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ATMOSPHERIC TURBULENCE 

Wind velocity is a three-dimensional field, whose conceptual modeling may be 
limited to a bi-dimensional representation. The following three schemes show: 1) the 
instantaneous wind velocity vertical profile at time t t , u(z, t ) ; 2) the time-history 
of the instantaneous wind velocity at height z = z , u(z, t) ; 3) the time-history of the 
instantaneous longitudinal turbulence at height z = z , u (z, t) u(z, t) u(z)   . 
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In more rigorous terms, let x,y,z be a Cartesian reference system with origin in O on 
the ground; z is vertical and directed upwards. The wind field is represented by the 
vectorial temporal law of velocity at point M of coordinates x,y,z: 

     M;t M;t M;t V V V  

where V  and V' are two vectors that denote, respectively, the mean wind velocity and 
the zero mean turbulent fluctuation of V around V .  

 
Considering a flat homogeneous terrain and the inner boundary layer, they are given 
by: 

   M;t u zV i  

       M;t u M;t v M;t w M;t     V i j k  

where i, j, k are the unit vectors in the directions x, y, z; u  is the mean wind velocity 
aligned with x; u', v', w' are the longitudinal (x), lateral (y) and vertical (z) turbulence 
components. 

The mean wind velocity is given by the logarithmic profile: 

  *
0

1 z
u z u

z

 
    

ln  

where u* is the shear velocity and z0 is the roughness length. 

Atmospheric turbulence is a 3-variate (3-V) 4-dimensional (4-D) random process. It 
is 3-V because it is described by a 3-component u', v', w'; it is 4-D because each of 
these components depends on 4 independent parameters, x, y, z, t. For these reason it 
is best described by the cross-power spectral density function (cpsdf): 

       S M,M ;n S z;n S z ;n Coh M,M ;n       

where n is frequency; M' is a point of coordinates x', y', z'; S(M,M';n) is the cpsdf of 
'(M;t) and '(M';t); S(z;n) = S(M,M;n) is the power spectral density function (psdf) 
of '(M;t); Coh(M,M';n) is the coherence function (cohf) of '(M;t) and '(M';t). For 
sake of simplicity, Coh(M,M';n) = Coh(M,M';n). 
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Atmospheric turbulence is thus described by four sets of functions: 

1) the psdf S(z;n) ( = u,v,w) of each turbulence component in a point M of space; 

2) the cohf Coh(z;n) = Coh(M,M;n) of the three turbulence components in a point 
M of space; 

3) the cohf Coh(M,M';n) = Coh(M,M';n) of the same turbulence component in two 
different points M and M' of space; 

4) the cohf Coh(M,M';n) of different turbulence components in two different points 
M and M' of space. 

Wind engineering applications generally deal with cross-power spectral densities and 
coherence functions of turbulence as real functions. This is equivalent to assume, 
with a reasonable approximation, that imaginary parts may be neglected. Advanced 
model that take into account imaginary parts have been formulated by ESDU (1991) 
and by Mann (1994). 
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One-point / one-turbulence-component representation 

Each turbulence component  in a point M of space is a 1-V 1-D random stationary 
Gaussian process, which can be represented by a family of sample function. 

 

The first order representation of  is provided by its probability density funcion (pdf): 

 
2

2

1
f exp

22




 
     

 

where  is the standard deviation of . 

 

Turbulence standard deviation 

In general terms, u, v and w depend in a rather complicate way on: 1) the height 
over the ground z; 2) the roughness length z0; 3) the shear velocity u*; 4) the Coriolis 
parameter f. 
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In the internal boundary layer it is usual to assume, with reasonable approximation: 

 2 2
*u u,v,w       

where u* is the shear velocity;  is a non-dimensional turbulence factor such as: 1) it 
is independent of z; 2) it reduces on increasing z0; 3) u v w      and, consequently: 

2 2 2
u v w      

Based upon a large set of experimental measurements (Solari and Piccardo, 2001): 

 u 06 1,1 arctg ln z 1,75        

v u v u0,56 ; 0,75       

w u w u0,25 ; 0,5       

where z is expressed in meters. 

