School of Computer Science
Carleton University

DisJ Cookbook (drafi)

(DisJ version 1.1.0)

By: Rody Piyasin
Supervisor: Prof. Nicola Santoro

Revision Date: February 10, 2011

Table of Contents

Chapter 1. OVerVieW. iccccccirrmmmsssssssnsssssssssssssssssssnssnnsssnsnssssssnnnnns 3
Chapter 2. Preliminaries........cciiiiiiiimmimmmmsssssssssssssssssssssssssssnnnnnnnns 4
Chapter 3. Creating a TOPOlOgY.....ccciiiiiiiiiiiiinirnsa s sssanssssnnnns 7
Chapter 4 Creating a Protocol..........cccciiiiieiiiininsssirnnics s s nnnas 29
Chapter 5. Running a Simulation.............ciiiiiiiimimiisnssssssscsassnnnss 40
Chapter 6. Graphical and Statistics Reports......ccvvviiiiccicciiinnnnnnns 46
Chapter 7. ConcluSioN........ciiiiiiiiisssnsnsssssssssssssssssssnssssnsssnssnsssnns 49
1Y o T o 1= 4 T 1) P 50

Chapter 1. Overview

This cookbook is a step-by-step description of the process of entering, executing and
testing a reactive distributed algorithm using DisJ. It also describes how to use DisJ to
simulate the algorithm and display the results in graphical interactive.

Here are four simple steps for using DisJ.
1 Install DisJ plug-in into Eclipse
2 Define a topology in DisJ graph editor
3 Write a protocol in Java language in Eclipse JDT
4 Execute the protocol in the defined topology using DisJ

Throughout the cookbook we will use two an example protocols; first protocol is “As
Far” that represent message passing model for leader election in a ring with bidirectional
links network, and second protocol is “Black Hole Search” that represent mobile agent
with token model for counting number of nodes in a ring with bidirectional link network
(see Appendix)

Chapter 2. Preliminaries

2.1 Install Eclipse

The DisJ is an Eclipse™ plug-in, therefore we need to have Eclipse™ (version 3.0 or
higher) installed. Eclipse is an open platform built by an open source community, which
it can be downloaded at http://www.eclipse.org/downloads/. There are many
types of builds available, but we recommend “Eclipse Classic” or “Eclipse IDE for Java
Developer”.

2.2 Install GEF libraries

Since DisJ graphical interface parts built on top of Graphical Editor Framework Plug-in
(GEF), therefore, DisJ plug-in requires GEF Plug-in to be installed. GEF runtime library
can be downloaded at http://www.eclipse.org/gef/downloads/index.php. There are many
types of packages release, but we recommend “All-In-One” that includes Draw 2D, GEF
and Zest.

2.3 Install DisJ

The installation of DisJ is similar to any others Eclipse Plug-ins by unzip the file and
place the folder “org.carleton.scs.disJ_1.1.0” into ECLIPSE_HOME/plugins folder.

To make sure that the plug-in was successfully installed, restart Eclipse™. Go to the
menu Help = About Eclipse SDK

& Java - Eclipse SDK

File Edit Source Refactor Mavigate Search Project Run Window | Help
|- |Fv0~Qz~ | BH Gy |® 5| v BWelome

% Package Explorer 33 T2 Herarchy| =) . (7) Help Contents
& Search
Dynamic Help

Key Assist,.. Cirl+Shift+L
Tips and Tricks. ..
Cheat Sheets...

Subwversive K
Software Updates. ..

http://www.eclipse.org/gef/downloads/index.php

Then a dialog box shown below must pop up on the screen

& about Eclipse SDK D _ ol x|

Eclipse 50K =

Version: 3.4.2
Build id: M20090211-1700

() Copyright Eclipse contributors and others 2000, 2009, Al
rights reserved.
Wisit it/ fwwewy eclipse, org,/platform

LA

(7] Featre Det.ailsl Plug-in Details | Configuraton Detailsl 64 I

Then click on “Plug-in Details” button and a dialog with list of current installed plug-ins
of the Eclipse will be listed which included “DisJ Simulator” (if the installation has been
done correctly) as shown in the picture below.

& About Eclipse SDK Plug-ins - |EI |i|
Sid... | Provider = | Plug-in Mame Yersion | Pluig-in Id | ﬂ
5| Eclipse.org Wigns 3.3.1.M2008... org.eclipse.ui.views
Eclipse.org Graphical Editing Framew... 3.4.1v2008... org.ecipse.draw2d.doc.isy
Eclipse.org Simple Configurator Mani... 1.0.4%2008... org.ecipse.equinos.simplec...
Eclipse.org WS S5H Care 3.2.100,1200... org.ecipse.team.cvs.ssh
Eclipse.org Refactoring UL 3.4.1r341_v... org.eclpse.ltk.Lirefactoring
Eclipse.org Eclipse IDE UL Application 1.0.1.M2009.,. org.ecipse.Uiide.applicaton
Eclipse.org Eclipse Workbench User ... 3.4.2r342_v... orgecipse platform.doc.user
Eclipse.org Equinox Provisioning UL S... 1.0.4.R34x_... org.eclpse.equinax p2.ui
Eclipse.org Apache Lucene Analysis 1.9.1v2008... org.apache.lucene.analysis
Eclipse.org Apache Commons Loggi.. 1.0.4.%2008.. org.apache.commons.logging
Eclipse.org Equino: Provisioning Core 1.0.4.v2008.., org.eclipse.equinox.p2.core
Eclipse.org Jetty HHp Service 1.1.0%2008... org.ecipse.equino bt jethy
Eclipse.org Htp Service Registry Ext.. | 10100420, org.ecipse.equinox htp.reg...
Eclipse.org PDE JUnit Plug-in Test 3.4.0v2008... org.eclipse.pde.junit.runtime
Eclipse.org Java Development Tools ... 3.4.1w2008... org.ecipse. jdtlaunching
Eclipse.org 056G Release 4.0.1 Services | 3.1.200v20... org.eclipse. osgi.services
Eclipse.org JFace Data Binding for 5., 1.2, 1.M2008.. org.eclpse.jface. databinding
Eclipse.org Equino: Provisioning Mati... 1.0.0.v2008... org.eclipse.equinox. p2.touc. ..
IBM Corporation International Component... 3.8.1.w2008... com.bm.icu
JZraft, Inc. J5ch 0.1.37%200... com.joraftjsch
Folarion Software Subversive SWN Connect.,. 2.2, 1120091.. org.polarion.ecipse. team.sv..
Polarion Software Subversive SYM 1.5 SN ... 2.2,1120091..,
s is] Simulator
@ Legal rfio | Show Signing Info | Columns... |

Note that any Plug-ins that has been installed into Eclipse
successfully, the name of the Plug-ins will be listed in this dialog
box, which include our GEF Plug-ins as well. Therefore, this is a
good place to check and verify installed Plug-ins in your Eclipse.

5

2.4 Changing Perspective

After Eclipse has started a workbench is opened; the workbench can be viewed from
many different perspectives; the default one is the “Resource Perspective”. Since we are
going to develop the distributed algorithm in Java™ it is better to switch to the “Java
Perspective”. This will automatically forces user to follow the rules and best practices in
software development with Java.

Click at = icon at a top of your right hand to the list of available perspectives (as shown
below).

=1=Ix

5 |E »
T 23 CV5 Repository Exploring | =5
= &llava
L Java Browsing
£° Team Synchronizing

Other...

Then select Java perspective as shown below

== x|

=\
[CVS Repository Exploring =
& Java

14 Java Browsing
£8 Team Synchronizing

Other..

Chapter 3. Creating a Topology

3.1 Creating a Java project

For a best practice in software development, we need to create a Java Project first by
right click at “Package Explorer” view, then select New = Java Project

& Java - Eclipse SDK

File Edit Source Refactor Mavigate Search Project Run Window Help

|- |0 -Q~ | BaEGy | ®™Fr|Firiivt vy
% Package Explorer 33 s Herarchy) =[5 7 = 0]
|
(= » i
¥ Project...
Show In Alt+Shift+vy *
H Package
o it & Class
Copy GuElfied Harme & Interface
= Paste Crl+y @ Ernum
i Bl @ Annotation
paug Import... &' Source Folder
7 Export.,. 15 Java Working Set
@ [Folder
" Refresh FS [Fle
Froperties HE+Erer = Unititled TextFile
£ JUnit Test Case
¥ Example...
[Other. . Cirl+n

The project creation wizard dialog box will pop up as below and type the project name in
lower case (for a best practice)

& New Java Project

Create a Java Proje'ct
Create a Java prgjg_c-t in the workspa_c__e o in an external ioca'tic}nx /

et | my_project]

Leave the default setting as it is then click Next = select Libraries tab

& New Java Project | _ 1ol x|

Java Settings —J
Define the Java build setings. L l;
[Source | = Projects B Libraries |% Order and Export:

JARs and class folders on the build path:
=i JRE System Library [jres] Add JARS...

Add External JARS...

Add variable,..

Add Library. ..

Add External Class Folder..

