15

Switched-mode and Resonant

dc-to-dc Power Supplies

A switched-mode power supply (smps) or switching regulator, efficiently converts a dc volage level to another dc volage level, usually at power levels below a few kilowatts. Shunt and series linear regulator power supplies dissipate much of their energy across the regulating transistor, which operates in the linear mode. An smps achieves regulation by varying the on to off time duty cycle of the switching element. This minimises losses, irrespective of load conditions.
Figure 15.1 illustrates the basic principle of the ac-fed smps in which the ac mains input is rectified, capacitively smoothed, and supplied to a high-frequency transistor required dc output voltage. A high-frequency transformed, and smoothed to give the is required. The output voltage is sensed by a control circuit that adjusts the duty cycle of the switching transistor in order to maintain a constant output voltage with respect to load and input voltage variation. Alternatively, the chopper can be configured and controlled such that the input current tracks a scaled version of the input ac supply voltage, therein producing unity (or controllable) power factor $I-V$ input conditions. The switching frequency can be made much higher than the $50 / 60 \mathrm{~Hz}$ line frequency; then the filtering and transformer elements used can be made small, lightweight, low in cost, and efficient.
Depending on the requirements of the application, the dc-to-dc converter can be one of four basic converter types, namely

- forward
- flyback
- resonant.
15.1

The forward converter

The basic forward converter, sometimes called a buck converter, is shown in figure 15.2a. The input voltage E_{i} is chopped by transistor T . When T is on, because the input voltage E_{i} is greater than the load voltage v_{o}, energy is transferred from the dc supply E_{i} o L, C, and the load R. When T is turned off, stored energy in L is transferred via diode
D to C and the load R.

If all the stored energy in L is transferred to C and the load before T is turned back on, operation is termed discontinuous, since the inductor current has reached zero. If T is turned on before the current in L reaches zero, that is, if continuous current flows in L, operation is termed continuous.
Parts b and c respectively of figure 15.2 illustrate forward converter circuit current nd voltage waveforms for continuous and discontinuous conduction of L.
For analy in the output voltage v_{o} is magnitude of the capacitor C across the output. The input voltage E_{i} is also assumed constant, such that $E_{i} \geq v$

Switched-mode and Resonant dc Power Supplies

(b)

Figure 15.2. Non-isolated forward converter (buck converter) where $v_{0} \leq E_{1}$: Figure 15.2. Non-isolated forward converter (buck converter) where $v_{0} \leq E_{1}$:
(a) circuit diagram; (b) waveforms for continuous output current; and (c) waveforms for discontinuous output current.
15.1.1 Continuous inductor current

The inductor current is analysed first when the switch is on, then when the switch is off. When transistor T is turned on for period t_{T}, the difference between the supply voltage E_{i} and the output voltage v_{o} is impressed across L. From $V=L d i / d t=L \Delta i / \Delta t$, the current change through the inductor will be

$$
\begin{equation*}
\Delta i_{L}=\hat{i}_{L}-\grave{i}_{L}=\frac{E_{i}-v_{o}}{L} \times t_{T} \tag{15.1}
\end{equation*}
$$

When T is switched off for the remainder of the switching period, τ - τ_{T}, the freewheel diode D conducts and $-v_{0}$ is impressed across L. Thus, assuming continuous conduction

$$
\begin{equation*}
\Delta i_{L}=\frac{v_{o}}{L} \times\left(\tau-t_{T}\right) \tag{15.2}
\end{equation*}
$$

Equating equations (15.1) and (15.2) gives

$$
\left(E_{i}-v_{o}\right) t_{T}=v_{o}\left(\tau-t_{T}\right)
$$

This expression shows that the inductor average voltage is zero, and after rearranging

$$
\frac{v_{o}}{E_{i}}=\frac{\bar{I}_{i}}{\bar{I}_{o}}=\frac{t_{T}}{\tau}=\delta \quad 0 \leq \delta \leq 1
$$

$$
(15.4)
$$

This equation shows that for a given input voltage, the output voltage is determined by the transistor conduction duty cycle and the output is always less than the input voltage. This confirms and validates the original analysis assumption that $E_{i} \geq v_{o}$. The voltage. This confirms and validates the original analysis assumption that $E_{i} \geq v_{o}$.
voltage transfer function is independent of circuit inductance L and capacitance C.
The inductor rms ripple current (and capacitor ripple current in this case) is given by

$$
\begin{equation*}
i_{L r}=\frac{\Delta i_{L}}{2 \sqrt{3}}=\frac{1}{2 \sqrt{3}} \frac{v_{o}}{L}(1-\delta) \tau=\frac{1}{2 \sqrt{3}} \frac{E_{i}}{L}(1-\delta) \delta \tau \tag{15.5}
\end{equation*}
$$

while the inductor total

$$
\begin{equation*}
i_{L \mathrm{~ms}}=\sqrt{\overline{I_{L}^{2}}+i_{L t}^{2}}=\sqrt{\bar{I}_{L}^{2}+\left(\frac{1}{2} \Delta i_{L} / \sqrt{3}\right)^{2}}=\sqrt{\frac{1}{3}\left(\hat{i}_{L}^{2}+\hat{i}_{L} \times \check{i}_{L}+\check{i}_{L}^{2}\right)} \tag{15.6}
\end{equation*}
$$

The switch and diode average and rms currents are given by

$$
\begin{array}{ll}
\bar{I}_{T}=\bar{I}_{i}=\delta \bar{I}_{o} & I_{\text {Tmss }}=\sqrt{\delta} i_{L m s} \\
\bar{I}_{D}=\bar{I}_{o}-\bar{I}_{i}=(1-\delta) \bar{I}_{o} & I_{D m s}=\sqrt{1-\delta} i_{L m s} \tag{15.7}\\
\text { ductor current, hence output current, is } \bar{I}_{\text {a }} \text {, then t }
\end{array}
$$

If the average inductor current, hence output current, is I_{L}, then the maximum and minimum inductor current levels are given by

$$
\begin{align*}
\hat{i}_{L}=\bar{I}_{L}+1 / 2 \Delta i_{L} & =\bar{I}_{o}+1 / 2 \frac{v_{o}}{L}(1-\delta) \tau \\
& =v_{o}\left[\frac{1}{R}+\frac{1-\delta}{2 f L}\right] \tag{15.8}
\end{align*}
$$

and

$$
\begin{align*}
\check{i}_{L}=\bar{I}_{L}-1 / 2 \Delta i_{L} & =\bar{I}_{o}-1 / 2 \frac{v_{o}}{L}(1-\delta) \tau \\
& =v_{o}\left[\frac{1}{R}-\frac{1-\delta}{2 f L}\right] \tag{10.9}
\end{align*}
$$

respectively, where Δi_{L} is given by equation (15.1) or (15.2). The average output
current is $\bar{I}_{L}=1 / 2\left(\hat{i}_{L}+\check{i}_{L}\right)=\bar{I}_{o}=v_{o} / R$. The output power is therefore v_{o}^{2} / R. Circuit waveforms for continuous conduction are shown in figure 15.2b.

Switch utilisation ratio

The switch utilisation ratio, SUR, is a measure of how fully a switching device's power handling capabilities are utilised in any switching application. The ratio is defined as

$$
\begin{equation*}
\operatorname{SUR}=P_{o u \prime} / p \widehat{V}_{T} \hat{I}_{T} \tag{15.10}
\end{equation*}
$$

where p is the number of power switches in the circuit; $p=1$ for the forward converter. The switch maximum instantaneous voltage and current are \widehat{V}_{T} and I_{T} respectively. As shown in figure 15.2b, the maximum switch voltage supported in the off-state is E_{i}, while the maximum current is the maximum inductor current i_{L} which is given by equation (15.8). If the inductance L is large such that the ripple current is small, the peak inductor current is approximated by the average inductor current $\hat{I}_{T} \approx \bar{I}_{L}=\bar{I}_{o}$,
that is hat is

$$
\begin{equation*}
\operatorname{SUR}=\frac{v_{o} \bar{I}_{o}}{1 \times E_{i} \times \bar{I}_{o}}=\frac{v_{o}}{E_{i}}=\delta \tag{15.11}
\end{equation*}
$$

which assumes continuous inductor current. This result shows that the higher the duty cycle, that is the closer the output voltage v_{o} is to the input voltage E_{i}, the better the switch $I-V$ ratings are utilised.

5.1.2 Discontinuous inductor curre

The onset of discontinuous inductor operation occurs when the minimum inductor current \breve{i}_{L}, reaches zero. That is, with $\grave{i}_{L}=0$ in equation (15.9), the last equality

$$
\begin{equation*}
\frac{1}{R}-\frac{(1-\delta)}{2 f L}=0 \tag{15.12}
\end{equation*}
$$

elates circuit component values (R and L) and operating conditions $(f$ and δ) at the verge of discontinuous inductor current. Also, with $i_{L}=0$ in equation (15.9)

$$
\begin{equation*}
\bar{I}_{L}=\bar{I}_{o}=1 / 2 \Delta i_{L} \tag{15.13}
\end{equation*}
$$

which, after substituting equation (15.1) or equation (15.2), yields

$$
\begin{equation*}
\bar{I}_{L}=\bar{I}_{o}=\frac{\left(E_{i}-v_{o}\right)}{2 L} \tau \delta \quad \text { or } \quad \frac{E_{i}}{2 L} \tau \delta(1-\delta) \tag{15.14}
\end{equation*}
$$

ff the transistor on-time t_{T} is reduced (or the load current is reduced), the discontinuous condition dead time t_{x} is introduced as indicated in figure 15.2 c . From equations (15.1) and (15.2), with $i_{L}=0$, the output voltage transfer function is now derived as follows

$$
\begin{equation*}
\hat{i}_{L}=\frac{\left(E_{i}-v_{o}\right)}{L} t_{T}=\frac{v_{o}}{L}\left(\tau-t_{T}-t_{x}\right) \tag{15.15}
\end{equation*}
$$

that is

$$
\begin{equation*}
\frac{v_{o}}{E_{i}}=\frac{\delta}{1-\frac{t_{x}}{\tau}} \quad 0 \leq \delta<1 \tag{15.16}
\end{equation*}
$$

his voltage transfer function form may not be particularly useful since the dead time t_{x} not expressed in term of circuit parameters. Accordingly, from equation (15.15)

$$
\hat{i}_{L}=\frac{\left(E_{i}-v_{o}\right)}{L} t_{T}
$$

$$
\begin{equation*}
\bar{I}_{i}=1 / 2 \hat{i}_{L} \times \frac{t_{T}}{\tau} \tag{15.18}
\end{equation*}
$$

Eliminating \hat{i}_{L} yields

$$
\begin{equation*}
\frac{2 \bar{I}_{i}}{\delta}=\left(1-\frac{v_{o}}{E_{i}}\right) \frac{\tau \delta E_{i}}{L} \tag{15.19}
\end{equation*}
$$

hat is

$$
\begin{equation*}
\frac{v_{o}}{E_{i}}=1-\frac{2 L \bar{I}_{i}}{\delta^{2} \tau E_{i}} \tag{15.20}
\end{equation*}
$$

Assuming power-in equals power-out, that is, $E_{i} \bar{I}_{i}=v_{o} \bar{I}_{o}=v_{o} \bar{I}_{L}$, the input average current can be eliminated, and after re-arranging yields:

$$
\begin{equation*}
\frac{v_{o}}{E_{i}}=\frac{1}{1+\frac{2 L \bar{I}_{o}}{\delta^{2} \tau E_{i}}}=\frac{1}{1+\frac{2 L \bar{L}_{i}}{\delta^{2} \tau v_{o}}} \tag{15.21}
\end{equation*}
$$

At a low output current or high input voltage, there is a likelihood of discontinuous inductor conduction. To avoid discontinuous conduction, larger inductance values are needed, which worsen transient response. Alternatively, with extremely low on-state duty cycles, a voltage-matching transformer can be used to increase δ. Once using a nsformer, any smps technique can be used to achieve the desired output voltage. Figures 15.2 b and c show that the input current is always discontinuous.

