Artificial Neural Networks
&

Backpropagation

Deep Learning - Raul Garreta - 2016

Contents

Brief History

Biological Neuron and Neural Networks
Artificial Neurons

Artificial Neural Networks (ANN)
Machine Learning and ANNs

o Perceptron training rule

o Deltarule and gradient descent

o Stochastic gradient descent (SGD)
o Backpropagation

e Why Deep Learning?
e Advantages & Disadvantages
e Tips and Tricks

Brief History

e End of 19th century

o existence of nerve cells and their interconnection in functional
structures was widely accepted.

e End of 1930, nerve fibers were known to

o conduct electrical impulses
o excitation and inhibition of individual cells was demonstrated.

e 1943 Warren McCulloch and Walter Pitts

o First computational model of a neural network.
o The logical model of activation of neurons.

o The neurons are interconnected in networks to build higher
complexity structures.

e 1960-1980 new research: continuous activations,
gradient descent, backpropagation
e 2010s returned again

Dendrite
Axon Terminal

Node of
Ranvi
Cell body anyter
)
- o
AXON Schwann cell

Myelin sheath
Nucleus

Main Assumptions

e The nervous system is a network of neurons.

e Each neuron has a soma and an axon, synapses are always between the axon
of one neuron and the soma of another.

e Synaptic signals may be excitatory or inhibitory. If the net excitation received
by a neuron over a short period of time is large enough (some threshold), the
neuron generates a brief pulse called an action potential, which originates at
the soma and propagates rapidly along the axon, activating synapses onto
other neurons as it goes.

e At any instant the neuron has some threshold, which excitation must exceed

to initiate an impulse.

The human brain has ~ 10"’
neurons.

Each neuron is connected with
~ 10% neurons.

The fastest neuron activation
times ~ 107 seconds, (quite
slow compared with computer
times 1079).

Intuition for Artificial Neural Networks

e Humans are able to make complex decisions surprisingly quickly.

o For example, it is estimated that a person can recognize the face of his mother in around 10
seconds.

e Dividing by the average activation time of a neuron:
o At most a few hundred steps or layers of neurons to do all the processing.

e From this observation, we can conclude that the biological neural system
must have a high parallel processing and distributed representations.

Artificial Neurons

e Were conceived (initially) as a mathematical structure to model biological
neurons.

e The usual transformation in a AN takes the inputs and performs a weighted
sum of the inputs that then is passed through a nonlinear function commonly
known as the activation function:

n
Oj = (p(E Wji.JCf)
=0

inputs
X;
activation
functon
X @ net mlrput
net.
I, qr) 0,
activation

transfer
function

threshold

Input Units

Activation Functions Characteristics

e Monotonically Increasing (the magnitude of the output increases as the
magnitude of the input increases)

e Continuous (roughly speaking, small changes in the input produce small
changes in the output).

e Differentiable (can calculate its derivative efficiently).

e Bounded (a function that returns an output that can be bounded, like
squashing all the input in a founded range)

sign function

Activation Functions jj_

(05 :

| 1l:2>0 B
sign(zx) = < .
\—1 - otherwise

. ‘I“ si_gzmoid ;unctin; 4
sigmoid(x) = 1 —/—

1 _|_ 6_'1: —0.5 |

Activation

tanh(zx) =

hardtanh(x) = <

Functions

e! — et

(1:2<—1
r:—1<=x<=1

1:z>1

15

10

05

00

=05 |

-1.0

=15

15

10

05 [

00

=05 |

-1.0

-15

tanh function

1 1 1 1
-2 0 2 4

hardtanh function

Activation Functions

relu(r) = max(zx,0)

15

10}

05 :

—0.5

-1.0 :

-1.5

relu function

/

Artificial Neural Networks (ANN)

e Usually will be interested in Networks of Artificial Neurons.
e When combining them (connecting outputs of neurons to inputs of others) we
can represent a huge variety of functions. Eg: Feedforward Architecture:

Input Units Hidden Units Output Units

Machine Learning and Neural Networks

e Technically we haven't talked anything about machine learning :)
e The interesting part comes when you can dynamically change, adapt and

improve the connections between neurons to create the desired output given
a particular input.

e That's when machine learning comes into the show.

