Symbole	n° relation de définition	Machine à pôles saillants	Machine à rotor lisse
x_d	(25)	0,8 à 1,5	1,5 à 2,5
x'd	(24)	0,25 à 0,4	0,2 à 0,35
x'' _d	(23)	0,15 à 0,25	0,15 à 0,25
x _q	(27)	0,5 à 1,1	1,5 à 2,5
X''	(26)	0,15 à 0,25	0,15 à 0,25
T'do	(18)	4 à 8 s	8 à 12 s
T'do	(18)	0,03 à 0,06 s	0,03 à 0,06 s
T'd	(19)	1,5 à 3 s	1 à 2 s
T''d	(19)	0,02 à 0,05 s	0,02 à 0,05 s
T" qo	(21)	0,03 à 0,06 s	0,03 à 0,06 s
T'' q	(21)	0,02 à 0,05 s	0,02 à 0,05 s
T _{KD}	(22)	0,01 à 0,03 s	0,01 à 0,03 s

Tableau 5.1

III.4.4. Remarque : schémas équivalents

On peut représenter par des schémas les impédances opérationnelles suivant les deux axes :

 \bullet L'impédance opérationnelle suivant l'axe direct $\,R_{\mbox{\scriptsize R}}^{} + p\,\, f_{\mbox{\scriptsize d}}^{}(p)$, soit :

$$Z_{d}(p) = R_{S} + pL_{d} - \frac{p^{3}(L_{KD}M_{F}^{2} + L_{F}M_{KD}^{2}) + p^{2}(R_{KD}M_{F}^{2} + R_{F}M_{KD}^{2}) - 2p^{3}M_{F}M_{FD}M_{KD}}{p^{2}(L_{F}L_{KD} - M_{FD}^{2}) + p(R_{F}L_{KD} + R_{KD}L_{F}) + R_{F}R_{KD}},$$

peut s'écrire :

$$Z_{d}(p) = R_{S} + p\left(L_{d} - \frac{M_{F}M_{KD}}{M_{FD}}\right) + Z_{d}'(p)$$
,

avec

$$Z_{\rm d}'(p) = p \, \frac{ \left[R_{\rm F} M_{\rm KD}^2 + p \, (L_{\rm F} M_{\rm KD}^2 - M_{\rm F} M_{\rm FD} M_{\rm KD}) \right] \left[R_{\rm KD} M_{\rm F}^2 + p \, (L_{\rm KD} M_{\rm F}^2 - M_{\rm F} M_{\rm FD} M_{\rm KD}) \right] }{ M_{\rm F} M_{\rm FD} M_{\rm KD} \left[R_{\rm F} R_{\rm KD} + p \, (R_{\rm F} L_{\rm KD} + R_{\rm KD} L_{\rm F}) + p^2 \, (L_{\rm F} L_{\rm KD} - M_{\rm FD}^2) \right] }$$

L'impédance Z'd(p) est de la forme

$$Z_{d}^{\prime}(p) = \frac{Z_{1}Z_{2}Z_{3}}{Z_{1}Z_{2} + Z_{2}Z_{3} + Z_{1}Z_{3}}$$
,

si on prend :

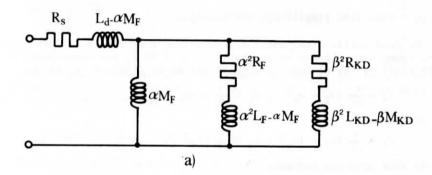
$$Z_1 = p \frac{M_F M_{KD}}{M_{FD}}$$

$$Z_{2} = R_{F} \frac{M_{KD}^{2}}{M_{FD}^{2}} + p \left(L_{F} \frac{M_{KD}^{2}}{M_{FD}^{2}} - \frac{M_{F}^{M}KD}{M_{FD}} \right)$$

$$Z_{3} = R_{KD} \frac{M_{F}^{2}}{M_{FD}^{2}} + p \left(L_{KD} \frac{M_{F}^{2}}{M_{FD}^{2}} - \frac{M_{F}^{M}KD}{M_{FD}} \right)$$

On peut donc représenter l'impédance opérationnelle $Z_d(p)$ à l'aide du schéma équivalent de la figure 5.3a où, en série avec $R_S + p(L_d - \frac{M_F M_{KD}}{M_{FD}})$, on a placé les trois impédances Z_1 , Z_2 et Z_3 en parallèle. Pour simplifier les écritures on a posé

$$\alpha = \frac{M_{KD}}{M_{FD}}$$
 ; $\beta = \frac{M_{F}}{M_{FD}}$.



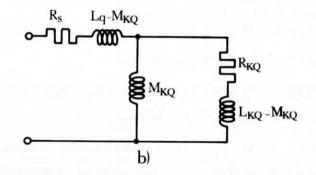


Figure 5.3

 \bullet L'impédance opérationnelle d'axe en quadrature $\ R_{\mbox{\scriptsize g}}^{\mbox{\tiny }+\mbox{\tiny p}} \, f_{\mbox{\scriptsize q}}^{\mbox{\tiny }}(p)$, soit

$$Z_{q}(p) = R_{S} + pL_{q} - \frac{p^{2}M_{KQ}^{2}}{R_{KO} + pL_{KO}}$$

peut s'écrire :
$$Z_{q}(p) = R_{S} + p(L_{q} - M_{KQ}) + \frac{pM_{KQ}[R_{KQ} + p(L_{KQ} - M_{KQ})]}{R_{KQ} + pL_{KQ}}$$

$$= R_{S} + p(L_{q} - M_{KQ}) + \frac{pM_{KQ}[R_{KQ} + p(L_{KQ} - M_{KQ})]}{pM_{KQ} + [R_{KQ} + p(L_{KQ} - M_{KQ})]}$$