5.1.3 Load conditions for discontinuous inductor current

As the load current decreases, the inductor average current also decreases, but the inductor ripple current magnitude is unchanged. If the load resistance is increased sufficiently, the bottom of the triangular inductor current, \check{i}_{L}, eventual reduces to zero. Any further increase in resistance causes discontinuous inductor current and the linear oltage transfer function given by equation (15.4) is no longer valid and equations 15.16) and (15.20) are applicable. The critical load resistance for continuous inductor current is specified by

$$
\begin{equation*}
R_{o t i t} \leq \frac{v_{o}}{\bar{I}_{o}}=\frac{v_{o}}{1 / 2 \Delta i_{L}} \tag{15.22}
\end{equation*}
$$

Substitution for v_{o} from equation (15.2) and using the fact that $\bar{I}_{o}=\bar{I}_{L}$, yields

$$
\begin{equation*}
R_{c r i t} \leq \frac{v_{o}}{\bar{I}_{o}}=\frac{\Delta i_{L} L}{\bar{I}_{L}\left(\tau-t_{T}\right)} \tag{15.23}
\end{equation*}
$$

Eliminating Δi_{L} by substituting the limiting condition given by equation (15.13) gives

$$
\begin{equation*}
R_{c o t t} \leq \frac{v_{o}}{\bar{I}_{o}}=\frac{\Delta i_{L} L}{\bar{I}_{L}\left(\tau-t_{T}\right)}=\frac{2 \bar{I}_{L} L}{\bar{I}_{L}\left(\tau-t_{T}\right)}=\frac{2 L}{\left(\tau-t_{T}\right)} \tag{15.24}
\end{equation*}
$$

Divide throughout by τ and substituting $\delta=t_{T} / \tau$ yields

$$
\begin{equation*}
R_{\text {crit }} \leq \frac{v_{o}}{\bar{I}_{o}}=\frac{2 L}{\left(\tau-t_{T}\right)}=\frac{2 L}{\tau(1-\delta)} \tag{15.25}
\end{equation*}
$$

The critical resistance can be expressed in a number of forms. By substituting the switching frequency ($f_{s}=1 / \tau$) or the fundamental inductor reactance ($X_{L}=2 \pi f_{s} L$) the following forms result.

$$
R_{\text {crit }} \leq \frac{v_{o}}{\bar{I}_{o}}=\frac{2 L}{\tau(1-\delta)}=\frac{2 f_{s} L}{(1-\delta)}=\frac{X_{L}}{\pi(1-\delta)}
$$

If the load resistance increases beyond $R_{\text {crit, }}$, the output voltage can no longer be maintained with duty cycle control according to the voltage transfer function in equation (15.4). Notice that equation (15.26) is in fact equation (15.12), re-arranged.

15.1.4 Control methods for discontinuous inductor current

Once the load current has reduced to the critical level as specified by equation (15.26), the input energy is in excess of the load requirement. Open loop load voltage regulation Hardware approaches can be used to solve this problem

- increase L thereby decreasing the inductor current ripple p-p magnitude
- increase L thereby decreasing the inductor current ripple p-p magnitude load impedance
Two control approaches to maintain output voltage regulation when $R>R_{c r i t}$ are
- vary the switching frequency f_{s}, maintaining the switch on-time t_{T} constant so that Δi_{L} is fixed or
- reduce the switch on-time t_{T}, but maintain a constant switching frequency f_{s}, thereby reducing Δi_{L}.
If a fixed switching frequency is desired for all modes of operation, then reduced onime control, using output voltage feedback, is preferred. If a fixed on-time mode of control is used, then the output voltage is control by varying inversely the frequency with output voltage.
15.1.4i-fixed on-time $\boldsymbol{t}_{\boldsymbol{T}}$, variable switching frequency $f_{\text {var }}$

The operating frequency $f_{\text {var }}$ is varied while the switch-on time t_{T} is maintained constant such that the ripple current remains unchanged. Operation is specified by equating the input energy and the output energy, thus maintaining a constant capacitor charge, hence output voltage. That is, equating energies

$$
\begin{equation*}
1 / 2 \Delta i_{L} E_{i} t_{T}=\frac{v_{o}^{2}}{R} \frac{1}{f_{\mathrm{var}}^{2}} \tag{15.27}
\end{equation*}
$$

solating the variable switching frequency $f_{v a}$ give

$$
\begin{aligned}
& f_{\mathrm{var}}=\frac{v_{o}^{2}}{1 / 2 i_{i} E_{i} t_{T}} \frac{1}{R} \\
& f_{\mathrm{var}}=f_{s} R_{c t i t} \times \frac{1}{R} \\
& f_{\mathrm{var}} \propto \frac{1}{R}
\end{aligned}
$$

That is, once discontinuous inductor current occurs, if the switching frequency is varied nversely with load resistance and the switch on-state period is maintained constant, output voltage regulation can be maintained.

Load resistance R is not a directly or readily measurable parameter for feedback proposes. Alternatively, since $v_{o}=\bar{I}_{o} R$ substitution for R in equation (15.28) gives

$$
\begin{equation*}
f_{\mathrm{var}}=f_{s} \frac{R_{\text {ctit }}}{v_{o}} \times \bar{I}_{o} \tag{15.29}
\end{equation*}
$$

$$
f_{\text {vax }} \propto \bar{I}_{o}
$$

That is, for $\bar{I}_{o}<1 / 2 \Delta i_{L}$ or $\bar{I}_{o}<v_{o} / R_{\text {citi }}$, if t_{T} remains constant and $f_{\text {var }}$ is varied proportionally with load current, then the required output voltage v_{o} will be maintained.
15.1.4ii - fixed switching frequency $f_{\text {s }}$, variable on-time $t_{\text {Tvar }}$

The operating frequency f_{s} remains fixed while the switch-on time $t_{\text {Tvar }}$ is reduced, resulting in the ripple current being reduced. Operation is specified by equating the input energy and the output energy as in equation (15.27), thus maintaining a constant capacitor charge, hence voltage. That is

$$
\begin{equation*}
1 / 2 \Delta i_{L} E_{t} t_{\text {ruar }}=\frac{v_{o}^{2}}{R} \frac{1}{f_{s}} \tag{15.30}
\end{equation*}
$$

Isolating the variable on-time $t_{T \text { var }}$ yields

$$
t_{T \text { Tax }}=\frac{v_{o}^{2}}{1 / 2 \Delta i_{i} E_{f} f} \frac{1}{R}
$$

Substituting Δi_{L} from equation (15.2) gives

$$
\begin{align*}
& t_{T \mathrm{uar}}=t_{T} \sqrt{R_{\text {cut }}} \times \frac{1}{\sqrt{R}} \\
& t_{T \mathrm{uxr}} \quad \propto \frac{1}{\sqrt{R}} \tag{15.31}
\end{align*}
$$

That is, once discontinuous inductor current commences, if the switch on-time is varied inversely to the square root of the load resistance, maintaining the switching frequency onstant,
rable parameter for feedback proposes and substitution of v / \bar{I} for R in equation (15.31) gives

$$
\begin{align*}
& t_{T \text { var }}=t_{T} \sqrt{\frac{R_{\text {out }}}{v_{o}}} \times \sqrt{\bar{I}_{o}} \tag{15.32}\\
& t_{T_{\text {var }}} \propto \sqrt{\bar{I}_{o}}
\end{align*}
$$

That is, if f_{s} is fixed and t_{T} is reduced proportionally to $\sqrt{\bar{I}_{o}}$, when $\bar{I}_{o}<1 / 2 \Delta i_{t}$ or $\bar{I}_{o}<v_{o} / R_{c i i t}$, then the required output voltage magnitude v_{o} will be maintained

15.1.5 Output ripple voltage

Three components contribute to the output voltage ripple

- Ripple charging of the ideal capacitor
- Capacitor equivalent series resistance, ESR
. Capacitor equivalent series inductance, ESL the quality of the capacitor increases. The output ripple voltage is the vectorial summation of the three components that are shown in figure 15.3 for the forward converter
Ideal Capacitor: The ripple voltage for a capacitor is defined as

$$
\Delta v_{C}=\frac{1}{C} \int i d t
$$

Figures 15.2 and 15.3 show that for continuous inductor current, the inductor current which is the output current, swings by Δi around the average output current, \bar{I}_{o}, thus

$$
\begin{equation*}
\Delta v_{C}=\frac{1}{C} \int i d t=1 / 2 \frac{1}{C} \frac{\Delta i}{2} \frac{\tau}{2} \tag{15.33}
\end{equation*}
$$

Substituting for Δi_{L} from equation (15.2)

$$
\begin{equation*}
\Delta v_{C}=\frac{1}{C} \int i d t=1 / 2 \frac{1}{C} \frac{\Delta i}{2} \frac{\tau}{2}=1 / 8 \frac{1}{C} \frac{v_{0}}{L} \times\left(\tau-t_{\mathrm{T}}\right) \tau \tag{15.34}
\end{equation*}
$$

If ESR and ESL are ignored, after rearranging, equation (15.34) gives the percentage voltage ripple (peak to peak) in the output voltage

$$
\begin{equation*}
\frac{\Delta v_{c}}{v_{o}}=\frac{\Delta v_{o}}{v_{o}}=1 / 8 \frac{1}{L C} \times(1-\delta) \tau^{2}=1 / 2 \pi^{2}(1-\delta)\left(f_{c} / f_{s}\right)^{\prime s} \tag{15.35}
\end{equation*}
$$

In complying with output voltage ripple requirements, from this equation, the switching frequency $f_{s}=1 / \tau$ must be much higher that the cut-off frequency given by the forward converter low-pass, second-order $L C$ output filter, $f_{c}=1 / 2 \pi \sqrt{ } L C$.
ESR: The equivalent series resistor voltage follows the ripple current, that is, it swings linearly about

$$
V_{E S R}= \pm 1 / 2 \Delta i \times R_{E S R}
$$

(15.36)

Figure 15.3. Forward converter, three output ripple components, showing: eft -voltage components; centre - waveforms; and right - capacitor model.
ESL: The equivalent series inductor voltage is derived from $v=L d i / d t$, that is when he switch is on

$$
\begin{equation*}
V_{\Delta t}^{+}=L \Delta i / t_{o n}=L \Delta i / \delta \tau \tag{15.37}
\end{equation*}
$$

When the switch is off

$$
\begin{equation*}
V_{\mathrm{Ev}}^{-}=-L \Delta i / t_{\text {off }}=-L \Delta i /(1-\delta) \tau \tag{15.3}
\end{equation*}
$$

The total ripple voltage is

$$
\begin{equation*}
\Delta v_{o}=\Delta v_{c}+V_{E S R}+V_{E S I} \tag{15.39}
\end{equation*}
$$

Forming a time domain solution for each component, then differentiating, gives a maximum ripple when

This expression is independent of the equivalent series inductance, which is expected since it is constant during each state. If dominant, the inductor will affect the output and ripple at the swith turn-on and turn-off instants.

Example 15.1: Buck (step-down forward) converter

The step-down converter in figure 15.2 a operates at a switching frequency of 10 kHz . The output voltage is to be fixed at 48 V dc across a 1Ω resistive load. If the input voltage $E_{i}=192 \mathrm{~V}$ and the choke $L=200 \mu \mathrm{H}$:
i. calculate the switch T on-time duty cycle δ and switch on-time t_{T}.
ii. calculate the average load current \bar{I}_{o}, hence average input current \bar{I}_{i}.
iii. draw accurate waveforms for

- the voltage across, and the current through $L ; v_{L}$ and i_{L}
- the capacitor current, i_{c}
- the switch and diode voltage and current; $v_{T}, v_{D}, i_{T}, i_{D}$.

