the
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O

FATHER [2]5[9[5[7[7]8]9]10[0]

(=)

Figure 6.5.6: An example of the FATHER vector.
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loop DO 600 K = ... to obtain its father block number. If it does not have
any father block, the corresponding FATHER value is set to 0.

1. (G 3k ke ke ake 3k e afe 3k fe afe e afe ake ke ake e afe ok ahe ake fe ok ok afe ake ke ake ok afe 3k ok 3k 3k ake 3k o 3k 3k 2k 3k e 3k 3 e 3k e 3k 3 ¢ e ¢ 3k e a4 e 4¢ 2k e afe oe e ake e ok
2. (G 3k ke ke ake 3k e afe 3k fe afe e afe ake ke ake e afe ok ahe ake fe ok ok afe ake ke ake ok afe 3k ok 3k 3k ake 3k o 3k 3k 2k 3k e 3k 3 e 3k e 3k 3 ¢ e ¢ 3k e a4 e 4¢ 2k e afe oe e ake e ok
3. Caskdokdokdokokx FNTADJ ..... FIND TREE ADJACENCY Ak Aok Ak ok
4, (G 3k ke ke ake 3k e afe 3k fe afe e afe ake ke ake e afe ok ahe ake fe ok ok afe ake ke ake ok afe 3k ok 3k 3k ake 3k o 3k 3k 2k 3k e 3k 3 e 3k e 3k 3 ¢ e ¢ 3k e a4 e 4¢ 2k e afe oe e ake e ok
5. (G 3k ke ke ake 3k e afe 3k fe afe e afe ake ke ake e afe ok ahe ake fe ok ok afe ake ke ake ok afe 3k ok 3k 3k ake 3k o 3k 3k 2k 3k e 3k 3 e 3k e 3k 3 ¢ e ¢ 3k e a4 e 4¢ 2k e afe oe e ake e ok
6. C

7. € PURPOSE - TO DETERMINE THE QUOTIENT TREE

8. ¢ ADJACENCY STRUCTURE OF A GRAPH. THE STRUCTURE IS

9. C REPRESENTED BY THE FATHER VECTOR.

10. ¢

11. ¢ INPUT PARAMETERS -

12. ¢ (XADJ, ADJNCY) - ADJACENCY STRUCTURE PAIR FOR THE GRAPH.
13. ¢ (PERM, INVP) - THE PERMUTATION VECTORS.

14, ¢ (NBLKS, XBLK) - THE TREE PARTITIONING.

15. ¢

16. ¢ OUTPUT PARAMETERS -

17. ¢ FATHER - THE FATHER VECTOR OF THE QUOTIENT TREE.

18. ¢

19. ¢ WORKING PARAMETERS -
20. ¢ BNUM - TEMPORARY VECTOR TO STORE THE BLOCK NUMBER OF
21. ¢ OF EACH VARIABLE.
22. ¢

23. (G 3k ke ke ake 3k e afe 3k fe afe e afe ake ke ake e afe ok ahe ake fe ok ok afe ake ke ake ok afe 3k ok 3k 3k ake 3k o 3k 3k 2k 3k e 3k 3 e 3k e 3k 3 ¢ e ¢ 3k e a4 e 4¢ 2k e afe oe e ake e ok
24, ¢

25. SUBROUTINE FNTADJ ( XADJ, ADJNCY, PERM, INVP,

26. 1 NBLKS, XBLK, FATHER, BNUM )

27. ¢

28. (G 3k ke ke ake 3k e afe 3k fe afe e afe ake ke ake e afe ok ahe ake fe ok ok afe ake ke ake ok afe 3k ok 3k 3k ake 3k o 3k 3k 2k 3k e 3k 3 e 3k e 3k 3 ¢ e ¢ 3k e a4 e 4¢ 2k e afe oe e ake e ok
29. ¢

30. INTEGER ADJNCY(1), BNUM(1), FATHER(1), INVP(1),

31. 1 PERM(1), XBLK(1)

32. INTEGER XADJ(1), I, ISTOP, ISTRT, J, JSTOP, JSTRT,

33. 1 K, NABOR, NBLKS, NBM1, NBRBLK, NODE

34. ¢

35. (G 3k ke ke ake 3k e afe 3k fe afe e afe ake ke ake e afe ok ahe ake fe ok ok afe ake ke ake ok afe 3k ok 3k 3k ake 3k o 3k 3k 2k 3k e 3k 3 e 3k e 3k 3 ¢ e ¢ 3k e a4 e 4¢ 2k e afe oe e ake e ok
36. ¢

37. € = e

38. ¢ INITIALIZE THE BLOCK NUMBER VECTOR.

39, € = e
40. DO 200 K = 1, NBLKS
41, ISTRT = XBLK(K)
42, ISTOP = XBLK(K+1) - 1
43, DO 100 I = ISTRT, ISTOP
44, NODE = PERM(I)
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45, BNUM(NODE) = K
46. 100 CONTINUE
47. 200 CONTINUE
48, € = mmmmmmmmmmm o
49. ¢ FOR EACH BLOCK
50. € = —mmmmmmmmmme o
51. FATHER (NBLKS) = 0
52. NBM1 = NBLKS - 1
53. IF ( NBM1 .LE. 0 ) RETURN
54. DD 600 K = 1, NBM1
55. ISTRT = XBLK(K)
56. ISTOP = XBLK(K+1) - 1
B7. € = e
58. ¢ FIND ITS FATHER BLOCK IN THE TREE STRUCTURE
59. € = e
60. DO 400 I = ISTRT, ISTOP
61. NODE = PERM(I)
62. JSTRT = XADJ(NODE)
63. JSTOP = XADJ(NODE+1) -1
64. IF ( JSTOP .LT. JSTRT ) GO TO 400
65. DO 300 J = JSTRT, JSTOP
66. NABOR = ADJNCY(J)
67. NBRBLK = BNUM(NABOR)
68. IF ( NBRBLK .GT. K ) GO TO 500
69. 300 CONTINUE
70. 400 CONTINUE
71. FATHER(K) = 0
72. GO TO 600
73. 500 FATHER(K) = NBRBLK
74. 600 CONTINUE
75. RETURN
76. END
6.6 The Numerical Subroutines TSFCT (Tree Sym-

metric FaCTorization) and TSSLV (Tree Sym-
metric SoLVe)

In this section, we describe the subroutines that implement the numerical
factorization and solution for partitioned linear systems associated with quo-
tient trees, stored in the sparse scheme as introduced in Section 6.5.1. The
subroutine TSFCT employs the asymmetric version of the factorization, so we
begin by first re-examining the asymmetric block factorization procedure of
Section 6.2.1 and studying possible improvements.
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6.6.1 Computing the Block Modification Matrix

Let the matrix A be partitioned into

(v &)

as in Section 6.2.1. Recall that in the factorization scheme, the modification
matrix VI B!V used to form C = € — VI B!V is obtained as follows.

V(LG (LgV)=VI(LgW)=V'W.

Note also that the modification matrix V¥ W is symmetric and that Nonz(V) C
Nonz(W'). We now investigate an efficient way to compute Viw.
Let G be an r by s sparse matrix and H be an s by r matrix. For the i-th
row of G, let

£(G) = min{j | gi; £0}, 1<i<r (6.6.1)

That is, f;(G) is the column subscript of the first nonzero component in row
1 of G. Assume that the matrix product GH is symmetric. In what follows,
we show that only a portion of the matrix H is needed in computing the
product. Figure 6.6.1 contains an example with » = 4 and s = 8. If the
product GH is symmetric, the next lemma says that the crosshatched part
of H can be ignored in the evaluation of GH.

Lemma 6.6.1 If the matriz product GH s symmetric, the product ts com-
pletely determined by the matrix G and the matriz subset

{hir | f(G) <j < s}
of H.
Proof: It is sufficient to show that every entry in the matrix product can

be computed from G and the given subset of H. Since the product is
symmetric, its (¢, k)-th and (k, ¢)-th entries are given by

Z giihjr

i=1:(G)
or

Z grihyi-

=i (G)
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X % X V
x / can be
/ ignored
X

G X X X
X X X
X />< X

H

Figure 6.6.1: Sparse symmetric matrix product.

For definiteness, let f;(G) < f;(G). The entry can then be obtained using
the first expression, which involves components in G and those h;; with
f(G) < fi(G@) < j < s. They belong to the given matrix subset. On
the other hand, if fi(G) > fi(G), the second expression can be used which
involves matrix components in the subset. This proves the lemma. O
The order in which the components in the product are computed depends
on the structure of the matrix (or more specifically, on the column sub-
scripts f;(G), 1 <4 < r). For example, in forming GH for the matrices in
Figure 6.6.1, the order of computation is given in Figure 6.6.2.

With this framework, we can study changing the submatrix C into C =
C-V'B'V =C- VT(L_BT(L_BlV)). As pointed out in Section 6.2.1,
the modification can be carried out one column at a time as follows:

1) Unpack a column v = V; of V..

2) Solve Bw = v by solving the triangular systems L gw = v and LTBﬁJ =
w.

3) Compute the vector z = VT and set C,; = C.; — =.

Now since VI W is symmetric, Lemma 6.6.1 applies to this modification
process, and it is unnecessary to compute the entire vector @ from v in
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N N 4 8@

Figure 6.6.2: Ilustration of the computation of the product GH.
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Step 2. The components in w above the first nonzero subscript of » do not
have to be computed when solving L g(Lpw) = v.

£ not computed
7l | B P
L] B L]
= :/
Ly g %
Zn first nonzero “ 2
w v w w

Figure 6.6.3: Illustration of computing the modifications.

In effect, a smaller system than LB(LTB{U) = v needs to be solved. This
can have a significant effect on the amount of computation required for the
factorization. For example, see Exercise 6.6.1 on page 263.

6.6.2 The Subroutine TSFCT (Tree Symmetric FaCTorization)

The subroutine TSFCT performs the asymmetric block factorization for tree-
partitioned systems. The way it computes the block modification matrix is
as described in the previous section.

The subroutine accepts as input the tree partitioning information in (NBLXS,
XBLK) and FATHER, the data structure in XENV, XNONZ and NZSUBS, and the
primary storage vectors DIAG, ENV and NONZ. The vectors DIAG and ENV, on
input, contain the nonzeros of the block diagonals of the matrix A. On
return, the corresponding nonzeros of the block diagonals of L are overwrit-
ten on those of A. Since the implicit scheme is used, the off-block-diagonal
nonzeros of A stored in NONZ remain unchanged.

Two temporary vectors of size n are used. The real vector TEMP is used
for unpacking off-diagonal block columns so that numerical solution on the
unpacked column can be done in the vector TEMP. The second temporary
vector FIRST is an integer array used to facilitate indexing into the subscript
vector NZSUBS. (See remarks about FIRST below.)

The subroutine TSFCT begins by initializing the temporary vectors TEMP and
FIRST (loop DO 100 I = ...). The main loop DO 1600 K = ... is then
executed for each block in the partitioning. Within the main loop, the sub-
routine ESFCT is first called to factor the K-th diagonal block. The next step
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is to find out where the off-diagonal block is, and it is given by FATHER(K).
The loops DO 200 ... and DO 400 ... are then executed to determine the
first and last non-null columns respectively in the off-diagonal block so that
modification can be performed within these columns. Figure 6.6.4 depicts
the role of some of the important local variables in the subroutine.

COLBEG—+ +— COLEND
1

0

ROWBEG

~ off-diagonal block

~
\\h

5

ROWEND

A

FNZ
FATHER(X)

N\
N\

COLSIZE

ANNNNN\N\N S |

\d

Figure 6.6.4: Illustration of some of the important local variables used in
TSFCT.

The loop DO 1300 COL = ... applies the modification to the diagonal block
given by FATHER(K). Each column in the off-diagonal block is unpacked into
the vector TEMP (loop DO 600 J = ...), after which the envelope solvers
ELSLV and EUSLV are invoked. The inner loop DO 1100 COL1 = ... then
performs the modification in the same manner as discussed in Section 6.6.1.
Before the subroutine proceeds to consider the next block, it updates the
temporary vector FIRST for columns in the FATHER(K)-th block, so that the
corresponding elements of FIRST point to the next numbers to be used in
those columns (loop DO 1500 COL = ...). When all the diagonal blocks
have been processed, the subroutine returns.

(G 3k ke ke ake 3k fe afe o af¢ ake e afe ok afe ake ke ake sk afe ok afe ake 3k ok 3k afe 3k 3k ake 3k e 3k 3k 3k 3k e 3k e 3k 3 e 3 e afe o afe e h¢ afe e afe o ah¢ ake e ok 3k afe ake ke ok e ke
(G 3k ke ke ake 3k fe afe o af¢ ake e afe ok afe ake ke ake sk afe ok afe ake 3k ok 3k afe 3k 3k ake 3k e 3k 3k 3k 3k e 3k e 3k 3 e 3 e afe o afe e h¢ afe e afe o ah¢ ake e ok 3k afe ake ke ok e ke
ook e ke e ok TSFCT ..... TREE SYMMETRIC FACTORIZATION sssskkx
(G 3k ke ke ake 3k fe afe o af¢ ake e afe ok afe ake ke ake sk afe ok afe ake 3k ok 3k afe 3k 3k ake 3k e 3k 3k 3k 3k e 3k e 3k 3 e 3 e afe o afe e h¢ afe e afe o ah¢ ake e ok 3k afe ake ke ok e ke
(G 3k ke ke ake 3k fe afe o af¢ ake e afe ok afe ake ke ake sk afe ok afe ake 3k ok 3k afe 3k 3k ake 3k e 3k 3k 3k 3k e 3k e 3k 3 e 3 e afe o afe e h¢ afe e afe o ah¢ ake e ok 3k afe ake ke ok e ke
c

c PURPOSE - THIS SUBROUTINE PERFORMS THE SYMMETRIC

N U R W N =
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8. C FACTORIZATION OF A TREE-PARTITIONED SYSTEM.
9. C

10. C INPUT PARAMETERS -

11. C (NBLKS, XBLK, FATHER) - THE TREE PARTITIONING.

12. C XENV - THE ENVELOPE INDEX VECTOR.

13. C (XNONZ, NONZ, NZSUBS) - THE OFF-DIAGONAL NONZEROS IN
14. C THE ORIGINAL MATRIX.

15. C

16. C UPDATED PARAMETERS -

17. ¢ (DIAG, ENV) - STORAGE ARRAYS FOR THE ENVELOPE OF
18. C THE DIAGONAL BLOCKS OF THE MATRIX. ON OUTPUT,
19. C CONTAINS THE DIAGONAL BLOCKS OF THE FACTOR.
20. C IFLAG - THE ERROR FLAG. IT IS SET TO 1 IF A ZERO OR
21. C NEGATIVE SQUARE ROOT IS DETECTED DURING THE
22, C FACTORIZATION.

23. C

24, C WORKING PARAMETER -

26, C TEMP - TEMPORARY ARRAY REQUIRED TO IMPLEMENT THE
26. C ASYMMETRIC VERSION OF THE FACTORIZATION.

27. C FIRST - TEMPORARY VECTOR USED TO FACILITATE THE

28. C INDEXING TO THE VECTOR NONZ (OR NZSUBS)

29. C FOR NON-NULL SUBCOLUMNS IN OFF-DIAGONAL

30. C BLOCKS.

31. C

32. C PROGRAM SUBROUTINES -

33. C ESFCT, ELSLV, EUSLV.

34. C

35. 3k 3k 3k ok ok ok ok sk 3k ok ok sk sk oe e ke ke e e e sk 3k ok o sk e e e ke ke e ke o sk 3k 3k o sk e e e ke ke ke ok o sk 3k 3k o sk ke e e ke ke ke ok o sk 3k ke ok
36. C

37. SUBROUTINE TSFCT ( NBLKS, XBLK, FATHER, DIAG, XENV, ENV,
38. 1 XNONZ, NONZ, NZSUBS, TEMP, FIRST, IFLAG )
39. ¢C

Q0. Coledkokokokokdkakkasioaio ek ok kel o oo ok ke s s o o 3k 3k ke sk o e o o e ke o o o ok ke o o o o o ke
41. C

42. DOUBLE PRECISION OPS

43. COMMON /SPKOPS/ OPS

44. REAL DIAG(1), ENV(1), NONZ(1), TEMP(1), S

45. INTEGER FATHER(1), NZSUBS(1), XBLK(1)

46. INTEGER FIRST(1), XENV(1), XNONZ(1),

47. 1 BLKSZE, COL, COL1, COLBEG, COLEND,

48. 1 COLSZE, FNZ, FNZ1, I, IFLAG, ISTRT, ISTOP,

49. 1 IsuB, J, JSTOP, JSTRT, K, KENV, KENVO, KFATHR,
50. 1 NBLKS, NEQNS, ROW, ROWBEG, ROWEND

51. ¢

B2, Cokakakakakakkaskso d ek e el ook o ok ol o oo o o 3k ke s sk o ok o e e ek o o o ok ke o o o o o 3k e s s o
53. ¢

B4. € = mmmmmmmmmmmmmmeeeo
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Q

Qo aaa

QaQaaQ

100

200
300

400
500

INITIALIZATION ...
NEQNS = XBLK(NBLKS+1) - 1
D0 100 I = 1,NEQNS
TEMP(I) = 0.0E0
FIRST(I) = XNONZ(I)
CONTINUE

D0 1600 K = 1, NBLKS
ROWBEG = XBLK (K)
ROWEND = XBLK(K+1) - 1
BLKSZE = ROWEND - ROWBEG + 1

CALL ESFCT ( BLKSZE, XENV(ROWBEG), ENV,
DIAG(ROWBEG), IFLAG )
IF ( IFLAG .GT. 0 ) RETURN
PERFORM MODIFICATION OF THE FATHER DIAGONAL BLOCK
A(FATHER(K) ,FATHER(X)) FROM THE OFF-DIAGONAL BLOCK
A(K,FATHER(K)) .
KFATHR = FATHER(K)
IF ( KFATHR .LE. 0 ) GO TO 1600
COLBEG = XBLK(KFATHR)
COLEND = XBLK(KFATHR+1) - 1
FIND THE FIRST AND LAST NON-NULL COLUMN IN
THE OFF-DIAGONAL BLOCK. RESET COLBEG,COLEND.
DO 200 COL = COLBEG, COLEND
JSTRT = FIRST(COL)
JSTOP = XNONZ(COL+1) - 1
IF ( JSTOP .GE. JSTRT .AND.
NZSUBS(JSTRT) .LE. ROWEND ) GO TO 300
CONTINUE
COLBEG = COL
COL = COLEND
DO 400 COL1 = COLBEG, COLEND
JSTRT = FIRST(COL)
JSTOP = XNONZ(COL+1) - 1
IF ( JSTOP .GE. JSTRT .AND.
NZSUBS(JSTRT) .LE. ROWEND ) GO TO 500
COL = COL - 1
CONTINUE
COLEND = COL
DO 1300 COL = COLBEG, COLEND

253
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Qo aaa

QaQ aQ

Q

600
700
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(3
w0
-3
|-
-3
1]

FIRST(COL)
XNONZ(COL+1) - 1
TEST FOR NULL SUBCOLUMN. FNZ STORES THE
FIRST NONZERO SUBSCRIPT IN THE BLOCK COLUMN.
IF ( JSTOP .LT. JSTRT ) GO TO 1300
FNZ = NZSUBS(JSTRT)
IF ( FNZ .GT. ROWEND ) GO TO 1300
UNPACK A COLUMN IN THE OFF-DIAGONAL BLOCK
AND PERFORM UPPER AND LOWER SOLVES ON THE
UNPACKED COLUMN.
DO 600 J = JSTRT, JSTOP
ROW = NZSUBS(J)
IF ( ROW .GT. ROWEND ) GO TO 700
TEMP (ROW) = NONZ(J)
CONTINUE
COLSZE = ROWEND - FNZ + 1
CALL ELSLY ( COLSZE, XENV(FNZ), ENV,
DIAG(FNZ), TEMP(FNZ) )
CALL EUSLY ( COLSZE, XENV(FNZ), ENV,
DIAG(FNZ), TEMP(FNZ) )
DO THE MODIFICATION BY LOOPING THROUGH
THE COLUMNS AND FORMING INNER PRODUCTS.
KENVO = XENV(COL+1) - COL
DO 1100 COL1= COLBEG, COLEND
ISTRT = FIRST(COL1)
ISTOP = XNONZ(COL1+1) - 1

[N
w0
-3
Q
o
1]

FNZ1 = NZSUBS(ISTRT)
IF ( ISTOP .LT. ISTRT .OR.
FNZ1 .GT. ROWEND ) GO TO 1100

IF ( FNZ1 .LT. FNZ ) GO TO 1100
IF ( FNZ1 .EQ. FNZ .AND.
COL1 .LT. COL ) GO TO 1100
S = 0.0E0
DO 800 I = ISTRT, ISTOP
ISUB = NZSUBS(I)
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800

900

1000

IF ( ISUB .GT. ROWEND ) GO TO 900
S = S + TEMP(ISUB) * NONZ(I)
0PS = OPS + 1.0DO
CONTINUE

IF ( COL1 .EQ. COL ) GO TO 1000
KENV = KENVO + COL1
IF ( COL1 .GT. COL )
KENV = XENV(COLi+1) - COL1 + COL
ENV(KENV) = ENV(KENV) - S
GO TO 1100
DIAG(COL1) = DIAG(COL1) - S

1100 CONTINUE

1200

DO 1200 ROW = FNZ, ROWEND
TEMP (ROW) = 0.0E0
CONTINUE

1300 CONTINUE

QO Q aQ

UPDATE THE FIRST VECTOR FOR COLUMNS IN
FATHER(K) BLOCK, SO THAT IT WILL INDEX TO
THE BEGINNING OF THE NEXT OFF-DIAGONAL
BLOCK TO BE CONSIDERED.

DO 1500 COL = COLBEG, COLEND

JSTRT = FIRST(COL)
JSTOP = XNONZ(COL+1) - 1
IF ( JSTOP .LT. JSTRT ) GO TO 1500

1400

DO 1400 J = JSTRT, JSTOP
ROW = NZSUBS(J)
IF ( ROW .LE. ROWEND ) GO TO 1400
FIRST(COL) = J
GO TO 1500
CONTINUE
FIRST(COL) = JSTOP + 1

1500 CONTINUE

1600 CONTINUE
RETURN
END

255
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6.6.3 The Subroutine TSSLV (Tree Symmetric SoLVe)

The implementation of the solver for tree-partitioned linear systems does not
follow the same execution sequence as specified in Section 6.3.3. Instead, it
uses the alternative decomposition for the asymmetric factorization as given
in Exercise 6.2.2 on page 196:

B V B O I W
A:(VTC’):(VT C)(O I)’ (6.6.2)

where W = B~V is not explicitly stored, and C = C — VI B~'V.
Written in this form, the solution to

(v e )(2)= (o)

can be computed by solving

(v e)(2)-
(&%) (2)=(2)

It is assumed that the submatrices B and C have been factored into Lp LTB

and

and LCLT(';« respectively. The scheme can hence be written as follows.

Forward Solve
Solve LB(LTle) =b,.
Compute l~)2 =b,—VTz,.
Solve LC(L%zz) = b,.
Backward Solve

Assign &, = z,.
Compute ¢, = V,.
Solve LB(LTBil) =t.

Compute #; = z; — ;.
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This scheme is simply a rearrangement of the operation sequences as given
in Section 6.2.2. The only difference is that no temporary vector is required
in the forward solve (no real advantage though! Why?). We choose to use
this scheme because it simplifies the program organization when the general
blockp by p tree-partitioned system is being solved.

We now consider the generalization of the above asymmetric scheme. Let A
be a p by p tree-partitioned matrix with blocks A;;, 1 <4, < p. Let L;; be
the corresponding submatrices of the triangular factor L of A.

Recall from Section 6.3.2, that since A is tree-partitioned, the lower off-
diagonal blocks L,; (¢ > j) are given by

L = A;L;]. (6.6.3)
We want to define an asymmetric block factorization
A=1LU (6.6.4)

similar to that of (6.6.2). Obviously the factor L is well defined and its
blocks are given by,

L;L] ifi=j
o otherwise.

The case when p = 4 is given below.

L,LT, O o o
A Lzng'z o 0
As Ay Lyl O
Ay Apn Ap LuLi,

I~
[l

Lemma 6.6.2

LT, i o
.E _ L L22
T
o L,

Proof: The result follows directly from the relation (6.6.3) between off-
diagonal blocks A,; and L,; for tree-partitioned systems. a
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By this lemma, the upper triangular factor U in (6.6.4) can then be obtained

simply as
-1

LT, i o
U _ L22 ‘ LT
T
O Lpp
so that we have
I ifi==%
Uy,=< L;"L;, ifi<k
O otherwise.

and for ¢ < k, the expression can be simplified by (6.6.3) to

Uy, = Li_iT(AkiLi_iT)T

L;"L;' Ay
= (L,,LZ)_lA,k

Therefore, the asymmetric factorization (6.6.4) for the case p = 4 can be
expressed explicitly as shown by the following:

L,LT, O o o
A, LpLI, O o
As Ay Lyl O
Ay Apn Ap LuLi,

L=

-1 -1 -1
I (LnLi) Ay (LnLi) 1A13 (L LY)) 1A14
v_|© I (L32L3,) Ass (L22L§2)_1A24
o o I (LssLY,)  Asy

(o) (o) (o) I

To consider the actual solution phase on this factorization, we have to relate
it to our block storage scheme as described in Section 6.5.1. As before, let

Axp

Asp
Vk: . ) 2<k<p.
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Since the nonzero components outside the diagonal blocks are stored column
by column as in
V27 V37 Tty Vpa

the solution method must be tailored to this storage scheme. The method
to be discussed makes use of the observation that

—1
Ui, (L11Lf1) . o
U B (L32L3,) v
. - . k‘
—1
Ur_1k (o) (Lk—l,k—lLf—l,k—l)

Forward Solve Lz = b
Step 1 Solve (LllLfl)zl = b;.
Step 2 For k = 2,---,p do the following

2.1) Compute
Z

bk<—bk—V;‘:

Zg-1
2.2) Solve (kaLZk)zk = bk.