Learning weights of a single neuron

1. Begin with an initial set of weights (eg: start with random weights).

2. lteratively input an example into the unit and adjust appropriately whenever
the output is different to the expected result.

3. Repeat step 2 as many times as necessary until the outputs for every training
example are correct.

e Different algorithms mainly differ in how they adjust the weights to correct
the output of the neuron:

w — w + Aw

e The most popular:

o Perceptron Rule
o Delta Rule, Gradient Descent, Stochastic Gradient Descent (SGD).

Perceptron Training Rule

e Simple rule to adjust the weights:
Aw; = at — o)x;

e Where dw; is the adjust made to weight w; when the input is x; with target
output t and obtained output is o.

e ¢ isthe learning rate, moderate the step of the updates.

e Converges in a finite number of iterations to a set of weights that make the
unit correctly classify all the training examples, provided that they are linearly
separable.

e It may not converge when the training examples are not linearly separable.

Gradient Descent

e This rule always converges to the best possible approximation to the desired
output.
e Minimize squared error: 1

E(w) = 3 > (ta—0a)’

deD
e Use the derivative to find the steepest descent along the error surface

towards the minimum:
Aw = —aVE(w)

e VE(w) is a vector whose components are the partial derivatives of E respect
to each of the vector w components.

- Q-

DATA

Which dataset do
you want to use?

Ratio of training to
test data: 30%
.

Moise: 0

.—

Batch size: 10
_.—

REGENERATE

Iterations

000,053 003

FEATURES

Which properties do
you want to feed in?

-0
——

—
-

Fai
32
X5

sin(X;)

sin{X;)

Example with Tensorflow Playground

Learning rate Activation Regularization Regularization rate Problem type
- Tanh - None 0 - Classification -
+ — 1 HIDDEN LAYER QUTPUT
Test loss 0.002
Eh = Training loss 0.002
1 neuran
e S

This is the output
from one neuron.
Hover fo see it
larger.

Colors shows

data, neuron and E" |

weight values.

[] showtestdata [] Discretize output

http://playground.tensorflow.org/#activation=tanh&batchSize=10&dataset=gauss®Dataset=reg-plane&learningRate=0.03®ularizationRate=0&noise=0&networkShape=1&seed=0.62687&showTestData=false&discretize=false&percTrainData=50&x=true&y=true&xTimesY=false&xSquared=false&ySquared=false&cosX=false&sinX=false&cosY=false&sinY=false&collectStats=false&problem=classification&initZero=false&discretize_hide=false&activation_hide=false
http://playground.tensorflow.org/#activation=tanh&batchSize=10&dataset=gauss®Dataset=reg-plane&learningRate=0.03®ularizationRate=0&noise=0&networkShape=1&seed=0.62687&showTestData=false&discretize=false&percTrainData=50&x=true&y=true&xTimesY=false&xSquared=false&ySquared=false&cosX=false&sinX=false&cosY=false&sinY=false&collectStats=false&problem=classification&initZero=false&discretize_hide=false&activation_hide=false

Learning weights of a Network: Backpropagation

e Generalization of the gradient descent to learn weights for multilayer neural
networks.

e Adjusts the weights in a ANN to minimize the error between the obtained

output and the desired output of the network when feeding the network with
its inputs.

Main Differences

e With multiple outputs the minimization will be calculated by taking the sum of
the errors of all the outputs of the network.

e We have to adjust weights of all the units in the network (it's a much larger
search space).

e The error surface can have multiple local minima, it's not guaranteed that the
algorithm converges to the global minima.

e Despite these difficulties, backpropagation obtains very good results in many
practical applications.

Backpropagation Algorithm

e For each example <x, > in training set:
o Propagate the input forward through the network:

m 1. Input the instance x to the network and compute the output of every unit « in the
network.
o Propagate the error back through the network:
m 2. Foreach output unit £, calculate the error term d;:

(Sk < Ok(l — Ok)(tk — Ok)

m 3. For each hidden unit $hS, calculate the error term $\delta_hS:

(Sh < Oh(l — Oh) Z (wkhék)

m 4. Update unit weights W k€outputs

wj?/ <_ wj?/ + O{(S :’UJZ

DATA

Which dataset do
you want to use?