Edlt

ReErmove

|
|
|
|
Add Class Folder,., |
|
|
|

Iigrate IR, Fles

)

< Back et = | Firish I Cancel

In order to add “DisJ” runtime libraries and API for developing algorithm. So we will add
“disJ.jar” which located at ECLIPSE_HOME/plugins/org.carleton.scs.disj_1.1.0/ by
clicking at “Add External JARs...” button and select disJ.jar from above said location.
The dialog box will look like the following. Then click “Finish” button.

_lnlx
Java Settings '__‘-”L
Define the Java build settings. L y

1% Source | 12 Projects =4 Librarks | % Order and Export
JARs and class folders on the buid path:

=i JRE System Library [jres]

o dis].jar - Cieclipsetpluginsiorg.carleton.scs.disj_1.1.0 Add JARs..

Add External JARS...

Add Variable...

Add Library...

Add External Class Folder..

Edit...

Rermove

|
|
|
|
Add Class Felder. ., |
|
|
|

[Migrate JAR File;,,

< Back falest = | Firishy I Cancel

10

The workbench under Java Perspective will look like the following.

& Java - Eclipse SDK

Fle Edit Source Refactor Mavigate Search Project Bun Window Help
| o> [srorqy |BEGY|® | i~ v v
ST e I—ﬁerarchﬂ ==

S

‘B JRE System Library [res]
- mi Refarenced Libraries

11

3.2 Creating a Graph File (.gph)

Right click at our Java Project in “Package Explorer”, and select “New > File” (see
below);

& Java - Edlipse SDK

Fle Edit Source Refactor Mavigate Search Project Run Window Help

[i ([-realr il I Al et dlcao Al Al A Halhcill o Sl
I# Package Explorer 23 . % Hierarchy| =Rl
e i

4 (2% Java Project

(8 sre :
=, RE Bolnto [Project...
e Cipen in Mew Window i Package
Cpen Type Hierarchry el & Class
Shiows In AlteShifcewy » & Interface
& Enum
Lete B col+C @ Annotation
5= Copy Qualfied Mame &° Source Folder
LR cirl+y 1= Java Working Set
¥ Delete Dielete [Folder
ELI Path » O
Source Ateshifers Unu.ﬂed Text File
Refactor AteshifeT » E Uit Test Case
g Import.. [Example...
i Export £ Other.., Ctrl+hl
7 Refresh E=

Close Project
Assign Working Sefs...

Run As L
Debug As 4
Team [
o Compare With ¥
0 outline 2 Restore from Local History...
Anoutine s POE Tools L
Properties Alt+Enter

12

The a file creation dialog pop up as shown below, then fill up a file name with extension
file type “.gph”

& New File

=10l x|
File \
Create a new flle resource, =l
Enter or select the parent folder;
| my_project
tat =

=% my_project

File name: | ring.gph|

Advanced == |

Firish | Cancel

Then click “Finish”.

13

The workbench will look like the following

Java - Eclipse SDK

[Ch = e

B i my_project
& src
=i JRE System Library [iret]
ed Libraries

14

Then double click our new graph file, ring.gph, which will open up “DisJ Graph Editor”
into the workbench and look like the following

& Java - my_project /ring.gph - Eclipse SDK = | il
Fle Edit Scurce Refactor Simulator WNavigate Search Project Run Window Help
| - = |s~o~a-|gae-|dd-|i- -ty Q0 | BE|bR(pD S o8 0 ol ~
|13 PackageBxplorer & s Herarchy| 1| 7 = O & ring.gph = it
B & my_project =lq
@ src 14
=\ JRE System Library [jres]
= Referenced Libraries
& {fineReslg)
5= outine 2 T
-
EX| »
[£ Problems %\ @ Javadoc} & Declaraﬁorﬂ T = O & Disd view &2 =0
Oitems " Agent VIEW‘ () Mode Vlew‘ESDansnc vwew|
Description = |Resource
s i |

] 0 ring.gph - my_project]

3.3 Creating a graph in DisJ Graph Editor

The DisJ Graph Editor shows up on the editor view. We start drawing by expanding the

“Palette” on a top right corner of the editor tab by clicking at icon 4

& Java - my_project /ring.gph - Eclipse SDK. ~lol x|
Fle Edit Simulator Navigate Search Project Run Window Help
It-Hels-0-a-lEde-|@s- iG] BE ¥ (=008 dd Ble >
[# Package Explorer 22 2 H\erarchﬂ EI,E;v = O & ring.gph 33 ==
B = my_project |4
@ src
=i JRE System Library [ires] Bl A
== Referenced Libraries
& ring.gph

15

And it looks like the following

& Java - my_project /ring.gph - Eclipse SDK

— (Ol
Fle Edit Simulator Mavigate Search Project Run Window Help
[ti-Glalsro-a-|Bwe - |®a- [F=ilatG o BE 2E e & da =P
[# Package Explorer 52 % Hierarchy = \E ¥ = OJ[&ringgph 2 =0
B & my_project ;I ¥ Palette b
(@ sTC
Select
A JRE System Library [res] Rw
=), Referenced Libraries LANEee
- & ring.gph & Drawing ©
Elhode
& Uni-ink
& birink
',3;‘ Topology @
17 1Ring
;:“-‘ Tree
1 Complets
+a] Spatial
1H Mesh
1 Hyper Cube
BE outine 3 7 m o [Torus_1
» Y Comnected
K _>l_I
[2 Problems 58\ @ Javadoc| [Declaration| ~ = Cl|[& Dis3 View & =0
0 items Agent V|ew| (L) Mode View | 15| statistic Vlew|
Deseription + | Resource
Ll _»”
| o@

There are two ways to define a graph:

3.3.1 Draw - this is a basic drawing tool based on simple objects such as node, uni-
directional link and bi-directional link.

3.3.2 Topology Library- this provides a ready-made set of topologies that can be

edited such as Ring, Tree, Spatial, Complete, Mesh, Hyper Cube, Arbitrary
and Torus.

Drawing the object on the editor is simple; as in other drawing applications, the user can

choose to draw the objects manually from the drawing category or use a readymade draw
from Topology Library.

16

Here is an example of defining a bidirectional Ring with 10 nodes using the Topology
Library.

& Java - my_projec
File Edt Simulator Mawvigate Search Project Run Window Help
[Bl sz s iaa (e o e [l 7 |l e A e etz o | BRI ¥Blros=@da
1# Package Explor 22 T2 H\erarchﬂ =0 m
EEN
B = my_project I3 select
o sre
H La M
=\ JRE System Lbrary [jret] 2EkE E
= Referenced Libraries # Drawing e
& ring.gph Ring Dialog) x| Enode
4= Uni-ink
MNumber of node: 10
& BHink
R of Init: 1 — 4
'};' Topology £
Type of Link. B - ”
VP Bi-Directional 1R
Iv Criented ":‘" e
ok Cancel 1 Complete
8¢ outine 2 -0 » 3 Torus_1
+ 'p o Connected
[l J_I

Here is the snapshot when a Ring of size 10 is created.

& Java - my_projet gph - Eclipse SDK i = |
Fle Edit Simulator Mavigate Search Project Rum Window Help
ItrEglero=arlsaexr @&y~ Ciziizoc o] BE P ooz @00 sla -
1% Package Explor 22 g Hierarchﬂ =8 W = a
e .7 2[4 Palette p
B & my_project |5 Select
(2 sre 25
g M
= JRE System Library [frec] Aargeee
B2, Referenced Libraries & Drawing i
& ring.geh = Node
S Uriink.
EBrink
* Topology el
1" 1Ring

++] Spatial

11 Mesh

1 THyper Cube

o = ool
EE Outline &2 =] » 1 Torus_1

» Connected

Folk o

2. Problems £ . @ lavadoc| 2 Dedaration| T = 0O & Dis1 view 2 =0
il 1 Agent View ‘ (O) hiode View ‘ 14| Statistic V\ew‘
Description | Resource Path

4 | i

17

Once, the graph has been drawn, you can check if there is the correct number of links and
nodes by opening a “Properties View” which will show the current states and properties.
To open the “Properties View”, go to menu bar, select Window->Show View->
Properties; if it does not list, select Window->Show View->Others.

& Java - my_project /ring.gph - Eclipse SDK
File Edit Simulator Mavigate Search Froject Run | Window Help

I~ ials~0~-a~ |[Ba G~ |® Nwindw vl | BRIYE e
= e Editor
[# Package Explor 2 T8 H|erarchﬂ 2| & ring.geh
SIEE ~ OpenPerspective r [GF
B = my_project - V d & ant
(g T : B Console Alt+ShifteQ, C
Customize Perspective.., - . b}
& E System Library [1726] e &, Declaration A\t+‘3hfﬁ+Q, [»]
- Referenced Libraries e @Error Log Al+Shift+G, L
- & ring.aph e ectvem e Hierarchy Alt+Shift+Q, T
ot Peprs e @ Javadoc AlE+Shift+Q, J
P i5 Mavigator
Navigation v 5E outline Alt+shift+Q, ©
o [# Package Explorer Alc+Shift+Q, P
e [2: Problems A+ Shift+0, ¥
" Progress
[Project Explarer
- Search At+Shift+Q, S
o Tasks
B2 Templates

Once the dialog shows up, expand a “General” folder and select “Properties”.

