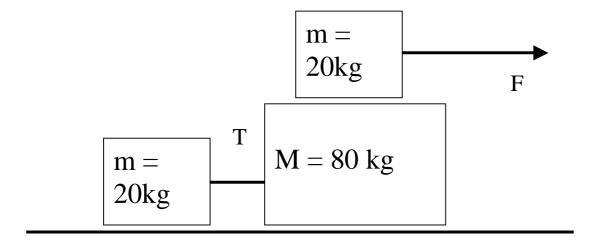
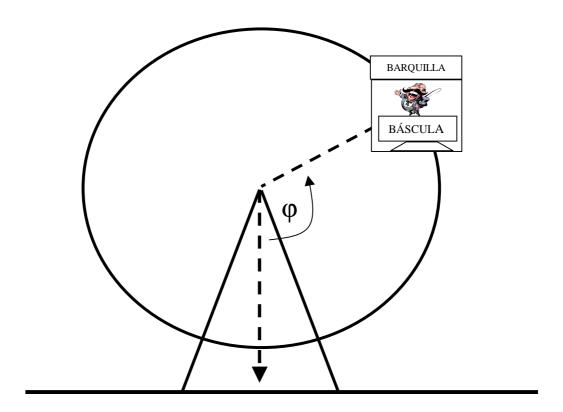
1er Parcial de Física 1


Carrera de Tecnólogo Mecánico

Problema 1

El conjunto de masas de la figura están apoyadas sin fricción sobre el piso.

Entre las masas m y M existe una fuerza de fricción con coeficientes $\mu_K=0.25$ y $\mu_S=0.3$


- 1. Determinar la máxima fuerza F_{max} , capaz de mover al conjunto de masas en forma conjunta.
- 2. Determinar en esas circunstancias el valor de T
- Si la fuerza F_{max} actúa sólo por 3 minutos y si el sistema está quieto inicialmente:
- 3. Determinar el movimiento ulterior de las tres masas y el valor ulterior de la tensión T.
- 4. Determinar el trabajo suministrado por F en esos 3 minutos y la energía cinética final.
- 5. ¿Cuál es la máxima potencia instantánea suministrada por F?

Problema 2

La "Rueda Gigante" del parque tiene un radio de R = 10m y gira a razón de $\omega = 1$ rpm. Sobre una "báscula de baño", que se mantiene horizontal sujeta al piso de la barquilla, se apoya una persona de masa m = 80 kg.

- 1. Determinar la lectura de la báscula en función de φ.
- 2. ¿Cuál debiera ser la menor velocidad angular de la rueda, para que la báscula marque cero para $\varphi = 135^{\circ}$?
- 3. Graficar en esa circunstancia la lectura de la báscula en función del ángulo φ

$$\overrightarrow{a} = \begin{pmatrix} \bullet & & & \bullet & 2 \\ r & - & r & \varphi \end{pmatrix} \xrightarrow{e_r} + \begin{pmatrix} \bullet \bullet & & \bullet & \bullet \\ r & \varphi & + & 2r & \varphi \end{pmatrix} \xrightarrow{e_{\varphi}} + \begin{pmatrix} \bullet \bullet & & & \bullet \\ z & e_{z} \end{pmatrix}$$

Problema 3

Se sabe que el perihelio (distancia menor al Sol) del cometa Halley vale 0.571623 UA (UA = unidad astronómica = distancia Tierra - Sol = 150 millones de km) y su período vale 75.3 años.

Determinar los siguientes valores de su órbita alrededor del Sol:

1.	a	semieje mayor	(UA)
2.	c	distancia focal	(UA)
3.	b	semieje menor	(UA)
4.	ε	excentricidad	(%)
5.	• A	velocidad areolar	(UA ² /año)
6.	V _{max}	velocidad máxima	(UA / año)
7.	v_{min}	velocidad mínima	(UA / año)

Se sabe que el telescopio astronómico Hubbel describe una órbita circular alrededor de la tierra a una altura sobre tierra de 600 km.

8. Determinar su período

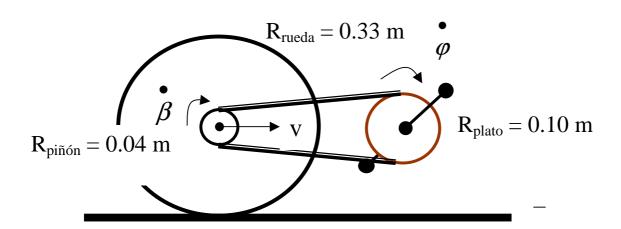
Se sabe que los 24 satélites del sistema de posicionamiento global (GPS) describen órbitas circulares y que sus períodos son todos iguales a 12 horas.

9. Determinar sus alturas sobre tierra

Se sabe que los satélites G.O.E.S., de uso meteorológico son geoestacionarios

10. Determinar su altura y plano de ubicación

Problema 4


La aceleración angular que le imparte el ciclista a los pedales de una bicicleta con piñón fijo es la siguiente:

$$\varphi$$

$$\begin{cases} a & \text{para } 0 < t < 240 \text{ s} \\ -a & \text{para } 240 < t < 480 \text{ s} \end{cases}$$

En el instante inicial (t = 0),

$$\varphi(0) = 0$$
 y $\varphi(0) = 0$

- 1. Hallar y graficar las funciones $\varphi(t)$, $\varphi(t)$ y $\varphi(t)$ en función del tiempo.
- 2. ¿Cómo se relaciona la velocidad angular de la rueda trasera $\beta(t)$ con la velocidad angular de los pedales $\phi(t)$?
- 3. ¿Cómo se relaciona la velocidad lineal de la bicicleta V con la velocidad angular de los pedales $\phi(t)$? (se supone que la rueda gira sin deslizar sobre el pavimento)
- 4. Si la máxima velocidad que alcanza la bicicleta es de 4 m/s , ¿cuánto vale a? y ¿qué distancia recorre en los 480 s?