Backward Solve Uz = z

Step 1 Initialize temporary vector Z = 0,

Step 2 =, = z,
Step 3 Fork=p—1,p—2,---,1 do the following
3.1)

— : + Vipi®es

3.2) Solve (kaLZ'k):i’k = Ek.

3.3) Compute & = 25, — &;.
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Note that in the back solve, a temporary vector Z is used to accumulate the
products and its use is illustrated in Figure 6.6.5.

The subroutine TSSLV implements this solution scheme. Unlike TSFCT, it
does not require the FATHER vector of the tree partitioning, although im-
plicitly it depends on it. Inputs to TSSLV are the tree partitioning (nBLKS,
XBLK), the diagonal DIAG, the envelope (XENV, ENV) of the diagonal blocks,
and the off-diagonal nonzeros in (XNONZ, NONZ, NZSUBS).

There are two main loops in the subroutine TSSLV; one to perform the for-
ward substitution and the other to do the backward solve. In the forward
solve, the loop DO 200 ROW = ... is executed to modify the right hand
vector before the subroutines ELSLV and EUSLV are called. In the back-
ward solve, the temporary real vector TEMP accumulates the products of off-
diagonal blocks and parts of the solution, in preparation for calling ELSLY
and EUSLV. At the end, the vector RHS contains the solution vector.

1. Cokesteateakeokok ook oe oo oe sefesefe e ke se e se ke ke ke ok ok ok b ek ek ke o ke o ke o se e se s e e e e ke sk ok o ke ok ke ok ok e o
2. Caleakokok ke e seofe s sesle ke ek ek ok ok ok ok ok ek ek ke o ke o se e se e se e e e e e ke ke ok ok ke ok ke ok ke e ke e e e e e e e e
3. Cakxkokokokskaskakk TSSLV ..... TREE SYMMETRIC SOLVE sde ok e e ok ok ok oe e
4, Cokokokeolesteakkeak ok ok ok ook ook ke o ke o ke o se e se e se e e e e ke ok ok ke ok ke ok ke ok ke e ke e ke o e e e o e s e e s ek ok
5. Caleakokok ke oe seofe s skesle i ek kel ok bk ke ok b ek ek ke o ke o se e se e se s e e e e ks ok ke ok ok ke ok ke ok ke e ke e e e e e e e e
6. C

7. € PURPOSE - TO PERFORM SOLUTION OF A TREE-PARTITIONED

8. C FACTORED SYSTEM BY IMPLICIT BACK SUBSTITUTION.
9. C

10. C INPUT PARAMETERS -

11. C (NBLKS, XBLK) - THE PARTITIONING.

12. C (XENV, ENV) - ENVELOPE OF THE DIAGONAL BLOCKS.

13. C (XNONZ, NONZ, NZSUBS) - DATA STRUCTURE FOR THE OFF-

14. C BLOCK DIAGONAL NONZEROS.

15. C

16. C UPDATED PARAMETERS -

17. ¢ RHS - ON INPUT IT CONTAINS THE RIGHT HAND VECTOR.

18. C ON OUTPUT, THE SOLUTION VECTOR.

19. C
20. C WORKING VECTOR -
21. C TEMP - TEMPORARY VECTOR USED IN BACK SUBSTITUTION.
22, C
23. C PROGRAM SUBROUTINES -
24, C ELSLV, EUSLYV.
26, C
26, Cakokokoke e sealie ke ek ok ok ok sk ok ek ek ke e ke e ke e se e e se e se e se e se ke se ke ke ok ok ko ke ok ek ke e ke o e e e e e e e
27. C
28 SUBROUTINE TSSLV ( NBLKS, XBLK, DIAG, XENV, ENV,
29. 1 XNONZ, NONZ, NZSUBS, RHS, TEMP )
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Figure 6.6.5: Backward solve for asymmetric factorization.




262 CHAPTER 6. QUOTIENT TREE METHODS

30. C
31, Ckokeokokeokeseakele i ek ok ok ok sk ok ek ook ke e ke e ke e e e e se e se e se e e ke se ke ke ok ok ok ko ek ek ke e ke e e e e e e e e
32. C

33. DOUBLE PRECISION COUNT, OPS
34. COMMON /SPKOPS/ OPS

35. REAL DIAG(1), ENV(1), NONZ(1), RHS(1), TEMP(1), S

36. INTEGER NZSUBS(1), XBLK(1)

37. INTEGER XENV(1), XNONZ(1), COL, COL1, COL2, I, J,

38. 1 JSTOP, JSTRT, LAST, NBLKS, NCOL, NROW, ROW,
39. 1 ROW1, ROW2

40. €

41, (G 3k ke ke ake 3k fe afe o af¢ ake e afe ok afe ake ke ake sk afe ok afe ake 3k ok 3k afe 3k 3k ake 3k e 3k 3k 3k 3k e 3k e 3k 3 e 3 e afe o afe e h¢ afe e afe o ah¢ ake e ok 3k afe ake ke ok e ke
42. ¢

43, € = mmmmmmmmmmeme o

44, ¢ FORWARD SUBSTITUTION

45, € = mmmmmmmmmmmm

46. DO 400 I = 1, NBLKS

47. ROW1 = XBLK(I)

48, ROW2 = XBLK(I+1) - 1

49, LAST = XNONZ(ROW2+1)

50. IF ( I .EQ. 1 .OR. LAST .EQ. XNONZ(ROW1) ) GO TO 300
Bl. € e
52. ¢ MODIFY RHS VECTOR BY THE PRODUCT OF THE OFF-

53. ¢ DIAGONAL BLOCK WITH THE CORRESPONDING PART OF RHS.
B4. € e
55. DO 200 ROW = ROW1, ROW2

56. JSTRT = XNONZ(ROW)

57. IF ( JSTRT .EQ. LAST ) GO TO 300

58. JSTOP = XNONZ(ROW+1) - 1

59. IF ( JSTOP .LT. JSTRT ) GO TO 200

60. S = 0.0E0

61. COUNT = JSTOP - JSTRT + 1

62. OPS = OPS + COUNT

63. DO 100 J = JSTRT, JSTOP

64. COL = NZSUBS(J)

65. S = S + RHS(COL)*NONZ(J)

66. 100 CONTINUE

67. RHS(ROW) = RHS(ROW) - S

68. 200 CONTINUE

69. 300 NROW = ROW2 - ROW1 + 1

70. CALL ELSLV ( NROW, XENV(ROW1), ENV, DIAG(ROW1),

71. 1 RHS (ROW1) )

72. CALL EUSLV ( NROW, XENV(ROW1), ENV, DIAG(ROW1),

73. 1 RHS (ROW1) )

74. 400 CONTINUE

76. € = mmmmmmmmmmm e

76. C BACKWARD SOLUTION ...
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77. €

78.

79.

80.

81.

82. 500
83.

84.

85.

86. 600
87.
88.
89.
90.
91.
92,
93.
94.
95,
96.
97.
98.
99.
100.
101.
102.
103.
104.
105. 700
106. 800
107. 900
108.

109.

110.

111.

112,

113.

114.

115.

116.

117. 1000
118.

119.

QaaaaQ

IF ( NBLKS .EQ. 1 ) RETURN
LAST = XBLK(NBLKS) - 1
DO 500 I = 1, LAST
TEMP(I) = 0.0E0
CONTINUE
I = NBLKS
COL1 = XBLK(I)
COL2 = XBLK(I+1) - 1
IF ( I .EQ. 1 ) RETURN
LAST = XNONZ(COL2+1)
IF ( LAST .EQ. XNONZ(COL1) ) GO TO 900
MULTIPLY OFF-DIAGONAL BLOCK BY THE CORRESPONDING
PART OF THE SOLUTION VECTOR AND STORE IN TEMP.
DO 800 COL = COL1, COL2
S = RHS(cOL)
IF ( S .EQ. 0.0E0 ) GO TO 800
JSTRT = XNONZ(COL)
IF ( JSTRT .EQ. LAST ) GO TO 900
JSTOP = XNONZ(COL+1) - 1
IF ( JSTOP .LT. JSTRT ) GO TO 800
COUNT = JSTOP - JSTRT + 1
OPS = OPS + COUNT
DO 700 J = JSTRT, JSTOP
ROW = NZSUBS(J)
TEMP (ROW) = TEMP(ROW) + S*NONZ(J)

CONTINUE
CONTINUE

I=I-1

COL1 = XBLK(I)

COL2 = XBLK(I+1) - 1

NCOL = COL2 - COL1 + 1
CALL ELSLY ( NCOL, XENV(COL1), ENV,
DIAG(COL1), TEMP(COL1) )
CALL EUSLV ( NCOL, XENV(COL1), ENV, DIAG(COL1),
TEMP (COL1) )

DO 1000 J = COL1, COL2
RHS(J) = RHS(J) - TEMP(J)
CONTINUE
GO TO 600
END

Exercises
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6.6.1) Let L and V be as described in Exercise 4.3.5 on page 65, where V'
has only 3 nonzeros per column. Compare the operation costs of com-
puting V'L 'LV as VI(L™"(L7'V))and (VI L™ T)(L7'V). As-
sume n and p are large, so lower order terms can be ignored.

6.7 Additional Notes

The idea of “throwing away” the off-diagonal blocks of the factor L of A, as
discussed in this chapter, can be recursively applied (George and Liu [23].
To explain the strategy suppose A is p by p partitioned, with  and b
partitioned correspondingly. Let A(;) denote the leading block-k by block-k
principal submatrix of A, and let ®) and b(;) denote the corresponding
parts of @ and b respectively. Finally, define submatrices of A as in (6.5.1),
with L correspondingly partitioned, as shown in Figure 6.7.1 for p = 5.

AL |V, |V, Ly
vl | A, V., W3 | Las
Ve Ass vV, W; | Lg
VT Ay Wy Ly,
i vV, Ay || wi Ly |
A L

Figure 6.7.1: A recursively paritioned matrix and its Cholesky factor.

Using this notation, the system Ax = b can be expressed as

Ay Vi ea) \ _ | by
Vg' A55 L5 o b5 ’

and the factorization of A can be expressed as

(

A
Vi

0\ (1 auv.
Ass o ’
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where .A.55 = A55 — Vg'A(_‘l]jV5.
Formally, we can solve Az = b as follows:

a) Factorization: Compute and factor A into L55L§'5. (Note that Vg' A(_41)V5
can be computed one column at a time, and the columns discarded af-
ter use.)

b) Solution:

b.1) Solve A4y = b(a)-

b.2) Solve Agses = by — V;‘f‘y(‘l).
b.3) Solve A&y = Va;.
b.4) Compute #(4) = Y4y — &)

Note that we have only used the ideas presented in Section 6.2 and Exercise
6.1.2 to avoid storing Ws; only V5 is required. The crucial point is that all
that is required for us to solve the five by five partitioned system without
storing Wy is that we be able to solve four by four partitioned systems.
Obviously, we can use exactly the same strategy as shown above, to solve
the block four by four systems without storing W,, and so on. Thus, we
obtain a method which apparently solves a p by p block system requiring
storage only for the diagonal blocks of L and the off-diagonal blocks V'; of
the original matrix. However, note that each level of recursion requires a
temporary vector ;) (in Step b.3 above), so there is a point where a finer
partitioning no longer achieves a reduction in storage requirement. There
are many interesting unexplored questions related to this procedure, and the
study of the use of these partitioning and throw-away ideas appears to be a
potentially fertile research area.

Partitioning methods have been used successfully in utilizing auxiliary stor-
age (Von Fuchs et al. [54]). The value of p is chosen so that the amount
of main storage available is some convenient multiple of (n/p)’. Since A is
sparse, some of the blocks will be all zeros. A pointer array is held in main
store, with each pointer component either pointing to the current location of
the corresponding block, if the block contains nonzeros, or else is zero. If the
p by p pointer matrix is itself too large to be held in main store, then it can
also be partitioned and the idea recursively applied. This storage manage-
ment scheme obviously entails a certain amount of overhead, but experience
suggests that it is a viable alternative to other out-of-core solution schemes
such as band or frontal methods. One advantage is that the actual matrix
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operations involve simple data structures; only square or rectangular arrays
are involved.

Shier [48] has considered the use of tree partitionings in the context of ex-
plicitly inverting a matrix, and provides an algorithm different from ours for
finding a tree partitioning of a graph.



Chapter 7

One-Way Dissection Methods
for Finite Element Problems

7.1 Introduction

In this chapter we consider an ordering strategy designed primarily for prob-
lems arising in finite element applications. The strategy is similar to the
method of Chapter 6 in that a quotient tree partitioning is obtained, and
the computational ideas of implicit solution and asymmetric factorization
are exploited. The primary advantage of the one-way dissection algorithm
developed in this chapter is that the storage requirements are usually much
less than those for either the band or quotient tree schemes described in pre-
vious chapters. Indeed, unless the problems are very large, for finite element
problems the methods of this chapter are often the best methods in terms
of storage requirements of any we discuss in this book. They also yield very
low solution times, although their factorization times tend to be larger than
those of some other methods.

Since the orderings studied in this chapter are quotient tree orderings, the
storage and computing methods of Chapter 6 are appropriate, so we do not
have to deal with these topics in this chapter. However, the one-way dissec-
tion schemes do demand a somewhat more sophisticated storage allocation
procedure than that described in Section 6.5.3. This more general allocation
procedure is the topic of Section 7.4.

267
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7.2 An Example — The s x ¢ Grid Problem

7.2.1 A One-Way Dissection Ordering

In this section we consider a simple s X ¢ grid problem which motivates the
development of the algorithm of Section 7.3. Consider an s x t grid or mesh
as shown in Figure 7.2.1, having n = st nodes with s < ¢. The corresponding
finite element matrix problem Ax = b we consider has the property that for
some numbering of the equations (nodes) from 1 to n, we have that a;; # 0
implies node 7 and node j belong to the same small square.

Figure 7.2.1: An s by ¢ grid with s = 6 and ¢ = 11.

Now let o be an integer satisfying 1 < ¢ < t, and choose o vertical grid
lines (which we will refer to as separators) which dissect the mesh into o +
1 independent blocks of about the same size, as depicted in Figure 7.2.2,
where ¢ = 4. The ¢ + 1 independent blocks are numbered row by row,
followed by the separators, as indicated by the arrows in Figure 7.2.2. The
matrix structure this ordering induces in the triangular factor L is shown in
Figure 7.2.3, where the off-diagonal blocks with fills are hatched. We let

B -0

6 =
og+1

bl

that is, the length between dissectors.
Regarding A and L as partitioned into ¢? submatrices, where ¢ = 20 + 1,
we first note the dimensions of the various blocks:

Appissébysfforl <k<o+1. (7.2.1)
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5: t—o

o+1

Figure 7.2.2: One-way dissection ordering of an s by ¢ grid, indicated by
the arrows. Here o = 4, yielding a partitioning with 20 + 1 = 9 members
indicated by the circled numbers.
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SO

Figure 7.2.3: Matrix structure of L induced by the one-way dissection or-
dering of Figure 7.2.2. The hatched areas indicate where fill occurs in the
off-diagonal blocks.
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Agjissby sifork>oc+1andj<o+1. (7.2.2)
Agjissbysforj>oc+1landk>co+1. (7.2.3)

Of course in practice o must be chosen to be an integer, and unless § is also
an integer, the leading o + 1 diagonal blocks will not all be exactly the same
size. However, we will see later that these aberrations are of little practical
significance; in any case, our objective in this section is to present some basic
ideas rather than to study this s x ¢t grid problem in meticulous detail. For
our purposes, we assume that ¢ and § are integers, and that s and t are large
enough that s < s? and ¢t < ¢%.

As we have already stated, the utility of this ordering hinges on using the
partitioned matrix techniques developed in Chapter 6. Indeed, it is not
difficult to determine that this ordering is no better or even worse than the
standard band ordering if these techniques are not used. (see Exercises 7.2.4
and 7.2.5.)

The key observation which allows us to use the quotient tree techniques
developed in Chapter 6 is that if we view the o separator blocks as forming a
single partition member, then the resulting partitioning, now with p = o+ 2
members, is a monotonely ordered tree partitioning. This is depicted in
Figure 7.2.4 for the example of Figure 7.2.2.

6,7,8,9 )

Figure 7.2.4: Quotient tree corresponding to one-way dissection ordering,
obtained by placing the separators together in one partition.

Thus, we will use the storage scheme developed in Section 6.5, and thereby
store only the diagonal blocks of L, and the off-diagonal blocks of A. For
discussion purposes we will continue to regard A and L as g X ¢ partitioned
where ¢ = 20 + 1, although the reader should understand that for computa-
tional purposes the last o partition members are combined into one, so that
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in effect p = o + 2 members are involved.

7.2.2 Storage Requirements

Denoting the partitions of L corresponding to A,; by L;;, 1 <14,5 <20 +1,
we now derive an estimate for the storage requirements of this one-way dis-
section ordering, using the implicit storage scheme described in Section 6.5.1.
The primary storage requirements are as follows:

1) Lyx, 1 <k < o+ 1. The bandwidth of these band matricesis (¢+1)/(c+
1), yielding a combined storage requirement of

s(t—o)(t+1) st

(o +1) T oo

i) Ly, 04+ 1< j,k <2041, j < k. There are ¢ — 1 fill blocks, and o
lower triangular blocks, all of which are s X s, yielding a total storage

requirement of
(0 —1)s*+os(s+1)  3o0s’

~

2 2

iii) Ag;, k < o+ 1,5 > 0+ 1. Except for nodes near the boundary of
the grid, all nodes on the separators are connected to 6 nodes in the
leading o + 1 blocks. Thus, primary storage for these matrices totals
about 60s.

The overhead storage for items i) and ii) is s+ o +3 (for the array XENV and
XBLK), and about 60+ ts for XNONZ and NZSUBS. Thus, if lower order terms
are ignored, the storage requirement for this ordering, using the implicit
storage scheme of Section 6.5.1, is approximately

st?  3os?

(o) ="+~ (7.2.4)

If our objective is to minimize storage, then we want to choose ¢ to minimize
S(o). Differentiating with respect to o, we have

ds _ st 3¢

do o2 2"

Using this, we find that 5 is approximately minimized by choosing o = ¢*

o =t <l>1/2 (7.2.5)

3m

where
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yielding
S(o%) = V65*%t + O(st). (7.2.6)

Note that the corresponding optimal §* is given by

5 = <3_5>1/2.
2
It is interesting to compare this result with the storage requirements we
would expect if we used a standard band or envelope scheme. Since s < ¢,
we would number the grid column by column, yielding a matrix whose band-
width is s + 1, and for large s and ¢ the storage required for L would be
s’t + O(st). Thus, asymptotically, this one-way dissection scheme reduces

storage requirements by a factor of 1/6/s over the standard schemes of Chap-
ter 4.

7.2.3 Operation Count for the Factorization

Let us now consider the computational requirements for this one-way dis-
section ordering. Basically, we simply have to count the operations needed
to perform the factorization and solution algorithm described in Section 6.3.
However, the off-diagonal blocks Ag;, for k¥ < 0+ 1 and j > o + 1, have
rather special “pseudo tri-diagonal” structure, which is exploited by the
subroutines TSFCT and TSSLV. Thus, determining an approximate operation
count is far from trivial. In this Section we consider the factorization; Sec-
tion 7.2.4 contains a derivation of an approximate operation count for the
solution.

It is helpful in the derivation to break the computation into the three cate-
gories, where again we ignore low order terms in the calculations.

1. The factorization of the o + 1 leading diagonal blocks.

(In our example of Figures 7.2.1-7.2.3, where o = 4, this is the com-
putation of Lzz, 1 < k < 5.) Observing that the bandwidth of these
matrices is (t+1)/(o + 1), and using Theorem 4.2.1, we conclude that
the operation count for this category is approximately

st®

202"

2. The computation of the Ly, for k > j and j > o 4 1.
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This corresponds to factoring an so X so block tri-diagonal matrix
having blocks of size s. Using the results of Sections 2.2 and 2.3, we
find that operation count is approximately
Tos®
6

3. The modifications to A;;, A;4;,and A;; ;1 for j > 041 involving the
off-diagonal blocks Aj; and the computed Ly, k < 0 4 1, as depicted
in Figure 7.2.5.

The operation count for this computation is discussed below.

A37 A38

—
A77

— Ass

T

AL, Agz

Figure 7.2.5: Matrices which interact with and/or are modified by Ly, Ag;
and Ay i1, where k =3 and j =T.

In computing the modification matrix in the asymmetric way, we have to

compute
Lyt (Lix Axy)s (7.2.7)
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for j > 0+ 1and k£ < o+ 1. In view of the results in Section 6.6, it is
not necessary to compute that part of L;, (L, Ax;) which is above the first
nonzero in each column of A;;. Thus, when computing W = L Ay, we
exploit leading zeros in the columns of Aj;, and when computing W =
L,:,;‘F W we stop the computation as soon as the last required element of W

has been computed, as depicted in Figure 7.2.6.

- S—— - T

g
Figure 7.2.6: Structure of A;; and the part of W that needs to be computed.

It is straightforward to show that the number of operations required to
compute this part of W is approximately given by

n(B + 1)(r — 1), (7.2.8)

where Ay; is n X 7 and Ly + L;‘Ck is an n X n band matrix with bandwidth
B < n (see Exercise 7.2.5 on page 278 ). Here, n = st/o,3 ~ t/o and r = m;
thus the expression 7.2.8 becomes

s2t?

o’
Note that there are in total 2o such off-diagonal blocks, so the computation
required to compute all

Ll (Lt Ay;) forj>oc+landk<o+1
is approximately
252t?
o

We now estimate the cost of computing the modifications to Ag;, £ > o 41,
j > o+ 1. With (7.2.7) computed, we note that the modification to each

: (7.2.9)
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entry in the diagonal blocks Ay, k > 0+1 can be computed in six operations,
while that to the off-diagonal blocks Ay ;_; requires three operations. That
is, the cost for modification is O(os®). Thus, an estimate for the total number
of operations required for the factorization, using this one-way dissection
ordering, is given by

st®  Tos®  2s%t?

01:'(0') = F -I— 6 -I— pu . (7.2.10)

If our objective is to minimize the operation count for the factorization, using
this one-way dissection ordering, we want to find the o which minimizes
0r(o). For large s and ¢, it can be shown that choosing

approximately minimizes (7.2.10), yielding (see Exercise 7.2.6 on page 278 )

28 1/
oF(aF):<?> &% + 0(s™). (7.2.11)

The corresponding 47 is given by

7\ L2
o= ()"
12
Again it is interesting to compare this result with the operation count if
we use a standard band or envelope scheme as described in Chapter 4. For
this s x t grid problem, the factorization operation count would be =~ %s3t.

Thus, asymptotically this one-way dissection scheme reduces the factoriza-

tion count by a factor of roughly 4./7/(3s).

7.2.4 Operation Count for the Solution

We now derive an estimate of the operation count required to solve Ax = b,
given the “factorization” as computed in the preceding subsection.

First observe that each of the 041 leading diagonal blocks Ly, 1 < k < 0+1,
is used four times, twice in the lower solve and twice again in the upper solve.
This yields an operation count of approximately

4 5t2
o
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The non-null blocks Ly, for k > o+1 and j > 041, are each used twice, for
a total operation count of 3os% 4 O(os). Each matrix Agj,for k> 0o+1and
j < o+ 1,is used twice, yielding an operation count of about 12¢s. Thus,
an estimate for the operation count associated with the solution, using this
one-way dissection ordering, is

_ 4512
T

0s(o) + 305> (7.2.12)

If we wish to minimize #s with respect to o, we find o should be approxi-
mately

2
Gs = \/—3—8a
whence
0s(os) = 43532t + O(st). (7.2.13)

Again it is interesting to compare (7.1.11) with the corresponding operation
count if we were to use standard band or envelope schemes, which would be
about 2s%t. Thus, asymptotically, the one-way dissection ordering reduces
the solution operation count by a factor of about 2+/3/s.

Of course in practice we cannot choose ¢ to simultaneously minimize storage,
factorization operation count, and solution operation count; o must be fixed.
Since the main attraction for these methods is their low storage requirements,
in the algorithm of the next section ¢ is chosen to attempt to minimize
storage.

