Hola gente, estoy intentando entender la solucion dada a este ejercicio. Asi que todo lo que planteo esta en base a esa solucion...
El tema es cuando busca la aceleración según eΘ:
a= R (d2Θ/dt) eΘ - R (dΘ/dt)2 er
(para empezar y a los ponchazos, mi respuesta serìa "el primer termino de la ec"... ya que er eΘ , asi que esto serìa otra duda...)
Pero sigo con la solucion... plantea esto:
a . eΘ = R (d2Θ/dt) - w2R senΘ i . eΘ
Esto me parece magia!!!... no entiendo como puede vincular (dΘ/dt) con w!!!!
Al senΘ lo explico como el er abatido sobre i, pero despues, magic!
Muchas gracias!
No entiendo mucho lo que pusiste arriba, pero acordate que:
, siendo .
Si la posición la escribís como:
, entonces la velocidad te queda:
Ahí te aparece el omega por primera vez y más veces cuando hacés la derivada segunda. Si no la otra manera es hacerlo por Coriolis, donde el término ese te aparece como el último término de la aceleración de transporte.
Espero q te haya servido (y espero no haberla pifiado =P). Saludos!
, siendo .
Si la posición la escribís como:
, entonces la velocidad te queda:
Ahí te aparece el omega por primera vez y más veces cuando hacés la derivada segunda. Si no la otra manera es hacerlo por Coriolis, donde el término ese te aparece como el último término de la aceleración de transporte.
Espero q te haya servido (y espero no haberla pifiado =P). Saludos!