€ showview TR

|type filter text

B2 General
-l Bockmarks
& Classic Search
B Console
& Error Log
(@ Internal Web Browser
-2l Markers
-E5 Mavigator
5= Cuting
o Palette
- Problems oy
2 Progress
[t5 Project Explorer

| »

- Search
& Tasks
-[f5 Templates
== At |

Use F2 to display the description for a selected view.

Q. I Cancel |

18

In addition to the graph properties; there are properties of the nodes and of the links. We
will now describe them in some detail in later section, the following is snapshot of our
workspace with properties view.

& 1ava - my_project,/ring.gph - Eclipse SDK —|ol x|
Fle Edit Simuator MNavigate Search Project Run Window Help
|- oA |taey | @y |[Jinilaciyo~ | BRI bE|rns | & Gd =
% Package Explor 28 s Herarchy| = O & ring.gph 8 =
=]g = . Al ws Palette 3
Bl & my_project i
@ src -
L M
= RE System Library [jr22] pMargries
=ik Referenced Libraries # Crawing @
& ring.gph ElNode
€3 Uriink
& BiHink
‘.i: Topology <
1 1Ring
Jog, Tree
17 Complete
v+ Spatial
11} Mesh
1] Hyper Cube
5= outine 52 o (5 Torus_1
. -\\ , ;. Connected
" of

2. Problems | @ Javadoe [Declaration [= Properties &2 = 5[& Dis] view 3 =

Agent view‘ (L) Node View | 5| Statistic \/\ew‘

lame
| Node
@02 Total Link 10
G03 Total Messages Recelved [u]
G04 Total Messages Sent [a]

605 Global Message Flow Type FIFO %
Ll I 1 _;IJ

3.4 Element Properties

3.4.1 Graph Properties

{21 Problems f@ Javadoc f@ Dreclaration (EI Properties 2 ’E S e T
ph Mame
501 Total Mode
502 Total Link
03 Total Messages Received 0
504 Total Messages Sent 0
505 Global Message Flow Type FIFC
06 Global Delay Type Synchronous
507 Global Delay Seed 1
508 Protocal
509 Maximum Token Agent can Carr 1
510 Mumber of Agent at Start 0
511 Current Mumber of Agent 0

3.4.1.1 Graph Name (not editable)
This is the name of the file where the graph has been defined.

19

3.4.1.2 Total Node
Total number of nodes in this graph

3.4.1.3 Total Link
Total number of links in this graph

3.4.1.4 Total Messages Received
Total number of messages that have been received from the start of the
execution of the protocol upto now

3.4.1.5 Total Messages Sent
Total number of messages that have been sent from the start of the
execution of the protocol upto now

3.4.1.6 Global Message Flow Type
Flow type of every links in this graph, there are 2 types, FIFO and No

Order. If one or more link has difference type than others in the graph, this
field will be set to “Mix Order”

3.4.1.7 Global Delay Type
Type of traveling delay of every links in this graph, there are 5 types,
Synchronous, Random Uniformed, Random Poisson, Random Customs,
Customs. If one or more link has difference type than others in the graph,
this field will be set to “Custom”

3.4.1.8 Global Delay Seed
A number of simulation time unit required on each link in the graph. This
value will be used only when the delay type is Synchronous. If one or
more link has difference value than others in the graph, this field will be
set to -1 (negative value)

3.4.1.9 Protocol
A name of protocol that currently being executed in this graph

3.4.1.10 Maximum Token Agent Can Carry
A maximum number of every agent in this graph can carry token. This
will be used only in Agent with Token Model simulation

3.4.1.11 Number of Agents at Start
A number of agents exist in the graph at the beginning of simulation. This
value will be used only in Agent with Token and Agent with Whiteboard
Model simulations

3.4.1.12 Current Number of Agents
20

A number of agents currently exist. This value will be used only in Agent
with Token and Agent with Whiteboard Model simulations

21

3.4.2 Node Properties

s

Kl
2 Problems | @ Javadoc | [Declaration | = Properties 82 X YO
Property | Yalle
MO0 Mode Mame na
MO User Input
W02 Inidator False
MO3 Alive True
MO4 Breakpoint Disable
MOS Mumber of Received Message O
MOE Mumber of Sent Message 0
W07 Qutgoing Ports [left, right]
MOB Incoming Ports [left, right]
MOS State List [
W10 Mumber of Agent Hosted 0
M11 Current Mumber of Agent 0
W12 Current Number of Token 0

3.4.2.1 Node Name
A Name of selected node

3.4.2.2 User Input
Input text field that user can enter during executions of the simulation. The
algorithm can retrieve this input via disJ] API

3.4.2.3 Initiator
This property specifies whether the node is an initiator of the simulation
execution. There must be at least one node in a graph to be an initiator in
order to start the simulation. The only node with this property set to be
True will execute function
“distributed.plugin.runtime.enging.Entity.init()”
in user code

3.4.2.4 Alive
This property reflect whether a node is alive (up and running) or death
(crashed)

3.4.2.5 Breakpoint
This property is used for debugging purpose. Once a node’s breakpoint is
enabled, the execution will be suspended as soon as a message/agent
arrives at the node.

22

3.4.2.6 Number of Messages Received
Total number of messages that have been received by this node from the
start of the execution of the protocol upto now

3.4.2.7 Number of Messages Sent
Total number of messages that have been sent by this node from the start
of the execution of the protocol upto now

3.4.2.8 Outgoing Ports
A list of all outgoing ports available at this node

3.4.2.9 Incoming Ports
A list of all incoming ports available at this node

3.4.2.10 States Transition
This property reports the sequence of states transition of the node that has
been changed from the start of the simulation until now

3.4.2.11 Number of Agent Hosted
Total number of agents that this node hosted has “Home Base” from the
beginning of the simulation. This is used with Agent with Whiteboard and
Agent with Token models only

3.4.2.12 Current Number of Agents
Total number of agents currently resides at this node. This is used with
Agent with Whiteboard and Agent with Token models only

3.4.2.13 Current Number of Tokens
Total number of Tokens currently resides at this node. This is used with
Agent with Whiteboard and Agent with Token models only

23

3.4.3 Link Properties

B

K
2. Problems | @ Javadoc [[&) Declaration | = Properties 58~ s o
Property | Walie |
LO0 Edge ID a7
LO1 Type of Direction | Bi-Directional
LO2 Source n¥
L03 Source Port Mame right
L0 Target =]

LOS Target Port Mame left
LO& Message Flow Type FIFO

LO7 Delay Type Fixed
LOB Delay Seed 1
L09 Reliable True
L 10 Probability of Faiure O
L11 Total In Traffic 0

L12 Total Qut Traffic 0

3.4.3.1 Edge ID
An ID of selected link

3.4.3.2 Type of Direction
The type of communication link

3.4.3.3 Source Name
The source node’s name of the link

3.4.3.4 Source Port Name
The source port’s name of the link

3.4.3.5 Target Name
The target node’s name of the link

3.4.3.6 Target Port Name
The target port’s name of the link

3.4.3.7 Message Flow Type
This property specifies the flow type of messages inside the link. There
are only two types: FIFO and No Order.

3.4.3.8 Delay Type

24

Type of traveling delay of every links in this graph, there are 5 types,
Synchronous, Random Uniformed, Random Poisson, Random Custom:s,
Customs

3.4.3.9 Delay Seed
A number of simulation time unit required on each link in the graph. This
value will be used only when the delay type is Synchronous

3.4.3.10 Reliable
This property is for verifying the reliability of a link; if it is True no
message will be lost, else it will be lost with uniformly distributed random
with probably that set in “Probability of Failure”.

3.4.3.11 Probability of Failure
This property specifies the probability rate that a message will fail on this
link, if a Reliable of the link is set to “False”.