The following pictures show the variability range of the measurements with respect 
to the above empirical rules. 
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Turbulence intensity 

Wind engineering is usual to represent the first order statistical moment of turbulence 
through a non-dimensional parameter referred to as turbulence intensity: 

   
   z

I z u,v,w
u z





    

Remembering that      * 0 tu z 2,5u z / z c z ln  and 2 2
*u    , it follows that: 

     0 t

0.4
I z

n z / zz c








 

Since u0.4 1  , it results: 

     t
u

0

1
I z

n z / z c z



;     v uI z 0.75 I z  ;     w uI z 0.50 I z   

 
The following picture shows the diagram of the longitudinal turbulence intensity as 
provided by ESDU, based upon an advanced parametric model, assuming ct = 1. 
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Energy cascade 

Turbulent fluctuations may be schematized as the superposition of eddies in periodic 
motion with wave number K 2 n / u  ; each eddy may be idealized as sphere with 
diameter d u / n . The psdf of turbulence describes the distribution of the energy 
content associated with eddies with different wave number and diameter. Mechanical 
and thermal convections produce low frequency kinetic energy associated with large 
eddies. In the inertial sub-range there is neither production nor dissipation of energy, 
but an energy transfer from larger to smaller eddies. In the high frequency range small 
eddies dissipate viscous energy. This sequence is well known as energy cascade. 

 
The following picture shows the psdf of turbulence in a bi-logarithmic scale; the first 
scheme corresponds to actual phenomenon of the energy cascade, the second scheme 
illustrates the representation usually adopted in wind engineering. 
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In the low frequency range: 

  0S n n  

In the inertial sub-range: 

  5/3S n n  

In the high frequency range: 

   kS n n k 7   

Wind engineering models overestimate the energy content of turbulence in the high 
frequency range; this is often reasonable since in this domain energy is small. 

Von Karman spectrum 

In 1948 von Karman developed an extensive series of experiments during which he 
created a turbulent homogeneous (independent of the translation of the reference system) 
and isotropic (independent of the rotation of the reference system) flow in a wind 
tunnel. Introducing the results in the theory of turbulence, he proposed the spectral 
equations: 

 

   

u

u
5/62 2

u
u

2

11/62 2

f L
4nS n z

f L
1 70.8

z

f L f L
4 1 755.2

z znS n
v,w

f L
1 283.2

z

 







     

   
    

     
     

   

 

where f nz / u  is the reduced frequency, also known as Monin coordinate; L is the 
integral length scale of the  turbulence component ( = u, v, w) in the x direction. 
This latter quantity identifies the average size along x of turbulence eddies associated 
with (t). In mathematical terms it is defined as:  

   x x
x x2

0

1
L R r dr u,v,w



 


  
   

     x
xR r E x, y,z; t x , y,z; t         being the auto-correlation function of (t), as a 

function of xr x x  . 

The time scale of turbulence is given by: 
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   t
2

0

1
T R d u,v,w



 


    
   

where      t R E x, y,z; t x, y,z; t          is the auto-correlation function of (t), as 

a function of the time lag t t   . 

This problem greatly simplifies, assuming that the turbulent field is frozen in space, 
and it is convected with velocity u . This assumption is known as Taylor’s hypothesis 
and provides the relationship: 

     t x x x
xR R r R u L u T           

Using Wiener-Khintchine equations: 

     t

0

S n 4 R cos 2 n d


       

   
x 2

t 2

0

4 L
S 0 4 R d 4T

u


 

   


        

 x
2

uS 0
L

4








 

The following figure shows three classical representations of the Karman spectrum. 

 
The Karman spectrum has three fundamental properties: 

1) for n and f tending to zero, namely in the small frequency range,   0S n n : 

 
24L

S n
u
 




  

2) for n and f large enough, namely in the inertial sub-range,   5/3S n n : 

  2/3
2

nS n
f 




 


 

where u = 0.115, v = w = 0.0965; this condition perfectly matches the theories 
developed by Kolmogorov (1941) and Batchelor (1953). 
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3) the following relationship holds: 

 
 

m2

nS nd 1 z
0 f

d ln f d L



  

 
    

 

where u v wd 6.868,d d 9.434   . 

