Escribir nombre y cédula en cada hoja.

Escribir las hojas de un solo lado.

Comenzar un nuevo ejercicio en una nueva hoja.

- 1. (30 puntos) Considerar la función: $f: \mathbb{R} \to \mathbb{R}: f(x) = \frac{x^2-4}{x-1}$
 - (a) Determinar los valores de α para que la función h(x) sea continua. $h(x) = \begin{cases} f(x) & x \leq 2 \\ \cos(\alpha x) & x > 2 \end{cases}$
 - (b) Realizar el estudio analítico y representación gráfica de f(x)
 - (c) Resolver la siguiente inecuación: $\begin{cases} f(x) < 0 \\ \frac{|5x+1|}{|x-1|} \le 0 \end{cases}$
- 2. (30 puntos) Se consideran los siguientes números complejos
 - (a) $u = \sqrt{18}/-45^{\circ}$
 - (b) $v = 5/180^{\circ}$
 - (c) $w = \overline{(u+v)}$
 - i. Hallar los reales α,β y γ sabiendo que los complejos u,v y w cumplen con el siguiente sistema

$$\begin{cases} \alpha u - v = 11 - 6i \\ \alpha v + \beta w = -8 - 3i \\ \beta u + \gamma w = \frac{-11}{3} + 4i \end{cases}$$

ii. Hallar $m \in \mathbb{R}$ sabiendo que la matriz M no es invertible

$$M = \begin{pmatrix} 3 & -3 & 9 \\ -5 & 0 & -10 \\ -2 & 3 & m \end{pmatrix}$$

- iii. Considerar $P \in M_{(2x2)}(\mathbb{R})$ que resulta de eliminar la fila 1 y la columna 3 de la matriz M. Hallar la inversa de P y verificar el cálculo.
- 3. (40 puntos)
 - (a) Hallar la recta r que pasa por A = (0, 1, 0) y corta a las rectas

Haliar la recta
$$r$$
 que pasa por $A=(0,1,0)$ y corta a la r_1 $\begin{cases} x=1+\lambda \\ y=1-\lambda \\ z=1+2\lambda \end{cases}$ y r_2 $\begin{cases} x=\mu \\ y=1-3\mu \\ z=4\mu \end{cases}$

- (b) Hallar la recta s que pasa por B = (1, -1, 2); se intersecta con la recta $s_1 \begin{cases} x = z 1 \\ y = 2 \end{cases}$ y es paralela al plano $\pi : x 3y + 2z = 1$.
- (c) Estudiar la posición relativa de las rectas r y s.

	1.a	1.b	1.c	2.a	2.b	2.c	3.a	3.b	3.c	Total
Para uso del profesor:										