Exercises

7.2.1) What are the coefficients of the high order terms in (7.2.10) and
(7.2.13) if o is chosen to be o*, given by (7.2.5)7

7.2.2) Suppose we use the one-way dissection ordering of this section with
o chosen to be O(t/+/s), but we do not use the implicit storage
technique; that is, we actually store the off-diagonal blocks L,;, ¢ >
c+1,j < o+1. What would the storage requirements be then? If we
used these blocks in the solution scheme, what would the operation
count corresponding to #s now be?

7.2.3) Suppose we use the one-way dissection ordering of this section with o
chosen to be t/4/s, but we use the symmetric version of the factoriza-
tion scheme rather than the asymmetric version. (See Section 6.2.1)
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Show that now the factorization operation count is O(s’t) rather
than O(s%?t). How much temporary storage is required to carry out
the computation?

Throughout Section 7.2 we assume that s < ¢, although we did not
explicitly use that fact anywhere. Do our results still apply for s > 7
Why did we assume s < t?

Let M be an n X n symmetric positive definite band matrix with
bandwidth 8 < n and Cholesky factorization LLT. Let V be an
n X r (r < n) “pseudo-tridiagonal” matrix, for which the leading
nonzero in column ¢ is in position

. [(i ~1)(n- 1)}

r—1
and let W = L™7(L7'V). Show that the number of operations
required to compute @,;, 1 <7 < r, u;, < j < n, is approximately
n(B + 1)(r — 1). (Note that this is approximately the pseudo-lower
triangle of W, described in Exercise 2.3.8 on page 30.)

Let o minimize p (o) in (7.2.10). Show that a lower bound for ox

is given by
~ 12 1/2
op =t E )

7 7 1/2
op(a'p) = ﬂszt + 2 <§> 85/2t.

whence

In the description of the one-way dissection ordering of the s x ¢ grid
given in this section, the separator blocks were numbered “end to
end.” It turns out that the order in which these separator blocks are
numbered is important. For example, the blocks in the example of
Figure 7.2.2 might have been numbered as indicated in the diagram
in Figure 7.2.7.

a) Draw a figure similar to Figure 7.2.5 showing the structure of L
corresponding to this ordering. Is there more or fewer fill blocks
than the ordering shown in Figure 7.2.27
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©® © O O
ONNONNONNONNO

Figure 7.2.7: Different way of labelling the separators in the one-way dissec-
tion algorithm.

b) For the one-way dissection ordering of the s x ¢ grid shown in
Figure 7.2.2, the number of fill blocks is ¢ — 1. Show that for
some orderings of the separator blocks, as many as 20 — 3 fill
blocks may result.

7.3 An Algorithm for Finding One-Way Dissection
Orderings of Irregular Mesh Problems

7.3.1 The Algorithm

The description and analysis of the previous section suggests that in gen-
eral terms, we would like to find a set of “parallel” separators having rel-
atively few nodes. These separators should disconnect the graph or mesh
into components which can be ordered so as to have small envelopes. This
is essentially what the following heuristic algorithm attempts to do.

The algorithm operates on a given graph G = (X, E), which we assume to
be connected. The extension to disconnected graphs is obvious. Recall from
Chapter 3 that the set Y C X is a separator of the connected graph G if the
section graph G(X — V') is disconnected.

We now give a step-by-step description of the algorithm, followed by some
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explanatory remarks for the important steps. In the algorithm n = | X|, and
s and t correspond roughly to s and ¢t — 1 in Section 7.2. The algorithm
attempts to choose o to minimize storage, but it can easily be modified so
as to attempt to minimize the factorization or solution operation count.

Step 1 (Generate level structure) Find a pseudo-peripheral node z by the
algorithm of Section 4.4.2, and generate the level structure rooted at
z.

L(z)={Lo,L1,---,L:}.

Step 2 (Estimate §) Calculate s = n/(¢ + 1), and set

5 <3.s 1 13>1/2-
2

Step 3 (Limiting case) If § < ¢/2, and |X| > 50 go to Step 4. Otherwise,
set p=1,Y, = X and go to Step 6.

Step 4 (Find separator) Set 2 =1, j = [§ + 0.5], and T = ¢.
While 5 < t do the following

4.1) Choose T; = {z € L; | Adj(z) N\ L; 41 # ¢}.
4.2) Set T=TUT;
4.3) Set i — i+ 1 and j = [46 + 0.5].

Step 5 (Define blocks) Let Y3, k = 1,---,p—1 be the connected components
of the section graph G(X — T), and set Y, = T.

Step 6 (Internal numbering) Number each Y3, £ = 1,---,p consecutively
using the method described in Section 6.5.2.

Step 1 of the algorithm produces a (hopefully) long, narrow level structure.
This is desirable because the separators are selected as subsets of some of
the levels L,.

The calculation of the numbers s and ¢ computed in Step 2 is motivated
directly by the analysis of the s x t grid in Section 7.2. Since s is the average
number of nodes per level, it serves as a measure of the width of the level
structure. The derivation of o* given in (7.2.5) was obtained in a fairly crude
way, since our objective was simply to convey the basic ideas. A more careful
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analysis along with some experimentation suggests that a better value for

9 1/2
i .
<3.s—|— 13>

The corresponding §* is given by the formula used in Step 2.

o* is

Step 3 is designed to handle anomalous situations where m < ¢, or when
n is simply too small to make the use of the one-way dissection method
worthwhile. Experiments indicate that for small finite element problems,
and/or “long slender” problems, the methods of Chapter 4 are more efficient,
regardless of the basis for comparison. In these cases, the entire graph is
processed as one block (p = 1). That is, an ordinary envelope ordering as
discussed in Chapter 4 is produced for the graph.

Step 4 performs the actual selection of the separators, and is done essentially
as though the graph corresponds to an s X ¢ grid as studied in Section 7.2.
As noted earlier, each L; of L is a separator of G. In Step 4, approximately
equally spaced levels are chosen from L, and subsets of these levels (the T;
) which are possibly smaller separators are then found.

Finally, in Step 6 the p > ¢ + 1 independent blocks created by removing
the separators from the graph are numbered, using the internal renumbering
scheme described in Section 6.5.2.

Although the choice of ¢ and the method of selection of the separators seems
rather crude, we have found that attempts at more sophistication do not
often yield significant benefits (except for some unrealistic, contrived exam-
ples). Just as in the regular rectangular grid case, the storage requirement,
as a function of o, is very flat near its minimum. Even relatively large per-
turbations in the value of o, and in the selection of the separators, usually
produce rather small changes in storage requirements.

In Figure 7.3.1 we have an example of an irregular mesh problem, along with
some indications of the steps carried out by the algorithm. (For purposes
of this illustration, we assume that the test for |X| > 50 in Step 3 of the
algorithm has been removed.) Figure 7.3.1 (a) contains the level numbers of
the original level structure, while Figure 7.3.1 (b) displays the nodes chosen
as the separators. Here s = n/(t + 1) = 25/11 = 2.27, § = v/9.91 ~ 3.12.
The levels chosen from which to pick the separators are levels 4 and 8.



282 CHAPTER 7. ONE-WAY DISSECTION METHODS

(b)

Figure 7.3.1: Diagram of an irregular mesh showing the separators chosen
by the algorithm.
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7.3.2 Subroutines for Finding a One-Way Dissection Parti-
tioning

The set of subroutines which implements the one-way dissection algorithm
is given in the control diagram in Figure 7.3.2. The subroutines FNROOT
and ROOTLS are used together to determine a pseudo-peripheral node of a
connected component in a given graph. They have been discussed in detail
in Section 4.4.3. The subroutine REVRSE is a utility subroutine that is used
to reverse an integer array. The execution of the calling statement

GEN1WD

FN1WD ROOTLS REVRSE

FNROOT

ROOTLS

Figure 7.3.2: Control relation of subroutines for the one-way dissection al-
gorithm.

CALL REVRSE ( NV, V )

will interchange the entries in the integer vector V of size NV in the following
way:

V(i) « V(NV—i+1) for1l <7< |NV]|/2.
The remaining two subroutines GEN1WD and FN1WD are described in detail
below.

GEN1WD (GENeral 1-Way Dissection)

This is the driver subroutine for finding a one-way dissection partitioning of a
general disconnected graph. The input and output parameters of GEN1WD fol-
low the same notations as the implementations of other ordering algorithms.
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The parameters NEQNS, XADJ and ADJNCY are for the adjacency structure of
the given graph. Returned from the subroutine are the one-way dissection
ordering in the vector PERM, and the partitioning information in (NBLKS,
XBLK). Three working vectors MASK, XLS and LS are used by GEN1iWD. The
array pair (XLS, LS) is used by FN1WD to store a level structure rooted at
a pseudo-peripheral node, and the vector MASK is used by the subroutine to
mask off nodes that have been numbered.

The subroutine begins by initializing the vector MASK so that all nodes are
considered unnumbered. It then goes through the graph and obtains a node
i not yet numbered. The node defines an unnumbered connected component
in the graph and the subroutine FN1WD is called to find a one-way dissector for
the component. The set of dissecting nodes forms a block in the partitioning.
Each component in the remainder of the dissected subgraph also constitutes
a block, and they are found by calling the subroutine ROOTLS.

After going through all the connected components in the graph, the sub-
routine reverses the permutation vector PERM and block index vector XBLK,
since the one-way dissectors which are found first should be ordered after
the remaining nodes.

NN
N =

BEEN NUMBERED DURING THE ORDERING PROCESS.
(XLS, LS) - LEVEL STRUCTURE USED BY ROOTLS.

NN
B

1. Cokesteateakeokok ook oe oo oe sefesefe e ke se e se ke ke ke ok ok ok b ek ek ke o ke o ke o se e se s e e e e ke sk ok o ke ok ke ok ok e o
2. Caleakokok ke e seofe s sesle ke ek ek ok ok ok ok ok ek ek ke o ke o se e se e se e e e e e ke ke ok ok ke ok ke ok ke e ke e e e e e e e e
3. Cakxkokokokskaskakk GEN1WD ..... GENERAL ONE-WAY DISSECTION *%¥kskak*
4, Cokokokeolesteakkeak ok ok ok ook ook ke o ke o ke o se e se e se e e e e ke ok ok ke ok ke ok ke ok ke e ke e ke o e e e o e s e e s ek ok
5. Caleakokok ke oe seofe s skesle i ek kel ok bk ke ok b ek ek ke o ke o se e se e se s e e e e ks ok ke ok ok ke ok ke ok ke e ke e e e e e e e e
6. C
7. € PURPOSE - GEN1WD FINDS A ONE-WAY DISSECTION PARTITIONING
8. C FOR A GENERAL GRAPH. FN1WD IS USED FOR EACH CONNECTED
9. C COMPONENT .
10. C
11. C INPUT PARAMETERS -
12. C NEQNS - NUMBER OF EQUATIONS.
13. C (XADJ, ADJNCY) - THE ADJACENCY STRUCTURE PAIR.
14. C
15. C OUTPUT PARAMETERS -
16. C (NBLKS, XBLK) - THE PARTITIONING FOUND.
17. ¢ PERM - THE ONE-WAY DISSECTION ORDERING.
18. C
19. C WORKING VECTORS -
20. C MASK - IS USED TO MARK VARIABLES THAT HAVE
C
C
C
C

PROGRAM SUBROUTINES -
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62.
63.
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C FN1WD, REVRSE, ROOTLS.
C
C ok ke ke ok ok ok ek e s sk e ok ok e ke o o o ke ke o o o o 3 ke sk ok e ok ok e ek o o o ok ke o o o o ke
C

SUBROUTINE GEN1WD ( NEQNS, XADJ, ADJNCY, MASK,

1 NBLKS, XBLK, PERM, XLS, LS )
C
C ok ke ke ok ok ok ek e s sk e ok ok e ke o o o ke ke o o o o 3 ke sk ok e ok ok e ek o o o ok ke o o o o ke
C

INTEGER ADJNCY(1), LS(1), MASK(1), PERM(1),

1 XBLK(1), XLS(1)

INTEGER XADJ(1), CCSIZE, I, J, K, LNUM,
1 NBLKS, NEQNS, NLVL, NODE, NSEP,
1 NUM, ROOT

C
(G ke e e sk ok ok ek ke e e e se e se e se e se e s ek ke ke ke ok ek ek ke o ke o ke o se e se s e e e e e ek ok ok ke ok ke ok ok ke
C
DO 100 I = 1, NEQNS
MASK(I) = 1
100 CONTINUE
NBLKS = 0
NOM =0
DO 400 I = 1, NEQNS
IF ( MASK(I) .EQ. 0 ) GO TO 400

c ____________________________________________
C FIND A ONE-WAY DISSECTOR FOR EACH COMPONENT.
c ____________________________________________
ROOT = I
CALL FN1wD ( ROOT, XADJ, ADJNCY, MASK,
1 NSEP, PERM(NUM+1), NLVL, XLS, LS )
NUM = NUM + NSEP
NBLKS = NBLKS + 1
XBLK (NBLKS) = NEQNS - NUM + 1
CCSIZE = XLS(NLVL+1) - 1
c ______________________________________________
C NUMBER THE REMAINING NODES IN THE COMPONENT.
C EACH COMPONENT IN THE REMAINING SUBGRAPH FORMS
C A NEW BLOCK IN THE PARTITIONING.
c ______________________________________________

DD 300 J = 1, CCSIZE
NODE = LS(J)
IF ( MASK(NODE) .EQ. 0 ) GO TO 300
CALL ROOTLS ( NODE, XADJ, ADJNCY, MASK,
1 NLVL, XLS, PERM(NUM+1) )
LNUM = NUM + 1
NUM = NUM + XLS(NLVL+1) - 1
NBLKS = NBLKS + 1
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72. XBLK (NBLKS) = NEQNS - NUM + 1

73. DD 200 X = LNUM, NUM

74. NODE = PERM(K)

75. MASK (NODE) = 0

76. 200 CONTINUE

77. IF ( NUM .GT. NEQNS ) GO TO 500

78. 300 CONTINUE

79. 400 CONTINUE

80. € = e
81. ¢ SINCE DISSECTORS FOUND FIRST SHOULD BE ORDERED LAST,
82. ¢ ROUTINE REVRSE IS CALLED TO ADJUST THE ORDERING

83. ¢ VECTOR, AND THE BLOCK INDEX VECTOR.

84. € = mmm e
85. 500 CALL REVRSE ( NEQNS, PERM )

86. CALL REVRSE ( NBLKS, XBLK )

87. XBLK (NBLKS+1) = NEQNS + 1

88. RETURN

89. END

FN1iWD (FiNd 1-Way Dissection ordering)

This subroutine applies the one-way dissection algorithm described in Sec-
tion 7.3.1 to a connected component of a subgraph. It operates on a compo-
nent specified by the input parameters ROOT, MASK, XADJ and ADJNCY. Qutput
from this subroutine is the set of dissecting nodes given by (NSEP, SEP).
The first step in the subroutine is to find a level structure rooted at a pseudo-
peripheral node which it does by calling FNROOT. Based on the characteristics
of the level structure (NLVL, the number of levels and WIDTH, the average
width), the subroutine determines the level increment DELTA to be used. If
the number of levels NLVL or the size of the component is too small, the
whole component is returned as the “dissector”.

With DELTA determined, the subroutine then marches along the level struc-
ture picking up levels, subsets of which form the set of parallel dissectors.

(G 3k ke ke ake 3k fe afe o af¢ ake e afe ok afe ake ke ake sk afe ok afe ake 3k ok 3k afe 3k 3k ake 3k e 3k 3k 3k 3k e 3k e 3k 3 e 3 e afe o afe e h¢ afe e afe o ah¢ ake e ok 3k afe ake ke ok e ke
(G 3k ke ke ake 3k fe afe o af¢ ake e afe ok afe ake ke ake sk afe ok afe ake 3k ok 3k afe 3k 3k ake 3k e 3k 3k 3k 3k e 3k e 3k 3 e 3 e afe o afe e h¢ afe e afe o ah¢ ake e ok 3k afe ake ke ok e ke
ook ek FN1WD ..... FIND ONE-WAY DISSECTORS —
(G 3k ke ke ake 3k fe afe o af¢ ake e afe ok afe ake ke ake sk afe ok afe ake 3k ok 3k afe 3k 3k ake 3k e 3k 3k 3k 3k e 3k e 3k 3 e 3 e afe o afe e h¢ afe e afe o ah¢ ake e ok 3k afe ake ke ok e ke
(G 3k ke ke ake 3k fe afe o af¢ ake e afe ok afe ake ke ake sk afe ok afe ake 3k ok 3k afe 3k 3k ake 3k e 3k 3k 3k 3k e 3k e 3k 3 e 3 e afe o afe e h¢ afe e afe o ah¢ ake e ok 3k afe ake ke ok e ke
c

c PURPOSE - THIS SUBROUTINE FINDS ONE-WAY DISSECTORS OF

c A CONNECTED COMPONENT SPECIFIED BY MASK AND ROOT.
c

W0 O U W N
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INPUT PARAMETERS -
ROOT - A NODE THAT DEFINES (ALONG WITH MASK) THE
COMPONENT TO BE PROCESSED.
(XADJ, ADJNCY) - THE ADJACENCY STRUCTURE.

OUTPUT PARAMETERS -
NSEP - NUMBER OF NODES IN THE ONE-WAY DISSECTORS.
SEP - VECTOR CONTAINING THE DISSECTOR NODES.

UPDATED PARAMETER -
MASK - NODES IN THE DISSECTOR HAVE THEIR MASK VALUES
SET TO ZERO.

WORKING PARAMETERS-
(XLS, LS) - LEVEL STRUCTURE USED BY THE ROUTINE FNROOT.

PROGRAM SUBROUTINE -
FNROOT.

[ 30K+ BN+ B o N -~ B~ B o~ B -~ TN -~ X -~ Y - TN -~ Y -~ Y - T - B -~ Y o B o B -}

C ok ke ke ok ok ok ek e s sk e ok ok e ke o o o ke ke o o o o 3 ke sk ok e ok ok e ek o o o ok ke o o o o ke
C
SUBROUTINE FN1WD ( ROOT, XADJ, ADJNCY, MASK,
1 NSEP, SEP, NLVL, XLS, LS )
C
C ok ke ke ok ok ok ek e s sk e ok ok e ke o o o ke ke o o o o 3 ke sk ok e ok ok e ek o o o ok ke o o o o ke
C
INTEGER ADJNCY(1), LS(1), MASK(1), SEP(1), XLS(1)
INTEGER XADJ(1), I, J, X, KSTOP, KSTRT, LP1BEG, LP1END,
1 LVL, LVLBEG, LVLEND, NBR, NLVL, NODE,
1 NSEP, ROOT
REAL DELTP1, FNLVL, WIDTH
C
C ok ke ke ok ok ok ek e s sk e ok ok e ke o o o ke ke o o o o 3 ke sk ok e ok ok e ek o o o ok ke o o o o ke
C
CALL FNROOT ( ROOT, XADJ, ADJNCY, MASK,

1 NLVL, XLS, LS )
FNLVL = FLOAT(NLVL)
NSEP = XLS(NLVL + 1) - 1

WIDTH = FLOAT(NSEP) / FNLVL
DELTP1 = 1.0 + SQRT((3.0*WIDTH+13.0)/2.0)
IF (NSEP .GE. 50 .AND. DELTP1 .LE. 0.5%FNLVL) GO TO 300
THE COMPONENT IS TOO SMALL, OR THE LEVEL STRUCTURE
IS VERY LONG AND NARROW. RETURN THE WHOLE COMPONENT.
DO 200 I = 1, NSEP
NODE = LS(I)

QaaaaQ
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57. SEP(I) = NODE

58. MASK (NODE) = 0

59. 200 CONTINUE

60. RETURN

61. C = e

62. C FIND THE PARALLEL DISSECTORS.

63. C = e

64. 300 NSEP = 0

65. I=0

66. 400 I=I+1

67. LVL = IFIX (FLOAT(I)*DELTP1 + 0.5)

68. IF ( LVL .GE. NLVL ) RETURN

69. LVLBEG = XLS(LVL)

70. LP1BEG = XLS(LVL + 1)

71. LVLEND = LP1BEG - 1

72. LP1END = XLS(LVL + 2) - 1

73. DO 500 J = LP1BEG, LP1END

74. NODE = LS(J)

75. XADJ(NODE) = - XADJ(NODE)

76. 500 CONTINUE

T7. C
78. C NODES IN LEVEL LVL ARE CHOSEN TO FORM DISSECTOR.
79. C INCLUDE ONLY THOSE WITH NEIGHBORS IN LVL+1 LEVEL.
80. C XADJ IS USED TEMPORARILY TO MARK NODES IN LVL+1.
81. C e
82. DO 700 J = LVLBEG, LVLEND

83. NODE = LS(J)

84. KSTRT = XADJ(NODE)

85. KSTOP = IABS(XADJ(NODE+1)) - 1

86. DO 600 K = KSTRT, KSTOP

87. NBR = ADJNCY(K)

88. IF ( XADJ(NBR) .GT. 0 ) GO TO 600

89. NSEP = NSEP + 1

90. SEP (NSEP) = NODE

91. MASK (NODE) = 0

92. GO TO 700

93. 600 CONTINUE

94, 700 CONTINUE

95. DO 800 J = LP1BEG, LP1END

96. NODE = LS(J)

97. XADJ(NODE) = - XADJ(NODE)

98. 800 CONTINUE

99. GO TO 400

100. END
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7.4 On Finding the Envelope Structure of Diago-
nal Blocks

In Chapter 4, the envelope structure of a symmetric matrix A has been
studied. It has been shown that the envelope structure is preserved under
symmetric factorization; in other words, if F' is the filled matrix of A, then

Env(A) = Env(F).

In this section, we consider the envelope structure of the diagonal block
submatrices of the filled matrix with respect to a given partitioning. This is
important in setting up the data structure for the storage scheme described
in Section 6.5.1.

7.4.1 Statement of the Problem

Let A be a sparse symmetric matrix partitioned as

Ay Ay - Alp
AT, A, - A

A=| TP " o, (7.4.1)
A,fp Ag'p e APP

where each Ay is a square submatrix. The block diagonal matriz of A with
respect to the given partitioning is defined to be

A o
A
Bdiag(A) = o : (7.4.2)
o A,

Let the triangular factor L of A be correspondingly partitioned as

L, 0
Ly, Ly,

L= ]
Lpl Lp2 Lpp
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Then the associated block diagonal matrix of the filled matrix F' will be

Fu O
. Fy,
Bdiag(F) =
O F,,
where Fy, = Ly, + L;‘:k for 1 <k <p.
Our objective is to determine the envelope structure of Bdiag(F'). Although
Env(A) = Env(F), the result does not hold in general for Bdiag(A) and

Bdiag(F) due to the possible creation of nonzeros outside Env(Bdiag(A))
during the factorization.

7.4.2 Characterization of the Block Diagonal Envelope via
Reachable Sets

Recall from Chapter 4 that the envelope structure of a matrix A is charac-
terized by the column subscripts

fi(A) = min{j | a;; #0}, 1<i<n.

In terms of the associated graph GgA - (XA, EA), where X4 — {Z1,-- -, 2.},
these numbers are given by

fi(A) = min{s | z, € Adj(z;) U {z;}}. (7.4.3)

In this subsection, we shall study the envelope structure of Bdiag(F') by
relating the first nonzero column subscript with the corresponding graph
structure.

Let GA = (XA,EA) and ¢F = (XF,EF) be the undirected graphs
associated with the symmetric matrices A and F respectively. Let P =
{Y1,Y,,---,Y,} be the set partitioning of XA that corresponds to the ma-
trix partitioning of A. It is useful to note that

gAkk _ QA(Yk),

ngk _ QF(Yk),

and 7 A 7
gdeag( ) — (X ,Edeag( ))
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where
EBdiag(F) — U{EF(Yk) | 1<k< p}-

In what follows, we shall use f; to stand for f;(Bdiag(F)). Let row ¢ belong
to the k-th block in the partitioning. In other words, we let z; € Y;. In
terms of the filled graph, the quantity f; is given by

fi =min{s | s =i or {z,,z;} € EF(Yk)}.

We now relate it to the original graph gA through the use of reachable sets
introduced in Section 5.2.2. By Theorem 5.2.2 which characterizes the fill
via reachable sets, we have

fi = min{s | 2, € Y, 2; € Reach(z,,{z1,---,2,_1}) U {a;}} (7.4.4)
In Theorem 7.4.2, we prove a stronger result.
Lemma 7.4.1 Let z; € Yy, and let
S=Y,U---UY,_,.
That is, S contains all the nodes in the first k — 1 blocks. Then
z; € Reach(zy,, 5)U {zy,}.

Proof: By definition of f;, {@;, 24} € EF 5o that by Theorem 5.2.2, @; €
Reach(zy,, {21, --,24_1}). We can then find a path =, ,,, ---, z,,, ¢
where {mrn Tty 13”} C {331, Tty :Bfi—]-}'

We now prove that z; can also be reached from z;, through S, which is
a subset of {@,---,2s_1}. If t = 0, clearly @, € Reach(z;,,5). On the
other hand, if t # 0, let z,, be the node with the largest index number in
{z,,,--+,2,,}. Then 2;, 2, , -+, 2,,_,, ,, is a path from z; to z,, through
{z1, 29, -, 2, _1} so that

{ziyz,,} € EF.

