JOURNAL OF ALGORITHMs 14, 316-328 (1993)

Sparser: A Paradigm for Running
Distributed Algorithms

YEHUDA AFEK AND Moty RICKLIN

Computer Science Department, Raymond and Beverly Sackler Faculty of Exact
Sciences, Tel Aviv University, Ramat-Avii 69978, Israel

Received August 1991; revised March 1992

This paper introduces a transformer for improving the communication complex-
ity of several classes of distributed algorithms. The transformer takes a distributed
algorithm whose message complexity is O(f - m) and produces a new distributed
algorithm to solve the same problem with O(f - nlog n + m log n) message com-
plexity, where n and m are the total number of nodes and links in the network,
and f is an arbitrary function of # and m. Applying our paradigm to the standard
all shortest paths algorithm vyields a new algorithm which solves the problem in
O(n? log n) messages (The previous best that we know of is OUn + n) messages).
When applied to the O(m - log? n) breadth-first search algorithm of Awerbuch
and Peleg (Technical Report CS90-17, Weizman Institute of Science, Department
of Comput. Science, July 1990) our paradigm yields an O(m + n - log® n) mes-
sages algorithm. 1993 Academic Press, Inc.

1. INTRODUCTION

One way to run a distributed algorithm is to collect all its inputs to one
node, run a sequential algorithm on all the inputs at this node, and then
distribute the outputs to the nodes. For many applications this is ineffi-
cient, since the message complexity of such a process is usually bounded
by ®(nm) messages, where n and m are the total number of nodes and
links in the network. For most applications, truly distributed algorithms
which keep the inputs and outputs of every node only at that node, are
more efficient. In this paper we observe that an intermediate combination
of the two approaches yields distributed algorithms that are sometimes
more efficient than any of the two extremes.

The idea of our technique is to use a particular partition of the network
into subsets of nodes and select a center in each set. Each center simulates

316

0196-6774 /93 $5.00
Copyright ©@ 1993 by Academic Press, Inc.
All rights of reproduction in any form reserved.

DISTRIBUTED ALGORITHMS 317

the algorithm execution on behalf of each node in its set. That is, messages
sent in the original algorithm between pairs of nodes in the same set are
eliminated. On the other hand, a message sent from a node in one set to a
node in another set, is now sent from the center of the first set to the
center of the other set. The algorithm is based on the existence of a
partition such that the intracluster communication, and the radius of every
cluster, are small. The existence of a suitable partition was constructively
proved by Awerbuch and Peleg in [AP90c].

The main contribution of this paper is a distributed algorithms trans-
former that reduces the message complexity of many distributed algo-
rithms from O(f-m) to O(f-nlogn + mlog n) message complexity,
where f is an arbitrary function of n and m. Perhaps one of the most
prominent examples, where such a technique might be useful, is the all
pairs shortest paths problem. A distributed algorithm to solve this problem
is repeatedly executed all the time in the ARPANET and in other
networks (ARPANET [MRR80] and others, e.g., [JM82]). In this problem
a routing table at each node, with one entry for each other node in the
network is computed. Node u’s entry in node ¢’s table contains the length
of the shortest path from ¢ to u and the name of the first link on this
path. This information is used in order to rout data messages between
nodes.

Although the worst case message complexity (O(mn)) of the all pairs
shortest paths problem has not been improved for several years, this
fundamental task has been the subject of many papers [Gal76, MRRS80,
JMB82, Eph86, Pap74, Gal82, Seg83, BG87, Spi86). This paper produces an
O(n? log n) messages distributed algorithm for the all pairs shortest paths
problem (from scratch, i.e., including the construction of the sparse
partition).

Another application of this paper is an O(m + nlog* n) messages
breadth-first search (BFS) algorithm derived by Awerbuch and Peleg in
[AP90a], where they have incorporated our method to their new O(m -
log* n) messages BFS algorithm. The message complexity of BFS has
drawn considerable attention in recent years. In 1982 Gallager gave an
O(n?) messages algorithm [Gal82]; in 1985 Awerbuch and Gallager gave
an O(m*) messages algorithm [AG87, AG85]; and in an earlier draft of
this paper we have presented an O(m\/ﬂ)g n + n®) messages algorithm
[AR90]. A breakthrough in the message complexity of BFS has been
recently reported in the elegant work [AP90a], where an O(m - log? n)
messages algorithm is given. Being aware of our technigue Awerbuch and
Peleg have showed in [AP90a] that the combination of [AR90]; [AP90a]
gives an O(m + nlog?* n) messages algorithm.