 
Generalized turbulence spectrum 

In general terms, the spectrum of turbulence may be expressed as (Olesen et al, 1984; 
Tieleman, 1995): 

 
 2

*

nS z,n A f

u 1 B f







 







 

where  f nz / u z  is the reduced frequency. The non-dimensional parameters A, 

B, ,  and  shall be selected in order to satisfy the main spectral properties. The 
following figure illustrates the criterion in accordance with which  = 1,  = 5/3. 

 
Thus, the turbulence spectrum may be rewritten as (Fichtl & Mc Vehil, 1970): 

 
   2 5/ 3

*

nS z,n A f

u 1 B f




 






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Assuming 5 / 3   provides the pointed model: 

 
 2 5/3

*

nS z,n A f

u 1 B f
 






 

Assuming 1   provides the blunt model: 

 
 5/32

*

nS z,n A f

u 1 B f
 






 

Adopting the blunt model, Solari and Piccardo (2001) first imposed the condition: 

 *
m

2 2

0

B
A

1
u S z,

.5
n dn

f


  




     
 

    

 
 

m
5/32

m

nS z,n f / f

1 1.5f / f
 

 


 

 

 
Matching the parameters implicit in the Karman spectrum: 

 m

1 z
f

d L z
 

   

     
   

 5/32

nS z,n d nL z / u z
u,v,w

1 1.5d nL z / u z

  

  

  
   

 

where u v wd 6.868,d d 9.434   . 

Besides, selecting a set of measurements coherent with the spectrum requirements, 
they provided the empirical relationships: 

 u

z
L z L

z


   
 

 ;     v uL z 0.25 L z   ;     w uL z 0.10 L z   

where  = 0.67 + 0.05ln(z0), L  300 m, z  = 200 m, z0 is expressed in meters. The 
following diagrams, corresponding to different roughness length, show the fitting of 
experimental data by the above empirical model. 
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One-point / three-turbulence-components representation 

Theory and experimental evidence show that: 

u ,v   statistically independent   uvu v 0, S n 0     

v w   statistically independent   vwv w 0, S n 0     

u ,w   strongly correlated, with 2
*u w u     

 
A reasonable expression of the cross-power spectral density function (cpsdf) of u ,w   
is given by Teunissen (1970), ESDU (1974) 

 uw
2
*

nS z,n

u


 
   
       

u w

2
uw u w

u

nS z,n nS z,n1 1

A z z z 1 0.4 nL z u z
 

     

 

     
   

   
    0.21u w

uw w u20
u w

u

nS z,n nS z,n1
A z dn 1.11 L z / L z

z z 1 0.4 nL z u z


         

  
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Two-points / one-turbulence-component representation 

The cpsdf of the same turbulence component in two points of space is given by: 

       S M,M ;n S z;n S z ;n Coh M,M ;n       

where n is frequency; M and M' are two points with coordinates x, y, z and x', y', z'; 
S(z;n) is the psdf of '(M;t); Coh(M,M';n) is the cohf of '(M;t) and '(M';t). This 
latter function tends to decrease on increasing the distance between these points and 
the wave number K 2 n / u  . 

Line coherence function 

 
This concept was introduced by Cramer (1959) and especially by Davenport (1961), 
who proposed a simple empirical model to express the coherence of the longitudinal 
turbulence component, between any couple of points aligned in the y or z directions. 

     
ru

u

2nC r r
Coh r,r ;n exp

u r u r

       
 

where Cru is the exponential decay coefficient of the turbulence component u' in the 
directions r = y, z. 

The following figure shows the first diagrams provided by Davenport in 1961. 
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Subsequent analyses carried out by Pielke and Panofsky (1970) extended the previous 
formula to any turbulence component and to any direction aligned with the Cartesian 
axes x, y, z: 

     
r2nC r r

Coh r, r ;n exp u,v,w;r x, y,z
u r u r




          
 

where Cr is the exponential decay coefficient of the turbulence component ' = u', v', 
w' in the directions r = x, y, z. 

 
The following table provides average values of the exponential decaying coefficients. 