But r, < f;, so by the definition of f; we have @, ¢ Y, or in other words
z,, € §. The choice of r, implies

{mﬁ?"')m“} -

and thus z; € Reach(zy,, S). ]
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Theorem 7.4.2 Let 2, € Y, and S =Y, U---UY;_;. Then
fi = min{s | z, € Y3, z; € Reach(z,,S)U {z,}}.

Proof: By Lemma 7.4.1, it remains to show that z; ¢ Reach(z,,S) for
z, €Yy and » < f;. Assume for contradiction that we can find z, € Y; with
r < f; and z; € Reach(z,,5). Since

5C {mla' : '7mr—1}7

we have z;, € Reach(z,,{®1,---,2,_1}) so that {z;, 2.} € EF(Yk). This
contradicts the definition of f;. a

Corollary 7.4.3 Let z; and S be as in Theorem 7.4.2. Then
fi = min{s | #, € Reach(z;, S)U {z;}}.

Proof: It follows from Theorem 7.4.2 and the symmetry of the “Reach”
operator. a
It is interesting to compare this result with that given by (7.4.4). To illustrate
the result, we consider the partitioned matrix example in Figure 7.4.1.

Consider Y, = {25, zg, 27, 25}. Then the associated set S is {@,z,, T3, 24}.

We have

{3310,1311}
= {237,138,1139,1310}
= {m67$8}
= {136,137,1310,1311}-
By Corollary 7.4.3,
fs(Bdiag(F)) = 5
fe(Bdiag(F)) = f:(Bdiag(F))= fs(Bdiag(F)) = 6.

7.4.3 An Algorithm and Subroutines for Finding Diagonal
Block Envelopes

Corollary 7.4.3 readily provides a method for finding f;(Bdiag(F')) and hence
the envelope structure of Bdiag(F'). However, in the actual implementation,
Lemma 7.4.1 is more easily applied. The algorithm can be described as
follows.

Let P = {Y1,--+,Y,} be the partitioning. For each block k in the partition-
ing, do the following:
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->< X X 1 ->< X X 1
X X X X X X X X
X X X X X X X X ®

X X X X

X X X X X X
A: X X X X F: X ><><® ><®
X X X X X X X X ®®

X X X X X X ®><>< ®®®

x x x O®| x O

X X X X X ><><® X®®®®XX
| X X ><><_ | X X ®®><><

Figure 7.4.1: An 11 by 11 partitioned matrix A.
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Step‘l (Initialization) S =Y, U---UY;;, T = 5UY;.
Step 2 (Main loop) For each node z, in Y; do:

2.1) Determine Reach(z,, ) in the subgraph G(T).
2.2) For each z; € Reach(z,,S), set f; = r.
2.3) Reset T — T — (Reach(z,,S)U {z.}).

The implementation of this algorithm consists of two subroutines, which are
discussed below.

REACH (find REACHable sets)

Given a set § and a node z ¢ § in a graph. To study the reachable set
Reach(z, S), it is helpful to introduce the related notion of neighborhood
set. Formally, the neighborhood set of z in S is defined to be

nbrhd(z,S) =
{s € S| s is reachable from z through a subset of S}

Reachable and neighborhood sets are related by the following lemma.
Lemma 7.4.4

Reach(z, S) = Adj(nbrhd(z, S)U {z}).

The subroutine REACH applies this simple relation to determine the reachable
set of a node via a subset in a given subgraph. The subgraph is specified by
the input parameters XADJ, ADJNCY and MARKER, where a node belongs to the
subgraph if its MARKER value is zero. The subset § is specified by the mask
vector SMASK, where a node belongs to 5 if its SMASK value is nonzero. The
variable ROOT is the input node, whose reachable set is to be determined.
It returns the reachable set in (RCHSZE, RCHSET). As a by-product, the
neighborhood set in (NHDSZE, NBRHD) is also returned. On exit, nodes in
the reachable or neighborhood sets will have their MARKER value set to ROOT.
After initialization, the subroutine loops through the neighbors of the given
ROOT. Neighbors not in the subset 5 are included in the reach set, while
neighbors in the subset S are put into the neighborhood set. Furthermore,
each neighbor in the subset S is examined to obtain new reachable nodes.
This process is repeated until no neighbors in 5 can be found.
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PURPOSE - THIS SUBROUTINE IS USED TO DETERMINE THE
REACHABLE SET OF A NODE Y THROUGH A SUBSET S
(I.E. REACH(Y,S) ) IN A GIVEN SUBGRAPH. MOREOVER,
IT RETURNS THE NEIGHBORHOOD SET OF Y IN S, I.E.
NBRHD(Y,S), THE SET OF NODES IN S THAT CAN BE
REACHED FROM Y THROUGH A SUBSET OF S.

INPUT PARAMETERS -
ROOT - THE GIVEN NODE NOT IN THE SUBSET S.
(XADJ, ADJNCY) - THE ADJACENCY STRUCTURE PAIR.
SMASK - THE MASK VECTOR FOR THE SET S.
= 0, IF THE NODE IS NOT IN S,
> 0, IF THE NODE IS IN S.

OUTPUT PARAMETERS -
(NHDSZE, NBRHD) - THE NEIGHBORHOOD SET.
(RCHSZE, RCHSET) - THE REACHABLE SET.

UPDATED PARAMETERS -
MARKER - THE MARKER VECTOR USED TO DEFINE THE SUBGRAPH,
NODES IN THE SUBGRAPH HAVE MARKER VALUE O.
ON RETURN, THE REACHABLE AND NEIGHBORHOOD NODE
SETS HAVE THEIR MARKER VALUES RESET TO ROOT.

[ I I I It I It I T T T s s T ]

C ok ke ke ok ok ok ek e s sk e ok ok e ke o o o ke ke o o o o 3 ke sk ok e ok ok e ek o o o ok ke o o o o ke
C

SUBROUTINE REACH ( ROOT, XADJ, ADJNCY, SMASK, MARKER,

1 RCHSZE, RCHSET, NHDSZE, NBRHD )
C
C ok ke ke ok ok ok ek e s sk e ok ok e ke o o o ke ke o o o o 3 ke sk ok e ok ok e ek o o o ok ke o o o o ke
C

INTEGER ADJNCY(1), MARKER(1), NBRHD(1), RCHSET(1),

1 SMASK (1)
INTEGER XADJ(1), I, ISTOP, ISTRT, J, JSTOP, JSTRT,

1 NABOR, NBR, NHDBEG, NHDPTR, NHDSZE, NODE,

1 RCHSZE, ROOT
¢
(G 3k ke ke ake 3k fe afe o af¢ ake e afe ok afe ake ke ake sk afe ok afe ake 3k ok 3k afe 3k 3k ake 3k e 3k 3k 3k 3k e 3k e 3k 3 e 3 e afe o afe e h¢ afe e afe o ah¢ ake e ok 3k afe ake ke ok e ke
¢
c __________________
¢ INITIALIZATION ...
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100

200

300

400
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NHDSZE
RCHSZE
IF ( MARKER(ROOT) .GT. 0 ) GO TO 100
RCHSZE = 1
RCHSET (1) = ROOT
MARKER (ROOT) = ROOT
ISTRT = XADJ(ROOT)
ISTOP = XADJ(ROOT+1) - 1
IF ( ISTOP .LT. ISTRT ) RETURN

o
(= =}

DO 600 I = ISTRT, ISTOP
NABOR ADJNCY(I)
IF ( MARKER(NABOR) .NE. 0 ) GO TO 600
IF ( SMASK(NABOR) .GT. 0 ) GO TO 200

RCHSZE = RCHSZE + 1
RCHSET (RCHSZE) = NABOR
MARKER (NABOR) = ROOT
GO TO 600
NABOR IS IN SUBSET S, AND HAS NOT BEEN CONSIDERED.
INCLUDE IT INTO THE NBRHD SET AND FIND THE NODES
REACHABLE FROM ROOT THROUGH THIS NABOR.
NHDSZE = NHDSZE + 1
NBRHD (NHDSZE)
MARKER (NABOR)
NHDBEG = NHDSZE
NHDPTR = NHDSZE
NODE = NBRHD(NHDPTR)
JSTRT = XADJ(NODE)
JSTOP = XADJ(NODE+1) - 1
DO 500 J = JSTRT, JSTOP
NBR = ADJNCY(J)
IF ( MARKER(NBR) .NE. 0 ) GO TO 500
IF ( SMASK(NBR) .EQ. 0 ) GO TO 400
NHDSZE = NHDSZE + 1
NBRHD (NHDSZE) = NBR
MARKER (NBR) = ROOT
GO TO 500
RCHSZE = RCHSZE + 1
RCHSET (RCHSZE) = NBR

||
= =
o =
o w
LI =]

|-
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95, MARKER(NBR) = ROOT

96. 500 CONTINUE

97. NHDPTR = NHDPTR + 1

98. IF ( NHDPTR .LE. NHDSZE ) GO TO 300
99. 600 CONTINUE

100. RETURN

101. END

FNBENV (FiNd diagonal Block ENVelope)

This subroutine serves the same purpose as FNTENV in Section 6.5.3. They
are both used to determine the envelope structure of the factored diagonal
blocks in a partitioned matrix. Unlike FNTENV, this subroutine FNBENV finds
the ezact envelope structure. Although it works for general partitioned
matrices, it is more expensive to use than FNTENV, and for the orderings
provided by the RQT algorithm, the output from FNTENV is satisfactory.
However, for one-way dissection orderings the more sophisticated FNBENV is
essential.

Inputs to FNBENV are the adjacency structure (XADJ, ADJNCY), the order-
ing (PERM, INVP) and the partitioning (NBLKS, XBLK). The subroutine will
produce the envelope structure in the index vector XENV and the variable
MAXENV will contain the size of the envelope.

Three temporary vectors are required. The vector SMASK is used to specify
those nodes in the subset S (see the above algorithm). On the other hand,
the nodes in the set T are given by those with MARKER value 0. The vector
MARKER is also used temporarily to store the first neighbor in each row of
a block. The third temporary vector RCHSET is used to contain both the
reachable and neighborhood sets. Since the two sets do not overlap, we can
organize the vector RCHSET as follows.

The subroutine begins by initializing the temporary vectors SMASK and MARKER.
The main loop goes through and processes each block. For each block, its
nodes are added to the subgraph by turning their MARKER values to zeros.
For each node ¢ in the block, the subroutine REACH is called so that nodes in
the thus-determined reachable sets will have node ¢ as their first neighbor.
Before the next block is processed, the MARKER values are reset and nodes in
the current block are added to the subset 5.

1. Cokesteateakeokok ook oe oo oe sefesefe e ke se e se ke ke ke ok ok ok b ek ek ke o ke o ke o se e se s e e e e ke sk ok o ke ok ke ok ok e o
2. Caleakokok ke e seofe s sesle ke ek ek ok ok ok ok ok ek ek ke o ke o se e se e se e e e e e ke ke ok ok ke ok ke ok ke e ke e e e e e e e e
3. Cakkokokokoskaesk FNBENV ..... FIND DIAGONAL BLOCK ENVELOPE skskakkxkk
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NHDSZE RCHSZE
et e, et e,
RCHSET Neighborhood Reachable
set set
*
BLKBEG

Figure 7.4.2: Organization of the RCHSET array.
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6. C
7. € PURPOSE - THIS SUBROUTINE FINDS THE EXACT ENVELOPE
8. C STRUCTURE OF THE DIAGONAL BLOCKS OF THE CHOLESKY
9. C FACTOR OF A PERMUTED PARTITIONED MATRIX.
10. C
11. C INPUT PARAMETERS -
12. C (XADJ, ADJNCY) - ADJACENCY STRUCTURE OF THE GRAPH.
13. C (PERM, INVP) - THE PERMUTATION VECTOR AND ITS INVERSE.
14. C (NBLKS, XBLK) - THE PARTITIONING.
15. C
16. C OUTPUT PARAMETERS _
17. ¢ XENV - THE ENVELOPE INDEX VECTOR.
18. C ENVSZE - THE SIZE OF THE ENVELOPE.
19. C
20. C WORKING PARAMETERS -
21. C SMASK - MARKS NODES THAT HAVE BEEN CONSIDERED.
22, C MARKER - IS USED BY ROUTINE REACH.
23. C RCHSET - IS USED BY THE SUBROUTINE REACH.
24, C STORES BOTH REACHABLE AND NEIGHBORHOOD SETS.
26, C
26. C PROGRAM SUBROUTINES -
27. C REACH.
28. C
29, G 2k ke ok 3k ke fe ok ok 3k he e e ok e 3k ok 2k e e e e ok 2k 3k 2he e e e e 3k 2 ke e e e ok ok 3k 3k 2 e ke e 3k ok 2k ke e e e ok e 3k ek ke e e ok ok 3k ke ke
30. C
31. SUBROUTINE FNBENV ( XADJ, ADJNCY, PERM, INVP, NBLKS, XBLK,
32. 1 XENV, ENVSZE, SMASK, MARKER, RCHSET )
33. C
34, G 2k ke ok 3k ke fe ok ok 3k he e e ok e 3k ok 2k e e e e ok 2k 3k 2he e e e e 3k 2 ke e e e ok ok 3k 3k 2 e ke e 3k ok 2k ke e e e ok e 3k ek ke e e ok ok 3k ke ke
36. C
36. INTEGER ADJNCY(1), INVP(1), MARKER(1), PERM(1),
37. 1 RCHSET (1), SMASK(1), XBLK(1)
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38.
39.
40.
41.
42.
43.
44.
45.
46.
47.
48.
49.
50.
51.
52,
53.
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66.
67.
68.
69.
70.
71.
72.
73.
74.
75.
76.
77.
78.
79.
80.
81.
82.
83.
84.

THE ENVELOPE STRUCTURE OF DIAGONAL BLOCKS 299

INTEGER XADJ(1), XENV(1), BLKBEG, BLKEND, I,
1 IFIRST, INHD, K, ENVSZE, NBLKS, NEQNS,
1 NEWNHD, NHDSZE, NODE, RCHSZE
C
(G ke e e sk ok ok ek ke e e e se e se e se e se e s ek ke ke ke ok ek ek ke o ke o ke o se e se s e e e e e ek ok ok ke ok ke ok ok ke
C

C
C INITIALIZATION ...
c __________________
NEQNS = XBLK(NBLKS+1) - 1
ENVSZE = 1
DO 100 I = 1, NEQNS
SMASK(I) = 0
MARKER(I) = 1
100 CONTINUE

c ________________________
¢ LOOP OVER THE BLOCKS
c ________________________
DO 700 K = 1, NBLKS
NHDSZE = 0
BLKBEG = XBLK (K)
BLKEND = XBLK(K+1) - 1
DO 200 I = BLKBEG, BLKEND
NODE = PERM(I)
MARKER (NODE) = 0
200 CONTINUE
c ___________________________________________
¢ LOOP THROUGH THE NODES IN CURRENT BLOCK
c ___________________________________________
DO 300 I = BLKBEG, BLKEND
NODE = PERM(I)
CALL REACH ( NODE, XADJ, ADJNCY, SMASK,
1 MARKER, RCHSZE, RCHSET(BLKBEG),
1 NEWNHD, RCHSET(NHDSZE+1) )
NHDSZE = NHDSZE + NEWNHD
IFIRST = MARKER (NODE)
IFIRST = INVP(IFIRST)
XENV(I) = ENVSZE
ENVSZE = ENVSZE + I - IFIRST
300 CONTINUE
c __________________________________________
¢ RESET MARKER VALUES OF NODES IN NBRHD SET.
c __________________________________________

IF ( NHDSZE .LE. 0 ) GO TO 500
DO 400 INHD = 1, NHDSZE
NODE = RCHSET (INHD)
MARKER (NODE) = 0
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85. 400 CONTINUE

86. € = e
87. ¢ RESET MARKER AND SMASK VALUES OF NODES IN
838. ¢ THE CURRENT BLOCK.

89. € = e
90. 500 D0 600 I = BLKBEG, BLKEND

91. NODE = PERM(I)

92. MARKER (NODE) = 0

93. SMASK (NODE) = 1

94. 600 CONTINUE

95. 700 CONTINUE

96. XENV(NEQNS+1) = ENVSZE

97. ENVSZE = ENVSZE - 1

98. RETURN

99. END

7.4.4 Execution Time Analysis of the Algorithm

For general partitioned matrices, the complexity of the diagonal block en-
velope algorithm depends on the partitioning factor p, the sparsity of the
matrix and the way blocks are connected. However, for one-way dissection
partitionings, we have the following result.

Theorem 7.4.5 Let G = (X, E) and P = {Y1,---,Y,} be a one-way dissec-
tion partitioning. The complexity of the algorithm FNBENV is O(|E|).

Proof: For a node @; in the first p — 1 blocks, the subroutine REACH, when
called, merely looks through the adjacency list for the node ;. On the other
hand, when nodes in the last block Y, are processed, the adjacency lists for
all the nodes in the graph are inspected at most once. Hence, in the entire
algorithm, the adjacency structure is gone through at most twice. a

Exercises

7.4.1) Construct an example of a tree-partitioned matrix structure A to
show that FNTENV is not adequate to determine the ezact envelope
structure of the block diagonal matrix Bdiag(F'), where F' is the
filled matrix of A.

7.4.2) Give an example to show that Theorem 7.4.5 does not hold for all
tree-partitionings P.
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7.4.3) This question involves solving a sequence of st by st finite element
matrix problems A@ = b of the type studied in Section 7.3, with
m = 5, 10, 15, and 20, and ¢ = 2m. Set the diagonal elements of
A to 8, the off-diagonal elements to —1, and arrange the right hand
side b so that the solution to the system is a vector of all ones. Use
the programs provided in Chapter 4 to solve these problems, taking
care to record the storage required and the execution times for each
phase of the solution of each problem. Repeat the procedure using
the one-way dissection ordering subroutines provided in this chapter,
along with the appropriate subroutines from Chapter 6. Compare the
two methods for solving these problems with respect to the criteria
discussed in Section 2.4 of Chapter 2.

7.5 Additional Notes

It is interesting to speculate about more sophisticated ways of choosing the
one-way dissectors. For example, instead of using a fixed 4§, one might instead
use a sequence §;, 1 = 1,2,---, where §; is obtained from local information
about the part of the level structure that remains to be processed after the
first ¢—1 dissectors have been chosen. Investigations such as these, aimed at
the development of robust heuristics, are good candidates for senior projects
and masters theses.

The fundamental idea that makes the one-way dissection method effective
is the use of the “throw-away” technique introduced in Section 6.3. This
technique can be recursively applied, as described in the additional notes at
the end of Chapter 6, which implies that the one-way dissection scheme of
this chapter may also be similarly generalized. In its simplest form the idea
is to also apply the one-way dissection technique to the ¢ + 1 independent
blocks, rather than ordering them using the RCM algorithm. The basic
approach for this two-level scheme is depicted in Figure 7.5.1.

Of course the idea can be generalized to more than two levels, but apparently
in practice using more than two levels does not yield significant benefit. It
can be shown that for an k£ X k grid problem (s = t = k), if the optimal
oy and o, are chosen, the storage and operation counts for this two level
ordering are O(k”/2) and O(k!%/®) respectively, compared to O(k*/?) and
O(k"/?) for the ordinary (one-level) one-way dissection scheme as described
in this chapter (Ng [42]).
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Figure 7.5.1: A two-level one-way dissection ordering, having o; = 2 level-1
dissectors, o, = 3 level-2 dissectors, and (o7 4+ 1)(o3 + 1) = 12 independent
blocks, which are numbered grid column by column.




Chapter 8

Nested Dissection Methods

8.1 Introduction

In Chapter 7, we have studied the so-called one-way dissection method,
and we have seen that it lends itself readily to the implicit tree-partitioning
scheme of Chapter 6. In this chapter, we consider a different dissection
method, which attempts to minimize fill, just as the minimum degree algo-
rithm described in Chapter 5 attempts to do.

The nested dissection for matrix problems arising in finite difference and
finite element applications. The main advantage of the algorithm of Sec-
tion 8.3, compared to the minimum degree algorithm, is its speed, and its
modest and predictable storage requirements. The orderings produced are
similar in nature to those provided by the minimum degree algorithm, and
for this reason we do not deal with a storage scheme, allocation procedure,
or numerical subroutines in this chapter. Those of Chapter 5 are appropriate
for nested dissection orderings.

Separators, which we defined in Section 3.2, play a central role in the study
of sparse matrix factorization. Let A be a symmetric matrix and QA be its
associated undirected graph. Consider a separator 5 in QA, whose removal
disconnects the graph into two parts whose node sets are C; and C,.

If the nodes in 5 are numbered after those of C; and (s, this induces a par-
titioning on the correspondingly ordered matrix and it has the form shown
in Figure 8.1.1. The crucial observation is that the zero block in the matrix
remains zero after the factorization. Since one of the primary purposes in
the study of sparse matrix computation is to preserve as many zero entries
as possible, the use of separators in this way is central. When appropriately

303
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chosen, a (hopefully large) submatrix is guaranteed to stay zero. Indeed, the
idea can be recursively applied, so that zeros can be preserved in the same
manner in the submatrices.

A O V,
Cy C, O A, V,
vl vI Ag

Figure 8.1.1: Use of a separator to partition a matrix.

The recursive application of this basic observation has come to be known as
the nested dissection method. George in 1973 [18] applied this technique to
sparse systems associated with an s X s regular grid or mesh consisting of
(s — 1)? small elements. In the next section, we shall give a careful analysis
of the method for this special problem.

8.2 Nested Dissection of a Regular Grid

8.2.1 The Ordering

Let X be the set of vertices of the s x s regular grid. Let S° consist of the
vertices on a mesh line which as nearly as possible divides X into two equal
parts R' and R?. Figure 8.2.1 shows the case when s = 10.

If we number the nodes of the two components R' and R? row by row, fol-
lowed by those in $°, a matrix structure as shown in Figure 8.2.2 is obtained.
Let us call this the one-level dissection ordering.

To get a nested dissection ordering, we continue dissecting the remaining
two components. Choose vertex sets

S CR, j=1,2

consisting of nodes lying on mesh lines which as nearly as possible divide R’
into equal parts. If the variables associated with vertices in R/ — §7 are num-



8.2. NESTED DISSECTION OF A REGULAR GRID

305

86
81
76
71
66
61
56
51
46
41

Figure 8.2.1: A one-level dissection ordering of a 10 by 10 grid.

87
82
77
72
67
62
57
52
47
42

88
83
78
73
68
63
58
53
48
43

89
84
79
74
69
64
59
54
49
44

90
85
80
75
70
65
60
55
50
45

100
99
98
97
96
95
94
93
92

91

40
36
32
28
24
20
16
12

39
35
31
27
23
19
15
11

38
34
30
26
22
18
14
10

37
33
29
25
21
17
13
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Figure 8.2.2: Matrix structure associated with a one-level dissection order-
ing.
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bered before those associated with $7, we induce in the two leading principal
submatrices exactly the same structure as that of the overall matrix.

78 77 [85] 68 67 100 29 28 [36] 20
76 75 84| 66 65 99| 27 26 (35| 19
80 79](83|[70 69]|98|[31 30]|34
74 73 (82| 64 63 |97| 25 24 (33| 18
72 71 (81|62 61 96| 23 22 |32] 17
190 89 88 87 86/|95/[40 39 38 37|
54 53 [60| 46 45 (94| 10 9 |16] 3
52 51 59| 44 43 (93] 8 7 |15| 2
56 55||58||48 47][92|[12 11][14

1

50 49 |57| 42 41 (91| 6 5 |13

Figure 8.2.3: A nested dissection ordering of a 10 by 10 grid.

The process can be repeated until the components left are not dissectable.
This yields a nested dissection ordering. Figure 8.2.3 shows such an ordering
on the 10 by 10 grid problem and Figure 8.2.4 shows the correspondingly
ordered matrix structure. Note the recursive pattern in the matrix structure.

8.2.2 Storage Requirements

Nested dissection employs a strategy commonly known as divide and con-
quer. The strategy splits a problem into smaller subproblems whose individ-
ual solutions can be combined to yield the solution to the original problem.
Moreover, the subproblems have structures similar to the original one so
that the process can be repeated recursively until the solutions to the sub-
problems are trivial.

In the study of such strategies, some forms of recursive equations need to be
solved. We now provide some results in preparation for the analysis of the
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Figure 8.2.4: Matrix structure associated with a nested dissection ordering.
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storage requirement for nested dissection orderings. The proofs of these are
left as exercises.

Lemma 8.2.1 Let f(s) = 4f(s/2) + ks®* + O(s). Then
f(s) = ks’ log, s + O(s).
Lemma 8.2.2 Let g(s) = g(s/2) + ks®log, s + O(s?). Then

4
g(s) = gksz log, s + O(s?).

Lemma 8.2.3 Let h(s) = 2h(s/2) 4 ks®log, s + O(s?). Then
h(s) = 2ks*log, s + O(s?).