Furthermore, as suggested by our paper, once such a partition exists in
the network other algorithms could be run more efficiently, e.g., the DFS

318 AFEK AND RICKLIN

in O(n log n) messages, by applying our technique to the algorithm of
[Awe85b].

We believe that the above discussion shows that the sparser technique
belongs to the set of elementary tools in distributed computing, such as
the snapshot [CL85], the termination detection of diffusing computation
[DS80], the synchronizer [Awe85a, AP90bl, the resource controller
[AAPS87], and the reset procedure [AAGS87], which are used as building
blocks in the design and implementation of other algorithms.

The rest of the paper is organized as follows: Section 2 gives an
overview, Section 3 describes the sparser, which is the structure over which
the simulation is performed, and in Section 4 the basic simulation tech-
nique is presented. In Section 5 extensions of the technique are presented.

Model. Throughout the paper the standard model of asynchronous
networks is assumed [GHS83]. The network is modeled by an undirected
graph G = (V, E), |V|=n, |E| =m, where each vertex of the graph
corresponds to a node (processor) in the network and each edge to a
bi-directional communication link between the corresponding nodes. Nodes
communicate only by exchanging messages, and message delay over a link
is finite but unbounded.

Complexity measures. In this paper we are mainly concerned with the
message complexity of distributed algorithms. The message complexity of
an algorithm is the total number of messages sent during the execution of
the algorithm in the network in the worst case, i.e., for each link that a
message traverses, we charge onc unit of cost. Messages size is at most
Of(log n) bits. Another standard complexity measure of distributed algo-
rithms is their time complexity. The time complexity is the worst case total
amount of time from the first step of the algorithm taken by any processor
in a run until the last step taken by any processor. The time complexity is
measured under the assumption that the delay of any message is at most
one time unit.

The time complexity of the distributed algorithms generated by our
technique is increased by at most O(log n) factor if we ignore the bound
on the number of messages that can be transmitted over a link in one unit
of time (in pipeline). However, if only one message can be transmitted into
a link in one unit of time (i.e., inter message delay is O(1)), then due to
congestion problems the message complexity is the best bound on the time
complexity that we know of.

1.1. Relation to Other Works

Our work uses a particular partition from the sparse graph partitions of
[AP90c] and combines it with a simple new idea: let the centers of clusters

DISTRIBUTED ALGORITHMS 319

in the partition do the work for all the nodes in their cluster (computation
and communication). It is important to note that applying our new idea
with known partitions (e.g., synchronizer y and [AGLP89]) would not yield
any savings in the communication complexity.

Our usage of the sparse graph partition is somewhat different from the
applications introduced by Awerbuch and Peleg [AP90c¢; AP90b] for track-
ing mobile users, constructing compact routing tables, and synchronizing
an asynchronous network with polylogarithmic overhead. Technically all
their applications use the partitioning to localize global information in a
hierarchical way. In this paper the partitioning is used to show that the
overhead of protocols in dense networks is not much larger than that in
sparse networks.

A seemingly similar idea was presented in [AGLP89], where a network
is partitioned into clusters and a problem is solved by first solving it in the
subnetwork of each cluster and then piecing together the partial solutions.
This is in contrast to our technique where the centers of the clusters
continuously communicate and cooperatively solve the problem in a dis-
tributed manner. Moreover, [AGLP89] is geared toward reducing the
locality of a given problem while we are concerned with the message
complexity of distributed algorithms.

2. OVERVIEW

The central idea in this paper is to execute distributed algorithms by
communicating only between the nodes of a subset of the nodes. That is,
to partition the network into a number of subsets of nodes, each with a
distinguished central node, and to establish a simple path connecting the
two central nodes of each pair of neighboring subsets. To run the algo-
rithm each central node executes the algorithm for each node in its subset.
Whenever a message of the simulated algorithm is sent from a node in one
subset to a subset of the nodes in another subset, that message is sent
between the corresponding centers. Thus the cost of sending the same
message from one node to all its neighbors is bounded by the number of
subsets, in which that node has neighbors, times the distance between the
corresponding centers.