3.4.3.12 Total In Traffic
Total number of messages/agents entering into this link

3.4.3.13 Total Out Traffic
Total number of messages/agents departing from this link

3.5 Difference type of Topologies

DisJ Graph Editor provides a Topology Library that offers a set of readymade graphs

3.5.1 Ring Graph

£ *test.gph EZE_‘_ =

_ﬂ +¢ Palette [

.\ [select:

L Marguies

& Draming @
E Node
= Uni-link
& Bidink

‘,{' Topalogy @
1T 1RIng
g, Tree

1] Complete

£ <] Spatd

11 Mesh

. ',: I Hyper Cube
A . { Torus_1

v T Comnected

25

3.5.2 Tree Graph

;I e Paette I»

[Select
L Marquee

Drawing @
Ehode
€3 Uni-link,
& BHink

‘jg‘ Topology b
'1 Ring

q
AN Tres

11 Mesh

+ 1+ T Hyper Cube

N m Torus_1

» " Connected

3.5.3 Complete Graph

L 2 *estgph ﬁ“-\ =g
ﬂ ¥ Palette 3
I select

i Marques

& Drawing &
E Mode
4= Unidink.
& BiHink

*,:.‘ Topclogy 0
I ' 1RINg

» Tree
EETEY

3;35; Complete

. E Torus_1

» 2 Connected

26

3.5.4 Spatial Graph

+ 'p 2 Connected
- ¥
Ll_l

| patetre B
i Select

{iMarquee

? Crawing <
El Mode
€ Unidink.
E Bk

',:;' Topology &
I "'] Ring

J ’},. Tree

s
;f,ig Complete

<] Spatial
1] Mesh
T+ THyper Cube

. Eﬂ Torus_1

3.5.5 Mesh Graph

LI ek Palette P

[Select
{iMarquee

-f Cirawing 2
Sl Mode
4 Uni-ink
EBHInk

‘J;' Topaology %
17 1Ring

A
I‘i d'\ Tree

-
:;;;-} Complete

v @ Torus_1

v T Comnected

27

3.5.6 Mesh Graph

2% patete

[

[+ Select
[Marques

?Drawwng
£ Mode
4 Uridink
& Bilink

B

‘,:g' Topology

1 _ 1RiNg

J 'j,. Tree

*’3‘: Complete
+-. T Spatial
=

1} Mesh

§ m Torus_1

, 'y Connected

Hyper Cube

il

3.5.7 Torus Graph

v Tp s Connected
= v
_vl—I

ElNode
= Uni-link
Eeidink

1 1Ring

J }k Tree

Hyper Cube

. @ Torus_1

e Topdkgy <

28

3.5.8 Random Connected Graph

& *rest.goh 83 - o
;I = Palette [x
[Select

L Margues |
& Drawing =)
Bl Mode |
= Uriink
EeB-ink
‘},’ Topology |
T 1RiNg
-"':."‘. Tree
:r’- 1 Complete
e [Spatial
111 Mesh
I {; I Hyper Cube
9 ;_‘_ Torus_1

» s Connected

o o

3.5.9 Random Forest Graph

& *test.goh 53 =0
. ;I Palette [|
[+ select

i Marquee

& Drawing @)
ENode
& UniHink

. EBi-lnk
ofe Topology
\ 1 1Ring
. sy, Tree
:.--';;: Complete

+] Spatial

7 [b
/ 1+ T Hyper Cube

. §13 Torus_1

. Forest

o o

3.5.10 Summary

A user can create a graph by using a basic Draw objects or using Topology Library that
provide a common readymade graph. Once a graph is created, there are some points
about property setting and modifying a graph that user must keep in mind.

A graph that created by Topology Library can be modified like add/remove node(s) or

link(s), adjust location of displaying nodes or links, also user can mix all different
types of topologies into one graph and save it as a single file.

29

Chapter 4 Creating a Protocol

4.1 Creating a Protocol File (Java Class)

Creating a protocol is the same as creating Java class and file, which we will have to
follow best practices by first creating package by “Right Click” at “src” under our project
folder then select New = Package as shown below

& Java - Eclipse SDK

File Edit Source PRefactor Mavigate Search Project Run Window Help
[w [$~0~-Q~ | BHG~ | &I~ | ir v oy
2 Package Explor 53 fe Herarchy| = O |

=l

= & my_project

d 2% Java Project
% Project...

Open in Mew Window

Open Type Hierarchy Fa
Show In At+Shiftevy > @& Class
&y Interface
Copy Cirl+C & Erum
5= Copy Qualified Mame @ Arnotation
B i £ Source Folder
it e 151 Java Working Set
BLild Path y L7 Falder
Source At+Shift+s * i . .
Refactor Mbechifta » Sl Untitled Text Fie
|ET JUnit Test Case
g Import...
4 Export. .. [Example...
o= Cutline & Refresh Fs =4 Other... Cirlen

Anoutine ! assign Working Sets..,

Run As ’
Debug As E
S » |2 Javadoc [[€) Declaration [= Properties 52\ = O
Compare With i ITE o i
Restore from Local History... | Yallie
Properties Alt+Enter false

” aditakla e

30

The dialog will pop up, then type in a package name in lowercase i.e. my_test as shown
below, then click “Finish button”

& New Java Package B]
Java Package I;
Create a new Java package.
Creates folders corresponding to packages.
Source folder: | my _project/sre Browse... |
Mame: | my_test
@) Firish I Cancel |

The package name we just created will be appeared under “src” folder. Now, create a

new Java class by “Right Click” at “my_test” package, then select New = Class as show
below

31

& Java - Edipse SDK

Fle Edit Source PRefactor Mavigate Search Project Run Window Help
[il >0~ QAr | BE G~ |@I | rilvi o v
[Package Explor 22 - e Hierarchﬂ =8

el

Fl =5 my_project

B Syste INewr 12 Java Project
B Referencec Open in MNew Window La o
“és ring.gpn Open Type Hierarchy Fe4 i Package
Show In Atr+shift+n > RRSEES |
& Interface
= Copy cirl+C & Enum
5= Copy Qualified Mame @ Arnotation
i Paste Ctr+v &% SoLrce Folder
X Delete Delete 15 Java Working Set
BLild Path » i Folder
Source At+Shiftes » e : ;
Refactor Alt+Shift+T ¢ = Untitted Text File
7 JUnit Test Case
fxg Import.., =
W A Export.. [Example...
An outine is not aval oo Refrash ES. [U
Assign Working Sets..,
Run &s r
Debug As » |c [[2) Declaration | = Properties 22 7]
Team Li B
Compare With K [walue
Restore from Local History...
. false
Properties Alt+Enter i
|| last modified February 2, 2011 3:46:3:

A file creation dialog will pop up, then type in a Java Class name i.e. AsFar. Since AsFar
is a protocol for Message Passing Model, therefore the supperclass is
“distributed.plugin.runtim.engine.Entity”, click at “Browes” button to
find and select our supper class (see Chapter4.2) then “check” the checkbox “Constructor
from superclass” and click “Finish” button

32

Newr Java Class

Java Class

Create & new Java class,

my_project/src . Bron

33

The workbench will be looked like as follow

& Java - my_project /src/my_test/AsFar java - Eclipse SDK = |[=] ll
Fle Edt Source Refactor Navigate Search Project Rum Window Help
jtirllgl#r0-a- sy ey |#[F]dralrs or - =1
12 Package Explor 2 I Hierarchy| = O ﬂll AsFarjava 23 =8
5% ¥ package my test; =i
= = my_project
-8 sre #import distributed.plugin.runtime.IMessage;
o my_test
H - [1) AsFar java public class AsFar extends Entity {
&= JRE System Library [Jres]
&= Referenced Libraries public AsFar(int state) ({ I
L& ring.gph super [state) ;
v // ToDO Ruto-generated constructor stub
} =
Boverride
= publie veid receive (String argl, IMessage argl) {
] /4 TODO Auto-generated method stub i
)
Boverride &
A publie veid alarmRing() {
% outine 5 =g // TODO Auto-generated method stub
lazm LR]
s my_test -
+*= Import declarations ﬂ »
=G AsFar = = — = =
©° AsFar(nt) 12 Problems [@ Javadoc ﬂ.(:) Declar ation fu Properfies &3 O & Disd view (=]
- @ . receive(Siring, IMessage) ’E > ki
@, dlarmRing(Property | walue -
@ initQ) = Info
derived false
editable e
last modifiec February 2, 2011 4:05:42
linked false
location H:yworkspacemy_project
name AsFar.java =
path Jmy_projectfsrefmy_testy
size 530 hvtes =
< | »
| | Writable ‘ Smart Ingert ‘ 1l ol

4.2 Rules and Conventions.

DisJ provides three types of distributed computing models and each has it own
supperclass for user to inherit as follow

a. Message Passing Model =
“distributed.plugin.runtime.engine.Entity”

b. Agent with Whiteboard Model -
“distributed.plugin.runtime.engine.BoardAgent”

c. Agent with Token Model -
“distributed.plugin.runtime.engine.TokenAgent”

Therefore, a user class has to inherit one of these superclasses based on the model, and it
will be an entry point class for DisJ simulator to run the simulation of user protocol.

There are some conventions for writing a distributed algorithm with DisJ that user has to
follow.

