
Artificial Neural Networks
&
Backpropagation
Deep Learning - Raúl Garreta - 2016

Contents
● Brief History
● Biological Neuron and Neural Networks
● Artificial Neurons
● Artificial Neural Networks (ANN)
● Machine Learning and ANNs

○ Perceptron training rule
○ Delta rule and gradient descent
○ Stochastic gradient descent (SGD)
○ Backpropagation

● Why Deep Learning?
● Advantages & Disadvantages
● Tips and Tricks

Brief History
● End of 19th century

○ existence of nerve cells and their interconnection in functional
structures was widely accepted.

● End of 1930, nerve fibers were known to
○ conduct electrical impulses
○ excitation and inhibition of individual cells was demonstrated.

● 1943 Warren McCulloch and Walter Pitts
○ First computational model of a neural network.
○ The logical model of activation of neurons.

○ The neurons are interconnected in networks to build higher
complexity structures.

● 1960-1980 new research: continuous activations,
gradient descent, backpropagation

● 2010s returned again

Main Assumptions

● The nervous system is a network of neurons.
● Each neuron has a soma and an axon, synapses are always between the axon

of one neuron and the soma of another.
● Synaptic signals may be excitatory or inhibitory. If the net excitation received

by a neuron over a short period of time is large enough (some threshold), the
neuron generates a brief pulse called an action potential, which originates at
the soma and propagates rapidly along the axon, activating synapses onto
other neurons as it goes.

● At any instant the neuron has some threshold, which excitation must exceed
to initiate an impulse.

Biological Neuron Facts
● The human brain has ~ 1011

neurons.
● Each neuron is connected with

~ 104 neurons.
● The fastest neuron activation

times ~ 10-3 seconds, (quite
slow compared with computer
times 10-10).

Intuition for Artificial Neural Networks

● Humans are able to make complex decisions surprisingly quickly.
○ For example, it is estimated that a person can recognize the face of his mother in around 10-1

seconds.

● Dividing by the average activation time of a neuron:
○ At most a few hundred steps or layers of neurons to do all the processing.

● From this observation, we can conclude that the biological neural system
must have a high parallel processing and distributed representations.

Artificial Neurons

● Were conceived (initially) as a mathematical structure to model biological
neurons.

● The usual transformation in a AN takes the inputs and performs a weighted
sum of the inputs that then is passed through a nonlinear function commonly
known as the activation function:

∑

x1

x2

xn

Input Units

w112

w12
2

w21
2

w22
2

w31
2

w32
2

...

Activation Functions Characteristics

● Monotonically Increasing (the magnitude of the output increases as the
magnitude of the input increases)

● Continuous (roughly speaking, small changes in the input produce small
changes in the output).

● Differentiable (can calculate its derivative efficiently).
● Bounded (a function that returns an output that can be bounded, like

squashing all the input in a founded range)

Activation Functions

Activation Functions

Activation Functions

Artificial Neural Networks (ANN)
● Usually will be interested in Networks of Artificial Neurons.
● When combining them (connecting outputs of neurons to inputs of others) we

can represent a huge variety of functions. Eg: Feedforward Architecture:

∑

∑

∑

x1

x2

x3

Input Units Hidden Units Output Units

w112

w12
2

w21
2

w22
2

w31
2

w32
2

w1
1

w2
1

Machine Learning and Neural Networks

● Technically we haven't talked anything about machine learning :)
● The interesting part comes when you can dynamically change, adapt and

improve the connections between neurons to create the desired output given
a particular input.

● That's when machine learning comes into the show.

Learning weights of a single neuron
1. Begin with an initial set of weights (eg: start with random weights).
2. Iteratively input an example into the unit and adjust appropriately whenever

the output is different to the expected result.
3. Repeat step 2 as many times as necessary until the outputs for every training

example are correct.
● Different algorithms mainly differ in how they adjust the weights to correct

the output of the neuron:

● The most popular:
○ Perceptron Rule
○ Delta Rule, Gradient Descent, Stochastic Gradient Descent (SGD).

Perceptron Training Rule

● Simple rule to adjust the weights:

● Where dwi is the adjust made to weight wi when the input is xi with target
output t and obtained output is o.

● is the learning rate, moderate the step of the updates.
● Converges in a finite number of iterations to a set of weights that make the

unit correctly classify all the training examples, provided that they are linearly
separable.

● It may not converge when the training examples are not linearly separable.

Gradient Descent
● This rule always converges to the best possible approximation to the desired

output.
● Minimize squared error:

● Use the derivative to find the steepest descent along the error surface
towards the minimum:

● E(w) is a vector whose components are the partial derivatives of E respect
to each of the vector w components.