In order for the execution of a distributed algorithm to be communica-
tion efficient, the partition should have special properties. Roughly speak-
ing, the sum over all nodes v, of the number of subsets in which v has
neighbors, should be small (e.g., O(n)), and second, the radius of the
connected graph spanning each subset must also be small (e.g., Olog n)).
The next section defines the structure of such a partition, and the section
after specifies the simulation technique more precisely.

320 AFEK AND RICKLIN
3. THE SPARSER

The notations and definitions of [AP90¢c] are used in this paper. We
repeat those definitions and notations that are used herein.

Let G = (V, E) be an undirected graph. For two vertices u, ¢ € V, let
dist(u, v) denote the number of links on a shortest path from u to ¢ in G.
Define the radius of a graph to be

def
Rad(G) = min, ., (max, ., dist(z,u)).

Let the one-neighborhood of R be Nl(R)déf{wldist(w,)< 1, vt €R).
Given a set of vertices S C V, let G(S) denote the subgraph induced by §
in G. We use Rad(S) as a shorthand for Rad(G(S)).

Throughout, sets of nodes are denoted by capital P, R, S, etc., and
collections by sets by calligraphic type, &, #,.”, etc. A set & is a
partition cover of V if &2 is a set of pairwise disjoint nonempty sets and
U &= V. The elements of a partition are called cells.! The radius of a set
of nodes § is based on their distances in the entire graph, i.e.,

def
Rad($) = min, . o(max, ¢ dist (0, u)).

For a node ¢ € V we define § (), the degree of v relative to ., to be
the number of cells in . which are at distance one or less from ¢.
Formally,

5,(7) =|(Sle € N(5),5 & A})].

Let the density of a partition cover . be

dens(.#) = T (N9~ T 5,(7))

se.” rey

ef
The radius of . is defined as, Rad(.”)E max . Rad($§,).

Derinimion 1. A sparser is a partition cover 2. The radius and
density of a sparser are the corresponding parameters of .~. A sparser
whose radius is r and density is d is an (r, d)-sparser. In each cell of the
sparser the following is defined: One node is distinguished as its center,
and a breadth-first search tree rooted at the center spans the cell (if
necessary using nodes not in the cell). Each pair of neighboring cells
selects one inter-cell link, called the preferred link. The collection of
breadth-first search trees and the preferred links is the structure spanning

'What we call partition cover is called weak partition cover in [AP9(0c].

DISTRIBUTED ALGORITHMS 321

the network that is used by our simulation to pass messages between
centers (similar to synchronizer y in [Awe85a]).

The existence of a sparser with low density (e.g., O(n)) and low radius
(e.g., O(log n)), follows from either Theorem 5.1 or Theorem 5.3 in
[AP90c]. A few more definitions are necessary to repeat these theorems
here (we will only discuss the relation between Theorem 5.1 and the
sparser, since this theorem is more widely used and efficient constructions
of Theorem 5.3 have not been discussed in [AP90c]).

A cluster is a subset S € V such that G(S) is connected. A cover is a
collection of clusters /= (S,,..., S} such that {J, S, = V. Given a cover
7, its degree, and average degree are defined as follows:

For every vertex v € V, let deg(v,) denote the degree of v in the
hypergraph (V,), i.e., the maximum overlap between clusters of .7,
The average degree of a cover .7 is defined as

_ d
A(A) if(> deg(v,/))/n.
relV
Given a cover 9 = {T\,...,T,}, and the cover .#'= {N(e)Vv € V}, T
is said to coarsen A, if for every N; € #" there exists a T, € .9 such that
N, cT,.

THeoreM 1 [AP90c). Given a graph G = (V, E), |V | = n, the cover .4,
and an integer k > 1, it is possible to construct a coarsening cover I that
satisfies the following properties:

(1) Rad(9") < Rk + 1), and
(2) A(T) = 0(n'/5).

A sparser . is constructed from the coarsening cover I of the
theorem as follows: each node selects one cluster T € 7 that contains its
one-neighborhood as its home cell (the cells are not necessarily anymore
clusters since nodes in one cluster may join different home cells). One can
easily check that the density of the constructed sparseris < n - A(S") and
its radius is < 2k + 1).