In order to give an analysis of the nested dissection orderings recursively,
we introduce bordered s x s grids. A bordered s X s grid contains an s X s
subgrid, where one or more sides of this subgrid is bordered by an additional
grid line. Figure 8.2.5 contains some examples of bordered 3 by 3 grids.
We are now ready to analyze the storage requirement for the nested dis-
section ordering. Let S§(s,¢) be the number of nonzeros in the factor of a
matrix associated with an s X s grid ordered by nested dissection, where the
grid is bordered along ¢ sides. Clearly, what we are after is the quantity
S(s,0). For our purposes, when ¢ = 2, we always refer to the one as shown
in Figure 8.2.5(c), rather than the grid in Figure 8.2.6:

In what follows, we relate the quantities S(s,%), 0 < ¢ < 4. Consider first
S(s,0). In Figure 8.2.7, a “+” shaped separator is used to divide the s x s
grid into 4 smaller subgrids. The variables in regions , , and |4 | are
to be numbered before those in |5 | so that a matrix structure of the form in
Figure 8.2.8 is induced.

The number of nonzeros in the factor comes from the L;;’s (1 < ¢ < 4) and
the Ljs; for 1 < ¢ < 5. Now since the strategy is applied recursively on the
smaller subgrids, we have

N( L) + n(Lsi) = 5(8/2,2)

for 1 < ¢ < 4. As for Ls; which corresponds to the nodes in the “+”
separator, we can determine the number of nonzeros using Theorem 5.2.2.
It is given by

3s/2

n(Lss) = 2 Zi—l— $*/2+ 0(s) = 78* /4 + O(s).

1=s
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(c) (d)

Figure 8.2.5: Some bordered 3 by 3 grids.

Figure 8.2.6: A different type of bordered 3 by 3 grid.
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_____ e
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®
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N
N
N
AN

Figure 8.2.7: Dissection of an s by s grid.

Thus, we obtain the first recursion equation:
7
ﬂ&mzaﬂ;m+13+0@y (8.2.1)

The other recursion equations can be established in the same way. In general,
it can be expressed as

S(s,i) = cost to store the 4 bordered s/2 x s/2 subgrids +

cost to store the “ + "separator.

We leave it to the reader to verify the following results.

5(s,2) = 8(s/2,2)+25(5/2,3)+ S(5/2,4)+ 19s%/4 + 0(s)(8.2.2)
S(s,3) = 25(s/2,3)+ 25(s/2,4)+ 255%/4+ O(s) (8.2.3)
5(s,4) 45(s/2,4) + 31s?/4 + O(s). (8.2.4)

Theorem 8.2.4 The number of nonzeros in the triangular factor L of a
matriz assoctated with a regular s X s grid ordered by nested dissection is
given by

n(L) = 31(s’log, s)/4 + O(s).

Proof: The result follows from the recurrence relations (8.2.1)-(8.2.4). Ap-
plying Lemma 8.2.1 to equation (8.2.4), we get

5(s,4) = 31(s’log, s)/4 + O(s?),
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Ay Ag'l

Ajzs Ag'a

Ay A§'4

L33

L51 L52 L53 L54 L55

Figure 8.2.8: Matrix structure for dissection in Figure 8.2.7.
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% % %
r 7777777 V777777 V7T 7777
% % %
% % %
5(s,2) 5(s,3) 5(s,4)

Figure 8.2.9: Hlustrations of S(s,2), 5(s,3) and 5(s,4).

so that (8.2.3) becomes
5(s,3) = 25(s/2,3) + 31(s’log, 5)/8 + O(s?).
The solution to it gives, by Lemma 8.2.3,
5(s,3) = 31(s*log, s)/4 + O(s?).
Substituting S(s, 3) and 5(s,4) into equation (8.2.2), we have
5(s,2) = S(s/2,2)+ 93(s’log, s)/16 + O(s?).
Again, the solution is
5(s,2) = 31(s’log, s)/4 + O(s%)

so that
n(L) = S(s,0) = 31(s*log, s)/4 + O(s?)
a

It is interesting to note from the proof of Theorem 8.2.4 that the asymptotic
bounds for §(s,2),7 =0,2,3,4 are all 31(s*log, s)/4. (What about ¢ = 17)

8.2.3 Operation Counts

Let A be a matrix associated with an s X s grid ordered by nested dissection.
To estimate the number of operations required to factor A, we can follow the
same approach as used in the previous section. We first state some further
results on recursive equations.
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Lemma 8.2.5 Let f(s) = f(s/2) + ks® + O(s*log, s). Then
f(s) = 8ks®/7 + O(s”log, s).
Lemma 8.2.6 Let g(s) = 2¢(s/2) + ks® + O(s*log, s). Then
g(s) = 4ks®/3 + O(s?log, s).
Lemma 8.2.7 Let h(s) = 4h(s/2) + ks® + O(s*). Then
h(s) = 2ks® + O(s”log, s).

In parallel to §(s,?), we introduce 6(s,¢) to be the number of operations
required to factor a matrix associated with an s x s grid ordered by nested
dissection, where the grid is bordered on ¢ sides. To determine §(s,0), we
again consider Figure 8.2.7; clearly 0(s, 0) is the cost of eliminating the four
$/2 x s/2 bordered subgrids, together with the cost of eliminating the nodes
in the “4” dissector. Applying Theorem 2.2.2, we have

3s/2 s
1
0(s,0) ~ 46(s/2,2)+ > i*+ 5 > (8.2.5)
i=s i=1
= 46(s/2,2) + 19s%/24 + s*/6 + O(s?)
= 460(s/2,2)+ 23s%/24 + O(s°). (8.2.6)

We leave it to the reader to verify the following equations:

0(s,2) = 0(s/2,2)+ 260(s/2,3)+ 0(s/2,4) + 355°/6 + O(s*)(8.2.7)
0(s,3) = 20(s/2,3)+20(s/2,4) + 239s%/24 + O(s?) (8.2.8)
0(s,4) = 46(s/2,4)+ 371s%/24 + O(s?). (8.2.9)

Theorem 8.2.8 The number of operations required to factor a matriz as-
soctated with an s by s grid ordered by nested dissection is given by

829s°/84 + O(s®log, s).

Proof: All that is required is to determine 6(s,0). Applying Lemma 8.2.7
to equation (8.2.9), we obtain

0(s,4) = 371s*/12 + O(s’ log, s).
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This means equation (8.2.8) can be rewritten as
0(s,3) = 20(s/2,3) + 849s/48 + O(s? log, ).
By Lemma 8.2.6, we have
0(s,3) = 283s*/12 + O(s” log, s).
Substituting (s, 3) and 6(s, 4) into (8.2.7), we get
0(s,2) = 6(s/2,2) + 1497s*/96 + O(s* log, 3),
which is, by Lemma 8.2.5,
0(s,2) = 499s°/28 + O(s” log, s).
Finally, from equation (8.2.5),
0(s,0) = 829s/84 + O(s”log, s).

8.2.4 Optimality of the Ordering

In this section, we establish lower bounds on the number of nonzero entries in
the factor (primary storage) and the number of operations required to effect
the symmetric factorization for any ordering of the matrix system associated
with an s x s regular grid. We show that at least O(s®) operations are
required for its factorization and the corresponding lower triangular factor
must have at least O(s?log, s) nonzero components. The nested dissection
ordering described in Section 8.2.1 attains these lower bounds, so that the
ordering can be regarded as optimal in the order of magnitude sense.

We first consider the lower bound on operations.

Lemma 8.2.9 Let G = (X, E) be the graph associated with the s X s grid.
Let 1, 4, -+, @, be any ordering on G. Then there exists an x; such that

|Reach(z;, {1, -, z;_1})| > n—1.

Proof: Let z; be the first node to be removed which completely vacates a
row or column of the grid. For definiteness, let it be a column {row}. At
this stage, there are at least (s — 1) mesh rows {columns} with uneliminated
nodes. At least one in each of these rows {columns} can be reached from z;
through the subset {z;,...,2;_;}. This proves the lemma. O
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Theorem 8.2.10 The factorization of a matriz associated with an s X s grid
requires at least O(s®) operations.

Proof: By Lemma 8.2.9, there exists an z; such that
Reach(z;, {1, -, 2;_1}) U {z;}

is a clique of size at least s in the filled graph QF(A) (see Exercise 5.2.4 on
page 116). This corresponds to a full s x s submatrix in the filled matrix F
so that symmetric factorization requires at least s®/6 + O(s?) operations. O
The proof for the lower bound on primary storage follows a different argu-
ment. For each k X k subgrid, the following lemma identifies a special edge
in the resulting filled graph.

Lemma 8.2.11 Consider any k X k subgrid in the given s X s grid. There
exists an edge in QF joining a pair of parallel boundary lines in the subgrid.

Proof: There are four boundary mesh lines in the k£ x k subgrid. Let z;
be the first boundary node in the subgrid to be removed that completely
vacates a boundary line (sot including the corner vertices).

*
&

L 4

A

first eliminated
boundary

O not yet eliminated
’ eliminated

(O 0—@—)
L O

L o @ S
O nOn 0

_

Figure 8.2.10: The status of a grid when the first boundary is eliminated.
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Then there always exist two nodes in the remaining parallel boundary lines
that are linked through

{e, 20 @i, 2}
(See the nodes pointed to in the Figure 8.2.10.) In other words, there is an
edge joining them in gF. a

Theorem 8.2.12 The triangular factor of a matriz associated with an s X s
grid has at least O(s?log, s) nonzeros.

Proof: Consider each subgrid of size k. It follows from Lemma 8.2.11 that
there is an edge in G F joining a pair of parallel boundary lines in the subgrid.
Each such edge can be chosen for at most k subgrids of size k. Since the
number of subgrids of size k is (s — k + 1), the number of such distinct edges
is bounded below by

(s—k+1)

-
Futhermore, for subgrids of different sizes, the corresponding edges must be
different. So, we have

(s—k+1)

|EF| > ZT ~ s’log, s.
k=1

Exercises

8.2.1) Let A be the matrix associated with an s x s grid, ordered by the
one-level dissection scheme. Show that

a) the number of operations required to perform the symmetric fac-

torization is $2s* + O(s®)

b) the number of nonzeros in the factor L is s* + O(s?).

8.2.2) Prove the recursive equations in Lemmas 8.2.1-8.2.3 and Lemmas 8.2.5-
8.2.7.

8.2.3) In establishing equation (8.2.7) for §(s,2), we assumed that the “4”
separator is ordered as in (a).

Assume 6'(s, 2) is the corresponding cost if (b) is used. Show that
0'(s,2) = 0'(s/2,2) + 20(s/2,3) + 6(s/2,4) + 1255°/24 + O(s?).

How does it compare to 6(s,2) ?
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Figure 8.2.11: Different ways of labelling the ‘4’ separator.

8.2.4)

8.2.5)

8.2.6)

8.2.7)

8.2.8)

Prove results similar to Theorems 8.2.4 and 8.2.9 for an s x ¢t grid
where s is large and s < t.

Prove that any ordering of an s X s grid must yield a matrix whose
bandwidth is at least s — 1.

Consider the s x s grid. It is known that the associated graph G =
(X, E) satisfies the isoparametric inequality: for any subset S, if
|S] < s%/2 then |Adj(S)| > |,5'|1/2. Prove that any ordering on G
yields a profile of at least O(s®).

Suppose one carries out “incomplete nested dissection” on the s x
s grid problem (George et al. [22]). That is, one only carries out
the dissection [ levels, where ! < log, s, and numbers the remaining
independent grid subarrays row by row. Show that if I > log,(1/s)
then the operation count for this ordering remains O(s®). Show that
the number of nonzeros in the corresponding factor L is O(s?y/s).

Using a method due to Strassen [52], and extended by Bunch and
Hopcroft [5], it is possible to solve a dense s X s system of linear
equations, and to multiply two dense s X s matrices together, in
O(s'°92") operations. Using this result, along with modifications to
Lemmas 8.2.5-8.2.7, show that the s x s grid problem can be solved in
O(s'°9°7) operations, using the nested dissection ordering (Rose [45]).
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8.3 Nested Dissection of General Problems

8.3.1 A Heuristic Algorithm

The optimality of the nested dissection ordering for the s X s grid problem
has been established in the previous section. The underlying idea of splitting
the grid into two pieces of roughly equal size with a small separator is clearly
important. In this section, we describe a heuristic algorithm that applies this
strategy for orderings of general graphs.

How do we find a small separator to disconnect a given graph into compo-
nents of approximately equal size? The method is to generate a long level
structure of the graph and then choose a small separator from a “middle”
level. The overall dissection ordering algorithm is described below. Let
G = (X, E) be the given graph.

Step 1 (Initialization) Set R = X, and n = |X|.
Step 2 (Generate a level structure) Find a connected component G(C) in

G(R) and construct a level structure of the component G(C') rooted at
a pseudo-peripheral node r :

L(r)={Lo,Lq,---,L;}.

Step 3 (Find separator) If [ < 2, set § = C and go to Step 4. Otherwise
let j = [(I+1)/2], and determine the set § C L;, where

§=A{yeL;| Adj(y) N Ljn # ¢}

Step 4 (Number separator and loop) Number the nodes in the separator §
fromn —|S|+1ton. Reset R— R—Sandn—n—|S]. If R#¢,
go to Step 2.

In Step 3 of the algorithm, the separator set S can be obtained by simply
discarding nodes in L; which are not adjacent to any node in L;,;. In many
cases, this reduces the size of the separators.

8.3.2 Computer Implementation

The set of subroutines which implements the nested dissection ordering al-
gorithm consists of those shown in Figure 8.3.1:

The subroutines FNROOT and ROOTLS have been described in Section 4.4.3
and the utility subroutine REVRSE was described in Section 7.3.2. The other
two are described below.



320 CHAPTER 8. NESTED DISSECTION METHODS

GENND

FNDSEP REVRSE

FNROOT

ROOTLS

Figure 8.3.1: Control relation of subroutines for the nested dissection algo-
rithm.

GENND (GENeral Nested Dissection ordering)

This is the driver subroutine for this set of subroutines. It is used to de-
termine a nested dissection ordering for a general disconnected graph. The
input graph is given by NEQNS and (X4DJ, ADJNCY), and the output order-
ing is returned in the vector PERM. The working vector MASK is used to mask
off nodes that have been numbered during the ordering process. Two more
working vectors (XLS, LS) are required and they are used by the called
subroutine FNDSEP.

The subroutine begins by initializing the vector MASK. It then goes through
the graph until it finds a node 7 not yet numbered. This node ¢ defines a
component in the unnumbered portion of the graph. The subroutine FNDSEP
is then called to find a separator in the component. Note that the separator
is collected in the vector PERM starting at position NUM + 1. So, after all
nodes have been numbered, the vector PERM has to be reversed to get the
final ordering.
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PURPOSE - SUBROUTINE GENND FINDS A NESTED DISSECTION
ORDERING FOR A GENERAL GRAPH.

INPUT PARAMETERS -
NEQNS - NUMBER OF EQUATIONS.
(XADJ, ADJNCY) - ADJACENCY STRUCTURE PAIR.

OUTPUT PARAMETERS -
PERM - THE NESTED DISSECTION ORDERING.

WORKING PARAMETERS -
MASK - IS USED TO MASK OFF VARIABLES THAT HAVE
BEEN NUMBERED DURING THE ORDERNG PROCESS.
(XLS, LS) - THIS LEVEL STRUCTURE PAIR IS USED AS
TEMPORARY STORAGE BY FNROOT.

PROGRAM SUBROUTINES -
FNDSEP, REVRSE.

[ T+ T+ T o~ T o~ B~ B - T - T -~ Y o T o TR -~ Y o B o B - K - B o B - IR - B o

(G 3k ke ke ake 3k fe afe o af¢ ake e afe ok afe ake ke ake sk afe ok afe ake 3k ok 3k afe 3k 3k ake 3k e 3k 3k 3k 3k e 3k e 3k 3 e 3 e afe o afe e h¢ afe e afe o ah¢ ake e ok 3k afe ake ke ok e ke
¢
SUBROUTINE GENND ( NEQNS, XADJ, ADJNCY, MASK,
1 PERM, XLS, LS )
¢
(G 3k ke ke ake 3k fe afe o af¢ ake e afe ok afe ake ke ake sk afe ok afe ake 3k ok 3k afe 3k 3k ake 3k e 3k 3k 3k 3k e 3k e 3k 3 e 3 e afe o afe e h¢ afe e afe o ah¢ ake e ok 3k afe ake ke ok e ke
¢
INTEGER ADJNCY(1), MASK(1), LS(1), PERM(1),
1 XLS(1)
INTEGER XADJ(1), I, NEQNS, NSEP, NUM, ROOT
¢
(G 3k ke ke ake 3k fe afe o af¢ ake e afe ok afe ake ke ake sk afe ok afe ake 3k ok 3k afe 3k 3k ake 3k e 3k 3k 3k 3k e 3k e 3k 3 e 3 e afe o afe e h¢ afe e afe o ah¢ ake e ok 3k afe ake ke ok e ke
¢
DO 100 I = 1, NEQNS

MASK(I) = 1
100 CONTIN
NOM =0
DD 300 I = 1, NEQNS
c _____________________________
C FOR EACH MASKED COMPONENT
c _____________________________
200 IF ( MASK(I) .EQ. 0 ) GO TO 300
ROOT = I
c ___________________________________________
C FIND A SEPARATOR AND NUMBER THE NODES NEXT.
c ___________________________________________

CALL FNDSEP ( ROOT, XADJ, ADJNCY, MASK,
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54. 1 NSEP, PERM(NUM+1), XLS, LS )
55. NUM = NUM + NSEP

56. IF ( NUM .GE. NEQNS ) GO TO 400

57. GO TO 200

58. 300 CONTINUE

59. ¢ = -————-—-——"—"""""——""—""\—"\—"\——
60. C SINCE SEPARATORS FOUND FIRST SHOULD BE ORDERED
61. C LAST, ROUTINE REVRSE IS CALLED TO ADJUST THE
62. C ORDERING VECTOR.

63. ¢ = ---m————————
64. 400 CALL REVRSE ( NEQNS, PERM )

65. RETURN

66. END

FNDSEP (FiND SEParator)

This subroutine is used by GENND to find a separator for a connected sub-
graph. The connected component is specified by the input parameters ROOT,
XADJ, ADJNCY and MASX. Returned from FNDSEP is the separator in (NSEP,
SEP). The array pair (XLS, LS) is used to store a level structure of the
component.

The subroutine first generates a level structure rooted at a pseudo-peripheral
node by calling FNROOT. If the number of levels is less than 3, the whole
component is returned as the “separator.” Otherwise, a middle level, given
by MIDLVL is determined. The loop DO 500 I = ... goes through the
nodes in this middle level. A node is included in the separator if it has some
neighbor in the next level. The separator is then returned in (NSEP, SEP).

1. Cokesteateakeokok ook oe oo oe sefesefe e ke se e se ke ke ke ok ok ok b ek ek ke o ke o ke o se e se s e e e e ke sk ok o ke ok ke ok ok e o
2. Caleakokok ke e seofe s sesle ke ek ek ok ok ok ok ok ek ek ke o ke o se e se e se e e e e e ke ke ok ok ke ok ke ok ke e ke e e e e e e e e
3. Coeddeoskakokokokakokokok FNDSEP ..... FIND SEPARATOR e 3 3 3 3k ke Ak A e e e e
4, Cokokokeolesteakkeak ok ok ok ook ook ke o ke o ke o se e se e se e e e e ke ok ok ke ok ke ok ke ok ke e ke e ke o e e e o e s e e s ek ok
5. Caleakokok ke oe seofe s skesle i ek kel ok bk ke ok b ek ek ke o ke o se e se e se s e e e e ks ok ke ok ok ke ok ke ok ke e ke e e e e e e e e
6. C

7. € PURPOSE - THIS ROUTINE IS USED TO FIND A SMALL

8. C SEPARATOR FOR A CONNECTED COMPONENT SPECIFIED

9. C BY MASK IN THE GIVEN GRAPH.

10. C

11. C INPUT PARAMETERS -

12. C ROOT - IS THE NODE THAT DETERMINES THE MASKED

13. C COMPONENT .

14. C (XADJ, ADJNCY) - THE ADJACENCY STRUCTURE PAIR.

15. C
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OUTPUT PARAMETERS -
NSEP - NUMBER OF VARIABLES IN THE SEPARATOR.
SEP - VECTOR CONTAINING THE SEPARATOR NODES.

UPDATED PARAMETER -
MASK - NODES IN THE SEPARATOR HAVE THEIR MASK
VALUES SET TO ZEROD.

WORKING PARAMETERS -
(XLS, LS) - LEVEL STRUCTURE PAIR FOR LEVEL STRUCTURE
FOUND BY FNROOT.

PROGRAM SUBROUTINES -
FNROOT.

OO oo aaaaaaan

C ok ke ke ok ok ok ek e s sk e ok ok e ke o o o ke ke o o o o 3 ke sk ok e ok ok e ek o o o ok ke o o o o ke
C
SUBROUTINE FNDSEP ( ROOT, XADJ, ADJNCY, MASK,
1 NSEP, SEP, XLS , LS )
C
C ok ke ke ok ok ok ek e s sk e ok ok e ke o o o ke ke o o o o 3 ke sk ok e ok ok e ek o o o ok ke o o o o ke
C
INTEGER ADJNCY(1), LS(1), MASK(1), SEP(1), XLS(1)
INTEGER XADJ(1), I, J, JSTOP, JSTRT, MIDBEG,
1 MIDEND, MIDLVL, MP1BEG, MP1END,
1 NBR, NLVL, NODE, NSEP, ROOT
C
C ok ke ke ok ok ok ek e s sk e ok ok e ke o o o ke ke o o o o 3 ke sk ok e ok ok e ek o o o ok ke o o o o ke
C
CALL FNROOT ( ROOT, XADJ, ADJNCY, MASK,

1 NLVL, XLS, LS )
c ______________________________________________
¢ IF THE NUMBER OF LEVELS IS LESS THAN 3, RETURN
¢ THE WHOLE COMPONENT AS THE SEPARATOR.
c ______________________________________________
IF ( NLVL .GE. 3 ) GO TO 200
NSEP = XLS(NLVL+1) - 1
DO 100 I = 1, NSEP
NODE = LS(I)
SEP(I) = NODE
MASK (NODE) = 0
100 CONTINUE
RETURN
c ____________________________________________________
¢ FIND THE MIDDLE LEVEL OF THE ROOTED LEVEL STRUCTURE.
c ____________________________________________________

200 MIDLVL = (NLVL + 2)/2
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63. MIDBEG = XLS(MIDLVL)
64. MP1BEG = XLS(MIDLVL + 1)
65. MIDEND = MP1BEG - 1
66. MP1END = XLS(MIDLVL+2) - 1
67. € e
68. ¢ THE SEPARATOR IS OBTAINED BY INCLUDING ONLY THOSE
69. ¢ MIDDLE-LEVEL NODES WITH NEIGHBORS IN THE MIDDLE+1
70. ¢ LEVEL. XADJ IS USED TEMPORARILY TO MARK THOSE
71. ¢ NODES IN THE MIDDLE+1 LEVEL.
T2, € e
73. DO 300 I = MP1BEG, MP1END
74. NODE = LS(I)
75. XADJ(NODE) = - XADJ(NODE)
76. 300 CONTINUE
77. NSEP = 0
78. D0 500 I = MIDBEG, MIDEND
79. NODE = LS(I)
80. JSTRT = XADJ(NODE)
81. JSTOP = IABS(XADJ(NODE+1)) - 1
82. DO 400 J = JSTRT, JSTOP
83. NBR = ADJNCY(J)
84. IF ( XADJ(NBR) .GT. 0 ) GO TO 400
85. NSEP = NSEP + 1
86. SEP (NSEP) = NODE
87. MASK (NODE) = 0
88. GO TO 500
89. 400 CONTINUE
90. 500 CONTINUE
91. € = e
92. ¢ RESET XADJ TO ITS CORRECT SIGN.
93. € = e
94. DO 600 I = MP1BEG, MP1END
95. NODE = LS(I)
96. XADJ(NODE) = - XADJ(NODE)
97. 600 CONTINUE
98. RETURN
99. END
Exercises

8.3.1) This problem involves modifying GENND and FNDSEP to implement

a form of “incomplete nested dissection.” Add a parameter MINSZE
to both subroutines, and modify FNDSEP so that it only dissects the
component given to it if the number of nodes in the component is
greater than MINSZE. Otherwise, the component should be numbered
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using the RCM subroutine from Chapter 4. Conduct an experiment to
investigate whether the result you are asked to prove in Exercise 8.2.7
on page 318 appears to hold for the heuristic orderings produced by
the algorithm of this section. One way to do this would be to solve
a sequence of problems of increasing size, such as the test set #2
from Chapter 9, with MINSZE set to y/n. (For the s X s grid problem,
note that [ > log,(1/s) implies that the final level independent blocks
have O(s) nodes. That is, O(,/n) nodes, where n = s%.) Monitor the
operation counts for these problems, and compare them to the cor-
responding values for the original (complete) dissection algorithm.
Similarly, you could compare storage requirements to see if they ap-
pear to grow as n./n for your incomplete dissection algorithm.

8.3.2) Show that in the algorithm of Section 8.3.1, the number of fills and
factorization operation count are independent of the order the nodes
in the separator are numbered.