34

4.2.1

4.2.2

423

4.2.4

4.2.5

4.2.6

The entry class of the protocol MUST extends one of above superclasses
based on the model that user are working on and creates an EMPTY
parameter Constructor(default Constructor). This class does not need
“public static void main(String[])” (even if the user has one it
will never be called)

State for Entity in distributed protocol must be “public static final
int” or “public final int” and the name of the state must begin
with “state” or ““_state” which the cases are insensitive

Assign an initial state to an entity by passing a state value into “super (int
initState)” inside the default constructor created in 4.2.1

User should NOT invoke any DisJ API inside the constructor, since the entity
object has not yet been created

There are three methods that user class has inherited from superclass,
Entity, of Message Passing Model and user might need to implement

public void init () :this method is invoked on a node if and only if
the node property “Initiator” is set to be True (see Chapter 3.4.2.3)

public void alarmRing(): this method is invoked when an internal
alarm clock of a node is rang. The alarm time can be set at a node by invoking
method setAlarm(int countDown)(see Chapter 4.2.10)

public void receive(String inPortlLabel, IMessage
msg) : this method is invoked when a node receives a message. This method
is a main message processing functions of node algorithm

There are four methods that user class has inherited from superclass,
TokenAgent, of Agent Token Model, and BoardAgent of Agent
Whiteboard Model and user might need to implement

public void init () :this method is invoked on a node if and only if
the node property “Initiator” is set to be True (see Chapter 3.4.2.3)

public void alarmRing(): this method is invoked when an internal
alarm clock of a node is rang. The alarm time can be set at a node by invoking
method setAlarm(int countDown)(see Chapter 4.2.10)

public void arrived(String viaPortLabel) :this method is
invoked when an agent arrived at a node. This method is a main action
processing functions of agent algorithm

35

4.2.7

public void notified(NotifyType type):this method is
invoked when there is registered action happening at a node where an agent
currently resides and registered. This method is a function that will activate
agent that waiting something to happen at the node to continue its process. In
order to register event at a node, agent must call method
registerHostEvent (NotifyType) at current resides node with
preferred type of event, the register will be removed automatically when the
agent leave the node. There are four NotifyType as follow

- AGENT_ARRIVAL: Activate when any agent arrived at this node

- AGENT_DEPARTURE: Activate when any agent leave this node

- TOKEN_UPDATE: Activate when number of token at this node has
been changed

- BOARD_UPDATE: Activate when whiteboard of this node has been
modified

Dis]J library has provided standard programming interfaces (API) for user to
access communication and infrastructure libraries for his/her reactive
distributed algorithms. The following are examples of common and useful
API that can be used in the algorithm

Message Passing Model
sendTo()
become()
getState()
getName()
getInPorts()
getOutPorts()

Agent with Token Model
moveTo()
become()
getAgentId()
getNodeId()
getState()
getNodeState()
getInPorts()
getOutPorts()
countHostToken()
countMyToken()
dropToken()
pickupToken()

Agent with Board Model
moveTo()

36

become()

getAgentId()

getNodeId()

getState()

getNodeState()
getInPorts()
getOutPorts()

readFromBoard()
removeFromBoard()
appendToBoard

For full list of available APIs can be found at DisJ Java API Documents or using
code assist from Eclipse IDE.

4.3 Coding a Protocol

The convention for distributed algorithm in DisJ is based on reactive model defined
in state X event = action (see Appendix)

This section will discuss how to convert “state-event” driven pseudo algorithm to
“even-state” driven in Java algorithm. In order to make it easy to understand we will
write a protocol for Ring Election named “As Far” with multiple initiators, unique
ID, bidirectional links, synchronous, and total reliable environment.

37

& Java - my_project/src/my_test/AsFar.java - Eclipse SDK

Fle Edit Source Refactor

Mavigate Search Project Run Window Help

i@ sy -Q~ | EEey | ®5~ | P40 mor

&
" package my test;
|5 “import distributed.plugin.runtimes.TMessage;
— import distributed.plugin.runtime.engine Entity;
_/*7(
* Leader election protocol with multiple initiators, unigue ID,
* synchronous and total reliable communication.
*
* The initiators
* directions, and a message with smallest ID will kill every candidates
* and return back to the sender.
* all arrival messages with bigger ID as well.
S

fEll
public
public
public
public
public

1

Here an example of implementing Entity.receive () method

J asfarjava £ & rhagph |

tcandidates) will send messages with its ID to all

possible states

static
static
static
static
static

= public AsFar ()
super (STATE SLEFF) ;

= public veid 1init{}
String myId =

final
final
final
final
final

{

int
int
int
int
int

public class AsFar extends Entity {

STATE SLEEF =

it

& candidate with smaller ID will kill

STATE ELECTION = 1;
STATE PASSIVE = 2;
STATE FOLLOWER =

STATE LEADER

this.getName () ;
this.sendToAll (MSG LABEL ELECTION, myId);
this .become (STATE ELECTTON) ;

= 4;

38

3

private static final String MSG LABEL ELECTION = "Election”;
private static final String MSG LABEL NOTIFY = "Notify";

// tracking that both of my messages have returned
private boolean leftMin;
private boolean rightMin;

o public void receive (String incomingPort, IMessage message) |

String msg = (String) message.getContent();
String msglabel = message.getLabel():

if (this.getState(} == STATE SLEEP) {
this.sendToOthers (MSG LABEL ELECTION, msg);
this.becone (STATE PASSIVE] ;

} else if (this.getState(} == SIHIE_PASSIVE) {
if (msglabel.equals (MSG LABEL NOTIFY)) |
this.sendToOthers(MSQ_LABEL_NOTIFY, msg) ;
this.become (STATE FOLLOWER) ;
lelse|
this.sendToOthers (MSG LABEL ELECTION, msqg);
H

} else if (this.getState(} == STHIE_ELECTI@W {
if (msglabel.equals (MSG LABEL ELECTICN)) |
this.electing {incomingPort, msgl;
lelse/!
// should not happen!!
}

} else if (this.getState() == STATE LEADER) {
6 b o (msg.equals(MSQ_LABEL_NOTIFH){
System.out.println{"Election completed: " + this.getName(} + " is a leader");
lelse|

// should not happen!!
H

1

/‘t
#* Helping function that will compare a received ID with my ID
H
private veoid electing{String lncomingPort, String id) {
String myId = this.getMame();
if (id.compareTo (myId) < 0} {
this.sendToOthers (MSG LABEL ELECTTON, id);
this.become (STATE PASSIVE) ;

} else if (id.compareTo{myId} == 0} {
/4 my election msg has returned
if (this.leftMin == true)

Some inherited function that the protocol does not need, user can leave it empty as
function Entity.alarmRing()as shown below

= e public void init{) {
dtring myId = this.getName () ;
this.sendToAll (MSG LABFL ELECTION, myId);
this_become (STATE ELECTION) ;

Boverride
= public void alarmRing({} {
// this protocol does not need this function

~ & public void receive(3tring incomingPort, IMessage message) |

String msg = {String) message.getContent () ;
dtring msgLabel = message.getLabel()

39

4.4 Setting State Color

In order to see real-time nodes state update in DisJ Graph Editor during the simulation;
the user must specify a color for each state that defined in the protocol (see Chapter

4.2.2) by set the workbench focus to Dis]J Graph Editor, then go to menu bar, select
Simulator >Add States as shown below

& Java - my_project/ring.gph - Eclipse SDK

=1olx|
Fle Edt | Simulator Navigate Search Project Rum Window Help
IR & :ccsiaes G @ sr v ey |0 | BRI 0o 80 HEBEFha
v & RemovejView States = o ==
Rz ¥ Load Java Class 2 S rnggeh %
1 ds) 291 | oad Random Generator = paette v
BEny ————

= (8 < O Run/Resume [Sefect

B [Suspend -7 LiMarquee
l S stop 7 érawmg @
e Node
B ! % A &= Uniink
B Process Spead .
E-mh GEiink

& ring.gph ',:,' Topalogy ol

1 1Ring

o, Tree
111 Complete
+. Spatidl

11 Mesh

1T Hyper Cube
£ outine 23 =0

3 ‘::i‘ Torus_1

» T r Connected

40

A dialog box shows up, give a value (number) that match to the state value in protocol
and select the color from a “Color Palette”, the value will recorded in number-color pair;
if a same state value are given twice, it will override the existing color. Once the graph is
saved, the states of color will be saved along the graph.

£ Java - my_project /ring.gph - Eclipse SDK

Fle Edit Simulator: Mavigate Search Project Run Window Help
[e [0~ | BHEGr | @y~ |t oy 2|00 | BE(BE|B

I8 Package Explorer 22\ T Herarchy. 1| & T T O|[a0
-1 dis] ‘

B my_project

B 5rc Add State Golor Dialog lix]

|- my_test State(rumbery: Ig . -\
o B[AsFarjava

. E-[] Counthgentiava | cpate color: .

- B[] Counthetwork.Jay ety

JRE System Library [jret

o, Referenced Libraries Ol Cancel Color Palette i il il

& ring.gph

Basic colors

N .

Dot 1 ol B
...
ey
HEEEENT .

Custom colors

'—\ EEEEEEEN

Define Custom Colors »> | o~
Ok | Cancel |

State ColoLr
L

= Outline £2

41

If the user wants to remove or see the list of state color pairs, go to menu Simulator=>
Remove State; a dialog box will show a list of number-color pairs. To remove, check the
checked box at a pair that wants to remove and click Remove as shown below.

