Examen

Nombre:		CI:		#
	Nombre completo		Cédula	HOJAS

Escribir nombre y cédula en cada hoja.

Escribir las hojas de un solo lado.

Comenzar un nuevo ejercicio en una nueva hoja.

1. (35 puntos) Sea
$$f: D \to \Re$$
 tal que $f(x) = \begin{cases} x^2 + 1 & x \le 1 \\ \frac{-x^2 + 4}{(x-1)^2} & x > 1 \end{cases}$

- (a) Estudiar:
 - i. El dominio de la función f.
 - ii. Signo de la función f.
 - iii. Límites infinitos y límites laterales en los puntos que corresponda.
 - iv. Crecimiento de la función f.
 - v. Bosquejar la función f.
- (b) i. Resolver f(x) = -1.
 - ii. Bosquejar la función |f|.
- 2. (30 puntos) Sea la sucesión $(a_n)_{n\geq 1}$ definida por recurrencia: $a_1=4$ y $a_{n+1}=\frac{2a_n+5}{8-a_n}$. Se sabe que $a_n\leq 5$
 - (a) Probar que $a_n \ge 1$ para todo $n \ge 1$.
 - (b) Estudiar la monotonía de la sucesión $(a_n)_{n\geq 1}$.
 - (c) Justificar que $(a_n)_{n\geq 1}$ es una sucesión convergente. Halla el límite de $(a_n)_{n\geq 1}$.
 - (d) Sea la sucesión $(b_n)_{n\geq 1}$ definida por recurrencia: $b_1=0$ y $b_{n+1}=\frac{b_n+1}{3-2b_n}$. Calcular los primeros 4 términos de la sucesión $(b_n)_{n\geq 1}$
- 3. (35 puntos) Se consideran la recta $r = \begin{cases} x = 1 \\ 2y z = 1 \end{cases}$ y el plano $\pi : -x + 2y + z = 3$
 - (a) Hallar la recta s que pasa por el punto $A = (0, \frac{1}{2}, 1)$, es paralela al plano π y se corta con la recta r.
 - (b) Hallar la recta t incluida en el plano π , que es perpendicular a la recta r.
 - (c) Calcular la distancia entre las rectas s y t.