8.4 Additional Notes

Lipton, Tarjan and Rose [36] have provided a major advance in the develop-
ment of automatic nested dissection algorithms. The key to their algorithm
is a fundamental result by Lipton and Tarjan [37] showing that the nodes
of any n-node planar graph can be partitioned into three sets A, B, and
C where Adj(A)N B = ¢, |C| is O(y/n), and |A| and |B| are bounded by
2n/3. They also provided an algorithm which finds 4, B, and C in O(n)
time. Using this result Lipton et al. have developed an ordering algorithm
for two dimensional finite element problems for which the O(n®?) operation
and O(nlog, n) storage bounds are guaranteed. Moreover, the ordering al-
gorithm itself runs in O(nlog, n) time. On the negative side, their algorithm
appears to be substantially more complicated than the simple heuristic one
given in this chapter. A practical approach might be to combine the two
methods, and use their more sophisticated scheme only if the simple ap-
proach in this chapter yields a “bad” separator.

The use of nested dissection ideas has been shown to be effective for problems
associated with three dimensional structures. (George [18], Duff et al. [11],
Rose [45], Eisenstat et al. [14].) Thus, research into automatic nested dis-
section algorithms for these non-planar problems appears to be a potentially
fertile area.
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The use of dissection methods on parallel and vector computers has been
investigated by numerous researchers (Calahan [6, 7], George et al. [21],
Lambiotte [34]). Vector computers tend to be most efficient if they can op-
erate on “long” vectors, but the use of dissection techniques tend to produce
short vectors, unless some unconventional methods of arranging the data are
employed. Thus, the main issue in these studies involves balancing several
conflicting criteria to produce the best solution time. Often this does not
correspond at all closely to minimizing the arithmetic performed.



Chapter 9

Numerical Experiments

9.1 Introduction

In Chapter 1 we asserted that the success of algorithms for sparse matrix
computations depends crucially on the quality of their computer implemen-
tations. This is why we have included computer implementations of the
algorithms discussed in the previous chapters, and have provided a detailed
discussion of how those programs work. In this chapter we provide results
from numerical experiments where these subroutines have been used to solve
some test problems.

Our primary objective here is to provide some concrete examples which illus-
trate the points made in Section 2.4, where “practical considerations” were
discussed, and where it was pointed out how complicated it is to compare dif-
ferent methods. Data structures vary in their complexity, and the execution
time for solving a problem consists of several components whose importance
varies with the ordering strategy and the problem. The numerical results
provided in this chapter give the user information to gauge the significance
of some of these points.

As an attractive byproduct, the reader is supplied with data about the ab-
solute time and storage requirements for some representative sparse matrix
computations on a typical computer.

The test problems are of one specific type, typical of those arising in finite
element applications. Qur justification for this is that we are simply trying
to provide some evidence illustrating the practical points made earlier; we
regard it as far too ambitious to attempt to gather evidence about the relative
merits of different methods over numerous classes of problems. It is more

327
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or less self-evident that for some classes of problems, one method may be
uniformly better than all others, or that the relative merits of the methods in
our book may be entirely different for other classes of problems. Restricting
our attention to problems of one class simply removes one of the variables
in an already complicated study.

Nevertheless, the test problems do represent a large and important applica-
tion area for sparse matrix techniques, and have the additional advantage
that they are associated with physical objects (meshes) which provide us
with a picture (graph) of the matrix problem.

An outline of the remaining parts of this chapter is as follows. In Section 9.2
we describe the test problems, and in Section 9.3 we describe the informa-
tion supplied in some of the tables, along with the reasons for providing
it. These tables, containing the “raw” experimental data, appear at the
end of Section 9.3. In Section 9.4 we review the main criteria used in com-
paring methods, and then proceed to compare five methods, according to
these criteria, when applied to the test problems. Finally, in Section 9.5 we
consider the influence of the different storage schemes on the storage and
computational efficiency of the numerical subroutines.

9.2 Description of the Test Problems

The two sets of test problems are positive definite matrix equations typical of
those which might arise in structural analysis or the study of heat conduction
(Zienkiewicz [58]). (For an excellent tutorial see Chapter 6 of Strang [51].)
The problems are derived from the triangular meshes shown in Figure 9.2.1
as follows. The basic meshes shown are subdivided by a factor s in the
obvious way, yielding a mesh having s?> as many triangles as the original, as
shown in Figure 9.2.2 for the pinched hole domain with s = 3. Providing a
basic mesh along with a subdivision factor determines a new mesh having
N nodes. Then, for some labelling of these IV nodes, we generate an N by
N symmetric positive definite matrix problem A« = b, where a;5 # 0 if and
only if nodes of the mesh are joined by an edge. Thus, the generated meshes
can be viewed as the graphs of the corresponding matrix problem.

The two sets of test problems are derived from these meshes. Test set #1 is
simply the nine mesh problems, subdivided by an appropriate factor so that
the resulting matrix problems have about 1000-1500 equations, as shown
in Table 9.2.1. The second set of problems is a sequence of nine graded-L
problems obtained by subdividing the initial graded-L mesh of Figure 9.2.1
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by subdivision factors s = 4, 5,...,12, as indicated in Table 9.2.2.

Problem Subdivision factor N |E|

Square 32 1089 3136
Graded L 8 1009 2928
+ domain 9 1180 3285
H domain 8 1377 3808
Small hole 12 936 2665
Large hole 9 1440 4032
3 holes 6 1138 3156
6 holes 6 1141 3162
Pinched hole 19 1349 3876

Table 9.2.1: Data on test problem set #1 with the subdivision factors used
to generate the problems, the number of equations obtained, and the number
of edges in the corresponding graphs.

Subdivision factor N |E|

4 266 744
5 406 1155
6 577 1656
7 778 2247
8 1009 2928
9 1270 3699
10 1561 4560
11 1882 5511
12 2233 6552

Table 9.2.2: Data on test problem set #2, which is derived from the Graded-
L mesh with subdivision factors s = 4,5,---,12.

9.3 The Numbers Reported and What They Mean

In Chapters 4 through 8 we have described five methods, which in this
chapter we refer to by the mnemonics RCM (reverse Cuthill-McKee), RQT
(refined quotient tree), IWD (one-way dissection), QMD (quotient minimum
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Figure 9.2.1: Mesh problems with s = 1.
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Figure 9.2.2: Pinched hole domain with subdivision factor s = 3.
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degree), and ND (nested dissection). Recall that we described only three
basic data structures and corresponding numerical subroutines, because it
is appropriate to use the same data structures with the one-way dissection
and refined quotient tree orderings, and similarly for the minimum degree
and nested dissection orderings.

In the tables at the end of this section, operations mean multiplicative op-
erations (multiplications and divisions). For reasons already discussed in
Chapter 2, we regard this as a reasonable measure of the amount of arith-
metic performed, since arithmetic operations in matrix computations typi-
cally occur in multiply-add pairs. Ezecution time is reported in seconds on
an IBM 3031 computer, a fairly recent architecture using high speed cache
memory, and on which typical operations take from .4 microseconds for a
simple fixed-point register-to-register operation, to about 7 microseconds for
a floating-point division. As is usual in multiprogrammed operating system
environments, accurate timing results are difficult to obtain and may be in
error by up to 10 percent. We have attempted to reduce these errors some-
what by making multiple runs, and running when the computer was lightly
loaded. The programs were all compiled using the optimizing version of the
compiler, which usually generates very efficient machine code.

Recall that we concluded in Section 2.4 that in some comparisons of ordering
strategies, it might be reasonable to ignore one or more of the four basic
steps in the overall solution procedure. For this reason, in the numerical
experiments we report execution times for each of the four individual steps:
order, allocate, factor, and solve.

There are four storage statistics reported in the tables: order storage, al-
location storage, total (solution) storage, and overhead storage. All our ex-
periments were performed within the framework of a sparse matrix package
called SPARSPAK ([24, 25]) which allocates all array storage from a single
one dimensional array. The order storage, allocation storage, and solution
storage reported is the amount of storage used from that array. Thus, we
feel that these numbers represent the amount of storage required when the
various subroutines are used in a practical setting, rather than the irreducible
minimum necessary to execute the subroutines. To illustrate this point, note
that one does not need to preserve the original graph when one uses the QMD
ordering subroutine, (which destroys its input graph during execution) but in
most practical applications one would preserve the graph since it is required
for the subsequent symbolic factorization step. Thus, the ordering storage
entries under QMD in the tables include the space necessary to preserve the
original graph.
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As another example, it is obviously not necessary to preserve PERM and INVP
after the allocation has been performed, since the numerical factorization and
solution subroutines do not use these arrays. However, in most situations
the arrays would be saved in order to place the numerical values of A and
b in the appropriate places in the data structure, and to replace the values
of @ in the original order after the (permuted) solution has been computed.
In Table 9.3.1 we list the arrays included in our storage reporting, for the
different phases of the computation (order, allocate, factorization, solution),
and for the five methods. The notation A(B) in Table 9.3.1 means arrays
A and B use the same storage space, in sequence.

Strictly speaking, we should distinguish between factorization storage and
triangular solution storage, since several arrays required by TSFCT and GSFCT
are not required by their respective solvers. However, the storage for these
arrays will usually be relatively small, compared to the total storage required
for the triangular solution. Thus, we report only “solution storage” in our
tables.

So far our discussion about storage reporting has dealt only with the first
three categories: ordering, allocation, and numerical solution. The fourth
category is “overhead storage,” which is included in order to illustrate how
much of the total storage used during the factorization/solution phase is
occupied by data [other than the nonzeros in L and the right hand side] b
(which is overwritten by «). If a storage location is not being used to store
a component of L or b, then we count it as overhead storage. The arrays
making up the overhead storage entries are underlined in Table 9.3.1. Note
that solution storage includes overhead storage.

There is another reason for reporting overhead storage as a separate item.
On computers having a large word size, it may be sensible to pack several
integers per word. Indeed, some computer manufacturers provide short inte-
ger features directly in their Fortran languages. For example, IBM Fortran
allows one to declare integers as INTEGER*2 or INTEGER*4, which will be rep-
resented using 16 or 32 bits respectively. Since much of the overhead storage
involves integer data, the reader can gauge the potential storage savings to
be realized if the Fortran processor one is using provides these short integer
features. However, note that all the experiments were performed on an IBM
3031 in single precision, and both integers and floating point numbers are
represented using 32 bits.
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Order Allocate Solution
XADJ, XADJ, PERM, INVP, RHS, XENV,
ADJNCY, ADJNCY, ENV, DIAG
PERM, XLS, PERM, INVP
- MASK
XADJ, XADJ, PERM, INVP, RHS, XENV,
ADJNCY, ADJNCY, ENV, DIAG, XNONZ,
PERM, BNUM,  PERM, INVP,  NZSUBS, NONZ, TEMPYV,
LS(SUBG), XBLK, MASK,  FIRST
XBLK, MASK,  MARKER,
XLS FATHER,
XENV,
1WD NZSUBS,
RCHSET (XNONZ)
XADJ, XADJ,
ADJNCY, ADJNCY,
PERM, XBLK,  PERM, INVP,
MASK, XBLK, MASK,
NODLVL(BNUM), FATHER,
XLS, XENV, XNONZ,
LS(SUBG) NZSUBS
RQT XADJ, XADJ, PERM, INVP, RHS, XNZSUB,
ADJNCY, ADJNCY, NZSUB, XLNZ, LNz, DIf
PERM, LS, PERM, INVP,  LINK, FIRST, TEMPY
XLS, MASK XLNZ,
XNZSUB,
NZSUB,
MRGLNK,
RCHLNK,
ND MARKER

XADJ, 2 copies
of ADJNCY,
PERMNM,

MARKER, DEG,
RCHSET,
NBRHD,

QSIZE, QLINK

Table 9.3.1: Arrays included in reported storage requirements for each phase
of the flldkethods. Storage required for the undedinedhsmbysdn the Solu-

tion column is reported as “overhead storage.”

same as above
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Problem

Order

Allocation

Solution

Time Store

Time Store

Time

Operations

Store

Fact. Solve

Fact.

Solve

Total Ovrhd

936
1009
1089
1440
1180
1377
1138
1141
1349

0.21
0.27
0.24
0.32
0.32
0.30
0.30
0.25
0.36

0.91
0.99
1.06
1.38
1.13
1.31
1.09
1.09
1.31

0.04
0.04
0.05
0.06
0.06
0.06
0.06
0.05
0.06

0.91
0.99
1.06
1.38
1.13
1.31
1.09
1.09
1.31

2.85
3.43
3.25
4.74
2.86
1.99
2.81
4.40
5.74

0.40
0.46
0.45
0.62
0.44
0.40
0.45
0.52
0.69

30.18
37.49
34.46
53.75
31.87
18.64
28.88
54.08
64.95

4.55
5.25
5.11
7.23
5.17
4.34
4.92
6.75
7.95

2.65
3.03
2.99
4.19
3.06
2.72
2.92
3.83
4.52

0.28
0.30
0.33
0.43
0.35
0.41
0.34
0.34
0.40

Table 9.3.2: Results of the RCM method applied to test set #1. (Operations
and storage scaled by 107%)

Problem

Order

Allocation

Solution

Time Store

Time Store

Time

Operations

Store

Fact. Solve

Fact.

Solve

Total Ovrhd

936
1009
1089
1440
1180
1377
1138
1141
1349

0.38
0.47
0.45
0.60
0.55
0.57
0.52
0.46
0.61

1.19
1.29
1.39
1.81
1.48
1.73
1.43
1.43
1.72

0.25
0.28
0.30
0.39
0.33
0.37
0.30
0.31
0.36

1.24
1.35
1.46
1.89
1.56
1.82
1.49
1.49
1.79

3.39
5.47
5.23
4.43
3.35
3.25
3.17
5.10
7.03

0.36
0.40
0.42
0.52
0.42
0.49
0.41
0.44
0.56

26.60
44.90
41.48
33.04
24.50
21.41
23.56
41.08
58.38

3.06
3.66
3.62
4.32
3.48
3.57
3.48
3.77
4.79

1.72
1.94
2.03
2.51
2.03
2.21
1.98
2.07
2.57

0.61
0.66
0.72
0.94
0.78
0.92
0.75
0.74
0.88

Table 9.3.3: Results of the IWD method applied to test set #1. (Operations
and storage scaled by 107%)
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Problem Order Allocation Solution
Time Store Time Store Time Operations Store

Fact.Solve Fact. Solve Total Ovrhd
936 0.18 1.19 0.15 1.19 4.17 0.53 32.84 4.85 2.14 0.75
1009 0.26 1.29 0.16 1.30 4.88 0.59 39.32 5.49 2.38 0.81
1089 0.22 1.39 0.17 1.40 4.68 0.61 37.04 5.43 2.45 0.88
1440 0.29 1.81 0.22 1.81 6.75 0.82 55.46 7.44 3.29 1.15
1180 0.31 1.48 0.19 1.49 2.39 0.54 13.52 3.41 2.04 0.95
1377 0.28 1.74 0.21 1.74 2.30 0.58 11.69 3.563 2.27 1.12
1138 0.30 1.43 0.17 1.43 4.32 0.60 21.98 5.13 2.41 0.91
1141 0.23 1.42 0.17 1.42 7.18 0.72 63.98 6.92 2.86 0.91
1349 0.36 1.72 0.21 1.72 7.79 0.86 67.68 8.30 3.42 1.08

Table 9.3.4: Results of the RQT method applied to test set #1. (Operations
and storage scaled by 107%)

Problem Order Allocation Solution
Time Store Time Store Time Operations Store

Fact.Solve Fact. Solve Total Ovrhd
936 0.77 1.00 0.24 1.78 2.19 0.29 16.25 2.96 2.73 1.15
1009 0.95 1.09 0.26 1.97 3.77 0.37 31.11 4.00 3.38 1.29
1089 0.92 1.17 0.27 2.10 3.40 0.37 26.82 3.91 3.43 1.36
1440 1.35 1.3 0.34 2.68 2.69 0.41 19.05 4.06 3.90 1.72
1180 1.10 1.25 0.28 2.17 2.05 0.31 14.22 3.15 3.09 1.40
1377 1.20 1.45 0.32 2.51 2.34 0.36 15.71 3.59 3.54 1.61
1138 1.15 1.20 0.27 2.11 2.32 0.32 16.89 3.32 3.14 1.37
1141 1.14 1.20 0.27 2.13 2.32 0.32 17.23 3.34 3.16 1.38
1349 1.39 1.45 0.33 2.60 4.48 0.48 35.48 4.98 4.31 1.69

Table 9.3.5: Results of the ND method applied to test set #1. (Operations
and storage scaled by 107%)
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Problem

Order

Allocation

Solution

Time Store

Time Store

Time

Operations

Store

Fact. Solve

Fact.

Solve

Total Ovrhd

936
1009
1089
1440
1180
1377
1138
1141
1349

1.47
1.57
1.78
2.33
1.89
2.09
1.97
2.07
2.07

1.91
2.08
2.23
291
2.38
2.76
2.29
2.29
2.76

0.21
0.24
0.26
0.34
0.27
0.30
0.27
0.27
0.32

1.80
1.97
2.12
2.74
2.19
2.52
2.15
2.17
2.62

2.27
3.37
3.00
2.70
1.44
1.50
1.82
2.03
3.70

0.30
0.37
0.36
0.42
0.27
0.30
0.29
0.31
0.46

19.34
30.91
26.31
21.62

9.86
10.00
13.80
16.24
32.41

3.11
3.95
3.85
4.21
2.72
2.99
3.04
3.24
4.41

2.83
3.36
3.42
4.04
2.90
3.25
3.04
3.14
4.26

1.18
1.29
1.38
1.79
1.42
1.62
1.41
1.43
1.71

Table 9.3.6: Results of the QMD method applied to test set #1. (Operations
and storage scaled by 107%)

Problem

Order

Allocation

Solution

Time Store

Time Store

Time

Operations

Store

Fact. Solve

Fact.

Solve

Total Ovrhd

265
406
577
778
1009
1270
1561
1882
2233

0.07
0.12
0.16
0.22
0.27
0.34
0.42
0.51
0.62

0.25
0.39
0.56
0.76
0.99
1.25
1.54
1.86
2.20

0.01
0.02
0.03
0.03
0.05
0.06
0.07
0.09
0.10

0.25
0.39
0.56
0.76
0.99
1.25
1.54
1.86
2.20

0.33
0.71
1.30
2.15
3.43
5.19
7.50
10.62
14.44

0.07
0.13
0.21
0.32
0.46
0.62
0.83
1.11
1.40

2.97
6.62
12.88
22.78
37.49
58.37
86.95
124.90
174.10

0.75
1.39
2.32
3.59
5.25
7.36
9.97
13.14
16.91

0.48
0.86
1.39
2.10
3.03
4.19
5.61
7.32
9.32

0.08
0.12
0.17
0.23
0.30
0.38
0.47
0.56
0.67

Table 9.3.7: Results of the RCM method applied to test set #2. (Operations
and storage scaled by 107%)
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Problem Order Allocation Solution
Time Store Time Store Time Operations Store

Fact.Solve Fact. Solve Total Ovrhd
265 0.12 0.33 0.07 0.35 0.65 0.09 4.38 0.69 0.42 0.18
406 0.18 0.52 0.11 0.54 1.29 0.15 9.25 1.18 0.69 0.27
577 0.27 0.74 0.17 0.77 2.39 0.22 18.11 1.87 1.04 0.38
778 0.35 0.99 0.20 1.04 3.69 0.32 29.22 2.68 1.45 0.51
1009 0.48 1.29 0.28 1.35 5.46 0.41 44.90 3.66 1.94 0.66
1270 0.60 1.63 0.35 1.70 7.76 0.54 66.00 4.87 2.53 0.83
1561 0.70 2.00 0.43 2.09 11.09 0.68 97.14 6.36 3.25 1.02
1882 0.91 2.42 0.51 2.51 14.73 0.85 131.13 7.90 4.00 1.22
2233 1.06 2.87 0.62 2.98 19.64 1.04 177.17 9.91 4.89 1.45

Table 9.3.8: Results of the IWD method applied to test set #2. (Operations
and storage scaled by 107%)

Problem Order Allocation Solution
Time Store Time Store Time Operations Store

Fact.Solve Fact. Solve Total Ovrhd
265 0.07 0.33 0.04 0.34 0.57 0.12 3.24 0.81 047 0.21
406 0.10 0.52 0.07 0.52 1.12 0.20 7.11 1.49 0.78 0.33
577 0.16 0.74 0.09 0.74 1.94 0.29 13.70 2.46 1.19 0.46
778 0.20 0.99 0.12 1.00 3.15 0.43 24.03 3.78 1.72 0.63
1009 0.26 1.29 0.16 1.30 4.86 0.60 39.32 5.49 2.38 0.81
1270 0.33 1.63 0.20 1.63 7.15 0.78 60.94 7.67 3.19 1.02
1561 0.40 2.00 0.25 2.01 10.14 1.04 90.4310.35 4.15 1.25
1882 0.48 2.42 0.30 2.43 14.06 1.31 129.4813.59 5.28 1.51
2233 0.6 2.87 0.35 2.88 19.20 1.67 179.9917.44 6.60 1.79

Table 9.3.9: Results of the RQT method applied to test set #2. (Operations
and storage scaled by 107%)
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Problem Order

Allocation

Solution

Time Store

Time Store

Time

Operations

Store

Fact. Solve

Fact. Solve

Total Ovrhd

265 0.20
406 0.33
577 0.49
778 0.68
1009 0.95
1270 1.22
1561 1.56
1882 1.93
2233 1.35

0.28
0.43
0.62
0.84
1.09
1.38
1.69
2.04
2.43

0.06
0.10
0.14
0.20
0.26
0.32
0.39
0.50
0.58

0.49
0.77
1.10
1.51
1.97
2.49
3.08
3.74
4.45

0.46
0.93
1.62
2.58
3.80
5.30
7.34
9.73
12.79

0.07
0.12
0.19
0.29
0.37
0.49
0.63
0.78
0.94

3.25

6.93
12.56
20.10
31.11
44.45
62.57
83.85

0.72
1.27
1.99
2.88
4.00
5.27
6.82
8.54

111.18 10.57

0.70
1.17
1.77
2.50
3.38
4.39
5.58
6.90
8.42

0.32
0.50
0.72
0.99
1.29
1.63
2.01
2.44
2.92

Table 9.3.10: Results of the ND method applied to test set #2. (Operations
and storage scaled by 107%)

Problem Order

Allocation

Solution

Time Store

Time Store

Time

Operations

Store

Fact. Solve

Fact. Solve

Total Ovrhd

265 0.39
406 0.72
577 1.01
778 1.39
1009 1.55
1270  2.48
1561 2.56
1882 3.32
2233  3.53

0.54
0.83
1.18
1.60
2.08
2.62
3.23
3.90
4.63

0.06
0.09
0.13
0.19
0.24
0.34
0.39
0.48
0.55

0.49
0.78
1.12
1.52
1.97
2.53
3.09
3.76
4.43

0.36
0.78
1.26
2.22
3.43
4.59
5.90
8.36
12.06

0.07
0.11
0.18
0.26
0.38
0.48
0.60
0.76
0.98

2.65

6.35
10.35
19.65
30.91
42.56
55.43
80.10

0.65
1.19
1.83
2.80
3.95
5.15
6.53
8.49

119.1310.71

0.67
1.14
1.70
2.48
3.36
4.37
5.45
6.91
8.47

Table 9.3.11: Results of the QMD method applied to test set #1
tions and storage scaled by 107%)

0.32
0.50
0.73
1.00
1.29
1.66
2.03
2.47
2.89

. (Opera-
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9.4 Comparison of the Methods

9.4.1 Criteria for Comparing Methods

In this section we shall not attempt to answer the question “which method
should we use?”. Sparse matrices vary a great deal, and the collection of
test problems is of only one special class. Qur objective here is to illustrate,
using the data reported in Section 9.3, the issues involved in answering the
question, given a particular problem or class of problems. These issues have
already been discussed, or at least mentioned, in Section 2.4.

The main criteria were a) storage requirements, b) execution time, and c)
cost. In some contexts, keeping storage requirements low is of overwhelm-
ing importance, while in other situations, low execution time is of primary
concern. Perhaps most frequently, however, we are interested in choosing
the method which results in the lowest computer charges. This charging
function is typically a fairly complicated multi-parameter function of stor-
age used (5), execution time (7'), amount of input and output performed,
..., etc. For our class of problems and the methods we treat, this charging
function can usually be quite well approximated by a function of the form

COST(S,T)="T x p(5),

where p(9) is a polynomial of degree d, usually equal to 1. (However, some-
times d = 0, and in other cases where large storage demands are discouraged,
d = 2.) For purposes of illustration, in this book we assume p(S5) = §.
Recall from Section 2.4 that the relative importance of the ordering and allo-
cation, factorization, and solution depends on the context in which the sparse
matrix problem arises. In some situations only one problem of a particular
structure is to be solved, so any comparison of methods should certainly
include ordering and allocation costs. In other situations where many prob-
lems having identical structure must be solved, it may be sensible to ignore
the ordering and allocation costs. Finally, in still other contexts where nu-
merous systems differing only in their right hand side must be solved, it may
be appropriate to consider only the time and/or storage associated with the
triangular solution, given the factorization.