£ Java - my_project/ring.gph - Edlipse SDK

Fle Edt Simulator Mavigate Search Project Bun Window Help
[A= e R A R A S A s s e R [A 2 A IS RIS Al A A e e
[package Explorer 32 . [2 Hierarchﬂ = ’g sl -

B2 my_project
ERE:T-0
é--EE my_test
! - [1] AsFar java
- [1] CountAgent.java
! [3] CountMetwork. java 11
=i JRE System Library [jres] a

=), Referenced Libraries
] 1 [-
- & ring.gph

B

Remaove Cancel

o= Outine 2 e

a—a

Note that the simulator will ignore all the number-color pairs that do not match the states

declared in protocol. Therefore, only a match number- color pairs will be used during the
simulation.

42

Chapter 5. Running a Simulation

There are few things that we have to know in order to run the simulator and it is
described as follow.

5.1 Loading protocol into a Topology

Once topology(graph file) and protocol are created; To simulate the protocol in the
simulator, user has to load the protocol into the topology by go to menu select
Simulator 2 Load Java Class as shown below

& Java - my_project/ring.gph - Eclipse SDK
Fle Edit | Simulator Mavigate Search Project Run Window Help

|£g =1, B Addsiats ls-l@v-1-i-co- -] BE|S®| 6
& Remove/View States

3 Packag:

& Load Java Class l]|<§> =g AsFar java (a% ring.gph &5

& dis3 7 Load Random Generator
=1 my,
- = [Run/Resume
=-£ [Suspend .7.\
[y stop
[
[3 Step Next
B - @ Process Speed
ERY
& ring.gph

5= Outine 28 D
/. .\q
Once a dialog shows up; there are three models to select, in this example is Message
Passing Model. Then type in a Fully Qualified Class Name of the entry class (a class that
implement distributed.runtime.engine.Entity), in this example is
“my_test.AsFar” (as show below) then click OK. Remember that all the protocol
classes and the graph file (.gph) must be under a same project folder, in this example is

“my_project”. Each graph file is independent from other graph file in a same project,
means loading the entry class into one graph file does not affect other graph file.

43

& select Distributed ModelNES

@ Message Passing Model

(" Agent with Whiteboard Model
" Agent with Token Model

| my_test.AsFar]

Ok I Cancel

Important: If a protocol has been loaded into a graph file, then later on a .java file of the

protocol has been modified, the graph file has to be closed and reopen again in order to
reload a new modified Java source into the graph file.

5.2 Run/Resume the simulator

Once the class is loaded into the topology; then go to menu select Simulator—=>
Run/Resume, now DisJ is simulating the protocol. In order to simulate another protocol
with a same topology, the user must reload a new protocol into the topology

& Java - my_project/ring.gph - Eclipse SDK.

Fle Edit | Simulator Navigate Search Project Run Window Help

Irav @Addsmtes G |® s |yl r G ER ¥ oo 8
—— [RemoveiView States -
| T =0
% Packag % Load Java Class [& [0 AsFarJava | & nnggph &3
©dsI @ | oad Random Generator
B my,
[SRERS 1> FLn/Resume

2-f Ul Suspend .
1) Stop
-
[Step Next

g @ Process Speed
B R

- & ting.gph

5.3 Stop the simulator

In order to stop the simulation, go to menu and select Simulator = Stop at anytime once
the simulation is started. After the simulator stopped all the current states and
information are wiped out. Therefore, the user cannot see any information in the

“Properties View” anymore. Therefore, before rerun or run a new a simulation, user must
make sure that the simulator is stopped

44

& Java - my_project /ring.gph - Eclipse SDIK
File Edt | Simulator Navigate Search Project Run Window Help

ti v B Addstates G~ |®@§~ |yt - BER 2P|k o0®

————— [[§ Remove/View States

[Packag 5, 1 5 7 7 O[5 AsFar java fa% ring.gph &3

Load Java Class i

1 dis) 7 Load Random Generator
B my

- < U Run/Resume
(il Suspend .7
A e}

[72 Step Next
-z @ Process Spead

&-zh
& ring.gph

5.4 Suspend the simulator

In order to pause the simulation, go to menu and select Simulator = Suspend at anytime
once the simulation is started, and to resume the execution by go to menu and select
Simulator = Run/Resume as well. Remember that suspend does not wipe out the current
states and information therefore, user can observe the current states in graph and
“Properties View” as well.

& Java - my_project/ring.gph - Eclipse SDK.
Fle Edt | Simulator MNavigate Search Project Run Window Help
G G-yl riroaroc| 00 | BRESF I rne s |00

————— [& RemavepView States =
Packag *Q; Load Java Class 1|5 7 T O askarjava (3‘ ring.gph &

T ds) B | oad Random Generator
B my.

=-¢% s (B RunResume
| = end ._
‘ [(§) stop
e
[2 Step Next

=i - (@) Process Speed
i) p

E-E
-~ & fing.gph

5.5 Step Next

This feature is not yet support.

5.6 Setting Processing Speed

This feature allows user to setup the speed of the processor in execution the protocol, by
first the simulation MUST be suspended then go to menu and select Simulator 2>
Process Speed and the process speed scale will show up and allow user to slide in order
to adjust the current speed of this process as shown below

45

Process Speed Dialog x|

Process Speed

Slowy Fast

5.7 Replay Record

This feature allow user to replay the simulation that has been run based on a saved record
file (.rec) Currently, every simulation will be saved automatically once the simulation is
ended under the project/bin/ in this example is “.../my_project/bin”, the .rec file name
will be a name of a topology (graph file .gph) e.g. ring.rec for this example. Therefore,
the .rec file will be override automatically if the simulation has been run on a same graph
file more than once, so, it is user responsibility to rename a .rec file if user willing to save
the record file for further usage.

In order to replay, user select an icon ™ and a File Open dialog will pop up, and then
select a .rec file e.g. ring.rec. The replay will start immediately, and user may use
suspend, resume, adjust speed and stop as if the simulation is running. Note that the
results, statistic report and behavior of the replay is the exactly the same as what
happening during the simulation of the record and cannot be edited.

B TR
Aindow Help
g B B o IBE @ eng s & & O Fres
1] AsFar java & ring.gph T [Replay Record) =8
. ﬂ . Palette I
[Select
.7 i Marquee
7 Drawing @
I Hode
& Uni-ink
Eaidink
‘;;; Topology 0
1 1Rng
‘-'_'.-,. Tree

46

Here is a snap shot when DisJ is executing

& Java - my_project /ring.gph - Eclipse SDK.

Fle Edt Simulator Navigate Search Project Run Window Help

=18(x]

Iciv gl #-0-QA~ | BFer | @y | rilvoox - | BEE»®| eos s & O3 =R ATl
12 Package Expiorer 22 s Herarchy| = | ¥ = O|[[AsFarjava | &ringigeh £ =B
B ds] Al paere b
B2 my_project
Select
B-E#src h‘
£ my_test -7 LiMarqee
[3) AsFar java # Crawing @
[J] CountAgentjava ElNode
7] Counthetwork java 4= Uniink.
=24 JRE System Library [irec] &
52, Referenced Libraries Dok
& ring.geh ks Topology ~ ©
1" 1Ring
s, Tree
3 ‘ 1 Complete
+ | Spatial
Mesh
Hyper Cube
EE Cutine &2 ¥ =0
ny
R ul
K] _>lJ
[probiems | @ Javacoc [[&) Declaration | =l Properties 22 = Console| - Search| [epm~=0
Property | Value |
GO0 Graph Name ring.gph
G01 Total Nodes 10
GO2 Total Links 10
GO3 Total Messages Received 12
GO4 Total Messages Sent 24
GOS5 Global Message Flow Type FIFQ
GO6 Global Delay Type Synchronous
GO7 Global Delay Seed i
GO8 Protocol my_test. AsFar
GO9S Max Number of Tokens per Agent 51
G10 Number of Agents at Start Q
G11 Current Number of Agents Q

To view a node/link properties by selecting a node/link in editor at anytime of simulation
execution

}E: Mesh
+ 1+ Hyper Cube
" ‘:2! Torus_1

v e Connected

KF|

i

[Problems | @ Javadoe 16 Dedlaration | = Properties 53 El Console| ' Search| [e & =720
Froperty | WalLe
NOO MNode Name n7
MO User Input
MNOZ Initiator True
MNO3 Alive True
MO4 Breakpoint Disable
MOS Mumber of Messages Received 3
MOS Mumber of Messages Sent 12
MOZ Qutgoing Ports [left, right]
MO8 Incoming Ports [left, right]

MNOS States Transition

[STATE_ELECTION, STATE_PASSIVE, STATE_FOLLOWER]

M10 Mumber of Agents Hosted 8]
M11 Current Wumber of Agents 0
M12 Current Number of Tokens 0

47

Hd MEsh

m

1 | Hyper Cube
g ’:".'1 Torus_1

v g Connected

(| ﬂ_l _ J
2. Problems [@ Javadoc | & Declaration | = Properties 52 . El console| 4 Search| ==
Froperty | Value

L0 Edge ID a7

L01 Type of Girection Bi-Cirectional

L02Z Source Name n7

L03 Source Port Mame right

L04 Target Name ng

LS Target Port Mame left

L0& Message Flow Type FIFC

LO7 Delay Type Fixed

LOB Delay Seed 1

LO2 Reliable True

L 10 Probabiity of Failure o]