Cxu Cxv Cxw Cyu Cyv Cyw Czu Czv Czw 

3 3 0.5 10 6.5 6.5 10 6.5 3 

The following histogram, of experimental nature, shows the typical spread of one of 
the above coefficients. 
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Space coherence function 

The above formulation concerns the coherence function of any turbulence component 
in any direction aligned with the Cartesian axes x, y, z. 

Vickery (1970) extended this formulation to the coherence function of the longitudinal 
turbulence component in a plane orthogonal to the mean wind direction x: 

2 22 2
yu zu

u
2n C (y y ) C (z z )

Coh (M,M ;n) exp
u(z) u(z )

          
 

Wind

x
y

z

 

This expression was extended later to any turbulence component in any point M and 
M' in the space: 

22
r r2n C (r r )

Coh (M,M ;n) exp
u(z) u(z )




         
 

where the sum over r is carried out for r = x, y, z. 
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Two-points / three-turbulence-components representation 

The cross-power spectral density matrix of the three turbulence components in two 
different points M and M' in the space may be written as: 
       

     
     

     
     
     

     
     
     

     

u uv uw u uv uw

vu v vw vu v vw

wu wv w wu wv w

u uv uw u uv uw

vu v vw

wu wv w

M,M M,M M,M

M,M M,M M,M

M,M M,M M,M

M ,M M ,M M ,M

M ,M M ,M M ,M

M ,M M ,M M ,M

S z S z S z S S S

S z S z S z S S S

S z S z S z S S S

S S S S z S z S z

S S S S

S S S

  

  

  

  

  

  

   
   
   
      

   
 
 
  

S

     
     

vu v vw

wu wv w

z S z S z

S z S z S z

 
 
 
 
 
  
      
        

where the dependence on frequency has been omitted for sake of simplicity. 

Since Suv(z;n) = Svw(z;n) = 0, it is usually assumed that also Suv(M,M';n) = Svw(M,M';n) 
= 0. Thus, the cross-power spectral density matrix of the three turbulence components 
in two different points M and M' in the space may be rewritten as: 

     
 

   

   
 
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   

   
 

   
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v v

wu w wu w

u uw u uw
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         
           

S

 
Advanced models of Suw(M,M';n) have been proposed by Mann (1994) and by Tubino 
and Solari (2005). 

Atmospheric thermal stratification 

Atmospheric thermal stratification may be classified in accordance with two parameters, 
namely the Richardson number and the Obukhov length:  

 
a

2

g Γ-Γ
Ri=

T u/ z 
 

3
*

0

u
L

g
Q

T




 

where g is the gravity acceleration, T  is the mean atmospheric temperature,   is the 
lapse rate, a = g/cp is the dry adiabatic lapse rate, cp is the specific heat at constant 
pressure, Qo = Ho/(cp), Ho is the vertical heat flux (positive upwards). 
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Atmospheric thermal stratification Ri 1/L 

Neutral 0   

Stable > 0 > 0 

Unstable < 0 < 0 

Several theoretical and empirical models exist to represent the intensity and the psdf 
of the three turbulence components. The following figure shows the main properties 
of turbulence with reference to the atmospheric thermal stratification. 

   
The following figures show some field measurements of the longitudinal turbulence 
intensity as a function of the mean wind velocity. 
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Complex terrains 

All the previous discussion has been referred to flat homogeneous terrains. Computer 
programs are available to schematize turbulence parameters in complex terrains. One 
of these programs has been developed by ESDU to estimate turbulence intensity in 
terrains involving roughness changes and simple topographic features. This program 
has been improved and generalized by WinDyn taking into account, among other 
aspects, any complex terrain. The following figure shows the longitudinal turbulence 
intensity at 10 m height in the Port of Livorno. 

   
The following figure shows the longitudinal turbulence intensity as evaluated along 
the axis of the deck of the Messina Strait Bridge, on varying the wind direction. 
Atmosphere is neutrally stratified. 
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Peak wind velocity 

The following treatment refers to the maximum wind velocity in the wind direction. 
This quantity is referred to as the peak wind velocity. 