In some of the tables appearing later we report a “minimum” and “max-
imum” total cost. The distinction is that the maximum cost is computed
assuming that the storage used by any of the four phases (order, allocate,
factor, solve) is equal to the maximum storage required by any of them
(usually the factorization step). The minimum cost is obtained by assum-



9.4. COMPARISON OF THE METHODS 341

ing that the storage used by each phase is the minimum required by that
phase (as specified in Table 9.3.1). We report both costs to show that for
some methods and problems, the costs are quite different and it is therefore
worthwhile to segment the computation into its constituent parts, and use
only the requisite storage for each phase.

9.4.2 Comparison of the Methods Applied to Test Set #1

Now consider Table 9.4.1, which we obtained by averaging the results in the
tables of Section 9.3 for test set #1, and then computing the various costs.
One of the most important things that it shows is that for the nine problems
of this test set, the method of choice depends very much on the criterion
we wish to optimize. For example, if total execution time is the basis for
choice, then RCM should be chosen. If solution time, or factorization plus
solution time or factorization plus solution cost, is of primary importance,
then QMD should be chosen. If storage requirements, solve cost, or total
cost are the most important criteria, then 1WD is the method of choice.
Several other aspects of Table 9.4.1 are noteworthy. Apparently, QMD yields
a somewhat better ordering than ND, which is reflected in lower execution
times and costs for the factorization and solution, and lower storage require-
ments. However, the fact that the ordering time for ND is substantially
lower than that for QMD results in lower total costs and execution time for
ND, compared to QMD.

Another interesting aspect of the ND and QMD total cost entries is the
substantial difference between the maximum and minimum costs. Recall
from Section 9.4.1 that the maximum cost is computed assuming that the
storage used during any of the phases (order, allocate, factor, solve) is equal
to the maximum used by any of them, while the minimum cost is computed
assuming that each phase uses only what is normally required, as prescribed
by Table 9.3.1. These numbers suggest that even for “one-shot” problems,
segmenting the computation into its natural components, and using only the
storage required for each phase, is well worthwhile.

After examining Table 9.4.1, the reader might wonder whether methods
such as RQT and ND have any merit, compared to the three other methods,
since they fail to show up as winners according to any of the criteria we are
considering. However, averages tend to hide differences among the problems,
and to illustrate that each method does have a place, Table 9.4.2 contains
a frequency count of which method was best, based on the various criteria,
for the problems of set #1. Note that no row in the table is all zeros.
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Method Cost Storage Execution Time
Total Total Fact+ Solve Total Fact+ Solve
(Max) (Min) Solve Solve

RCM 14.60 13.86 13.47 1.64 3.32 4.39 4.06 0.49
1WD 12.22 11.72 10.45 0.95 2.12 5.77 4.94 0.45
RQT 15.60 15.11 14.44 1.68 2.58 6.04 5.59 0.65
ND 15.63 12.92 10.89 1.22 3.41 6.59 3.19 0.36
QMD 16.66 14.52 9.30 1.15 3.36 4.96 2.77 0.34

Table 9.4.1: Average values of the various criteria for problem set #1. (Costs
and storage scaled by 107%)

This suggests that even within a particular class of problems, and for a
fixed criterion (e.g., execution time, storage), the method of choice varies
considerably across problems. One should also keep in mind that special
combinations of criteria may make any of the methods look best, for almost
any of the problems.

Method Cost Storage Execution Time
Total Total Fact+ Solve Total Fact+ Solve
(Max) (Min) Solve Solve
RCM 3 3 1 0 0 4 0 0
1WD 4 4 2 7 9 0 0 0
RQT 1 1 0 0 0 1 0 0
ND 1 1 1 0 0 3 2 3
QMD 0 0 5 2 0 1 7 6

Table 9.4.2: Frequency counts of which method was best on the basis of
various criteria for test problem set #1.

One rather striking aspect of Table 9.4.2 is the very strong showing of IWD
in terms of cost and storage.
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9.4.3 Comparison of the Methods Applied to Test Set #2

In order to illustrate some additional points, we include Tables 9.4.3 and
reftab9.3.4, generated from Tables 9.3.7 — 9.3.11 of Section 9.3, which contain
the experimental results for test problem set #2. Table 9.4.3 contains the
same information as Table 9.4.1, for the Graded-L problem with s = 4,
(yielding N = 265). Table 9.4.4 is also the same, except the subdivision
factor is s = 12, yielding N = 2233.

First note that for N = 265, the RCM method displays a considerable ad-
vantage in most categories, and is very competitive in the remaining ones.
However, for N = 2233, it has lost its advantage in all except total execution
time. (Some other experiments show that it loses to ND in this category also
for somewhat larger graded-L problems.) One of the main points we wish
to make here is that even for essentially similar problems such as these, the
size of the problem can influence the method of choice. Roughly speaking,
for “small problems,” the more sophisticated methods simply do not pay.
It is interesting to again note how very effective the 1WD method is in terms
of storage and cost.

Notice also that the relative cost of the ordering and allocation steps, com-
pared to the total cost, is going down as N increases, for all the methods.
For the RCM, 1WD and RQT methods, these first two steps have become
relatively unimportant in the overall cost and execution time when IV reaches
about 2000. However, for the ND and QMD methods, even for N as large as
2233, the ordering and allocation steps still account for a significant fraction
of the total execution time. Since these steps in general require less storage
than the numerical computation steps, the difference between M AX cost
and MIN cost remains important even for N = 2233.

9.5 The Influence of Data Structures

In several places in this book we have emphasized the importance of data
structures (storage schemes) for sparse matrices. In Section 2.4 we distin-
guished between primary storage and overhead storage, and through a sim-
ple example showed that primary storage requirements may not be a reliable
indicator of the storage actually required by different computer programs,
because of differences in overhead storage. We also pointed out in Section 2.4
that differences in data structures could lead to substantial differences in the
arithmetic-operations-per-second output of the numerical subroutines. The
main objective of this section is to provide some experimental evidence which
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Method Cost Storage Execution Time
Total Total Fact+ Solve Total Fact+ Solve
(Max) (Min) Solve Solve

RCM 0.23 0.21 0.19 0.04 0.48 0.48 0.40 0.07
1WD 0.39 0.37 0.31 0.04 0.42 0.93 0.73 0.09
RQT 0.38 0.36 0.32 0.06 0.47 0.81 0.69 0.12
ND 0.56 0.46 0.37 0.05 0.70 0.79 0.53 0.07
QMD 0.59 0.53 0.29 0.04 0.67 0.88 0.43 0.07

Table 9.4.3: Values of the various criteria for the Graded-L problem with
s = 4, yielding N = 265. (Costs and storage scaled by 10™*)

Method Cost Storage Execution Time
Total Total Fact+ Solve Total Fact+ Solve
(Max) (Min) Solve Solve

RCM  154.83 149.69 148.10 13.09 9.35 16.56 15.84 1.40
1WD  109.41 106.10 101.25 5.11 4.89 22.35 20.69 1.04
RQT 143.69 140.30 137.67 10.99 6.60 21.78 20.87 0.12
ND 140.45 124.03 115.74 7.95 8.42 16.67 13.74 0.94
QMD  145.07 129.28 110.49 8.33 8.47 17.13 13.04 0.98

Table 9.4.4: Values of the various criteria for the Graded-L problem with
s = 12, yielding N = 2233. (Costs and storage scaled by 10~*)
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supports these contentions, and to illustrate the potential magnitude of the

differences involved.

9.5.1 Storage Requirements

In Table 9.5.1 we have compiled the primary and total storage requirements
for the five methods, applied to test problem set #2. Recall that primary
storage is that used for the numerical values of L and b, and overhead storage
is “everything else,” consisting mainly of integer pointer data associated with

maintaining a compact representation of L.

Primary Storage

Number of Equations

Method 265 406 577 778 1009 1270 1561 1882 2233
RCM  0.40 0.74 1.22 1.87 2.73 3.81 5.14 6.76 8.68
1WD  0.24 0.42 0.66 0.94 1.28 1.70 2.23 2.78 3.45
RQT  0.26 0.45 0.73 1.10 1.57 2.17 2.90 3.77 4.80
ND 0.39 0.67 1.05 1.52 2.10 2.76 3.57 4.46 5.51
QMD  0.35 0.64 0.97 1.48 2.08 2.70 3.42 4.43 b5.58
Total Storage
Number of Equations
Method 265 406 577 778 1009 1270 1561 1882 2233
RCM  0.48 0.86 1.39 2.10 3.03 4.19 5.61 7.32 9.35
1WD  0.42 0.69 1.04 1.45 1.94 2.53 3.25 4.00 4.89
RQT  0.47 0.78 1.19 1.72 2.38 3.19 4.15 5.28 6.60
ND 0.70 1.17 1.77 2.50 3.38 4.39 5.58 6.90 8.42
QMD 0.67 1.14 1.70 2.48 3.36 4.37 5.45 6.91 8.47

Table 9.5.1: Primary and total storage for each method, applied to test

problem #2. (Operations are scaled by 10™*%)

The numbers in Table 9.4.1 illustrate some important practical points:

1. For some methods, the overhead component in the storage require-
ments is very substantial, even for the larger problems where the rela-
tive importance of overhead is diminished somewhat. For example, for
the QMD method, the ratio (overhead storage)/(total storage) ranges
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from about .48 to .34 as IV goes from 265 to 2233. Thus, while the ratio
is decreasing, it is still very significant for even fairly large problems.

By way of comparison, for the RCM method, which utilizes a very sim-
ple data structure, the (overhead storage)/(total storage) ratio ranges
from about .17 to .07 over the same problems.

. Another point, (essentially a consequence of 1 above,) is that primary

storage is a very unreliable indicator of a program’s array storage re-
quirements. For example, if we were comparing the RCM and QMD
methods on the basis of primary storage requirements for the problems
of test set #2, then QMD would be the method of choice for all V.
However, in terms of actual storage requirements, the RCM method is
superior until NV is about 1500!

This comparison also illustrates the potential importance of being able
to use less storage for integers than that used for floating point num-
bers. In many circumstances, the number of binary digits used to
represent floating point numbers is at least twice that necessary to
represent integers of a sufficient magnitude. If it is convenient to ex-
ploit this fact, the significance of the overhead storage component will
obviously be diminished. For example, if integers required only half
as much storage as floating point numbers, the cross-over point be-
tween RCM and QMD would be at N ~ 600, rather than simeql500
as stated above.

. Generally speaking, the information in Table 9.5.1 shows that while

the more sophisticated ordering algorithms do succeed in reducing pri-
mary storage over their simpler counterparts, since they also necessi-
tate the use of correspondingly more sophisticated storage schemes, the
net reduction in storage requirements over the simpler schemes is not
as pronounced as the relative differences in primary storage indicate.
For example, primary storage requirements indicate that 1WD enjoys
a storage saving of more than 50 percent over RCM, for N < 778,
and that the advantage increases with V. However, the total storage
requirements, while they still indicate that the storage advantage of
1WD over RCM increases with N, also show that the point at which
a 50 percent savings occurs has still not been reached at NV = 2233.
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9.5.2 Execution Time

In Table 9.5.2 we have computed and tabulated the operations-per-second
performance of the factorization and solution subroutines for the five meth-
ods, applied to test problem set #2. The information in the table suggests
the following:

1. Generally speaking, the efficiency (i.e., operations-per-second) of the
subroutines tends to improve with increasing N. This is to be expected
since loops, once initiated, will tend to be executed more often as IV
increases. Thus, there will be less loop initialization overhead per
arithmetic operation performed.

In this connection, note that the relative improvement from N = 265
to N = 2233 varies considerably over the six different subroutines
and five different orderings involved. (Recall that the 1WD and RQT
methods use the same numerical subroutines, as do the ND and QMD
methods.) For example, the operations-per-second output for the ND
solver (GSSLYV) only improved from 9.44 X 10* to 10.15 x 10* over the full
range of N, while the RQT solver (TSSLV) improved from 6.07 x 10* to
9.50 x 10%. These differences in improvement appear to be due to the
variation in the number of auxiliary subroutines used. For example,
TSFCT uses subroutines ELSLV, EUSLV, and ESFCT (which in turn uses
ELSLV), while GSFCT uses none at all. These subroutine calls contribute
a large low order component to the execution time.

These differences in the performance of the numerical subroutines illus-
trate how unrealistic it is to conclude much of a practical nature from
a study of operation counts alone. For example, if we were to compare
the RCM method to the QMD method on the basis of factorization
operation counts, for the problems of test set #2, we would choose
QMD for all the problems. However, in terms of execution time, QMD
does not win until NV reaches about 1600.

2. We have already observed that efficiency varies across the different
subroutines, and varies with N. It is also interesting that for a fixed
problem and subroutine, efficiency varies with the ordering used. As
an example, consider the factorization entries for the 1WD and RQT
methods, for N = 2233. (Remember that both methods employ the
subroutine TSFCT.) This difference in efficiency can be understood by
observing that unlike the subroutines ESFCT and GSFCT, where the
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Factorization

Number of Equations
Method 265 406 577 778 1009 1270 1561 1882 2233
RCM 9.01 9.37 9.91 10.58 10.92 11.24 11.59 11.76 12.06
1WD 6.78 7.19 7.57 7.93 8.22 8.51 8.76 8.90 9.02
RQT 5.68 6.33 7.07 7.63 8.10 8.53 8.92 9.21 9.37
ND 7.07 742 7.75 7.78 8.20 8.38 8.52 8.62 8.69
QMD 7.30 8.10 8.19 8.87 9.01 9.27 9.39 9.59 9.88

Solution
Number of Equations
Method 265 406 577 778 1009 1270 1561 1882 2233
RCM  10.21 10.69 10.87 11.21 11.50 11.81 11.97 11.87 12.08
1WD 7.96 8.05 850 8.27 9.00 9.01 9.31 9.30 9.50
RQT 6.79 7.45 8.38 8.78 9.16 9.83 9.95 10.35 10.47
ND 10.25 10.28 10.49 9.81 10.71 10.83 10.89 11.00 11.20
QMD 9.77 10.52 9.98 10.65 10.50 10.65 10.89 11.12 10.89

Table 9.5.2: Operations-per-second for each method, applied to test
problem #2. (Operations are scaled by 10~*)
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majority of the numerical computation is isolated in a single loop, the
numerical computation performed by TSFCT is distributed among three
auxiliary subroutines (which vary in efficiency), in addition to a major
computational loop of its own. Thus, one ordering may yield a more
efficient TSFCT than another simply because a larger proportion of the
associated computation is performed by the most efficient auxiliary
subroutines or loop of TSFCT.

A final complicating factor in this study of the 1WD and RQT factor-
ization entries is that apparently, the proportions of the computation
performed by the different computational loops of TSFCT varies with
N, and the variation with N is different for the one-way dissection
ordering than it is for the refined quotient tree ordering. For small
problems, TSFCT operates more efficiently on the one-way dissection
ordering than on the refined quotient tree ordering, but as IV increases,

the situation is reversed, with the cross-over point occurring at about
N =1700.

We should caution the reader not to infer too much from this partic-
ular example. On a different computer with a different compiler and
instruction set, the relative efliciencies of the computational loop in
TSFCT and its auxiliary subroutines may be quite different. However,
this example does illustrate that efficiency is not only a function of the
data structure used, but may depend in a rather subtle way on the
ordering used with that data structure, and on the problem size.
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Appendix A

Some Hints on Using the
Subroutines

1.1 Sample Skeleton Drivers

Different sparse methods have been described in Chapters 4 — 8 for solving
linear systems. They differ in storage schemes, ordering strategies, data
structures, and/or numerical subroutines. However, the overall procedure in
using these methods is the same. Four distinct phases can be identified:

Step 1 Ordering
Step 2 Data structure set-up
Step 3 Factorization

Step 4 Triangular solution

Subroutines required to perform these steps for each method are included in
Chapters 4 — 8. In Figures 1.1.1 — 1.1.3, three skeleton drivers are provided;
they are for the envelope method (Chapter 4), the tree partitioning method
(Chapter 6), and the nested dissection method (Chapter 8), respectively.
They represent the sequence in which the subroutines should be called in the
solution of a given sparse system by the selected scheme. Note that these
are just skeleton programs; the various arrays are assumed to have been
appropriately declared, and no checking for possible errors is performed.

When an ordering subroutine is called, the zero-nonzero pattern of the sparse
matrix A is assumed to be in the adjacency structure pair (XADJ, ADJNCY).

351
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CREATE XADJ AND ADJNCY
CORRESPONDING TO AX = B

QaaaaQ

CALL GENRCM(N,XADJ,ADJNCY,PERM,MASK,XLS)
CALL INVRSE(N,PERM,INVP)
CALL FNENV(WN,XADJ,ADJNCY ,PERM,INVP ,XENV ,ENVSZE,BANDW)

QaaQaQ

CALL ESFCT(N,XENV,ENV,DIAG,IERR)
CALL ELSLV(N,XENV,ENV,DIAG,RHS,IERR)
CALL EUSLV(N,XENV,ENV,DIAG,RHS,IERR)

PERMUTED SOLUTION IS NOW IN THE ARRAY RHS
RESTORE IT TO THE ORIGINAL ORDERING

Qoo aaa

CALL PERMRV(N,RHS,PERM)

Figure 1.1.1: Skeleton driver for the envelope method.
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QaaaaQ

QaaaaQ

Qoo aaa

CREATE XADJ AND ADJNCY
CORRESPONDING TO AX = B

CALL GENRQT(N,XADJ,ADJNCY,NBLKS,XBLK,PERM,XLS,LS,NODLVL)
CALL BSHUFL(XADJ,ADJNCY,PERM,NBLKS ,XBLK ,BNUM,MASK , SUBG,XLS)
CALL INVRSE(N,PERM,INVP)
CALL FNTADJ(XADJ,ADJNCY,PERM,INVP,NBLKS ,XBLK ,FATHER,MASK)
CALL FNTENV(XADJ,ADJNCY,PERM,INVP,NBLKS ,XBLK,XENV ,ENVSZE)
CALL FNOFNZ(XADJ,ADJNCY,PERM,INVP,NBLKS ,XBLK,XNONZ,

NZSUBS ,NOFNZ)

CALL TSFCT(NBLKS,XBLK ,FATHER,DIAG,XENV,ENV ,XNONZ,NONZ,
NZSUBS ,TEMPV ,FIRST,IERR)

CALL TSSLV(NBLKS,XBLX ,DIAG,XENV,ENV,XNONZ ,NONZ,NZSUBS,
RHS , TEMPYV)

PERMUTED SOLUTION IS NOW IN THE ARRAY RHS
RESTORE IT TO THE ORIGINAL ORDERING

CALL PERMRV(N,RHS,PERM)

Figure 1.1.2: Skeleton driver for the tree partitioning method.
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CREATE XADJ AND ADJNCY
CORRESPONDING TO AX = B

Qaaaa

CALL GENND(W,XADJ,ADJNCY ,MASK ,PERM,XLS,LS)

CALL INVRSE(N,PERM,INVP)

CALL SMBFCT(N,XADJ,ADJNCY,PERM,INVP,XLNZ,NOFNZ,XNZSUB,
NZSUB,NOFSUB,RCHLNK ,MRGLNK ,MASK,FLAG)

QaQQQ

CALL GSFCT(WN,XLNZ,LNZ,XNZSUB,NZSUB,DIAG,LINK,FIRST,
TEMPV,IERR)
CALL GSSLV(N,XLNZ,LNZ ,XNZSUB,NZSUB,DIAG,RHS)

PERMUTED SOLUTION IS NOW IN THE ARRAY RHS
RESTORE IT TO THE ORIGINAL ORDERING

QO aa

CALL PERMRV(N,RHS,PERM)

Figure 1.1.3: Skeleton driver for the nested dissection method.
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It is rare that the user has this representation provided for him. Thus, the
user must create this structure prior to the execution of the ordering step.
The creation of the adjacency structure is not a trivial task, especially in
situations where the (%, j) pairs for which a;; # 0 become available in random
order. We shall not concern ourselves with this problem here. Exercises 3.4.1
and 3.4.6 in Chapter 3 indicate how part of this problem can be solved.
The package SPARSPAK to be discussed in Appendix B provides ways to
generate the adjacency structure pair in the (XADJ, ADJNCY) format.

In the skeleton drivers, there are two subroutines that have not been dis-
cussed before. The subroutine INVRSE, called after the ordering PERM has
been determined, is used to compute the inverse INVP of the ordering (or per-
mutation) found. The vector INVP is required in setting up data structures
for the solution scheme, and in putting numerical values into them.

After the numerical subroutines for factorization and triangular solutions
have been executed, the solution a obtained is that for the permuted system

(PAPT)z = Pb .

The subroutine PERMRY is used to permute the vector & back to the original
given order.

After the data structure for the triangular factor has been successfully set
up, the user must input the actual numerical values for the matrix A and
the right hand side b. To insert values into the data structure, the user
must understand the storage scheme in detail. In the next section, a sample
subroutine is provided for matrix input. For different storage methods, these
matrix input subroutines are obviously different. With the sample provided
in the next section, the user should be able to write those for the other
methods. It should be pointed out that they are all provided in SPARSPAK
(see Appendix B).

1.2 A Sample Numerical Value Input Subroutine

Before the numerical subroutines for a sparse method are called, it is neces-
sary to put the numerical values into the data structure. Here, we provide a
sample subroutine for the tree-partitioning method, whereby the numerical
values of an entry a,; can be placed into the structure.

Recall from Chapter 6 that there are three vectors in the storage scheme
containing numerical values. The vector DIAG contains the diagonal elements
of the matrix. The entries within the envelope of the diagonal blocks are
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stored in ENV, while the vector NONZ keeps all the nonzero off-diagonal entries.
For a given nonzero entry a;;, the subroutine ADAIJ updates one of the three
storage vectors DIAG, ENV, or NONZ, depending on where the value a;; resides
in the matrix.

The calling statement to the matrix input subroutine is CALL ADAIJ ( I,J,VALUE,INVP,DIAG,:
) where I and J are the subscripts of the original matrix A (that is, un-
permuted) and VALUE is the numerical value. This subroutine adds VALUE
to the appropriate current value of a,; in storage. This is used instead of an
assignment so as to handle situations when the values of a,; are obtained in
an incremental fashion (such as in certain finite element applications).

The subroutine checks to see if the nonzero component lies on the diagonal
or within the envelope of the diagonal blocks. If so, the value is added to
the appropriate location in DIAG or ENV. Otherwise, the subscript structure
(XNONZ, NZSUBS) for off-diagonal block nonzeros is searched and VALUE is
then added to the appropriate entry of the vector NONZ.

Since ADAIJ only adds new values to those currently in storage, the space
used for L must be initialized to zero before numerical values of A are
supplied. Therefore, the input of values of A for the tree-partitioning method
would be done as follows:

e Initialize the vectors DIAG, ENV and NONZ to zeros.
¢ {Repeated calls to ADAIJ}.

The input of values for the right hand vector b can be performed in a similar
way.

1. Cokesteateakeokok ook oe oo oe sefesefe e ke ke ke ke ke ok ke ok b ek ek ke o ke o ke o se e e e e e e e e sk ok o ke ok e ok o
2, Caleakeokok ke e seofe e sle e ek ke ok ek ke ok b ek ek ke o ke o se e se e se e e e e e sk ok ok ok ke ok ke ok ke e ke e e e e o e
3. Cakkokokokoskaesk ADAIJ ..... ADD ENTRY INTO MATRIX ke o e e ok ok o ok
4, Cokokokeotesteakkak ok ok ok ook ook ke o ke o ke o se e se e se e e e ke ek ok ok ko ek ke e ke e ke o se e e e e s e e s s
5. Cakeakokokoke o seofe e skele i ek ksl ok bk bk b ek ek ke o ke o se e se e se e e e e e ks ke ok ke ok ok ke ok ke ok ke e ke e e e e o e
6. C
7. € PURPOSE - THIS ROUTINE ADDS A NUMBER INTO THE (I,J)-TH
8. C POSITION OF A MATRIX STORED USING THE
9. C IMPLICIT BLOCK STORAGE SCHEME.
10. C
11. C INPUT PARAMETERS -
12. C (ISUB, JSUB) - SUBSCRIPTS OF THE NUMBER TO BE ADDED
13. C ASSUMPTIONS - ISUB .GE. JSUB.
14. C DIAG - ARRAY CONTAINING THE DIAGONAL ELEMENTS
15. C OF THE COEFFICIENT MATRIX.

C

[y
2]

VALUE - VALUE OF THE NUMBER TO BE ADDED.
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17.
18.
19.
20.
21.
22,
23.
24,
25,
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44.
45.
46.
47.
48.
49.
50.
51.
52,
53.
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
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INVP - INVP(I) IS THE NEW POSITION OF THE
VARIABLE WHOSE ORIGINAL NUMBER IS I.

(XENV, ENV) - ARRAY PAIR CONTAINING THE ENVELOPE
STRUCTURE OF THE DIAGONAL BLOCKS.

(XNONZ, NONZ, NZSUBS) - LEVEL STRUCTURE CONTAINING
THE OFF-BLOCK DIAGONAL PARTS OF THE ROWS OF
THE LOWER TRIANGLE OF THE ORIGINAL MATRIX.