Algorithms for constructing coarsening covers are discussed in [AP90al.
Note that a (k, n'*'/*)-sparser can be easily constructed by a distributed
algorithm similar to the one in [Awe85a] with O(m + nk) messages.
Moreover, the distributed implementation readily produces the additional
structures: distinguishes a center in each cell and constructs a breadth-first
search tree spanning each cell, rooted at the center. All of this is achieved
with the same message complexity, O(m + nk). One may consider the
randomized techniques of Linial and Saks [1.S91] to device a fast (sublin-
ear) randomized algorithm for the construction of a sparser, as described
in [ABCP91].

322 AFEK AND RICKLIN
4. Tue SimuLAaTION TECHNIQUE

Assuming that an (r, d)-sparser . is given in the network, the sparser
simulation technique proceeds in three major steps: First, collect the
topological information of all the nodes in each cell in .# to the center of
the cell. This information includes the identity of all the cells that are
incident to nodes in the cell and the links leading to these cells. Second,
simulate the algorithm by exchanging messages between the center nodes.
Third, the outputs of the algorithm are distributed by the center of each
cell to nodes in the cell along the breadth-first search tree. The crucial
step is the second step in which centers have to exchange messages on
behalf of their nodes. The first step requires O(rm) messages since
information about rm links is sent to distance r (assuming the topological
information dominates the size of the input data to the algorithm). If the
size of the output of the algorithm at each node is at most O(y log n) bits,
then the third phase, the output distribution phase, costs O(yrn) mes-
sages.?

To describe the simulation let us define a cycle of computation for an
asynchronous distributed algorithm. A distributed asynchronous algorithm
proceeds at each node in cycles of three steps:

1. message receipt,
2. local computation of a new local state, and
3. message transmission to a subset of the neighbors.

(Some cycles might consist only of steps 1 and 2.)

Lemma 1 considers asynchronous distributed algorithms in which nodes
in the third step of each cycle send either the same message to all their
neighbors, or a message to only one neighbor, or no message at all. Call
such distributed algorithms type a distributed algorithms. (Lemma 3 is
Section 5 considers more general classes of algorithms).

DeriNiTiON 2. The cycle complexity of an asynchronous algorithm A,
is the maximum, over all the nodes, of the number of cycles a node goes
through during the execution of the algorithm, in the worst case.

Consider a message M of a type « algorithm A that is sent from node v
to node u. In the sparser simulation of A, if v and u are in the same cell
then no message has to be sent by the simulation. If however ¢ € §, and
ues,Ss,S, €, then §’s center c,, sends the message to the pre-
ferred link that connects §, with S,. Then the message is sent over the

2If the algorithm produces outputs at the nodes several times during a run then
O(yrn log n) small messages might be necessary.

DISTRIBUTED ALGORITHMS 323

preferred link and through the parent links of the breadth-first search tree
of §, to c,. Since algorithm A is of type a then M is either sent to all the
neighbors of ¢ in §, or to exactly one. In either case this information can
be encoded in the message from ¢, to ¢, in at most log n bits.

Lemma 1. Given a network with an (r, d)-sparser . and a K cycle
complexity distributed algorithm A of type «, then A can be run in the
network in O(mr + Kdr + yrn) messages, where y log n is the size of the
output of the algorithm at each node in bits.

Proof. The term O(mr) is the cost of collecting the topology of the
neighborhood of each cell to the center of the cell. The O(yrn) term is the
cost of distributing the outputs of 4 to the nodes.

In each cycle of computation at node ¢ the simulation sends at most
2r + 1 messages for each neighboring cell of . Thus at most ¥,.5,(.”)
(2r + 1) messages are sent, per cycle, resulting in a total of O(Kdr) over
the entire run of the algorithm. O

ExampLE 1. Censider the following algorithm for the all pairs shortest
paths algorithm, which is also given in [Gal76, Gal82, Seg&3]. Each node
starts by sending its identity to all its neighbors. When a node receives the
identity of all its neighbors, it marks them to be in distance one from it
and starts the second step. In the ith step every node builds a message
which consists of all the nodes which it marked to be in distance i — 1
from it, and sends the message to all its neighbors. The node waits until it
receives all the messages sent by its neighbors during their ith step, marks
the nodes when it receives their identities for the first time, to be in
distance i from it, and passes to the next step. A node terminates when it
receives no new identities in an entire round. Segall [Seg83] gave a
correctness proof for this algorithm. Note that for this algorithm both
cycle complexity, and the size of the output at each node are O(n). Using
a (log n, n)-sparser (by setting k = log n in Theorem 1) and Lemma 1 we
obtain O(n? - log n) messages distributed algorithm to solve the all pairs
shortest paths problem. (The algorithm to construct a (log n, n)-sparser
costs O(n log n + m) messages).