Hence calculate the switch utilisation ratio as defined by equation (15.11)
calculate the mean and rms current ratings of diode D , switch T and L calculate the capacitor average and rms current, $i_{C \text { ms }}$ and output ripple voltage calculate the maximum load resistance R before discontinuous inductor current. Calculate the output voltage and inductor non-conduction period, t current. Calculate the output voltage and inductor non-conduction period, t_{x} vi. if the maximum load resistance is 1Ω, calculate

- the value the inductance L can be reduced to be on the verge of discontinuous inductor current and for that L
- the peak-to-peak ripple and rms, inductor and capacitor currents.
viil. Specify two control strategies for controlling the forward converter in a discontinuous inductor current mode.
ix. Output ripple voltage hence percentage output ripple voltage, for $C=1000 \mu \mathrm{~F}$ and an equivalent series inductance of $\mathrm{ESL}=0.5 \mathrm{uH}$, assuming ESR $=0 \Omega$

Solution

From equation (15.4) the duty cycle δ is

$$
\delta=\frac{v_{o}}{E_{i}}=\frac{48 \mathrm{~V}}{192 \mathrm{~V}}=1 / 4=25 \%
$$

Also, from equation (15.4), for a 10 kHz switching frequency, the switching period τ is $100 \mu \mathrm{~s}$ and the transistor on-time t_{T} is given by

$$
\frac{v_{o}}{E_{i}}=\frac{t_{T}}{\tau}=\frac{48 \mathrm{~V}}{192 \mathrm{~V}}=\frac{t_{T}}{100 \mu \mathrm{~s}}
$$

whence the transistor on-time is $25 \mu \mathrm{~s}$ and the diode conducts for $75 \mu \mathrm{~s}$.
ii. The average load current is $\bar{I}_{o}=\frac{v_{o}}{R}=\frac{48 \mathrm{~V}}{1 \Omega}=48 \mathrm{~A}=\bar{I}_{L}$

From power-in equals power-out, the average input current is

$$
\bar{I}_{i}=v_{o} \bar{I}_{o} / E_{i}=48 \mathrm{~V} \times 48 \mathrm{~A} / 192 \mathrm{~V}=12 \mathrm{~A}
$$

iii.
is

$$
\Delta i_{L}=\frac{E_{i}-v_{o}}{L} \times t_{T}=\frac{192 \mathrm{~V}-48 \mathrm{~V}}{200 \mu \mathrm{H}} \times 25 \mu \mathrm{~s}=18 \mathrm{~A}
$$

rom part ii, the average inductor current is the average output current, 48A. The required circuit voltage and current waveforms are shown in the following figure. The circuit waveforms show that the maximum switch voltage and current are 192 V and 57A respectively. The switch utilising ratio is given by equation (15.11), that is

$$
S U R=\frac{P_{o u t}}{E_{i} \times \hat{i}_{o}}=\frac{v_{0}^{2} / R}{E_{i} \times \hat{i}_{o}}=\frac{48 \mathrm{~V}^{2} / 1 \Omega}{192 \mathrm{~V} \times 57 \mathrm{~A}} \equiv 21 \%
$$

f the ripple current were assume small, the resulting SUR value of $\delta=33 \%$ gives a misleading under-estimate indication.

iv. Current i_{D} through diode D is shown on the inductor current waveform. The average diode current is

$$
\bar{I}_{D}=\frac{\tau-t_{T}}{\tau} \times \bar{I}_{L}=(1-\delta) \times \bar{I}_{L}=(1-1 / 4) \times 48 \mathrm{~A}=36 \mathrm{~A}
$$

The rms diode current is given by

$$
i_{D_{\text {mas }}}=\sqrt{ } \frac{1}{\tau} \int_{0}^{\tau-t \tau}\left(\hat{i}_{L}-\frac{\Delta i_{L}}{\tau-t_{T}} t\right)^{2} d t=\sqrt{ } \frac{1}{100 \mu \mathrm{~S}} \int_{0}^{75 \mathrm{sss}}\left(57 \mathrm{~A}-\frac{18 \mathrm{~A}}{75 \mu \mathrm{~S}} t\right)^{2} d t
$$

$=41.8 \mathrm{~A}$
Current i_{T} through the switch T is shown on the inductor current waveform. The average switch current is

$$
\bar{I}_{T}=\frac{t_{T}}{\tau} \bar{I}_{L}=\delta \bar{I}_{L}=1 / 4 \times 48 \mathrm{~A}=12 \mathrm{~A}
$$

Alternatively, from power-in equals power-out
$\bar{I}_{T}=\bar{I}_{i}=v_{o} \bar{I}_{o} / E_{i}=48 \mathrm{~V} \times 48 \mathrm{~A} / 192 \mathrm{~V}=12 \mathrm{~A}$
The transistor rms current is given by

$$
i_{\text {Tms }}=\sqrt{ } \frac{1}{\tau} \int_{0}^{t_{\tau}}\left(\check{i}_{L}+\frac{\Delta i_{L}}{t_{T}} t\right)^{2} d t=\sqrt{ } \frac{1}{100 \mu \mathrm{~S}} \int_{0}^{25 \operatorname{sis}_{\mathrm{s}}}\left(39 \mathrm{~A}+\frac{18 \mathrm{~A}}{25 \mu \mathrm{~S}} t\right)^{2} d t
$$

$=24.1 \mathrm{~A}$
The mean inductor current is the mean output current, $\bar{I}_{o}=\bar{I}_{L}=48 \mathrm{~A}$
The inductor rms current is given by equation (15.6), that is

$$
I_{L m \mathrm{~m}}=\sqrt{\bar{I}_{L}^{2}+\left(1 / 2 \Delta i_{L} / \sqrt{3}\right)^{2}}=\sqrt{48 \mathrm{~A}^{2}+(1 / 2 \times 18 \mathrm{~A} / \sqrt{3})^{2}}=48.3 \mathrm{~A}
$$

v. The average capacitor current \bar{I}_{c} is zero and the rms ripple current is given by

$$
\begin{aligned}
i_{C \mathrm{~ms}} & =\sqrt{ } \frac{1}{\tau}\left[\int_{0}^{t_{\tau}}\left(-1 / 2 \Delta i_{L}+\frac{\Delta i_{L}}{t_{T}} t\right)^{2} d t+\int_{0}^{\tau-t / \tau}\left(1 / 2 \Delta i_{L}-\frac{\Delta i_{L}}{\tau-t_{T}} t\right)^{2} d t\right] \\
& =\sqrt{ } \frac{1}{100 \mu \mathrm{~s}}\left[\int_{0}^{25 \mathrm{ss} \mathrm{~s}}\left(-9 \mathrm{~A}+\frac{18 \mathrm{~A}}{25 \mu \mathrm{~s}} t\right)^{2} d t+\int_{0}^{75 \mathrm{ss}}\left(9 \mathrm{~A}-\frac{18 \mathrm{~A}}{75 \mu \mathrm{~s}} t\right)^{2} d t\right]
\end{aligned}
$$

$$
=5.2 \mathrm{~A} \quad\left(=\Delta i_{L} / 2 \sqrt{3}\right)
$$

The capacitor voltage ripple (hence the output voltage ripple), is determined by the capacitor ripple current which is equal to the inductor ripple current, 18Ap-p, that is

$$
v_{\text {oripple }}=\Delta i_{L} \times R_{\text {corr }}
$$

$=18 \mathrm{~A} \times 20 \mathrm{~m} \Omega=360 \mathrm{mV}$ p-p
and the rms output voltage ripple is
$v_{\text {oms }}=i_{\text {Cms }} \times R_{\text {cerr }}$
$=5.2 \mathrm{~A} \mathrm{rms} \times 20 \mathrm{~m} \Omega=104 \mathrm{mV}$ rms
vi. Critical load resistance is given by equation (15.26), namely

$$
\begin{aligned}
R_{\text {coit }} & \leq \frac{v_{o}}{\bar{I}_{o}}=\frac{2 L}{\tau(1-\delta)} \\
& =\frac{2 \times 200 \mu \mathrm{H}}{100 \mu \mathrm{~S} \times(1-1 / 4)}=16 / 3 \Omega \\
& =51 / 3 \Omega \text { when } \bar{I}_{o}=9 \mathrm{~A}
\end{aligned}
$$

Alternatively, the critical load current is $9 \mathrm{~A}\left(1 / 2 \Delta i_{L}\right)$, thus from the equation immediately above, the load resistance must not be greater than $v_{o} / \bar{I}_{o}=48 \mathrm{~V} / 9 \mathrm{~A}=51 / 3 \Omega$, if the inductor current is to be continuous.
When the load resistance is tripled to 16Ω the output voltage is given by equation (15.20), which is shown normalised in table 15.2. That is

$$
\begin{aligned}
& v_{o}=E_{i} k\left[-1+\sqrt{1+\frac{2}{k}}\right] \text { where } k=\frac{\delta^{2} R \tau}{4 L}=\frac{1 / 4^{2} \times 16 \Omega \times 100 \mu \mathrm{~s}}{4 \times 200 \mu \mathrm{H}}=1 / 8 \text { thus } \\
& v_{o}=192 \mathrm{~V} \times 1 / 8 \times\left[-1+\sqrt{1+\frac{2}{1 / 8}}\right]=75 \mathrm{~V}
\end{aligned}
$$

he inductor current is zero for an interval of the $100 \mu \mathrm{~s}$ switching period, and the time is given by the appropriate normalised expression involving t_{x} for the forward converter in table 15.2 or by equation (15.16), which when re-arranged to isolate t_{x} becomes

$$
t_{x}=\tau\left(1-\frac{\delta}{v_{o} / E_{i}}\right)=100 \mu \mathrm{~s} \times\left(1-\frac{1 / 4}{75 \mathrm{~V} / 50 \mathrm{~V}}\right)=36 \mu \mathrm{~s}
$$

vii. The critical resistance formula given in equation (15.26) is valid for finding critical inductance when inductance is made the subject of the equation, that is, rearranging equation (15.26) gives

$$
\begin{aligned}
L_{\text {crit }} & =1 / 2 \times R \times(1-\delta) \times \tau \quad(\mathrm{H}) \\
& =1 / 2 \times 1 \Omega \times(1-1 / 4) \times 100 \mu \mathrm{~s}=371 / 2 \mu \mathrm{H}
\end{aligned}
$$