OUTPUT PARAMETERS -
IERR - ERROR CODE....
0 - NO ERRORS DETECTED
5 - NO SPACE IN DATA STRUCTURE FOR NUMBER
WITH SUBSCRIPTS (I,J), I>J.

[+ B B B B B T T T T T - B B - B

(G 3k ke ke ake 3k e afe sk afe ake e afe 3k ke ake e ok sk afe ake ke ake ok ok ok afe ok 3k ake 3k o 3k 3k 3k 3k e 3k o 3k 3 e 3k e a4 3 e 3 e afe o af¢ e 4¢ afe e ok afe ke ake ke ok
¢
SUBROUTINE ADAIJ ( ISUB, JSUB, VALUE, INVP, DIAG,
1 XENV, ENV, XNONZ, NONZ, MZSUBS,
IERR )
¢
(G 3k ke ke ake 3k e afe sk afe ake e afe 3k ke ake e ok sk afe ake ke ake ok ok ok afe ok 3k ake 3k o 3k 3k 3k 3k e 3k o 3k 3 e 3k e a4 3 e 3 e afe o af¢ e 4¢ afe e ok afe ke ake ke ok
¢
REAL DIAG(1), ENV(1), NONZ(1), VALUE
INTEGER INVP(1), NZSUBS(1)
INTEGER XENV(1), XNONZ(1), KSTOP, KSTRT,
1 I, IERR, ISUB, ITEMP, J, JSUB, K
¢
(G 3k ke ke ake 3k e afe sk afe ake e afe 3k ke ake e ok sk afe ake ke ake ok ok ok afe ok 3k ake 3k o 3k 3k 3k 3k e 3k o 3k 3 e 3k e a4 3 e 3 e afe o af¢ e 4¢ afe e ok afe ke ake ke ok
I = INVP(ISUB)
J = INVP(JSUB)
IF (I .EQ. J ) GO TO 400
IF ( I .GT. J ) GO TO 100

ITEMP = I
I =7
J = ITEMP
c ________________________________________________
¢ THE COMPONENT LIES WITHIN THE DIAGONAL ENVELOPE.
c ________________________________________________
100 K = XENV(I+1) - I + J
IF ( K .LT. XENV(I) ) GO TO 200
ENV(K) = ENV(K) + VALUE
RETURN
c ________________________________________________
¢ THE COMPONENT LIES OUTSIDE DIAGONAL BLOCKS.
c ________________________________________________
200 KSTRT = XNONZ(I)

KSTOP = XNONZ(I+1) - 1
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64. IF ( KSTOP .LT. KSTRT ) GO TO 500

66. C

66. DO 300 K = KSTRT, KSTOP

67. IF ( NZSUBS(K) .NE. J ) GO TO 300

68. NONZ(X) = NONZ(X) + VALUE

69. RETURN

70. 300 CONTINUE

71. GO TO 500

72. € e
73. € THE COMPONENT LIES ON THE DIAGONAL OF THE MATRIX.
74. € e
75. 400 DIAG(I) = DIAG(I) + VALUE

76. RETURN

77. € e

78. ¢ SET ERROR FLAG.

A P

80. 500 IERR = 6

81. RETURN

82. C

83. END

1.3 Overlaying Storage in Fortran

Consider the skeleton driver in Figure 1.1.1 for the envelope method. The
ordering subroutine GENRCM generates an ordering PERM based on the adja-
cency structure (XADJ, ADJNCY). It also uses two working vectors MASK and
XLS.

After the input of numerical values into the data structure for the envelope,
note that the working vectors MASK and XLS are no longer needed. Moreover,
even the adjacency structure (XADJ, ADJNCY) will no longer be used. To
conserve storage, these vectors can be overlayed and re-used by the solution
subroutines. Similar remarks apply to the other sparse methods.

In this section, we show how overlaying can be done in Fortran. The general
technique involves the use of a large working storage array in the driver
program. Storage management can be handled by this driver through the
use of pointers into the main storage vector.

As an illustration, suppose that there are two subroutines SUB1 and SUB2:

SUBROUTINE SUB1 (X,Y,Z)
SUBROUTINE SUB2 (X,Y,U,V)
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The subroutine SUB1 requires two integer arrays X and Y of sizes 100 and 500
respectively, and a working integer array Z of size 400. On the other hand,
SUB2 requires four vectors: the X and Y output vectors from SUB1 and two
additional arrays U and V of sizes 40 and 200 respectively.

s | | |
£t :
IX Iy I1Z

s | | |
£t bt
IX Iy It 1Iv

Figure 1.3.1: Storage management by pointers into the main storage vector.

The following skeleton driver makes use of a main storage vector S(1000) and
calls the subroutines SUB1 and SUB2 in succession. It manages the storage
using pointers into the array S.

INTEGER S(1000)

IX=1
IY = IX + 100
IZ = IY + 500

CALL SUB1 (S(IX),sS(IY),s(IZ))

IU = IY + 500
IV IU + 40
CALL SUB2 (S(IX),S(IY),S(IU),S(IV))
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In this way, the storage used by the working vector Z can be overlayed by U
and V.

The same overlay technique can be used in invoking the sequence of subrou-
tines for a sparse solution method. The package SPARSPAK (Appendix B)
uses essentially this same technique in a system of user interface subroutines
which relieve the user of all the storage management tasks associated with
using the subroutines in this book.



Appendix B

SPARSPAK: A Sparse
Matrix Package

2.1 Motivation

The skeleton programs in Appendix A illustrate several important character-
istics of sparse matrix programs and subroutines. First, the unconventional
data structures employed to store sparse matrices result in subroutines which
have distressingly long parameter lists, most of which have little or no mean-
ing to the user unless he or she understands and remembers the details of the
data structure being employed. Second, the computation consists of several
distinct phases, with numerous opportunities to overlay (re-use) storage. In
order to use the subroutines effectively, the user must determine which arrays
used in one module must be preserved as input to the next, and which ones
are no longer required and can therefore be re-used. Third, in all cases, the
amount of storage required for the solution phase is unknown until at least
part of the computation has been performed. Usually we do not know the
maximum storage requirement until the allocation subroutine (e.g., FNENV)
has been executed. In some cases, the storage requirement for the successful
execution of the allocation subroutine étself is not predictable (e.g., SMBFCT).
Thus, often the computation must be suspended part way through because
of insufficient storage, and if the user wishes to avoid repeating the success-
fully completed part, then he or she must be aware of all the information
required to restart the computation.

These observations, along with our experience in using sparse matrix soft-
ware, have prompted us to design and implement a user interface for the

361
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subroutines described in this book. This interface is simply a layer of sub-
routines between the user, who presumably has a sparse system of equations
to solve, and subroutines which implement the various methods described in
this book, as depicted in Figure 2.1.1. The interface, along with the subrou-
tines it serves, forms a package which has been given the name SPARSPAK
(George [25]). In addition to the subroutines from Chapters 4 — 8 and the
interface subroutines, SPARSPAK also contains a number of utility subrou-
tines for printing error messages, pictures of the structure of sparse matrices,
etc.

User

Interface Subroutines

JAL

Subroutines Utility
from this book | Subroutines

Figure 2.1.1: Schematic of the components of SPARSPAK.

The interface provides a number of services. First, it relieves the user of
all responsibility for the allocation of array storage. All storage is allocated
by the interface from a user-supplied one-dimensional array, using a tech-
nique similar to that described in Section 1.3. The interface also imposes
sequencing control so that interface subroutines are called in the correct
order. In addition, it provides a convenient means by which computation
can be suspended and later restarted. Finally, it has comprehensive error
diagnostics.

Our objective in subsequent sections is to give a brief survey of the various
features of SPARSPAK, rather than to provide a detailed user guide. A
comprehensive user guide and installation instructions are provided with the
package. For information, the interested reader should write the authors.



2.2. BASIC STRUCTURE OF SPARSPAK 363

2.2 Basic Structure of SPARSPAK

For all the methods described in Chapters 4 through 8, the user and SPARSPAK
interact to solve the problem A® = b through the following basic steps.

Step 1 (Structure Input) The user supplies the nonzero structure of A to
the package by calling the appropriate interface subroutines.

Step 2 (Order and Allocate) The execution by the user program of a single
subroutine call instructs the package to find an ordering and set up
the data structure for L.

Step 3 (Matrix Input) The user supplies the numerical values for A by
calling appropriate interface subroutines.

Step 4 (Factor A) A single subroutine call tells SPARSPAK to factor A
into LLT.

Step 5 (Right Hand Side Input) The user supplies the numerical values for
b by calling appropriate interface subroutines. (This step can be done
before Step 4, and/or intermixed with Step 3.)

Step 6 (Solution) A single subroutine call instructs SPARSPAK to compute
@, using L from Step 4 and the b supplied in Step 5.

A list of the names of some of the interface subroutines, along with their
argument lists and general roles is given in Figure 2.2.1. Details are provided
later in this and subsequent sections.

2.3 User Mainline Program and an Example

SPARSPAK allocates all its storage from a single one dimensional real array
which for purposes of discussion we will denote by S. In addition, the user
must provide its size MAXS, which is transmitted to the package via a common
block /SPKUSR/, which has four variables:

COMMON /SPKUSR/ MSGLVL, IERR, MAXS, NEQNS

Here MSGLVL is the message level indicator which is used to control the
amount of information printed by the package. The second variable IERR
is an error code, which the user can examine in the mainline program for
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SPARSPAK } Initialization

IJBEGN
INLJ(L, J, S)
INROW(I, NR, IR, S) Structure
INIJIJ(NIR, 11, 33, S) input (Step 1)
INCLQ(NCLQ, CLQ, S)
IJEND(S)

Ordering and Allocation
ORDRxi(S) } (Step 2. See Figure 2.3.1

for meanings of  and 3.)

INATJi(I, J, VALUE, S) Mateix inoat
INROWi(I, NIR, IR, VALUES S) } (Step 3) P
INMATI(NIJ, II, JJ, VALUES, S) P
INBI(I, VALUE, S) . L
INBIBI(NI, II, VALUES, S) } ?;Sltg:lt ?;‘ nd side input
INRHS(RHS, S) P

. Factorization and Solution
SOLVEI(S) } (Steps 4 and 6)

Figure 2.2.1: List of names of some of the SPARSPAK interface subroutines.
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possible errors detected by the package. The variable NEQNS is the number
of equations, set by the package.

The following program illustrates how one might use the envelope method of
Chapter 4 to solve a system of equations, using SPARSPAK. The problem
solved is a 10 by 10 symmetric tridiagonal system Ax — b where the diago-
nal elements of A are all 4, the superdiagonal and subdiagonal elements are
all —1, and the entries in the right hand side vector b are all ones.

The digit ¢ and letter  in some of the interface subroutine names specify
which method is to be used to solve the problem. We should note here that
SPARSPAK handles both symmetric and unsymmetric A, but assumes that
the structure of A is symmetric, and that no pivoting is required for numer-
ical stability. (See Exercise 4.6.1.) The methods available are as indicated
in Figure 2.3.1.

ORDRa Ordering Choices Ref.
z 1

A 1 Reverse Cuthill-McKee ordering; symmetric A Ch. 4
A 2 Reverse Cuthill-McKee ordering; unsymmetric A Ch. 4
A 3 One-way Dissection ordering; symmetric A Ch. 7
A 4 One-way Dissection ordering; unsymmetric A Ch. 7
B 3 Refined quotient tree ordering; symmetric A Ch. 6
B 4  Refined quotient tree ordering; unsymmetric A Ch. 6
A 5  Nested Dissection ordering; symmetric A Ch. 8
A 6  Nested Dissection ordering; unsymmetric A Ch. 8
B 5  Minimum Degree ordering; symmetric A Ch. 5
B 6  Minimum Degree ordering; unsymmetric A Ch. 5

Figure 2.3.1: Choices of methods available in SPARSPAK.

C SAMPLE PROGRAM ILLUSTRATING THE USE OF SPARSPAK

Q

COMMON /SPKUSR/ MSGLVL, IERR, MAXS, NEQNS
REAL S(250)

CALL SPRSPK
MAXS = 250

INPUT THE MATRIX STRUCTURE. THE DIAGONAL IS ALWAYS
C ASSUMED TO BE NONZERO, AND SINCE THE MATRIX IS SYM-

B O W0 N U W=
Q Q

=
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12. ¢ METRIC, ONLY THE SUBDIAGONAL POSITIONS ARE INPUT.
13, € e
14. CALL IJBEGHN

15. DO 100 I = 2, 10

16. CALL INIJ ( I, I-1, S )

17. 100  CONTINUE

18. CALL IJEND ( S )

19, € mm e
20. ¢ FIND THE ORDERING AND ALLOCATE STORAGE ....

21. € e
22. CALL ORDRA1 ( S )

23, € e
24, ¢ INPUT THE NUMERICAL VALUES. (LOWER TRIANGLE ONLY.)

26, € e
26. DO 200 I =1, 10

27. IF ( I .GT. 1) CALL INAIJ1 ( I, I-1, -1.0, S )

28. CALL INAIJ1 ( I, I, 4.0, S )

29. CALL INBI (I, 1.0, S )

30. 200 CONTINUE

31, € e
32. ¢ SOLVE THE SYSTEM. SINCE BOTH THE MATRIX AND RIGHT HAND
33. ¢ SIDE HAVE BEEN INPUT, BOTH THE FACTORIZATION AND THE
34. ¢ TRIANGULAR SOLUTION OCCUR.

35, € e -
36. CALL SOLVE1 ( S )

37. € e
38. ¢ PRINT THE SOLUTION, FOUND IN THE FIRST 10 POSITIONS OF
39. ¢ THE WORKING STORAGE ARRAY S.

40, € e
41, WRITE ( 6, 11 ) ( S(I), I =1, 10 )

42, 11 FORMAT ( / 10H SOLUTION ,/, (5F10.6) )

43, € e
44, ¢ PRINT SOME STATISTICS GATHERED BY THE PACKAGE.

45, € e
46. CALL PSTATS

47. STOP

48, END

The subroutine SPRSPK must be called before any part of the package is
used. Its role is to initialize some system parameters (e.g., the logical unit
number for the printer), to set default values for options (e.g., the message
level indicator), and to perform some installation dependent functions (e.g.,
initializing the timing subroutine). It needs only to be called once in the
user program. Note that the only variable in the common block /SPKUSR/
that must be explicitly assigned a value by the user is MAXS.
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SPARSPAK contains an interface subroutine called PSTATS which the user
can call to obtain storage requirements, execution times, operation counts
etc. for the solution of the problem.

It is assumed that the subroutines which comprise the SPARSPAK package
have been compiled into a ltbrary, and that the user can reference them from
a Fortran program just as the standard Fortran library subroutines, such as

SIN, COS, etc., are referenced. Normally, a user will use only a small fraction
of the subroutines provided in SPARSPAK.

2.4 Brief Description of the Main Interface Sub-
routines

2.4.1 Modules for Input of the Matrix Structure

SPARSPAK must know the matrix structure before it can determine an
appropriate ordering for the system. SPARSPAK contains a group of sub-
routines which provide a variety of ways through which the user can inform
the package where the nonzero entries are; that is, those subscripts (3, j) for
which a;; # 0. Before any of these input subroutines is called, the user must
execute an initialization subroutine called IJBEGN, which tells the package
that a matrix problem with a new structure is to be solved.

a) Input of a nonzero location
To tell SPARSPAK that the matrix component a,; is nonzero, the user
simply executes the statement

CALL INIJ ( I, J, S )

where I and J are the subscripts of the nonzero, and S is the working
storage array declared by the user for use by the package.

b) Input of the structure of a row, or part of a row.
When the structure of a row or part of a row is available, it may be
more convenient to use the subroutine INROW. The statement to use is

CALL INROW ( I, NIR, IR, S )

where I denotes the subscript of the row under consideration, IR is an
array containing the column subscripts of some or all of the nonzeros
in the I-th row, NIR is the number of subscripts in IR, and S is the
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user-declared working storage array. The subscripts in the array IR
can be in arbitrary order, and the rows can be input in any order.
Input of a submatrix structure

SPARSPAK allows the user to input the structure of a submatrix. The
calling statement is

CALL INIJIJ ( NIJ, II, JJ, S ) ,

where NIJ is the number of input subscript pairs and II, JJ are the
arrays containing the subscripts.
Input of a full submatrix structure

The structure of an entire matrix is completely specified if all the full
submatrices are given. In applications where they are readily available,
the subroutine INCLQ is useful. Its calling sequence is

CALL INCLQ (NCLQ, CLQ, S) ,

where NCLQ is the size of the submatrix and CLQ is an array containing
the subscripts of the submatrix.

Thus, to inform the package that the submatrix corresponding to sub-
scripts 1, 3, 5 and 6 is full, we execute

cLQ(1) =1
CcLQ(2) = 3
CLQ(3) = 5
CLQ(4) = 6

CALL INCLQ(4, CLQ, S)

The type of structure input subroutine to use depends on how the user

obtains the matrix structure. Anyway, one can select those that best suit the

application. The package allows mized use of the subroutines in inputting

a matrix structure. SPARSPAK automatically removes duplications so the

user does not have to worry about inputting duplicate subscript pairs.

When all pairs have been input, using one or a combination of the input

subroutines, the user is required to tell the package explicitly so by calling
the subroutine IJEND. The calling statement is

CALL IJEND(S)
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and its purpose is to transform the data from the format used during the
recording phase to the standard (XADJ, ADJNCY) format used by all the sub-
routines in the book. The user does not have to be concerned with this input
representation or the transformation process.

2.4.2 Modules for Ordering and Storage Allocation

With an internal representation of the nonzero structure of the matrix A,
SPARSPAK is now ready to reorder the matrix problem. The user initiates
this by calling an ordering subroutine, whose name has the form ORDRz:.
Here ¢ is a numerical digit between 1 and 6 that signifies the storage method,
and the character z denotes the ordering strategy as summarized in Fig-
ure 2.3.1. The subroutine ORDR2: determines the ordering and then sets up
the data structure for the reordered matrix problem. The package is now
ready for numerical inputs.

2.4.3 Modules for Inputting Numerical Values of A and b

The modules in this group are similar to those for inputting the matrix
structure. They provide a means of transmitting the actual numerical values
of the matrix problem to the package. Since the data structures for different
storage methods are different, the package must have a different matrix input
subroutine for each method. SPARSPAK uses the same set of subroutine
names for all the methods (except for the last digit which distinguishes the
method), and the parameter lists for all the methods are the same.

There are three ways of passing the numerical values to the package. In
all of them, subscripts passed to the package always refer to those of the
ortginal given problem. The user need not be concerned about the various
permutations to the problem which may have occurred during the ordering
step.

a) Input of a single nonzero component
The subroutine INAIJ: is provided for this purpose and its calling
sequence is

CALL INAIJi ( I, J, VALUE, S )

where I and J are the subscripts, and VALUE is the numerical value.
The subroutine INAIJ: adds the quantity VALUE to the appropriate
current value in storage, rather than making an assignment. This is
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helpful in situations (e.g., in some finite element applications) where
the numerical values are obtained in an incremental fashion. For ex-
ample, the execution of

INAIJ2 ( 3, 4, 9.5, S )
INAIJ2 ( 3, 4, -4.0, S )

effectively assigns 5.5 to the matrix component asz,.

b) Input of a row of nonzeros

The subroutine INROW: can be used to input the numerical values of a
row or part of a row in the matrix. Its calling sequence is similar to
that of INROW, described in Section 2.4.1.

CALL INROWi ( I, NIR, IR, VALUES, S )

Here the additional variable VALUES is an array containing the numer-
ical values of the row. Again, the numerical values are added to the
current values in storage.

¢) Input of a submatrix

The subroutine for the input of a submatrix is called INMAT+. Its param-
eter list corresponds to that of INIJIJ with the additional parameter
VALUES that stores the numerical quantities:

CALL INMATi ( NIJ, II, JJ, VALUES, S )

Again, the VALUES are added to those held by the package.

Mixed use of the subroutines INAIJz, INROW:, and INMAT? is permitted. Thus,
the user is free to use whatever subroutines are most convenient.

The same convenience is provided in the input of numerical values for the
right hand side vector. The package includes the subroutine INBI which
inputs an entry to the right hand vector.
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CALL INBI ( I, VALUE, S )

Here I is the subscript and VALUE is the numerical value.
The subroutine INBIBI can be used to input a subvector, and its calling
sequence is

CALL INBIBI ( NI, II, VALUES, S )

where II and VALUES are vectors containing the subscripts and numerical
values respectively. In both subroutines, incremental calculations of the
numerical values are performed.

In some situations where the entire right hand vector is available, the user can
use the subroutine INRHS which transmits the whole vector to the package.
It has the form

CALL INRHS ( RHS, S )

where RHS is the vector containing the numerical values.

In all three subroutines, the numbers provided are added to those currently
held by the package, and the use of the subroutines can be intermixed. The
storage used for the right hand side by the package is initialized to zero the
first time any of them is executed.

2.4.4 Modules for Factorization and Solution

The numerical computation of the solution vector is initiated by the Fortran
statement

CALL SOLVEi ( S )

where S is the working storage array for the package. Again, the last digit ¢
is used to distinguish between solvers for different storage methods.
Internally, the subroutine SOLVE: consists of both the factorization and for-
ward /backward solution steps. If the factorization has been performed in
a previous call to SOLVE:, the package will automatically skip the factor-
ization step, and perform the solution step directly. The solution vector is
returned in the first NEQNS locations of the storage vector S. If SOLVE: is
called before any right hand side values are input, only the factorization will
be performed. The solution returned will be all zeros.
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2.5 Save and Restart Facilities

SPARSPAK provides two subroutines called SAVE and RESTRT which allow
the user to stop the calculation at some point, save the results on an external
sequential file, and then restart the calculation at exactly that point some
time later. To save the results of the computation done thus far, the user
executes the statement

CALL SAVE ( K, S )

where K is the Fortran logical unit on which the results are to be written,
along with other information needed to restart the computation. If execution
is then terminated, the state of the computation can be re-established by
executing the statement

CALL RESTRT ( K, S )

When an error is detected, so that the computation cannot proceed, a pos-
itive code is assigned to IERR. The user can simply check the value of IERR
to see if the execution of the module has been successful. This error flag can
be used in conjunction with the save/restart feature to retain the results of
successfully completed parts of the computation, as shown by the program
fragment below.

CALL ORDRA1 ( S )
IF (IERR.EQ.0) GO TO 100
CALL SAVE ( 3, S )
STOP
100 CONTINUE

Another potential use of the SAVE and RESTRT modules is to make the work-
ing storage array S available to the user in the middle of a sparse matrix
computation. After SAVE has been executed, the working storage array S
can be used by some other computation.
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2.6 Solving Many Problems Having the Same
Structure or the Same Coefficient Matrix A

In certain applications, many problems which have the same sparsity struc-
ture, but different numerical values, must be solved. This situation can
be accommodated perfectly well by the package. The control sequence is
depicted by the flowchart in Figure 2.6.1. When the numerical input sub-
routines (INAIJ¢, INBI, etc.) are first called after SOLVE: has been called,
this is detected by the package, and the computer storage used for A and b
is initialized to zero.

SPRSPK

|

Input Structures

of A
l

Call ORDRxi

|

Input Numerical

Values of A and b

|

Call SOLVEi

Figure 2.6.1: Flowchart for using SPARSPAK to solve numerous problems
having the same structure.

Note that if such problems must be solved over an extended time period (i.e.,
in different runs), the user can execute SAVE after executing ORDRz¢ and thus
avoid input of the structure of A and the execution of ORDRz? in subsequent
equation solutions.
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In other applications, numerous problems which differ only in their right
hand sides must be solved. In this case, we only want to factor A once, and
use the factors repeatedly in the calculation of @ for each different b. Again,
the package can handle this in a straightforward manner, as illustrated by
the flowcharts in Figure 2.6.2.

When SPARSPAK is used as indicated by flowchart (1) in Figure 2.6.2, it
detects that no right hand side has been provided during the first execu-
tion of SOLVE?, and only the factorization is performed. In subsequent calls
to SOLVE¢, the package detects that the factorization has already been per-
formed, and that part of the SOLVE: module is by-passed. In flowchart (2)
of Figure 2.6.2, both factorization and solution is performed during the first
call to SOLVE?, with only the solve part performed in subsequent executions
of SOLVEz.

Note that SAVE can be used after SOLVE: has been executed, if the user wants
to save the factorization for use in some future calculation.

2.7 Output From the Package

As noted earlier, the user supplies a one-dimensional real array S, from
which all array storage is allocated. In particular, the interface allocates
the first NEQNS storage locations in S for the solution vector of the linear
system. After all the interface modules for a particular method have been
successfully executed, the user can retrieve the solution from these NEQNS
locations.

In addition to the solution «, the package may print other information about
the computation, depending upon the value of MSGLVL, whether or not errors
occur, and whether or not the module PSTATS is called.
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SPRSPK SPRSPK
Input Structure of A Input Structure of A
Call ORDRxi Call ORDRxi
Input Numerical Input Numerical

Values for A Values for A

i |

Input Numerical

Call SOLVEi Values for b

l |

Input Numerical

Values for b Call SOLVE1

|

Call SOLVEi

(1) (2)

Figure 2.6.2: Flowcharts for using SPARSPAK to solve numerous problems
having the same coefficient matrix but different right hand sides.
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