Ratio of training to
test data: 50%
.

Noise: 0

[——

Batch size: 10
—e

REGENERATE

Example with TensrofFlow Playground

Iterations

000,103

FEATURES

Which properties do
you want to feed in?

X%z
sin(X,}

sin(X;)

Learning rate Activation Regqularization Regularization rate Problem type
0.03 - Tanh - None - 0 - Classification -
+ — 2 HIDDEN LAYERS QUTPUT
T ! Test loss 0.001
Training loss 0.000
+ - + - -
4 neurons 2 neurons
\ I'.“- -= e e __a-""-...-,/". S —u
o — -~
\"'-.._____ — :"‘:““—--_._‘_______‘__
o S > p——l
AT
o\ A

e ™, 7
S s (

N\ 2 g The oulputs are

% - . mixed with varying
s - weights, shown
ol e by the thickness of
ihe lines.

This is the oufput
from one neuron.
Hover to see it
larger.

Colors shows

data, neuron and ! ‘; -

weight values.

[[] show testdata [] Discretize output

http://playground.tensorflow.org/#activation=tanh&batchSize=10&dataset=gauss®Dataset=reg-plane&learningRate=0.03®ularizationRate=0&noise=0&networkShape=4,2&seed=0.62687&showTestData=false&discretize=false&percTrainData=50&x=true&y=true&xTimesY=false&xSquared=false&ySquared=false&cosX=false&sinX=false&cosY=false&sinY=false&collectStats=false&problem=classification&initZero=false&discretize_hide=false&activation_hide=false
http://playground.tensorflow.org/#activation=tanh&batchSize=10&dataset=gauss®Dataset=reg-plane&learningRate=0.03®ularizationRate=0&noise=0&networkShape=4,2&seed=0.62687&showTestData=false&discretize=false&percTrainData=50&x=true&y=true&xTimesY=false&xSquared=false&ySquared=false&cosX=false&sinX=false&cosY=false&sinY=false&collectStats=false&problem=classification&initZero=false&discretize_hide=false&activation_hide=false

Why Deep Learning?

New research / techniques GO gle ﬁfacebooko

o Both academia and industry
Large amount of layers (deep networks)
o Intuition from biology: time from eye signal to response / activation time =~ 10.
Automatic feature extraction (lower layers)
o Training features separately w/ unsupervised techniques, eg: word2vec.
New architectures
o Convolutional networks, Recurrent neural networks, Autoencoders
Massive amounts of data.

o Easyto capture, easy to store.
Tools TensorFlow

o Software: frameworks with calculations that reduce error propagation between

layers. Analytical gradient instead of numerical. Parallelization.
Hardware: Moore's law, parallelization with GPUs, specialized HW (eq:

©)

When Deep Learning is a good option?

e Instances are represented by large amounts of attributes.

e The target function:
o Continuous Real
o Discrete
o Vector

e Training examples can contain errors:
o Neural network models are robuts to errors.

e Long training times are acceptable.
e Fast prediction times.
e Humans don't need to understand the learned model.

Difficulties with Deep Learning

e Huge search space
o Large amount of parameters to adjust.

e Long training times.

e Large amount of training examples needed.

e Large amount of "hyperparameters"” to select:
o Learning rate

o Architecture
o Number of neurons

e Termination criteria

Tips & Tricks

e Learning rate:

o Start with small learning rate. Avoid large learning rates that make the model to overshoot the
minima.

o Decrease learning rate over time.
e Use momentum term.
e Use stochastic gradient descent (SGD) instead of standard gradient descent.
e Weight initialization:

o Random

o Train multiple networks initialized with different weights.

e Regularization
e Termination criterion:

o iterating the training until training error falls below a certain threshold is not a good idea:
overfitting. Use a separate validation set.

Warren McCulloch - Walter Pitts

Geoffrey Hinton Yann LeCun Yoshua Bengio
U. Toronto & Google AT&T - NYU - Facebook MIT - AT&T - U. Montreal

Richard Socher Ronan Collobert
U. Stanford - Salesforce NEC - Facebook

Tomas Mikolov
U. Brno - Google - Facebook

llya Sutskever
U. Stanford - Google - OpenAl