Since the simulated all pairs shortest path algorithm works as well in the
weighted case, i.e., when each link has a real length in each direction, also
our algorithm solves the weighted problem with the same communication
complexity. (The length corresponds to the gueue length in the entry to
the link [MRR80]; however the messages of the algorithm do not incur this
delay because they are of the highest priority.) That is, each O(log n) bits
message of the shortest paths algorithm still incurs one unit of cost. In this
case, in the ith step node ¢ sends to all its neighbors the ith closest node
to v.

324 AFEK AND RICKLIN

CoroLLarYy 2. The upper bound on the message complexity of the
(weighted and unweighted) all pairs shortest paths problem is O(n* log n)
messages (each message is of size O(log n) bits).

Another example is the application of our technique to the BFS algo-
rithm of [AP90a] which results in O(m + n log* n) messages BFS algo-
rithm as noted in [AP90a].

5. GENERALIZATIONS

Although Lemma 1 applies only to a certain class of algorithms a similar
result can be derived to a much wider class. Lemma 3 in the sequel applies
to any algorithm that in step 3 of the computation cycle sends the same
message from a node to any subset of its neighbors.

Lemma 1 relied on the following fact about distributed algorithms of
type a: whenever a node sends a message to a subset of its neighbors, the
information about the destinations of the message can be encoded in no
more than O(log n) bits. To enable a generalization of Lemma 1 we relax
this assumption by introducing two modifications in algorithms in which
nodes send a message to an arbitrary subset of their neighbors, as follows:
First, whenever a node makes a “relevant” change in its local state it
sends a message to this effect to all its neighbors (where “relevant” is
defined in the sequel). Second, each message that is sent to a subset of the
neighbors is now sent to all the neighbors. Knowing the local state of the
sender, each neighbor determines whether the message was addressed to
it or not.

Let us define things more formally. Let A be a distributed protocol, and
let S(.A) be the set of local states of the protocol at some node. We define
a relation, a , on S(A), such that s, a s,, if for every possible message
M, each node upon receiving M sends exactly the same set of messages, in
both states s, and s,. Obviously, a divides S(A) into equivalence classes.
During a run of a distributed protocol at node v, we define the relevant
state of v to be the equivalence class to which the internal state of
belongs, under the relation o .

Derinition 3. The state complexity of an asynchronous algorithm A, is
the maximum, over all the nodes, of the number of times a node changes
its relevant state (i.e., changes the equivalence class) during the execution
of the algorithm, in the worst case.

In many distributed algorithms the following pattern of communication,
called local polls, that consists of three phases occurs several times: first a
node sends the same message to a subset of its neighbors; then, in the

DISTRIBUTED ALGORITHMS 325

second phase, each neighbor that receives the message responds with a
reply; and in the third phase, the originating node collects all the replies
and continues with its computation. Usually the replies are called ac-
knowledgments.

Informally, we define the weak-cycle complexity of a distributed algo-
rithm to be the cycle complexity of the algorithm discounting the cycles in
which a node sends only a response message as part of a local poll pattern
of communication. The motivation for this definition is that in many
algorithms the cycle complexity is high, due to the acknowledgment type of
messages. Applying Lemma 1 to these algorithms would result in no
savings in the message complexity.

Again, let us define these notions more formally. Let A4 be a distributed
protocol, and let v be a node in the network.

DeFintTION 4. We say that a message M sent from node u to v is an
acknowledgment , if the cycle in which M has been sent was initiated by a
message received from v, and M was the only message sent during this
cycle.

We say that a cycle is a real cycle if the messages that were sent during
the cycle were not acknowledgments and were sent to more than one
neighbor.

DeriNimioN 5. The weak cycle complexity of an asynchronous algorithm
A, is the maximum, over all the nodes, of the number of real cycles a node
goes through during the execution of the algorithm, in the worst case.