This means the inductance can be reduced from $200 \mu \mathrm{H}$ with a 48 A mean and 18 A p-p ipple current, to $371 / 2 \mu \mathrm{H}$ with the same 48A mean plus a superimposed 96 A p-p ripple current. The rms capacitor current is given by

$$
i_{\mathrm{Cms}}=\Delta i_{L} / 2 \sqrt{3}
$$

$$
=96 \mathrm{~A} / 2 \sqrt{3}=27.2 \mathrm{~A} \mathrm{rms}
$$

The inductor rms current requires the following integration

$$
\begin{aligned}
i_{L \text { ms }} & =\sqrt{ } \frac{1}{\tau}\left[\int_{0}^{\left.T_{\tau}\left(\check{i}_{L}+\frac{\Delta i_{L}}{t_{T}} t\right)^{2} d t+\int_{0}^{\tau-t / t}\left(\hat{i}_{L}-\frac{\Delta i_{L}}{\tau-t_{T}} t\right)^{2} d t\right]}\right. \\
& =\sqrt{ } \frac{1}{100 \mu \mathrm{~s}} \times\left[\int_{0}^{25 \mathrm{ss}}\left(0+\frac{96 \mathrm{~A}}{25 \mu \mathrm{~s}} t\right)^{2} d t+\int_{0}^{75 \mathrm{ss}}\left(96 \mathrm{~A}-\frac{96 \mathrm{~A}}{75 \mu \mathrm{~s}} t\right)^{2} d t\right]
\end{aligned}
$$

or from equation (15.6)

$$
=96 / \sqrt{3}=55.4 \mathrm{Arms}
$$

$$
\begin{aligned}
i_{L \mathrm{~mm}} & =\sqrt{\bar{I}_{L}^{2}+i_{L \text { Lipple }}^{2}} \\
& =\sqrt{48^{2}+(96 / 2 \sqrt{3})^{2}} \\
& =55.4 \mathrm{~A} \mathrm{rms}
\end{aligned}
$$

viii. For $R>16 / 3 \Omega$, or $\bar{I}_{o}<9 \mathrm{~A}$, equations (15.29) or (15.32) can be used to develop a suitable control strategy.
(a) From equation (15.29), using a variable switching frequency of less than
10 Hzz

$$
\begin{aligned}
& f_{\mathrm{var}}=f_{s} \frac{R_{\text {cut }}}{V_{o}} \bar{I}_{o}=10 \mathrm{kHz} \frac{51 / 3 \Omega}{48 \mathrm{~V}} \bar{I}_{o} \\
& f_{\mathrm{var}}=\frac{10}{9} \times \bar{I}_{o} \mathrm{kHz}
\end{aligned}
$$

(b) From equation (15.32), maintaining a fixed switching frequency of 10 kHz , the on-time duty cycle is reduced for $\bar{I}_{o}<9 \mathrm{~A}$ according to

$$
\begin{aligned}
& t_{T \text { vut }}=t_{T} \sqrt{\frac{R_{\text {cout }}}{v_{o}}} \sqrt{\bar{I}_{o}}=25 \mu \mathrm{~s} \sqrt{\frac{5 \mathrm{y} / \Omega}{48 \mathrm{~V}}} \sqrt{\bar{I}_{o}} \\
& t_{T_{\text {vut }}}=\frac{25}{3} \times \sqrt{\overline{I_{o}}} \mu \mathrm{~s}
\end{aligned}
$$

ix. From equation (15.33) the output ripple voltage due the pure capacitor is given by

$$
\begin{aligned}
\Delta v_{C} & =\frac{\Delta i \tau}{8 C} \\
& =\frac{18 \mathrm{~A} \times 100 \mu \mathrm{~s}}{8 \times 1000 \mu \mathrm{~F}}=225 \mathrm{mV} \mathrm{p}-\mathrm{p}
\end{aligned}
$$

The voltage produced because of the equivalent series $0.5 \mu \mathrm{H}$ inductance is
$V_{B t}^{+}=L \Delta i / \delta \tau$
$=0.5 \mu \mathrm{H} \times 18 \mathrm{~A} / 0.25 \times 100 \mu \mathrm{~s}=360 \mathrm{mV}$
$V_{\text {st }}^{-}=-L \Delta i /(1-\delta) \tau$
$=-0.5 \mu \mathrm{H} \times 18 \mathrm{~A} /(1-0.25) \times 100 \mu \mathrm{~s}=-120 \mathrm{mV}$
Time domain summation of the capacitor and ESL inductor voltages show that the peak to peak output voltage swing is determined by the ESL inductor, giving
$\Delta v_{o}=V_{E L L}^{+}-V_{E L I}^{-}$
$=360 \mathrm{mV}+120 \mathrm{mV}=480 \mathrm{mV}$
The percentage ripple in the output voltage is $480 \mathrm{mV} / 48 \mathrm{~V}=1 \%$
5.1.6 Underlying mechanisms of the forward converter

The inductor current is pivotal to the analysis and understanding of any smps. For analysis, the smps internal and external electrical conditions are in steady-state on a
cycle-by-cycle basis and the input power is equal to the output power cycle-by-cycle basis and the input power is equal to the output power switching cycle. That is, the average capacitor current is zero:

$$
\bar{I}_{c}=\frac{1}{\tau} \int_{t}^{1+\tau} i_{c}(t) d t=0
$$

In so being, the output capacitor provides any load current deficit and stores any load current surplus associated with the inductor current within each complete cycle. Thus, cycle-by-cycle basi, and because of its large capaitance does not vary simificantly within a cycle. whin a cycle
$v=L d i / d t$ the equal area criteria in chapter 11.11 i

$$
i_{t+t}-i_{t}=\frac{1}{L} \int_{t}^{t+t} v_{L}(t) d t=0 \text { since } i_{t+t}=i_{t} \text { in steady-state }
$$

Thus the average inductor voltage is zero:

$$
\bar{V}_{L}=\frac{1}{\tau} \int_{t}^{1+\tau} v_{L}(t) d t=0
$$

The most enlightening way to appreciate the operating mechanisms is to consider how the inductor current varies with load resistance R and inductance L. The figure 15.4 shows the inductor current associated with the various parts of example 15.1. For continuous inductor current operation, the two necessary and sufficient equations output voltage requirement, equation (15.2) can be simplified to show that the ripple
current is inversely proportional to inductance, as follow

$$
\begin{align*}
& \Delta i_{L}=\frac{v_{o}}{L} \times\left(\tau-t_{T}\right) \tag{15.41}\\
& \Delta i_{L} \alpha \frac{1}{L}
\end{align*}
$$

噱 to the load current, then the average inductor current is inversely proportional to the load resistance, that is

$$
\begin{aligned}
& \text { tional to the load } \\
& \bar{I}_{L}=\bar{I}_{o}=v_{o} / R
\end{aligned}
$$

$$
\begin{equation*}
\bar{I}_{L} \alpha \frac{1}{R} \tag{15.42}
\end{equation*}
$$

(a)
(b)

Equation (15.42) predicts that the average inductor current is inversely proportional to the load resistance, as shown in figure 15.4 a . As the load is varied, the triangular inductor current moves vertically, but importantly the peak-to-peak ripple current is constant, that is the ripple current is independent of load. As the load current is progressively decreased, by increasing R, the peak-to-peak current is unchanged; the inductor minimum current eventually reduces to zero, and discontinuous inductor current operation occurs.
Equation (15.41) indicates that the inductor ripple current is inversely proportional to inductance, as shown in figure 15.4 b . As the inductance is varied the ripple current
varies inversely, but importantly the average curret is constant varies inversely, but importantly the average current is constant, and specifically the load current, v, R. As the inductance decreases the magnitude of the ripple current increases, the average is unchanged, and the minimum inductor current eventually , average is unchanged, and the reaches zero and discontinuous inductor current operation results.

15.2 Flyback converters

Flyback converters store energy in an inductor, termed 'choke', and transfer that energy to the load storage capacitor such that output voltage magnitudes in excess of the input voltage are attained. Flyback converters are alternatively known as ringing choke converters. Two versions of the flyback converter are possible

- The step-up voltage flyback converter, called the boost converter, where no output voltage polarity inversion occurs.
- The step-up/step-down voltage flyback converter, called the buck-boost converter, where output voltage polarity inversion occurs.

15.3 The boost converter

The boost converter transforms a dc voltage input to a dc voltage output that is greater in magnitude but has the same polarity as the input. The basic circuit configuration is shown in figure 15.5 a. It will be seen that when the transistor is off, the output capacitor is charged to the input voltage E_{i}. Inherently, the output voltage v_{o} can never be less than the input voltage level.
When the transistor is turned on, the supply voltage E_{i} is applied across the inductor L and the diode D is reverse-biased by the output voltage v_{o}. Energy is transferred from he supply to L and wacitor. While the inductor is transferring its stored energy to the energy is als The aso being provided from the input source
continuous or discontinuous. For analysis, we assume $v>E_{\text {at }}$ and current can be either output voltage. Inductor currents are then linear and vary according to $v=L d i / d t$.

15.3.1 Continuous inductor current

The circuit voltage and current waveforms for continuous inductor conduction are shown in figure 15.5 b . The inductor current excursion, which is the input current excursion, during the switch on-time t_{T} and switch off-time $\tau-t_{T}$, is given by

Figure 15.5. Noo-isolated, step-up, flyback converter (boost converter) where $v_{0} \geq E_{1}$ (a) circuit diagram; (b) waveforms for continuous input current; and
(c) waveforms for discontinuous input current.
that is, after rearranging, the voltage transfer function is given by

$$
\begin{equation*}
\frac{v_{o}}{E_{i}}=\frac{\bar{I}_{i}}{\bar{I}_{o}}=\frac{1}{1-\delta} \tag{15.44}
\end{equation*}
$$

where $\delta=t_{T} / \tau$ and t_{T} is the transistor on-time The maximum inductor current, which is he maximum input current, \hat{i}_{L}, using equation (15.43), is given by

$$
\begin{align*}
\hat{i}_{L} & =\bar{I}_{L}+1 / 2 \Delta i_{L}=\bar{I}_{i}+1 / 2 \frac{E_{t} t_{T}}{L} \\
& =\frac{\bar{I}_{o}}{1-\delta}+1 / \frac{v_{o}}{L}(1-\delta) \delta \tau=v_{o}\left[\frac{1}{(1-\delta) R}+\frac{(1-\delta) \delta \tau}{2 L}\right] \tag{15.4}
\end{align*}
$$

while the minimum inductor current, \check{i}_{4} is given by

$$
\begin{align*}
\check{i}_{L} & =\bar{I}_{L}-1 / 2 \Delta i_{L}=\bar{I}_{i}-1 / 2 \frac{E_{t} t_{T}}{L} \\
& =\frac{\bar{I}_{o}}{1-\delta}-1 / 2 \frac{v_{o}}{L}(1-\delta) \delta \tau=v_{o}\left[\frac{1}{(1-\delta) R}-\frac{(1-\delta) \delta \tau}{2 L}\right] \tag{1.46}
\end{align*}
$$

For continuous conduction $i_{L} \geq 0$, that is, from equation (15.46)

$$
\begin{equation*}
\bar{I}_{L} \geq 1 / 2 \frac{E_{t} t_{T}}{L}=1 / 2 \frac{v_{o}(1-\delta) t_{T}}{L} \tag{15.47}
\end{equation*}
$$

The inductor rms ripple current (and input ripple current in this case) is given by

$$
\begin{equation*}
i_{L r}=\frac{\Delta i_{L}}{2 \sqrt{3}}=\frac{1}{2 \sqrt{3}} \frac{v_{o}}{L}(1-\delta) \delta \tau \tag{15.48}
\end{equation*}
$$

The harmonic components in the int currest
while the inductor total rms current is

$$
\begin{equation*}
i_{L \mathrm{~ms}}=\sqrt{\bar{I}_{L}^{2}+i_{L r}^{2}}=\sqrt{\overline{I_{L}^{2}}+\left(\frac{1 / 2 i_{L}}{} / \sqrt{3}\right)^{2}}=\sqrt{\frac{1}{3}\left(\hat{i}_{L}^{2}+\hat{i}_{L} \times \check{i}_{L}+\check{i}_{L}^{2}\right)} \tag{15.50}
\end{equation*}
$$

The switch and diode average and rms currents are given by

$$
\begin{array}{ll}
\bar{I}_{T}=\bar{I}_{i}-\bar{I}_{o}=\delta \bar{I}_{i}=\delta \bar{I}_{L} & I_{\text {Tmas }}=\sqrt{\delta} i_{L \text { mas }} \\
\bar{I}_{D}=(1-\delta) \bar{I}_{i}=\bar{I}_{o} & I_{D m \text { mas }}=\sqrt{1-\delta} i_{L_{\text {mma }}}
\end{array}
$$

Switch utilisation ratio
The switch utilisation ratio, SUR, is a measure of how fully a switching device's power handling capabilities are utilised in any switching application. The ratio is defined as

$$
\begin{equation*}
\operatorname{SUR}=P_{\text {oum }} / p \widehat{V}_{T} \hat{I}_{T} \tag{15.52}
\end{equation*}
$$

where p is the number of power switches in the circuit; $p=1$ for the boost converter. The switch maximum instantaneous voltage and current are \widehat{V} and \hat{I} respectively. As shown in figure 15.5 b , the maximum switch voltage supported in the ${ }_{T}$ fespective is v_{D} while the maximum current is the maximum inductor current \hat{i}, which is given by equation (15.45). If the inductance L is large such that the ripple current is small, the peak inductor current is approximated by the average inductor current such that $\hat{I}_{T} \approx \bar{I}_{L}=\bar{I}_{o} / 1-\delta$, that is

$$
\begin{equation*}
S U R=\frac{v_{o} \bar{I}_{o}}{v_{o} \times \bar{I}_{o} / 1-\delta}=1-\delta \tag{15.53}
\end{equation*}
$$

which assumes continuous inductor current. This result shows that the lower the duty cycle, that is the closer the step-up voltage v_{o} is to the input voltage E_{i}, the better the switch $1-V$ ratings are utilised.