Example with Tensorflow Playground

http://playground.tensorflow.org/#activation=tanh&batchSize=10&dataset=gauss®Dataset=reg-plane&learningRate=0.03®ularizationRate=0&noise=0&networkShape=1&seed=0.62687&showTestData=false&discretize=false&percTrainData=50&x=true&y=true&xTimesY=false&xSquared=false&ySquared=false&cosX=false&sinX=false&cosY=false&sinY=false&collectStats=false&problem=classification&initZero=false&discretize_hide=false&activation_hide=false
http://playground.tensorflow.org/#activation=tanh&batchSize=10&dataset=gauss®Dataset=reg-plane&learningRate=0.03®ularizationRate=0&noise=0&networkShape=1&seed=0.62687&showTestData=false&discretize=false&percTrainData=50&x=true&y=true&xTimesY=false&xSquared=false&ySquared=false&cosX=false&sinX=false&cosY=false&sinY=false&collectStats=false&problem=classification&initZero=false&discretize_hide=false&activation_hide=false

Learning weights of a Network: Backpropagation

● Generalization of the gradient descent to learn weights for multilayer neural
networks.

● Adjusts the weights in a ANN to minimize the error between the obtained
output and the desired output of the network when feeding the network with
its inputs.

Main Differences

● With multiple outputs the minimization will be calculated by taking the sum of
the errors of all the outputs of the network.

● We have to adjust weights of all the units in the network (it's a much larger
search space).

● The error surface can have multiple local minima, it's not guaranteed that the
algorithm converges to the global minima.

● Despite these difficulties, backpropagation obtains very good results in many
practical applications.

Backpropagation Algorithm
● For each example <x, t> in training set:

○ Propagate the input forward through the network:

■ 1. Input the instance x to the network and compute the output of every unit u in the
network.

○ Propagate the error back through the network:
■ 2. For each output unit k, calculate the error term k:

■ 3. For each hidden unit h, calculate the error term δ_h:

■ 4. Update unit weights wji:

Example with TensrofFlow Playground

http://playground.tensorflow.org/#activation=tanh&batchSize=10&dataset=gauss®Dataset=reg-plane&learningRate=0.03®ularizationRate=0&noise=0&networkShape=4,2&seed=0.62687&showTestData=false&discretize=false&percTrainData=50&x=true&y=true&xTimesY=false&xSquared=false&ySquared=false&cosX=false&sinX=false&cosY=false&sinY=false&collectStats=false&problem=classification&initZero=false&discretize_hide=false&activation_hide=false
http://playground.tensorflow.org/#activation=tanh&batchSize=10&dataset=gauss®Dataset=reg-plane&learningRate=0.03®ularizationRate=0&noise=0&networkShape=4,2&seed=0.62687&showTestData=false&discretize=false&percTrainData=50&x=true&y=true&xTimesY=false&xSquared=false&ySquared=false&cosX=false&sinX=false&cosY=false&sinY=false&collectStats=false&problem=classification&initZero=false&discretize_hide=false&activation_hide=false

Why Deep Learning?
● New research / techniques

○ Both academia and industry

● Large amount of layers (deep networks)
○ Intuition from biology: time from eye signal to response / activation time =~ 10.

● Automatic feature extraction (lower layers)
○ Training features separately w/ unsupervised techniques, eg: word2vec.

● New architectures
○ Convolutional networks, Recurrent neural networks, Autoencoders

● Massive amounts of data.
○ Easy to capture, easy to store.

● Tools
○ Software: frameworks with calculations that reduce error propagation between

layers. Analytical gradient instead of numerical. Parallelization.
○ Hardware: Moore's law, parallelization with GPUs, specialized HW (eg: google chip).

When Deep Learning is a good option?

● Instances are represented by large amounts of attributes.
● The target function:

○ Continuous Real
○ Discrete
○ Vector

● Training examples can contain errors:
○ Neural network models are robuts to errors.

● Long training times are acceptable.
● Fast prediction times.
● Humans don't need to understand the learned model.

Difficulties with Deep Learning

● Huge search space
○ Large amount of parameters to adjust.

● Long training times.
● Large amount of training examples needed.
● Large amount of "hyperparameters" to select:

○ Learning rate
○ Architecture
○ Number of neurons

● Termination criteria

Tips & Tricks
● Learning rate:

○ Start with small learning rate. Avoid large learning rates that make the model to overshoot the
minima.

○ Decrease learning rate over time.

● Use momentum term.
● Use stochastic gradient descent (SGD) instead of standard gradient descent.
● Weight initialization:

○ Random
○ Train multiple networks initialized with different weights.

● Regularization
● Termination criterion:

○ iterating the training until training error falls below a certain threshold is not a good idea:
overfitting. Use a separate validation set.

Warren McCulloch - Walter Pitts

Geoffrey Hinton
U. Toronto & Google

Yann LeCun
AT&T - NYU - Facebook

Yoshua Bengio
MIT - AT&T - U. Montreal

Richard Socher
U. Stanford - SalesforceIlya Sutskever

U. Stanford - Google - OpenAI

Tomas Mikolov
U. Brno - Google - Facebook

Ronan Collobert
NEC - Facebook