L11 Total In Traffic 10

L 12 Total Qut Traffic 5

48

Chapter 6. Graphical and Statistics Reports

DisJ simulator provides basic information and statistic reports. Currently there are two
types of reports, Java Console print out and DisJ View, which are not 100% done based
on build milestone. However, it still provides some useful information for user to observe
and analyze the simulating protocol. The following are snapshot of each type of reports

The Console output reports

[Problems | @ Javadoc | (€ Dedlaration | = Properties | Bl Conscle 2 .+ Search | & Disd View |
Dis] Console

FEEEx3imulation for ring.gph is successfully over. ®#%*##®
[hEkEERARERRALE STRTISTIC REDORT #rEfrthishhiss

Total Message has been sent: 92

Total Message has been received: 92

Total Message has entered link: B2

Total Message has leaved link: 46

Total Average delay time has been accumulated: 4

ftate STATE FOLLOWER has 9
Jtate STATE LEADER has 1

Message Election has been created 36
Message Motify has been created 10
States V3 #Msg Sent

S3TATE_ELECTICN = 12

STATE PAISIVE = 60

STATE FOLLOWER = 18
STATE LEADER = Z

4

49

DisJ View reports

:-.'-.-_; Complete
i] Spatal

11 Mesh

:E: T Hyper Cube

, [fH] Torus_1

v T Connected

4 o

¢ Problems f@ Javadoc f@ Declaration (E Properties fE Console f—a’" Search fa% Dis] View 5\

Agenit Wiew | (2) Node \u’iev\t“'_{bjI Statistic View|
Node 1D | isalive | Mode State | # Toker whitehoard
O True STATE_PASSIVE 0 board info is here
©ro True STATE_ELECTION O
Ons True STATE_PASSIVE 0
©ra True STATE_ELECTION O
©n3 True STATE_PASSIVE 0
Dnz True STATE_PASSIVE 0
Ore Trie STATE_PASSIVE 0
Ora True STATE_PASSIVE 0
©@n7 True STATE_ELECTION O
Ore Trie STATE_PASSIVE 0
4| | »

In order to open “DisJ View” in Eclipse is the same way of opening “Properties View” by
go to menu and select Winder 2 Show View = Other... as shown below

&= Java - my_project/ring.gph - Eclipse SDK
Fle Edit Simulator Mavigate Search Project Run | Window Help

lnri@l#-0 Q- |Baex | Hotid v BE bW o8
f# Package Explorer 2 % H\erarchﬂ = l% B = L I
7 disd Open Perspective »
B2 my_project = & Ant
£ 51 7 - El Console At+Shift+Q, ©
BB my_test g:j;opzlrz:p:;iieiztfm | Declaration At+Shift+Q, O
@ (1] AsFar.java BesetPerabectie @ Error Log Ale+Shift+Q, L
=-[3] CountAgent java e Higrarchy Ab+Shift+Q, T
[Counthetwork. java < Perspecuve. @ Javadoo Ale+Shift+3, J
B4 TRE System Library [1e5] Close Al Perspectives .
=i Referenced Libraries Navigation » E= Outine Alt+Shift+Q, O
o ring.gph % Package Explorer Alt+Shift+Q, P
Preferences {2 Prablems Alt+Shift+a, X
& Prograss
[Project Explorer
< Search AE+Shift+0, S
v Tasks
2 Templates

50

Once the Show View dialog pop up, select DisJ = DisJ View as shown below

Itype filter text

-2 General
(= ANt
= CVS
#-(= Debug
- Dis]

H-(= Java

[

e

(= Java Browsing
E-E PDE

#-(= PDE Runtime
(2 SYN

- = Team

Lise F2 to display the description for a selected viewr,

QK I Carcel

51

Chapter 7. Conclusion

DisJ is a lightweight tool for writing, test and simulate the reactive distributed algorithm
in Java™, Dis] provides virtual processors in a given network topology (graph) with
graphical interaction that allows user to view and debug the protocol. Also it ease user
from setting up sophisticate infrastructure while preserve (almost) reality of distributed
environment. Moreover, DisJ provides a nice Java™ Development Tool (JDT) from
Eclipse™, which helps user in writing and debugging a complex protocol with Java™
language.

52

Appendix

The protocol is expressed as a set of rules of the form “state x event = action”, according
to the reactive model defined in DADA.

In the convention used in DADA, rules are grouped by state, listing the difference “event
—> action” for that state.

Example 1:

A Protocol “As Far”, which elect a leader among the initiators in a bidirectional link
Ring.

States: S = {ASLEEP, ELECTING, PASSIVE, FOLLOWER, LEADER}
S(init) = {ASLEEP}
S(terminate) = {FOLLOWER, LEADER }

Restrictions: RI U Bidirectional Ring

ASLEEP:
Spontaneously
begin
send (“Election”, id(x)) to all;
become ELECTING:;
end

Receiving(“Election”, id)

begin
send (“Election”, id) to others;
become PASSIVE;

end

ELECTING
Receiving(“Election”, id)
begin
if id < min then
send(“Election”, id) to others;
become PASSIVE;

else if id = min from both directions then
send(“Notify”) to all;
become LEADER;

53

endif

end
PASSIVE
Receiving(“Election”, id)
begin
send (“Election”, id) to others;
end

Receiving(“Notify”)
begin
send(“Notify”) to others;
become FOLLOWER;
end

LEADER
Receiving(“Notify”)
begin
done election
end

In DisJ, the dual convention is used grouping the rules by event, listing the difference
“state=>action” for that event.

Example 2:
The same protocol from Examplel, expressed using the dual convention.

States: S = { ASLEEP, ELECTING, PASSIVE, FOLLOWER, LEADER}
S(init) = {ASLEEP}
S(terminate) = {FOLLOWER, LEADER }

Restrictions: RI U Bidirectional Ring

SPONTANEOUSLY:
Asleep
begin
send (“Election”, id(x)) to all;
become ELECTING;
end

54

RECEIVING
Asleep (“Election”, id)
begin
send (“Election”, id) to others;
become PASSIVE;
end

Passive (“Election”, id)
begin

send (“Election”, id) to others;
end

Passive (“Notify”, msg)

begin
send (“Notify”, msg) to others;
become FOLLOWER

end

Electing (“Election”, id)
begin
if id < min
send(“Election”, id) to others;
become PASSIVE

else if id = min from both directions then
send(“Notify”) to all;
become LEADER;

endif
end

Leader(“Notify”)
begin

done election
end

Example 3:

The same protocol from Example2, expressed using Java Code.

package my_test;

55

import distributed.plugin.runtime.IMessage;
import distributed.plugin.runtime.engine.Entity;

*

/
Leader election protocol with multiple initiators, unique ID,
synchronous and total reliable communication.

The initiators (candidates) will send messages with its ID to all
directions, and a message with smallest ID will kill every candidates
and return back to the sender. A candidate with smaller ID will kill
all arrival messages with bigger ID as well.

Lo I . R

*/
public class AsFar extends Entity {

// all possible states

public static final int STATE_SLEEP = 0;
public static final int STATE_ELECTION = 1;
public static final int STATE_PASSIVE = 2;
public static final int STATE_FOLLOWER = 3;
public static final int STATE_LEADER = 4;
// all message label will be used in the protocol

private static final String MSG_LABEL_ELECTION = "Election";
private static final String MSG_LABEL_NOTIFY = "Notify";

// tracking that both of my messages have returned
private boolean leftMin;
private boolean rightMin;

/**
* Default constructor
*
/
public AsFar() {
super (STATE_SLEEP);
3

public void init() {
String myId = this.getName();
this.become(STATE_ELECTION);
this.sendToAll(MSG_LABEL_ELECTION, myId);

}
@Override

public void alarmRing() {
// this protocol does not need this function
}

public void receive(String incomingPort, IMessage message) {

String msg = (String) message.getContent();
String msglLabel = message.getLabel();

if (this.getState() == STATE_SLEEP) {
this.become (STATE_PASSIVE);
this.sendToOthers(MSG_LABEL_ELECTION, msgq);

} else if (this.getState() == STATE_PASSIVE) {
if (msgLabel.equals(MSG_LABEL_NOTIFY)) {

56

this.become (STATE_FOLLOWER);
this.sendToOthers(MSG_LABEL_NOTIFY, msqg);

}else{
this.sendToOthers(MSG_LABEL_ELECTION, msg);
}

} else if (this.getState() == STATE_ELECTION) {
if (msgLabel.equals(MSG_LABEL_ELECTION)) {
this.electing(incomingPort, msg);

}else{
// should not happen!!
}

} else if (this.getState() == STATE_LEADER) {
if (msg.equals(MSG_LABEL_NOTIFY)){
System.out.println("Election completed: "
this.getName()
+ " is a leader");

}else{
// should not happen!!
}
}
¥
/*
* Helping function that will compare a received ID with my ID
*/

private void electing(String incomingPort, String id) {
String myId = this.getName();

if (id.compareTo(myId) < 0) {
this.become (STATE_PASSIVE);
this.sendToOthers(MSG_LABEL _ELECTION, id);