15.3.2 Discontinuous capacitor charging current in the switch off-state

It is possible that the input current (inductor current) falls below the output (resistor) current during a part of the cycle when the switch is off and the inductor is transferring current during a part of the cycle when the switch is off and the inductor is transferring
energy to the output circuit. Under such conditions, towards the end of the off period, energy to the output circuit. Under such conditions, towards the end of the off period, period during which its charge is replenished by inductor energy. The circuit independent transfer function in equation (15.44) remains valid. This discontinuous charging condition occurs when the minimum inductor current and the output current are equal. That is

$$
\begin{align*}
& \bar{I}_{L}-\bar{I}_{o} \leq 0 \\
& \bar{I}_{L}-1 / 2 \Delta i_{L}-\bar{I}_{o} \leq 0 \tag{15.54}\\
& \frac{\bar{I}_{o}}{1-\delta}-1 / 2 \frac{E_{i} \delta \tau}{L}-\bar{I}_{o} \leq 0
\end{align*}
$$

$$
\begin{equation*}
\delta \leq 1-\sqrt{\frac{2 L}{\tau R}} \tag{15.55}
\end{equation*}
$$

15.3.3 Discontinuous inductor current

If the inequality in equation (15.47) is not satisfied, the input current, which is also the inductor current, reaches zero and discontinuous conduction occurs during the switch off period. Various circuit voltage and current waveforms for discontinuous inductor
conduction are shown in figure 15.5 c .
The onset of discontinuous inductor operation occurs when the minimum inductor current i_{L}, reaches zero. That is, with $i_{L}=0$ in equation (15.46), the last equality

$$
\begin{equation*}
\frac{1}{(1-\delta) R}-\frac{(1-\delta) \delta \tau}{2 L}=0 \tag{15.56}
\end{equation*}
$$

relates circuit component values (R and L) and operating conditions (f and δ) at the verge of discontinuous inductor current.
With $\check{i}_{2}=0$, the output voltage is determined as follows

$$
\begin{equation*}
\hat{i}_{L}=\frac{E_{t} t_{T}}{L}=\frac{\left(v_{o}-E_{i}\right)}{L}\left(\tau-t_{T}-t_{x}\right) \tag{15.57}
\end{equation*}
$$

yielding

$$
\begin{equation*}
\frac{v_{o}}{E_{i}}=\frac{1-\frac{t_{x}}{\tau}}{1-\frac{t_{x}}{\tau}-\delta} \tag{15.58}
\end{equation*}
$$

Alternatively, using
and

$$
\hat{i}_{L}=\frac{E_{t} t_{T}}{L}
$$

yields

$$
\bar{I}_{L}-\bar{I}_{o}=1 / 2 \delta \hat{i}_{L}
$$

$$
\frac{2}{\delta}\left(\bar{I}_{L}-\bar{I}_{o}\right)=\frac{E_{t} t_{T}}{L}
$$

Assuming power-in equals power-out

$$
\frac{2}{\delta} \bar{I}_{o}\left(\frac{v_{o}}{E_{i}}-1\right)=\frac{E_{i} t_{T}}{L}
$$

that is

$$
\frac{v_{o}}{E_{i}}=1+\frac{E_{i} t_{T} \delta^{2}}{2 L \bar{I}_{o}}=1+\frac{v_{o} t_{T} \delta^{2}}{2 L \bar{I}_{i}}
$$

$$
\begin{equation*}
\frac{v_{o}}{E_{i}}=\frac{1}{1-\frac{E_{i} t_{T} \delta^{2}}{2 L \bar{J}}} \tag{15.60}
\end{equation*}
$$

On the verge of discontinuous cond

$$
\bar{I}_{o}=\frac{E_{i}}{2 L} \tau \delta(1-\delta)
$$

At a low output current or low input voltage, there is a likelihood of discontinuous
inductor conduction. To avoid discontinuous conduction, larger inductance values are needed, which worsen transient response. Alternatively, with extremely high on-state duty cycles, (because of a low input voltage E_{i}) a voltage-matching step-up transformer can be used to
discontinuous.

153.4 Load conditions for discontinuous inductor current

As the load current decreases, the inductor average current also decreases, but the inductor ripple current magnitude is unchanged. If the load resistance is increased inductor ripple current magnitude is unchanged. If the load resistance is increased
sufficiently, the bottom of the triangular inductor current, \check{i}_{i}, eventually reduces to sufficienty, the bottom of the triangular inductor current, i_{L}, eventually reduces to the voltage transfer function given by equation (15.44) is no longer valid and equations 15.58) and (15.59) are applicable. The critical load resistance for continuous inductor current is specified by

$$
\begin{equation*}
R_{c r i t} \leq \frac{v_{o}}{\bar{I}_{o}} \tag{15.62}
\end{equation*}
$$

Eliminating the output current by using the fact that power-in equals power-out and $\bar{I}_{i}=\bar{I}_{L}$, yields

$$
\begin{equation*}
R_{c r i t} \leq \frac{v_{o}}{\bar{I}_{o}}=\frac{v_{o}^{2}}{E_{i} \bar{I}_{L}} \tag{15.63}
\end{equation*}
$$

Using $\bar{I}_{L}=1 / 2 \Delta i_{L}$ then substituting with the right hand equality of equation (15.43), halved, gives

$$
\begin{equation*}
R_{c o t i} \leq \frac{v_{o}}{\bar{I}_{o}}=\frac{v_{o}^{2}}{E_{i} \bar{I}_{L}}=\frac{v_{o}^{2} 2 L}{E_{i}^{2} t_{T}}=\frac{2 L}{\tau \delta(1-\delta)^{2}} \tag{15.64}
\end{equation*}
$$

The critical resistance can be expressed in a number of forms. By substituting the switching frequency ($f_{s}=1 / \tau$) or the fundamental inductor reactance ($X_{L}=2 \pi f L$) the following forms result.

$$
\begin{equation*}
R_{\text {cett }} \leq \frac{v_{o}}{\bar{I}_{o}}=\frac{2 L}{\tau \delta(1-\delta)^{2}}=\frac{2 f_{s} L}{\delta(1-\delta)^{2}}=\frac{X_{L}}{\pi \delta(1-\delta)^{2}} \tag{15.65}
\end{equation*}
$$

If the load resistance increases beyond R, the output voltage can no longer be maintained with duty cycle control according to the voltage transfer function in equation (15.44). Equation (15.65) is equation (15.56), re-arranged.

15.3.5 Control methods for discontinuous inductor current

Once the load current has reduced to the critical level as specified by equation (15.65), the input energy is in excess of the load requirement. Open loop load voltage regulation control is lost and the capacitor C tends to overcharge, thereby increasing $v_{\text {o. }}$.

Hardware approaches can be used to solve this problem

- increase L thereby decreasing the inductor current ripple p-p magnitude
- step-down transformer impedance matching to effectively reduce the apparent oad impedance
Two control approaches to maintain output voltage regulation when $R>R_{\text {crit }}$ are
- vary the switching frequency f_{s}, maintaining the switch on-time t_{T} constant so
that Δi_{L} is fixed or
- reduce the switch on-time t_{T}, but maintain a constant switching frequency f_{s}, thereby reducing Δi_{L}.
If a fixed switching frequency is desired for all modes of operation, then reduced onime control, using output voltage feedback, is preferred. If a fixed on-time mode of control is used, then the output voltage is control by inversely varying the frequency with output voltage.
15.3.5i-fixed on-time t_{T}, variable switching frequency $f_{\text {var }}$

The operating frequency $f_{v a r}$ is varied while the switch-on time t_{T} is maintained constant such that the ripple current remains unchanged. Operation is specified by equating the input energy and the output energy, thus maintaining a constant capacitor charge, hence output voltage. That is, equaing energies

$$
\begin{equation*}
1 / 2 \Delta i_{L} E_{i} \tau=\frac{v_{o}^{2}}{R} \frac{1}{f_{\mathrm{var}}} \tag{15.66}
\end{equation*}
$$

solating the variable switching frequency $f_{\text {var }}$ gives

$$
\begin{align*}
& f_{\mathrm{var}}=\frac{v_{o}^{2}}{1 / 2 \Delta i_{L} E_{i}} \frac{1}{R} \\
& f_{\mathrm{var}}=f_{s} R_{\text {evit }} \times \frac{1}{R} \\
& f_{\mathrm{var}} \propto \frac{1}{R} \tag{15.67}
\end{align*}
$$

oad resistance R is not a directly proposes. Alternatively, since $v=\bar{I} R$, substitution for R in equation (15.67) gives

$$
\begin{align*}
& f_{\mathrm{var}}=f_{s} \frac{R_{\text {crit }}}{v_{o}} \times \bar{I}_{o} \tag{15.68}\\
& f_{\mathrm{var}} \propto \overline{I_{o}}
\end{align*}
$$

That is, for discontinuous inductor current, namely $\bar{I}_{i}<1 / 2 \Delta i_{L}$ or $\bar{I}_{o}<v_{o} / R_{c r i t}$, if the switch on-state period t_{T} remains constant and $f_{v a r}$ is either varied proportionally with load current or varied inversely with load resistance, then the required output voltage v_{o} will be maintained
15.3.5ii - fixed switching frequency $f_{s,}$ variable on-time t_{T}

The operating frequency f_{s} remains fixed while the switch-on time $t_{\text {Tvar }}$ is reduced such that the ripple current can be reduced. Operation is specified by equating the input energy and the output energy as in equation (15.66), thus maintaining a constant capacitor charge, hence voltage. That is

$$
\begin{equation*}
1 / 2 \Delta i_{L} E_{t} t_{T \text { ur }}=\frac{v_{o}^{2}}{R} \frac{1}{f_{s}} \tag{15.69}
\end{equation*}
$$

Isolating the variable on-time $t_{T \text { var }}$ gives

$$
t_{\tau_{\text {rat }}}=\frac{v_{o}^{2}}{1 / 2 \Delta i_{L} E_{i} f_{s}} \frac{1}{R}
$$

Substituting Δi_{L} from equation (15.43) gives

$$
\begin{align*}
& t_{T \text { var }}=t_{T} \sqrt{R_{\text {ctit }}} \times \frac{1}{\sqrt{R}} \\
& t_{T \text { TuI }} \alpha \frac{1}{\sqrt{R}} \tag{15.70}
\end{align*}
$$