 
The mean value of the peak wind velocity is given by the relationship: 

max u uu u g    

where u  is the mean wind velocity, gu is the velocity peak coefficient, u is the 
standard deviation (rms value) of the longitudinal turbulence. It follows that: 

 u
max u u uu u 1 g u 1 g I

u

      
 

 

max uu u G  

where Gu is referred to as the velocity gust factor: 

u u uG 1 g I   

 
 u u

u

0.5772
g 2 n T

2 n T
  





 

u
u

u

1

2


 

 
  
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in which T = 10 minutes = 600 s is the length of the temporal interval where the peak 
wind velocity is determined, u is the expected frequency of the longitudinal turbulence 
process, u   is the rms value of the wind acceleration  u t : 

     22
u u u0 0

S n dn 2 n S n dn
 

       

Experience shows that Gu typically varies between 1,3 and 1,7, assuming on average 
the indicative value Gu = 1,5. 

It should be remembered that, for sake of simplicity, for lack of knowledge and on 
the safe side, all the psdf currently available assume that, in the high frequency range: 

  5/3S n n  

 
It follows that, for n tending to infinite: 

     2 2 5/3 1/3
u uS n 2 n S n n n n     

Thus, 2
u   assumes an infinite value, and the theory of maximum cannot be applied. 

This problem is usually overcome by replacing the instantaneous velocity history u(t) 
by its mobile average over a short time interval . It is possible to demonstrate that 
such operation is equivalent to replace the power spectral density function Su(n) by 
the modified function: 

     * 2
u u uS n S n n   

where u is a frequency filter defined as: 

   
u

sin n
n n 0

n

 
  

 
 

Since this operation is aimed at defining the gust peak,  is also called the duration of 
the gust peak. 
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1 / 

 u n

n

1

 
Based on this approach (Solari 1993): 

*
max uu u G  

* *
u u u 0G 1 g I  P  

 
 

* *
u u

*
u

0.5772
g 2 n T

2 n T
  





 ;   * 1

u
u 0

u

L
 

P

P
 

0 0.74

1

1 0.56


 
P


 ;   1

1.44
0

0.032



P

P 
 ;   

u

u

L


   

Example 

 0z 0.05m, z 10m, u z 25m/s    

     u 0I z 1 / n z / z 1 / n 10 / 0.05 0.19     

     u 0L z 300 z / 200 ; 0.67 0.05 n z 0.52
       uL z 63m  

T 600s, 1s 1 25 / 63 0.4         

* *
0 1 u u0.78; 0.093 0.137 Hz g 3.164       P P  

*
uG 1 3.164 0.19 0.78 1.53      

maxu 25 1.53 38.25 m/s    

Design wind velocity 

The following figure shows the mean wind velocity profile and the peak wind velocity 
profile. It is worth noting that, due to the partial correlation of turbulence, the peak 
wind velocities do not occur simultaneously at each height. This means that designing 
a structure under the peak wind velocity profile is widely prudential and not realistic. 
Instead, this is definitely correct and even more necessary, when designing a small 
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structural or non structural element. In other words, the design wind velocity depends 
on the size of the element or the structure to design. 

 

This can be dealt with by correlating the duration  of the gust peak with the size L of 
the element or structure considered. On increasing L,  increases and Gu

* diminishes. 
This concept can be quantified through the relationship (Greenway 1979, Solari 1993): 

yu zuC C L

u


   

where Cyu and Czu are exponential decay coefficients;  = 0,35 – 0,45. 

Example 

Assume u 20m/s , uI 0.2 , uL 75m , T = 600 s, Cyu = Czu = 10,  = 0.4. The table 
below reports the design peak velocity for 4 elements or structures with characteristic 
size L = 3, 5, 10, 20 m, respectively. 

L (m)  (s)   P0 P1/P0 *
u (Hz) *

ug  *
uG  maxu (m/s)

3 0,6 0,160 0,874 0,448 0,178 3,245 1,61 32,2 

5 1 0,267 0,826 0,214 0,123 3,130 1,57 31,4 

10 2 0,533 0,740 0,079 0,075 2,968 1,51 30,2 

20 4 1,067 0,630 0,029 0,045 2,792 1,44 28,8 

Remembering that the velocity pressure is proportional to the squared wind velocity, 
passing from L = 3 m to L = 20 m implies that the load is reduced by a factor 0,8. 


