Fundamentos
Perfilado de sección
-
Sesión 1: Guillermo Moncecchi (Repaso de álgebra lineal)
Sesión 2: Jairo Bonanata (Regresión lineal, regresión logística, gradient descent)
Sesión 3: Raúl Garreta (Redes Neuronales y Backpropagation)Repaso de álgebra lineal (Matrices con Python y Numpy)
Repaso de regresión lineal, regresión logística. Gradient descent.
- Redes neuronales y backpropagation (Artificial Neural Networks and Backpropagation)
Material
- A tutorial on PCA (Lindsay Smiths)
- PCA Step by step in Python (Sebastian Raschka)
- Machine Learning - Ng (Stanford) - II, III, IV, VI, VII
- Logistic Regression - del libro Advanced Data Analysis from an Elementary Point of View (Cosma Rohilla - Carnegie Mellon)
- Gradient Descent Example
- An overview of gradient descent optimization algorithms - Sebastian Ruder
- Fitting a model via closed-form equations vs. Gradient Descent etc. - Sebastian Raschka
- (Physio)logical circuits: the intellectural origins of the McCulloch - Pitts Neural Networks - Tara Abraham
- Calculus on computational graphs: backpropagation - Crhis Olah
- Neural Networks and Deep Learning - Chapter 2 - Michael Nielsen
- Neural Networks and Deep Learning - Chapter 1 - Michael Nielsen
- Notas del curso de Socher (parte III)