Again, load resistance R is not a directly or readily measurable parameter for feedback proposes and substitution of v_{o} / \bar{I}_{o} for R in equation (15.70) gives

$$
\begin{align*}
& t_{T \text { Tat }}=t_{T} \sqrt{\frac{R_{\text {ctit }}}{v_{o}}} \times \sqrt{\bar{I}_{o}} \tag{15.71}\\
& t_{T \text { Tat }} \alpha \sqrt{\bar{I}_{o}}
\end{align*}
$$

That is, if the switching frequency f_{s} is fixed and switch on-time t_{T} is reduced proportionally to $\sqrt{I_{o}}$ or inversely to \sqrt{R}, when discontinuous inductor current commences, namely $\bar{I}_{i}<1 / 2 \Delta i_{L}$ or $\bar{I}_{o}<v_{o} / R_{\text {cit }}$, then the required output voltage magnitude v_{o} will be maintained

15.3.6 Output ripple voltage

The output ripple voltage is the capacitor ripple voltage. The ripple voltage for a capacitor is defined as

$$
\Delta v_{o}=\frac{1}{C} \int i d t
$$

Figure 15.5 shows that for continuous inductor current, the constant output current \bar{I}_{o} is provided solely from the capacitor during the period $t_{o n}$ when the switch is on, thu

$$
\Delta v_{o}=\frac{1}{C} \int i d t=\frac{1}{C} t_{o n} \bar{I}_{o}
$$

Substituting for $\bar{I}_{o}=v_{o} / R$ gives

$$
\Delta v_{o}=\frac{1}{C} \int i d t=\frac{1}{C} t_{o n} \bar{I}_{o}=\frac{1}{C} t_{o n} v_{o} / R
$$

Rearranging gives the percentage voltage ripple (peak to peak) in the output voltage

$$
\frac{\Delta v_{o}}{v_{0}}=\frac{\delta \tau}{R C}
$$

(15.72)

The capacitor equivalent series resistance and inductance can be account for, as with The capacitor equivalent series resistance and inductance can be account for, as with he forward converter, 15.1.4. When the switch conducts, the output current is constant
and is provided from the capacitor. No ESL voltage effects result during this constant capacitor current portion of the switching cycle.

Example 15.2: Boost (step-up flyback) converter

The boost converter in figure 15.5 is to operate with a $50 \mu \mathrm{~s}$ transistor fixed on-time in order to convert the 50 V input up to 75 V at the output. The inductor is $250 \mu \mathrm{H}$ and the resistive load is 2.5Ω.
. Calculate the switching frequency, hence transistor off-time, assuming continuou inductor current.
ii. Calculate the mean input and output current.
iii. Draw the inductor current, showing the minimum and maximum values.
iv. Calculate the capacitor rms ripple current.
v. Derive general expressions relating the operating frequency to varying loa resistance.
vi. At what load resistance does the instantaneous input current fall below the output current.

Solution

i. From equation (15.44), which assumes continuous inductor curren

$$
\begin{aligned}
& \frac{v_{o}}{E_{i}}=\frac{1}{1-\delta} \quad \text { where } \quad \delta=\frac{t_{T}}{\tau} \\
& \frac{75 \mathrm{~V}}{50 \mathrm{~V}}
\end{aligned}=\frac{1}{1-\delta} \quad \text { where } \quad \delta=\frac{50 \mu \mathrm{~s}}{\tau}=1 / 33
$$

hat is

That is, $\tau=150 \mu \mathrm{~s}$ or $f_{s}=1 / \tau=6.66 \mathrm{kHz}$, with a $100 \mu \mathrm{~s}$ switch off-time.
ii. The mean output current \bar{I}_{o} is given by

$$
\bar{I}_{o}=v_{o} / R=75 \mathrm{~V} / 2.5 \Omega=30 \mathrm{~A}
$$

From power transfer considerations

$$
\bar{I}_{i}=\bar{I}_{L}=v_{o} \bar{I}_{o} / E_{i}=75 \mathrm{~V} \times 30 \mathrm{~A} / 50 \mathrm{~V}=45 \mathrm{~A}
$$

iii. From $v=L$ di $/ d$, the ripple current $\Delta i_{L}=E_{i} t_{T} / L=50 \mathrm{~V} \times 50 \mu \mathrm{~s} / 250 \mu \mathrm{H}=10 \mathrm{~A}$

$$
\begin{aligned}
& \hat{i}_{L}=\bar{I}_{L}+1 / 2 \Delta i_{L}=45 \mathrm{~A}+1 / 2 \times 10 \mathrm{~A}=50 \mathrm{~A} \\
& \check{i}_{L}=\bar{I}_{L}-1 / 2 \Delta i_{L}=45 \mathrm{~A}-1 / 2 \times 10 \mathrm{~A}=40 \mathrm{~A}
\end{aligned}
$$

v. The capacitor current is derived by using Kirchhoff's current law such that at any instant in time, the diode current, plus the capacitor current, plus the 30A constant load current into R, all sum to zero.

$$
\begin{aligned}
& i_{\mathrm{Cms}}=\sqrt{ } \frac{1}{\tau}\left[\int_{0}^{t_{T} \bar{I}_{o}^{2}} d t+\int_{0}^{\tau-t \tau}\left(\frac{\Delta i_{L}}{\tau-t_{T}} t-\hat{i}_{L}+\bar{I}_{o}\right)^{2} d t\right] \\
& =\sqrt{ } \frac{1}{150 \mu \mathrm{~s}}\left[\int_{0}^{9, \mu \mathrm{~s}} 30 \mathrm{~A}^{2} d t+\int_{0}^{1001 \mathrm{~s}}\left(\frac{10 \mathrm{~A}}{100 \mu \mathrm{~s}} t-20 \mathrm{~A}\right)^{2} d t\right] \quad=21.3 \mathrm{~A}
\end{aligned}
$$

v. The critical load resistance, $R_{\text {crit }}$, produces an input current with $\Delta i_{L}=10 \mathrm{~A}$ ripple.

Since the energy input equals the energy output
that is

$$
\begin{aligned}
& \text { 1s the energy output } \\
& 1 / 2 \Delta i \times E_{i} \times \tau=v_{o} \times v_{o} / R_{c \tau i} \times \tau
\end{aligned}
$$

$R_{\text {citi }}=\frac{2 v_{o}^{2}}{E \Delta i}=\frac{2 \times 75 \mathrm{~V}^{2}}{50 \mathrm{~V} \times 10 \mathrm{~A}}=22^{1 / 2} \Omega$
Alternatively, equation (15.65) or equation (15.47) can be rearranged to give $R_{\text {crit }}$.

For a load resistance of less than $22 \frac{1}{2} \Omega$, continuous inductor current flows and the operating frequency is fixed at 6.66 kHz with $\delta=1 / 3$, that is

$$
f_{s}=6.66 \mathrm{kHz} \text { for all } R \leq 22^{1 / 2} \Omega
$$

For load resistance greater than $221 / 2 \Omega,\left(<v_{o} / R_{\text {crit }}=31 / 3 \mathrm{~A}\right)$, the energy input occurs in $150 \mu \mathrm{~s}$ burst whence from equation (15.66)

$$
1 / 2 \Delta i_{L} E_{i} \times 150 \mu \mathrm{~s}=\frac{v_{o}^{2}}{R} \frac{1}{f_{\mathrm{var}}}
$$

hat is

$$
\begin{aligned}
& f_{\text {virt }}=\frac{R_{\text {citit }}}{\tau} \frac{1}{R}=\frac{22^{1} / 2 \Omega}{150 \mu \mathrm{~s}} \frac{1}{R} \\
& f_{\text {vir }}=\frac{150}{R} \mathrm{kHz} \text { for } R \geq 22^{1 / 2 \Omega}
\end{aligned}
$$

vi. The $\pm 5 \mathrm{~A}$ inductor ripple current is independent of the load, provided the critical resistance is not exceeded. When the average inductor current (input current) is less than 5A more than the output current, the capacitor must provide load current not only when the switch is on

$$
\begin{aligned}
& \delta \leq 1-\sqrt{\frac{2 L}{\tau R}} \\
& \frac{1}{3} \leq 1-\sqrt{\frac{2 \times 250 \mu \mathrm{H}}{150 \mu \mathrm{~s} \times \mathrm{R}}}
\end{aligned}
$$

This yields $R \geq 7^{1 / 2} \Omega$ and a load current of 10 A . The average inductor current is 15 A , with a minimum value of 10 A , the same as the load current. That is, for $R<71 / 2 \Omega$ all the load requirement is provided from the input inductor when the switch is off, with excess energy charging the output capacitor. For $R>71 / 2 \Omega$ insufficient energy is period when the switch is off The capacitor supplements the load requirement towards he end of the off period When $R>22^{1 / 2 \Omega}$ (the critical resistance), discontinuous inductor current occurs, and the duty cycle dependent transfer function is no longer valid.

Example 15.3: Alternative boost (step-up flyback) converter
The alternative boost converters (producing a dc supply either above E_{i} (left) or below 0 V (right)) shown in the following figure are to operate under the same conditions as the boost converter in example 15.2, namely, with a $50 \mu \mathrm{~s}$ transistor fixed on-time in
 $250 \mu \mathrm{H}$ and the resistive load is 2.5Ω.

Derive the voltage transfer ration critical resistance expression alternative boost converter, hence showing the control performance is identical to the boost converter shown in figure 15.5 .
ii. By considering circuit voltage and current waveforms, identify how the two boost converters differ from the conventional boost circuit in figure 15.5.

Solution

. Assuming non-zero, continuous inductor current, the inductor current excursion, which for this boost converter is not the input current excursion, during the switch ontime t_{T} and switch off-time τ - t_{T}, is given by

$$
\begin{aligned}
& L \Delta i_{L}=E_{t} t_{T}=v_{C}\left(\tau-t_{T}\right) \\
& \text { on for } v_{c} \text { gives }
\end{aligned}
$$

but $v_{c}=v_{o}-E_{i}$, thus substitution for v_{c} gives

$$
E_{t} t_{T}=\left(v_{o}-E_{i}\right)\left(\tau-t_{T}\right)
$$

and after rearranging,

$$
\frac{v_{o}}{E_{i}}=\frac{\bar{I}_{i}}{\bar{I}_{o}}=\frac{1}{1-\delta} \quad\left(=1+\frac{\delta}{1-\delta}\right)
$$

where $\delta=t_{T} / \tau$ and t_{T} is the transistor on-time. This is the same voltage transfer where $\delta=t_{T} \tau$ and t_{T} is the transistor on-time. This is the same voltage transfer
function as for the conventional boost converter, equation (15.44). This result would fe expected since both converters have the same ac equivalent circuit. Similarly, the critical resistance would be expected to be the same for each boost converter variation. Examination of the switch on and off states shows that during the switch on-state, energy is transfer to the load from the input supply, independent of switching action. This mechanism is analogous to autotransformer action where the output current is due

The critical load resistance for continuous inductor current is specified by $R_{c r i t} \leq v_{o} / \bar{I}_{o}$. By equating the capacitor net charge flow, the inductor current is related to the output with $\Delta i_{L}=E t_{\tau} / L$, give

$$
R_{\text {cot }} \leq \frac{v_{o}}{\bar{I}_{o}}=\frac{v_{o}}{(1-\delta) \bar{I}_{L}}=\frac{v_{o}}{(1-\delta)^{1 / 2 \Delta i_{L}}}=\frac{v_{o}}{(1-\delta)^{1 / 2} E_{t} t_{T} / L}=\frac{2 L}{\tau \delta(1-\delta)^{2}}
$$

hus for a given energy throughput, some energy is provided from the supply to the oad when providing the inductor energy, hence the discontinuous inductor current hreshold occurs at the same load level for each boost converter
i. Since the boost circuits have the same ac equivalent circuit, the inductor and capacitor, currents and voltages would be expected to be the same for each circuit, as hown by the waveforms in example 15.2. Consequently, the switch and diode voltages nd currents are also the same for each boost converter.
The two principal differences are the supply current and the capacitor voltage rating The capacitor voltage rating for the alternative boost converter is $v_{o}-E_{i}$ as opposed to v_{o} for the convention converter
The supply current for the alternative converter is discontinuous, as shown in the following waveforms. This will negate the desirable continuous current feature exploited in boost converters that are controlled so as to produce sinusoidal input current.