} else if (id.compareTo(myId) == 0) {
// my election msg has returned
if (this.leftMin == true)

this.rightMin = true;
else
this.leftMin = true;

3

if (this.rightMin && this.leftMin) {
this.become(STATE_LEADER);
// send notify to one direction only

this.sendTo(MSG_LABEL_NOTIFY, incomingPort, "I
myId + " is your leader");

Example 4:
57

The Black Hole Search protocol with Co-Locate agents using Java Code.

package test;
import java.util.List;
import distributed.plugin.runtime.engine.BoardAgent;

/**

* Whiteboard:

* A Black Hole search in bidirecational un-oriented Ring with
* 2 co-locate agents, known N (number of nodes), known K

* (number of agents), total reliability and FIFO

LS

*/

public class BHC extends BoardAgent {

public static final int STATE_NODE_UNKNOWN = 0;
public static final int STATE_NODE_CLEAN = 1;
public static final int STATE_NODE_TO_BH = 2;

public static final int STATE_AGENT_WORKING = 3;
public static final int STATE_AGENT_FOUND_BH = 4;
public static final int STATE_AGENT_DONE = 5;

private boolean explored;
private boolean confirm;
private boolean traverse;
private boolean forward;
private int round;

private int numReq;
private int numDone;

public BHC() {
super(STATE_NODE_UNKNOWN);
this.round = 0;
this.numReq = 0;
this.numDone = 0;
this.confirm = false;
this.explored = false;
this.traverse = false;
this.forward =false;

58

public void 1nit() {
this.become(STATE_AGENT_WORKING);
this.setNodeState(STATE_NODE_CLEAN);

this.round = 1;
int o = (this.getNetworkSize() - 1)/2;
int e = this.getNetworkSize() - o - 1;
List<String> ports = this.getOutPorts();
List<String> info = this.readFromBoard();
String p = null;
System.out.println("Board: " + info);
if(info.isEmpty()){
// first agent
this.numReq = o;
p = ports.get(0);
this.appendToBoard("active:" + p);
}else{
/l second agent
this.numReq = e;
String s = info.get(0);
String[] v = s.split(":");
for(int 1 =0;1 < ports.size(); i++){
p = ports.get(i);
if(!p.equals(v[1])){
break;
}
}
this.appendToBoard("active:" + p);
}
/I set for next exploring
this.moveTo(p);

}

/*
* My first visit to this node, and it is the first
* visit from this port
*/
private void myFirstVisit(String port){
/I First arrived safely from safe node
this.appendToBoard("safe:" + port);

// ' Then go back to say that this node also safe
this.explored = true;

this.confirm = true;

this.moveTo(port);

59

}

/>!<
* Confirming port check to a previous node that this port
* 1s safe then get back to the port to finish of the work
*/
private void confirmVisit(List<String> info, String port){
String s = null;
String[] v = null;
for(int 1 =0; i < info.size(); i++){
s = info.get(i);
v = s.split(":");

if(v.length == 2){
// get my port status
if(v[1].equals(port)){
if(v[0].equals("active")){
this.removeRecord(s);
this.appendToBoard("safe:" + port);

}
}else{

// someone left a note

/ reset my work plan

int share = Integer.parselnt(v([2]);
this.numReq = this.numReq - share;
this.round = Integer.parselnt(v[1]);
this.removeRecord(s);

}

}
// back to the port

this.confirm = false;
this.numReq--;
this.moveTo(port);

}
public void arrive(String port) {

/I traversing back

if(this.traverse == true){
this.traversBack(port);
return;

}

/l move to my current end territory
if(this.forward == true){

60

this.toMyEnd(port);
return;

}

// keep exploring

List<String> info = this.readFromBoard();

if(info.isEmpty()){
// 1 am the first to this node
this.myFirstVisit(port);
this.setNodeState(STATE_NODE_CLEAN);

telse {
String s = null;
String[] v = null;

if(this.confirm == true){
this.confirmVisit(info, port);
return;
}
System.out.println("Agent: " + this.getAgentld() + " numReq " +
numReq);
/ my second visit after confirm safe port to previous node
if(this.explored == true){
/l check my round
if(numReq == 0){
/I complete round, go backward to find partner
/[current location
System.out.println("Start traversing back from
node: " + this.getNodeld());

System.out.println("whiteboard: +
this.readFromBoard());
this.traverse = true;
this.numDone = 0;
String p = this.getAnotherPort(port);
this.traversBack(p);

return;

if(info.size() == 1){
// still the first at this node
s = info.get(0);
v = s.split(":");
if(v[1].equals(port)){
if(v[0].equals("active")){

61

/I should not happen, i just marked
safe on my first arrival
System.err.println("should not
happen 1");
}

/ find another port to explore
List<String> ports = this.getOutPorts();
String p = null;
for(int i =0; 1 < ports.size(); i++){
p = ports.get(i);
if(!p.equals(port)){
this.appendToBoard("active:"

+p);

// move to new port
this.explored = false;
this.moveTo(p);

}else{
// should not happen
// 1 just visited on my first arrival
System.err.println("should not happen 2");
}
}else{
/I other has visited this node from another port

for(int i =0; i < info.size(); i++){
s = info.get(i);
v =s.split(":");
if(v[0].equals("active")){
if(v[1].equals(port)){
// should not happen
/l a port that 1 came from is
safe
System.err.println("should
not happen 3");
}else{
/' someone is exploring it
right now!
/ so wait.

this.registerHostEvent(NotifyType. BOARD_UPDATE);
}
62

}else {
if(v[1].equals(port)){
/l my port, ignore it

}else{

/I another port that was
explored and marked

/I safe by other (No black
hole)!!! or

/I repeat my node territory
(backward exploring)!!

// should not happen

System.err.println("should
not happen 4");
break;

} else {
// my first visit but other has been here before
this.myFirstVisit(port);

}

private void traversBack(String port){
String p = this.getAnotherPort(port);
this.numDone++;
System.out.println("Travers back to port " + p);
if(isSafe(p)){
this.moveTo(p);

}else{
// we found under process node
// done traversing
this.traverse = false;

// check whether is it a last safe node
if(this.numDone == (this.getNetworkSize() - 1)){
// we found black hole
this.become(STATE_AGENT_FOUND_BH);

// the active port is a port to BH
63

this.setNodeState(STATE_NODE_TO_BH);
System.out.println("Agent: " + this.getAgentld() + " found
BH from Node " + this.getNodeld());

// move to my end node
this.numDone = 0;
this.forward = true;
this.toMyEnd(p);

}else{
/I compute new share

int remain = this.getNetworkSize() - this.numDone;
System.out.println("Found the struggling node
this.getNodeld() + " with remain " + remain);

"

int share = remain/2;
this.round++;
this.numReq = share;

// post to board that i will do extra share from my end

non

this.appendToBoard("round:" + round + ":" + share);

// move to my end node
this.numDone = 0;
this.forward = true;
this.toMyEnd(p);

}

private void toMyEnd(String port){
String p = this.getAnotherPort(port);
if(isSafe(p)){
this.moveTo(p);

}else{
/[arrive at my end
this.forward = false;
System.out.println("Arrived my end Node: " + this.getNodeld() + "
numReq " + this.numReq);
if(this.getState() = STATE_AGENT_FOUND_BH){
/[arrive at my end of previous round
List<String> info = this.readFromBoard();
String s = null;
String[] v = null;

64

System.out.println("Board " + info);
if(info.size() > 1){
for(int i = 0; i < info.size(); i++){
s = info.get(1);
v =s.split(":");
if(!v[0].equals("safe")){
this.explored = false;
this.confirm = false;
// continue exploring
System.out.println("Heading to
v[0] + " port " + v[1]);
this.moveTo(v[1]);
break;

}
}else{

this.explored = false;
this.appendToBoard("active:" + p);
this.moveTo(p);
}
telse{
this.become(STATE_AGENT_DONE);
this.setNodeState(STATE_NODE_TO_BH);

}

private boolean isSafe(String port){
List<String> info = this.readFromBoard();
boolean safe = false;
String s = null;
String[] v = null;
for(int i =0; i < info.size(); i++){
s = info.get(i);
v = s.split(":");
if(v.length == 2){
if(v[0].equals("safe") && v[1].equals(port)){
safe = true;
break;

}
}

return safe;

65

/*
* Get opposite port from a given port in a ring
*/
private String getAnotherPort(String port){
List<String> ports = this.getOutPorts();
String p = null;
for(int i =0; 1 < ports.size(); i++){
p = ports.get(i);
if(!p.equals(port)){

return p;
}
}
return p;
}
public void notified(NotifyType arg0) {
}
public void alarmRing() {
}
}
\end{verbatim}

66

	Table of Contents
	Chapter 1. Overview
	Chapter 2. Preliminaries
	Chapter 3. Creating a Topology
	Chapter 4 Creating a Protocol
	Chapter 5. Running a Simulation
	Chapter 6. Graphical and Statistics Reports
	Chapter 7. Conclusion
	Appendix

