Diagrama de temas

  • En esta pesataña encontrarán artículos científicos pertinentes a los temas desarrollados en el curso.

    A continuación se deja un listado de la bibliografía que encontrarán en los pdf.

    • CAMPANELLA, O. H., & PELEG, M. (1987). Squeezing flow viscosimetry of peanut butter. Journal of Food Science, 52(1), 180-184. doi:10.1111/j.1365-2621.1987.tb14000.x
    • Campanella, O. H., & Peleg, M. (2002). Squeezing flow viscometry for nonelastic semiliquid foods - theory and applications. Critical Reviews in Food Science and Nutrition, 42(3), 241-264. doi:10.1080/10408690290825547
    • CHU, C. F., & PELEG, M. (1985). THE COMPRESSIVE BEHAVIOR OF SOLID FOOD SPECIMENS WITH SMALL HEIGHT TO DIAMETER RATIOS. Journal of Texture Studies, 16(4), 451-464. doi:10.1111/j.1745-4603.1985.tb00707.x
    • Corradini M.G., Peleg M. (2008) Solid Food Foams. In: Aguilera J.M., Lillford P.J. (eds) Food Materials Science. Springer, New York, NY. https://doi.org/10.1007/978-0-387-71947-4_10
    • Corradini, M. G., & Peleg, M. (2005). Consistency of dispersed food systems and its evaluation by squeezing flow viscometry. Journal of Texture Studies, 36(5-6), 605-629. doi:10.1111/j.1745-4603.2005.00034.x
    • Hoffner, B., Gerhards, C., & Peleg, M. (1997). Imperfect lubricated squeezing flow viscometry for foods. Rheologica Acta, 36(6), 686-693. doi:10.1007/BF00367365
    • HOLLENBACH, A. M., PELEG, M., & RUFNER, R. (1982). Effect of four anticaking agents on the bulk characteristics of ground sugar. Journal of Food Science, 47(2), 538-544. doi:10.1111/j.1365-2621.1982.tb10119.x
    • KALETUNC, G., NORMAND, M. D., JOHNSON, E. A., & PELEG, M. (1991). “Degree of elasticity” determination in solid foods. Journal of Food Science, 56(4), 950-953. doi:10.1111/j.1365-2621.1991.tb14613.x
    • KUO, J. ., PELEG, M., & HULTIN, H. O. (1990). Tensile characteristics of squid mantle. Journal of Food Science, 55(2), 369-371. doi:10.1111/j.1365-2621.1990.tb06765.x
    • Normand, M. D., Lesmes, U., Corradini, M. G., & Peleg, M. (2010). Wolfram demonstrations: Free interactive software for food engineering education and practice. Food Engineering Reviews, 2(3), 157-167. doi:10.1007/s12393-010-9018-0
    • NUSSINOVITCH, A., PELEG, M., & NORMAND, M. D. (1989). A modified maxwell and a nonexponential model for characterization of the stress relaxation of agar and alginate gels. Journal of Food Science, 54(4), 1013-1016. doi:10.1111/j.1365-2621.1989.tb07934.x
    • PELEG, M. (1977). FLOWABILITY OF FOOD POWDERS AND METHODS FOR ITS EVALUATION — A REVIEW. Journal of Food Process Engineering, 1(4), 303-328. doi:10.1111/j.1745-4530.1977.tb00188.x
    • Peleg, M. (1987). Basics of solid food rheology in Moskowitz, H.R. (Ed.). Food Texture: Instrumental and Sensory Measurement (1st ed.). Routledge. https://doi.org/10.1201/9780203755600
    • Peleg, M. (1992). On the use of the WLF model in polymers and foods. Critical Reviews in Food Science and Nutrition, 32(1), 59-66. doi:10.1080/10408399209527580
    • Peleg, M. (1994). A model of mechanical changes in biomaterials at and around their glass transition. Biotechnology Progress, 10(4), 385-388. doi:10.1021/bp00028a007
    • Peleg, M. (1996). On modeling changes in food and biosolids at and around their glass transition temperature range. Critical Reviews in Food Science and Nutrition, 36(1-2), 49-67. doi:10.1080/10408399609527718
    • Peleg, M. (2006). On fundamental issues in texture evaluation and texturization - A view. Food Hydrocolloids, 20(4), 405-414. doi:10.1016/j.foodhyd.2005.10.008
    • Peleg, M. (2015). Crunchiness loss and moisture toughening in puffed cereals and snacks. Journal of Food Science, 80(9), 1988-1996. doi:10.1111/1750-3841.12971
    • Peleg, M. (2018). Temperature–viscosity models reassessed. Critical Reviews in Food Science and Nutrition, 58(15), 2663-2672. doi:10.1080/10408398.2017.1325836
    • Peleg, M. (2019). The instrumental texture profile analysis revisited. Journal of Texture Studies, 50(5), 362-368. doi:10.1111/jtxs.12392
    • Peleg, M. (2020). Quantitative instrumental assessment of cooked rice stickiness. Food Engineering Reviews, 12(4), 452-459. doi:10.1007/s12393-020-09224-1
    • Peleg, M., Engel, R., Gonzalez-Martinez, C., & Corradini, M. G. (2002). Non-arrhenius and non-WLF kinetics in food systems. Journal of the Science of Food and Agriculture, 82(12), 1346-1355. doi:10.1002/jsfa.1175
    • Peleg, M., Normand, M. D., & Corradini, M. G. (2012). The arrhenius equation revisited. Critical Reviews in Food Science and Nutrition, 52(9), 830-851. doi:10.1080/10408398.2012.667460
    • Peleg,M., Roy I., Campanella, O.H., Normand, M.D. (1989). Mathematical characterization of the compressive stress-strain relationships of spongy baked goods. Journal of Food Science, 54 (4), 947-949.
    • Suwonsichon, T., & Peleg, M. (1999). Imperfect squeezing flow viscosimetry for commercial refried beans. [Viscosimetría de extensión biaxial imperfecta de frijoles refritos] Food Science and Technology International, 5(2), 159-166. doi:10.1177/108201329900500205
    • Suwonsichon, T., & Peleg, M. (1999). Rheological characterisation of almost intact and stirred yogurt by imperfect squeezing flow viscometry. Journal of the Science of Food and Agriculture, 79(6), 911-921. doi:10.1002/(SICI)1097-0010(19990501)79:6<911::AID-JSFA308>3.0.CO;2-A
    • Swyngedau,S., Peleg, M. (1992). A model for the compressibility of food-finger(s) arrays. Journal of Rheology, 36, 45-56.