Figure: Example 15.3 - waveforms

15.4 The buck-boost converter

The basic buck-boost flyback converter circuit is shown in figure 15.5a. When transistor T is on, energy is transferred to the inductor. When the transistor turns off, inductor current is forced through the diode. Energy stored in L is transferred to C and the load . This transfer action results in an output voltage of opposite polarity to that of the input. Neither the input nor the output current is continuous, although the inducto current may be continuous or discontinuous.

Figure 15.6. Non-isolated, step up/down flyback converter (buck-boost converter)
where $V_{0} \leq 0:$ (a) circuit diagram; (b) waveforms for continuous inductor current; and
(c) discontinuous inductor current waveforms.
\hat{I}_{T} respectively. As shown in figure 15.6 b, the maximum switch voltage supported in the off-state is $E_{i}+v_{o}$, while the maximum current is the maximum inductor current i_{L} which is given by equation (15.75). If the inductance L is large such that the ripple current is small, the peak inductor current is approximated by the average inductor current which yields $I_{T} \approx I_{L}=I_{o} / 1-\delta$, hat

$$
\begin{equation*}
\operatorname{SUR}=\frac{v_{o} \bar{I}_{o}}{\left(E_{i}+v_{o}\right) \times \bar{I}_{o} / 1-\delta}=\delta(1-\delta) \tag{15.81}
\end{equation*}
$$

which assumes continuous inductor current. This result shows that the closer the output voltage v is in magnitude to the input voltage E_{i}, that is $\delta=1 / 2$, the better the switch $I-V$ ratings are utilised

15.4.2 Discontinuous capacitor charging current in the switch off-state

It is possible that the inductor current falls below the output (resistor) current during a part of the cycle when the switch is off and the inductor is transferring energy to the output circuit. Under such conditions, towards the end of the off period, some of the load current requirement is provided by the capacitor even though this is the period during which its charge is replenished by inductor energy. The circuit independent transfer function in equation (15.74) remains valid. This discontinuous charging That is

$$
\begin{align*}
& \check{I}_{L}-\bar{I}_{o} \leq 0 \\
& \bar{I}_{L}-1 / 2 \Delta i_{L}-\bar{I}_{o} \leq 0 \tag{15.82}\\
& \frac{\bar{I}_{o}}{1-\delta}-1 / \frac{\bar{I}_{o} R}{L}(1-\delta) \tau-\bar{I}_{o} \leq 0
\end{align*}
$$

which yields

$$
\begin{equation*}
\delta \leq 1+\frac{L}{\tau R}-\sqrt{\left(1+\frac{L}{\tau R}\right)^{2}-1} \tag{15.83}
\end{equation*}
$$

15.4.3 Discontinuous choke current

The onset of discontinuous inductor operation occurs when the minimum inductor current \check{i}_{L}, reaches zero. That is, with $\grave{i}_{L}=0$ in equation (15.76), the last equality

$$
\begin{equation*}
\frac{1}{(1-\delta) R}-\frac{(1-\delta) \tau}{2 L}=0 \tag{15.84}
\end{equation*}
$$

relates circuit component values (R and L) and operating conditions $(f$ and $\delta)$ at the verge of discontinuous inductor current.

The change from continuous to discontinuous inductor current conduction occurs when

$$
\begin{equation*}
\bar{I}_{L}=\frac{13}{2} \hat{i}_{L}=\frac{1}{2} \Delta i_{L} \tag{15.85}
\end{equation*}
$$

where from equation (15.73) $\quad \hat{i}_{L}=v_{o}\left(\tau-t_{T}\right) / L$
The circuit waveforms for discontinuous conduction are shown in figure 15.6c. The output voltage for discontinuous conduction is evaluated from

$$
\begin{equation*}
\hat{i}_{L}=\frac{E_{i}}{L} t=-\frac{v_{o}}{L}\left(\tau-t_{T}-t_{x}\right) \tag{15.86}
\end{equation*}
$$

which yields

$$
\begin{equation*}
\frac{v_{o}}{E_{i}}=-\frac{\delta}{1-\delta-\frac{t_{x}}{\tau}} \tag{15.87}
\end{equation*}
$$

Alternatively, using equation (15.86) and

$$
\begin{equation*}
\bar{I}_{L}=\frac{1}{2} \delta \hat{\delta}_{L} \tag{15.88}
\end{equation*}
$$

yields

$$
\begin{equation*}
\bar{I}_{L}=\frac{E_{i} \tau \delta}{2 L} \tag{15.89}
\end{equation*}
$$

The inductor current is neither the input current nor the output current, but is comprised of components of each of these currents. Examination of figure 15.6 b , reveals that these currents are a proportion of the inductor current dependant on the duty cycle, and that on the verge of discontinuous conduction:

$$
\bar{I}_{i}=\frac{1}{2} \delta \hat{i}_{L}=\delta \bar{I}_{L} \text { and } \bar{I}_{o}=\frac{1}{2}(1-\delta) \hat{i}_{L}=(1-\delta) \bar{I}_{L} \text { where } \hat{i}_{L}=\Delta i_{L}=\frac{1}{2} \bar{I}_{1}
$$

Thus using $\bar{I}_{i}=\delta \bar{I}_{L}$ equation (15.89) becomes

$$
\begin{equation*}
\bar{I}_{i}=\frac{E_{i} \tau \delta^{2}}{2 L} \tag{15.90}
\end{equation*}
$$

Assuming power-in equals power-out, that is $E_{i} \bar{I}_{i}=v_{o} \bar{I}_{o}$

$$
\begin{equation*}
\frac{v_{o}}{E_{i}}=\frac{E_{i} \tau \delta^{2}}{2 L \bar{I}_{o}}=\frac{v_{o} \tau \delta^{2}}{2 L \bar{L}_{i}}=\delta \sqrt{\frac{\tau R}{2 L}} \tag{15.91}
\end{equation*}
$$

On the verge of discontinuous conduction, these equations can be rearranged to give

$$
\begin{equation*}
\bar{I}_{o}=\frac{E_{i}}{2 L} \tau \delta(1-\delta) \tag{15.92}
\end{equation*}
$$

At a low output current or low input voltage there is a likelihood of discontinuous conduction. To avoid this condition, a larger inductance value is needed, which worsen transient response. Alternatively, with extremely low on-state duty cycles, a voltagematching transformer can be used to increase δ. Once using a transformer, any smps echnique can be used to achieve the desired output voltage. Figures 15.6 b and c show hat both the input and output current are always discontinuous.

15.4.4 Load conditions for discontinuous inductor current

As the load current decreases, the inductor average current also decreases, but the inductor ripple current magnitude is unchanged. If the load resistance is increased sufficiently, the bottom of the triangular inductor current, \check{i}_{L}, eventually reduces to zero. Any further increase in load resistance causes discontinuous inductor current and the voltage transfer function given by equation (15.74) is no longer valid and equations (15.86) and (15.91) are applicable. The critical load resistance for continuous inductor current is specified by

$$
R_{c r i t} \leq \frac{v_{o}}{\bar{I}_{o}}
$$

Substituting for, the average input current in terms of \hat{i}_{L} and v_{o} in terms of Δi_{L} from equation (15.73), yields

$$
\begin{equation*}
R_{\text {crit }} \leq \frac{v_{o}}{\bar{I}_{o}}=\frac{2 L}{\tau(1-\delta)^{2}} \tag{15.94}
\end{equation*}
$$

By substituting the switching frequency ($f=1 / \tau$) or the fundamental inductor reactance ($X_{L}=2 \pi f_{L} L$) the following critical resistance forms result.

$$
R_{c u t} \leq \frac{v_{o}}{\bar{I}_{o}}=\frac{2 L}{\tau(1-\delta)^{2}}=\frac{2 f_{s} L}{(1-\delta)^{2}}=\frac{X_{L}}{\pi(1-\delta)^{2}}
$$

If the load resistance increases beyond $R_{\text {crit, }}$, the output voltage can no longer be maintained with duty cycle control according to the voltage transfer function in equation (15.74). Equation (15.95) is equation (15.84), re-arranged.

15.4.5 Control methods for discontinuous inductor current

Once the load current has reduced to the critical level as specified by equation (15.95), the input energy is in excess of the load requirement. Open loop load voltage regulation control is lost and the capacitor C tends to overcharge.
Hardware approaches can be used to solve this problem

- increase L thereby decreasing the inductor current ripple p-p magnitude
- step-down transformer impedance matching to effectively reduce the apparent load impedance
Two control approaches to maintain output voltage regulation when $R>R_{\text {crit }}$ are
- vary the switching frequency f_{s}, maintaining the switch on-time t_{T} constant so that Δi_{L} is fixed or
- reduce the switch on-time t_{T}, but maintain a constant switching frequency f_{s}, thereby reducing Δi_{L}.
If a fixed switching frequency is desired for all modes of operation, then reduced on-
ime control, using output voltage feedback, is preferred. If a fixed on-time mode of
control is used, then the output voltage is control by inversely varying the frequency with output voltage.
15.4.5i-fixed on-time t_{T}, variable switching frequency $f_{v a r}$

The operating frequency $f_{\text {var }}$ is varied while the switch-on time t_{T} is maintained constant such that the ripple current remains unchanged. Operation is specified by equating the input energy and the output energy, thus maintaining a constant capacitor charge, hence output voltage. That is, equating energies

$$
\begin{equation*}
1 / 2 \Delta i_{L} E_{i} t_{T}=\frac{v_{o}^{2}}{R} \frac{1}{f_{\mathrm{var}}^{2}} \tag{15.96}
\end{equation*}
$$

Isolating the variable switching frequency $f_{v a r}$ gives

$$
\begin{align*}
f_{\text {vat }}= & \frac{v_{o}^{2}}{1 / 2 \Delta i_{L} E_{t} t_{T}} \frac{1}{R} \\
= & f_{s} R_{\text {cuit }} \times \frac{1}{R} \\
& f_{\text {var }} \propto \frac{1}{R} \tag{15.97}
\end{align*}
$$

Load resistance R is not a directly or readily measurable parameter for feedback proposes. Alternatively, since $v=\bar{I} R$, substitution for R in equation (15.97) give

$$
\begin{align*}
& f_{\text {var }}=f_{s} \frac{R_{\text {cotit }}}{v_{o}} \times \bar{I}_{o} \tag{15.98}\\
& f_{\text {virt }} \propto \frac{I_{o}}{}
\end{align*}
$$

That is, for discontinuous inductor current, namely $\bar{I}_{L}<1 / 2 \Delta i_{L}$ or $\bar{I}_{o}<v_{o} / R_{c r i t}$, if the switch on-state period t_{T} remains constant and $f_{v a r}$ is either varied proportionally with load current or varied inversely with load resistance, then the required output voltage v_{o} will be maintained
15.4.5ii - fixed switching frequency $f_{\text {s }}$, variable on-time t_{T},

