Link
Fecha Responsable Título DOI
2024-08-30 Christian Diaz PINNs, una presentación gentíl :-)
2024-09-06 Christian Diaz PINNs, una presentación gentíl (Ejemplo y código)
2024-09-13 Francisco De Izaguirre A Physics-informed Deep Neural Network for Harmonization of CT Images Link
2024-09-20 Florencia Uslenghi Machine learning in cardiovascular flows modeling: Predicting arterial blood pressure from non-invasive 4D flow MRI data using physics-informed neural networks, Link
2024-09-27 Julian Rodriguez  Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations Link
2024-10-04 Rafael Rosa Machine Learning for Physics-Informed Generation of Dispersed Multiphase Flow Using Generative Adversarial Networks Link
2024-10-11 Mauricio Ramos Universal and High-Fidelity Resolution Extending for Fluorescence Microscopy Using a Single-Training Physics-Informed Sparse Neural Network Link
2024-10-18 Bruno Jose Zorzet Physics-informed learning of governing equations
from scarce data.
Link
2024-10-25 Fatima Alvez Varela Untrained, physics-informed neural networks for structured illumination microscopy Link
2024-11-01 Sofia Zimmer A geometry-informed deep learning framework for ultra-sparse 3D tomographic image reconstruction Link
2024-11-08 Graciana Castro & Mateo Musitelli TBD
2024-11-15 Juan Llaguno TBD
2024-11-22 Camilo Borba GPINN: Physics-informed Neural Network with Graph Embedding Link
2024-11-29 Roman Demczylo Matriz de Mueller & PINNs
2024-12-06 Josefina Catoni Tema: estimación de parámetros y conectividad funcional a partir de datos de fMRI Link
Última modificación: miércoles, 23 de octubre de 2024, 12:15