DeriniTION 6. The cycles in which a node sends a message to only one
neighbor are called trivial cycles, and the trivial cycle complexity is the
total number of such cycles in the network during the execution of the
algorithm.

In order to transform algorithm A into an a type, apply to it the
following three changes (assuming FIFO discipline on the links):

1. Any change in the relevant state of a node in step 2 of the
computation cycle is broadcast by the node to all its neighbors, before step
3 is performed. Thus, whenever a node u receives a message M from node
v, the relevant state of v at the time M was sent is available at u.

2. Replace each response message (acknowledgment) by a predeter-
mined fixed-size standard response message. (The standard response is a
fixed message with O(1) bits that is recognized as such). Upon receiving
the standard response, each node can compute the real response from the
relevant-state information of the neighbor that it has last received.

3. Any message that is sent by a node v in A to a subset of the
neighbors is sent to all the neighbors of ©. Since the neighbors know the

326 AFEK AND RICKLIN

relevant state of ¢ at the time that the message was sent, each will be able
to determine whether the message was addressed to it, or not.

LemMma 3. Given a network with an (r,d)-sparser and a distributed
algorithm A with K weak cycle complexity and t trivial cycle complexity which
was modified as discussed above, then A can be run in the network in
O(mr + (K + s)dr + tr + — ym) messages, where y log n is the size of the
output of the algorithm at each node in bits and s is the state complexity of A
(assuming that the value of the relevant state of a node can be transmitted
with log n bits).

Proof. Apply Lemma 1 to the modified algorithm A. In any local-poll
of node v the responses from all the neighbors of © that are in one cell
are sent as one message from the center of the cell to the corresponding
center of the neighboring cell that contains ¢. That is, when a center of a
cell receives a message which was sent to nodes in its cell, it checks to see
whether any of these nodes have to respond with an acknowledgment. If
yes, it sends back only one copy of the standard response message. For
each real cycle at a node a message is sent to all its neighbors, thus
incurring Kdr messages for all the nodes in the simulation. Similarly, a
message is sent to all the neighbors each time a node changes is state,
incurring a total of srd messages.

Recall that in a trivial cycle at node ¢ exactly one message is sent from
node ¢. Since such a message could in general go over a path of length r
in the simulation, the total complexity due to the trivial cycles is tr. O

ExampLE 2. Consider the depth-first search algorithm presented in
[Awe85b]. The trivial cycle complexity ¢, of that algorithm is n. The weak
cycle complexity s, of that algorithm is 2, and its state complexity is also 2.
Thus, if a (log n, n)-sparser already exists in the network, the DFS algo-
rithm can be run in O(n log n) messages.

Once a sparser is given in the network, the message complexity of any
algorithm is determined by its three parameters: trivial cycle complexity,
real cycle complexity, and state complexity. E.g., the MST algorithm of
[GHSS83] has a trivial cycle complexity O(n log n), real cycle complexity
O(log n), and state complexity O(log n).

ACKNOWLEDGMENTS

We thank Baruch Awerbuch and David Peleg for helpful discussions. In particular, David
brought to our attention [Pel89] in early 1989, and Baruch pointed out that the standard
shortest paths algorithm works as well in the weighted case. We would also like to thank
Mike Merritt and Mike Saks for helpful discussions.

[AAGS87]

[AAPS87]

[ABCP91]

[AGS8S]

[AG87)

[AGLP89]

[AP90a)

{AP90b]}

[AP90C)
[AR90]
[Awe85al
[Awessb]
(BGH7]

(CL85]

[DSg0]

[Eph8é6}
[Gal76]
[Gaig2)

[GHS383)

[IM&2]

DISTRIBUTED ALGORITHMS 327

REFERENCES

Y. ArFek, B. AwerBucH, AND E. Garni, Applying static network protocols to
dynamic networks, in “Proceedings, 28th IEEE Annual Symp. on Foundation of
Computer Science, October 1987, pp. 358-370.

Y. Arex, B. AwersucH, S. PLotkin, anp M. Saks, Local management of a global
resource in a communication network, in “‘Proceedings, 28th IEEE Annual Symp.
on Foundation of Computer Science, October 1987, pp. 347-357.

B. AwersucH, B. BERGER, L. Cowen, anp D. PrerLeG, Fast constructions of
sparse neighborhood covers, extended abstract, November 1991,

B. AwersuUcH AND R. GALLAGER, Distributed bfs algorithms, in “Proceedings,
26th IEEE Annual Symp. on Foundation of Computer Science, October 1985,”
pp. 250-256.

B. AwWErBUCH AND R. GALLAGER, A new distributed algorithm to find breadth
first search trees, “1EEE Trans. Inform. Theory, May 1987, pp. 315-322.

B. AWERBUCH, A. GoLDBERG, M. LuBy, aNp S. PLoTxiN, Network decomposition
and locality in distributed computation, in “Proceedings, 30th IEEE Annual
Symp. on Foundation of Computer Science, October 1989, pp. 364-369.

B. AwerBuc anp D. PerLeg, “Efficient Distributed Construction of Sparse
Covers,” Technical Report CS90-17, Weizman Institute of Science, Dept. of
Computer Science, July 1990.

B. AwrrsucH anD D. PrLEG, Network synchronization with polylogarithmic
overhead,” in “Proceedings, 31st IEEE Annual Symp. on Foundation of Com-
puter Science, October 1990, pp. 514-522.

B. AwersucH anp D. PeLEG, Sparse partitions, in “Proceedings, 31st IEEE
Annual Symp. on Foundation of Computer Science, October 1990, pp. 503-513.
Y. AFEK aND M. Rickuin, Sparser: A paradigm for running distributed algo-
rithms, extended abstract, April 1990.

B. Awersuch, Complexity of network synchronization, Assoc. Comput. Mach. 32,
No. 4 (1985), 804-823.

B. AwrrsucH, A new distributed depth-first-search algorithm, Inform. Process.
Lett. 22, No. 3 (1985), 147-150.

D. P. BErTsEkAs AND R. G. GALLAGER, “Data Networks,” Prentice-Hall, Engle-
wood Cliffs, NJ, 1987.

K. M. Cuannpy anp L. LamporT, Distributed snapshots: Determining global
states of distributed systems, ACM Trans. Comput. Systems 3, No. 1 (1985),
63-75.

W. DukstrA AND C. S, ScHoLTEN, Termination detection for diffusing computa-
tions, Inform. Process. Lett. 11, No. 1 (1980), 1-4.

A. EpHreMIDES; “The Routing Problem in Computer Networks,”” Springer-Verlag,
New York/Berlin, 1986.

R. G. GaLrLaGer, A shortest path routing algorithm with automatic resynch,
unpublished note, March 1976.

R. G. GaLLAGER, “Distributed Minimum Hop Algorithms,” Technical Report
LIDS-P-1175, MIT Lab for Information and Decision Systems, January 1982.

R. G. GALLAGER, R. A. HuMBLET, anD P. M. Spira, A distributed algorithm for
minimum weight spanning trees, ACM Trans. Program. Lang. Systems 5 (1983),
66-77.

J. Jarre anp F. Moss, A responsive distributed routing protocol, IEEE Trans.
Commun. COM-30, No. 7, part 11 (1982), 1758-1762.

328

[LS91)

[MRR80]
[Pap74]
[Pel89]
[Seg83]

[Spi86)

AFEK AND RICKLIN

N. Liniar. aND M. Saks, Decomposing graphs into regions of small diameter, in
“Proceedings, 2nd ACM-SIAM Symp. on Discrete Algorithms, January 1991,”
pp. 320-330.

J. M. McQuiLLan, I. RICHER, AND E. C. RoseN, The new routing algorithm for
the arpanet, JEEE Trans. Commun. COM-28, No. 5 (1980).

U. Papg, Implementation and efficiency of moor-algorithms for the shortest route
problem, Math. Programming 7 (1974), 212-222.

D. PeLEG, ‘“Sparse Graph Partitions,” Technical Report CS889-01, Dept. of
Applied Math., the Weizmann Institute, Rehovot, Israel, February 1989.

A. SEcaLL, Distributed network protocols, IEEE Trans. Inform. Theory IT-29,
No. 1 (1983), 23-35.

J. M. SpinELLL, “Broadcasting Topology and Routing Information in Computer
Networks,” Master's thesis, MIT, March 1986.