The operating frequency f_{s} remains fixed while the switch-on time $t_{T_{\text {var }}}$ is reduced such hat the ripple current can be reduced. Operation is specified by equating the input energy and the output energy as in equation (15.96), thus maintaining a constant capacitor charge, hence voltage. That is

$$
\begin{equation*}
1 / 2 \Delta i_{L} E_{t} t_{\text {Trat }}=\frac{v_{o}^{2}}{R} \frac{1}{f} \tag{15.99}
\end{equation*}
$$

Isolating the variable on-time $t_{T \text { var }}$ gives

$$
t_{T \text { rax }}=\frac{v_{o}^{2}}{} \frac{1}{n}
$$

Substituting Δi_{L} from equation (15.73) give

$$
\begin{align*}
& t_{T \text { tur }}=t_{T} \sqrt{R_{c \text { ctit }}} \times \frac{1}{\sqrt{R}} \tag{15.100}\\
& t_{T \text { tur }} \propto \frac{1}{\sqrt{R}}
\end{align*}
$$

Again, load resistance R is not a directly or readily measurable parameter for feedback groposes and substitution of $v_{o} / \overline{I_{o}}$ for R in equation (15.70) gives

$$
\begin{align*}
& t_{T \mathrm{ara}}=t_{T} \sqrt{\frac{R_{\text {coit }}}{v_{o}}} \times \sqrt{\bar{I}_{o}} \tag{15.101}\\
& t_{T_{\text {rax }}} \propto \sqrt{\bar{I}_{o}}
\end{align*}
$$

That is, if the switching frequency f_{s} is fixed and switch on-time t_{T} is reduced proportionally to $\sqrt{I_{o}}$ or inversely to \sqrt{R}, when discontinuous inductor current commences, nallely $\bar{I}_{L}<1 / 2 \Delta_{L}$ or magnitude v_{o} will be maintained.
Alternatively the output voltage is related to the duty cycle by $v=\delta E \sqrt{\operatorname{R\tau } / 2 L}$

15.4.6 Output ripple voltage

The output ripple voltage is the capacitor ripple voltage. Ripple voltage for a capacitor is defined as

$$
\Delta v_{o}=\frac{1}{C} \int i d t
$$

Figure 15.6 shows that the constant output current \bar{I}_{o} is provided solely from the capacitor during the period $t_{o n}$ when the switch conducting, thus

$$
\Delta v_{o}=\frac{1}{C} \int i d t=\frac{1}{C} t_{o n} \bar{I}_{o}
$$

Substituting for $\bar{I}_{o}=v_{o} / R$ gives

$$
\Delta v_{o}=\frac{1}{C} \int i d t=\frac{1}{C} t_{o n} \bar{I}_{o}=\frac{1}{C} t_{o n} v_{o} / R
$$

Rearranging gives the percentage peak-to-peak voltage ripple in the output voltage

$$
\begin{equation*}
\frac{\Delta v_{o}}{v_{o}}=\frac{1}{R C} t_{o n}=\frac{\delta \tau}{R C} \tag{15.102}
\end{equation*}
$$

The capacitor equivalent series resistance and inductance can be account for, as with he forward converter, 15.1.5. When the switch conducts, the output current is constant and is provided from the capacitor. No ESL voltage effects result during this constant capacitor current portion of the switching cycle.
15.4.7 Buck-boost, flyback converter design procedure

The output voltage of the buck-boost converter can be regulated by operating at a fixed
frequency and varying the transistor on-time t_{T}. However, the output voltage diminishes while the transistor is on and increases when the transistor is off. This characteristic makes the converter difficult to control on a fixed frequency basis.
A simple approach to control the flyback regulator in the discontinuous mode is to fix the peak inductor current, which specifies a fixed diode conduction time, t_{D}. Frequency then varies directly with output current and transistor on-time varies inversely with input voltage.
With discontinuous inductor conduction, the worst-case condition exists when the input voltage is low while the output current is at a maximum. Then the frequency is a t_{4} is zero because the transistor turns on as soon as the diode stops conducting.

$$
\begin{array}{ll}
\text { Given } & \text { Worst case } \\
E_{i \text { (min) }} & E_{i}=E_{i(\min)} \\
V_{o} & \bar{I}_{o}=\bar{L}_{\text {dmax }} \\
\bar{I}_{o \text { (max })} & t_{x}=0
\end{array}
$$

$$
f_{(\max)} \quad \Delta e_{o}
$$

Assuming a fixed value of peak inductor current \hat{i}_{i} and output voltage v_{o}, the following equations are vali

$$
E_{i \text { imini })} t_{T}=v_{o} t_{D}=\hat{i}_{i} \times L
$$

(15.103)

$$
\tau_{\text {(min) }}=1 / f_{(\text {max })}
$$

(15.104)

Equation (15.103) yields

$$
t_{D}=\frac{1}{f_{(\max)}\left(\frac{v_{o}}{E_{i(\min)}}+1\right)}
$$

(15.105)

Where the diode conduction time t_{D} is constant since in equation (15.103), v_{0}, \hat{i}_{i}, and L are all constants. The average output capacitor current is given by

$$
\bar{I}_{o}=\frac{3}{2} \hat{i}_{i}(1-\delta)
$$

and substituting equation (15.105) yield

$$
\bar{I}_{o \text { (max })}=1_{2} \hat{i_{i}} \times f_{(\max)} \times \frac{1}{f_{(\max)}\left(\frac{v_{o}}{E_{i \text { (mini) }}}+1\right)}
$$

herefore

$$
\hat{i}_{i}=2 \times \bar{I}_{o \text { (max })} \times\left(\frac{v_{o}}{E_{i(\text { mini) }}}+1\right)
$$

and upon substitution into equation (15.103)

$$
L=\frac{t_{D} v_{o}}{2 \bar{I}_{o \text { (max }}\left(\frac{v_{o}}{E_{i(\min)}}+1\right)}
$$

The minimum capacitance is specified by the maximum allowable ripple voltage, that is

$$
C_{(\text {mini) }}=\frac{\Delta Q}{\Delta e_{o}}=\frac{\hat{i}_{i} t_{D}}{2 \Delta e_{o}}
$$

that is

$$
\begin{equation*}
C_{\text {(mini) }}=\frac{\bar{I}_{o \text { (maxx }} t_{D}}{\Delta e_{o}\left(\frac{v_{o}}{E_{i(\text { mini) }}}+1\right)} \tag{15.107}
\end{equation*}
$$

The ripple voltage is dropped across the capacitor equivalent series resistance, which is The ripp

$$
\begin{equation*}
E S R_{(\max)}=\frac{\Delta e_{o}}{\hat{i}_{i}} \tag{15.108}
\end{equation*}
$$

The frequency varies as a function of load current. Equation (15.104) gives

$$
\frac{\bar{I}_{o}}{f}=\frac{\hat{i}_{i} t_{T}}{2}=\frac{\bar{o}_{o(\max)}}{f_{(\max)}}
$$

therefore

$$
\begin{equation*}
f=f_{(\text {max })} \times \frac{\bar{I}_{o}}{\bar{I}_{o(\max)}} \tag{15.109}
\end{equation*}
$$

and

$$
\begin{equation*}
f_{\text {(min) }}=f_{(\max)} \times \frac{\bar{I}_{o \text { (min) }}}{\bar{I}_{o(\max)}} \tag{15.110}
\end{equation*}
$$

Example 15.4: Buck-boost flyback converter

The 10 kHz flyback converter in figure 15.6 is to operate from a 50 V input and produces an inverted non-isolated 75 V output. The inductor is $300 \mu \mathrm{H}$ and the resistive load is 2.5Ω.
i. Calculate the duty cycle, hence transistor off-time, assuming continuous inductor current.
iii. Draw the inductor current, showing the minimum and maximum values.
iv. Calculate the capacitor rms ripple current and output p-p ripple voltage if $C=$ 10,000 $\mu \mathrm{F}$.
v. Determine

- the critical load resistance
- the minimum inductance for continuous inductor conduction with 2.5Ω load
vi. At what load resistance does the instantaneous inductor current fall below the output current?
vii What is the output voltage if the load resistance is increased to four times the critical resistance?

Solution

i. From equation (15.87), which assumes continuous inductor current

$$
\frac{v_{o}}{E_{i}}=-\frac{\delta}{1-\delta} \quad \text { where } \quad \delta=t_{T} / \tau
$$

hat is

$$
\frac{75 \mathrm{~V}}{50 \mathrm{~V}}=\frac{\delta}{1-\delta} \quad \text { thus } \quad \delta=3 / 5
$$

That is, $\tau=1 / f_{s}=100 \mu \mathrm{~s}$ with a $60 \mu \mathrm{~s}$ switch on-time
ii. The mean output current \bar{I}_{o} is given by

$$
\bar{I}_{o}=v_{o} / R=75 \mathrm{~V} / 2.5 \Omega=30 \mathrm{~A}
$$

rom power transfor $\bar{I}_{i}=\bar{I}_{t}=\bar{I}_{\Delta}$
$\bar{I}_{i}=\bar{I}_{L}=v_{o} \bar{I}_{o} / E_{i}=75 \mathrm{~V} \times 30 \mathrm{~A} / 50 \mathrm{~V}=45 \mathrm{~A}$

iii. The average inductor current can be derived from

$$
\bar{I}_{i}=\delta \bar{L}_{L} \quad \text { or } \quad \bar{I}_{o}=(1-\delta) \bar{I}_{L}
$$

That is

$$
\bar{I}_{L}=\bar{I}_{i} / \delta=\bar{I}_{o} /(1-\delta)
$$

$$
=45 \mathrm{~A} / 3 / \mathrm{s}=30 \mathrm{~A} / 2 / \mathrm{s}=75 \mathrm{~A}
$$

From $v=L d i / d t$, the ripple current $\Delta i_{L}=E_{i} t_{T} / L=50 \mathrm{~V} \times 60 \mu \mathrm{~s} / 300 \mu \mathrm{H}=10 \mathrm{~A}$, that is

$$
\begin{aligned}
& \hat{i}_{L}=\bar{I}_{L}+1 / 2 \Delta i_{L}=75 \mathrm{~A}+1 / 2 \times 10 \mathrm{~A}=80 \mathrm{~A} \\
& \check{i}_{L}=\bar{I}_{L}-1 / 2 \Delta i_{L}=75 \mathrm{~A}-1 / 2 \times 10 \mathrm{~A}=70 \mathrm{~A}
\end{aligned}
$$

iv. The capacitor current is derived by using Kirchhoff's current law such that at any instant in time, the diode current, plus the capacitor current, plus the 30A constant load current into R, all sum to zero

$$
\begin{aligned}
i_{C \mathrm{Cms}} & =\sqrt{ } \frac{1}{\tau}\left[\int_{0}^{t_{r}} \bar{I}_{o}^{2} d t+\int_{0}^{\tau-\tau \tau}\left(\frac{\Delta i_{t}}{\tau-t_{T}} t-\hat{i}_{t}+\bar{I}_{o}\right)^{2} d t\right] \\
& =\sqrt{ } \frac{1}{100 \mu \mathrm{~S}}\left[\int_{0}^{60, \mathrm{ss}} 30 \mathrm{~A}^{2} d t+\int_{0}^{40 \mathrm{Nss}}\left(\frac{10 \mathrm{~A}}{40 \mu \mathrm{~s}} t-50 \mathrm{~A}\right)^{2} d t\right]
\end{aligned}
$$

$$
=36.8 \mathrm{~A}
$$

The output ripple voltage is given by equation (15.102), that is

$$
\frac{\Delta v_{o}}{v_{o}}=\frac{\delta \tau}{C R}=\frac{3 / 5 \times 100 \mu \mathrm{~s}}{10,000 \mu \mathrm{~F} \times 2^{1 / 2 \Omega}} \equiv 0.24 \%
$$

The output ripple voltage is therefore

$$
\Delta v_{o}=0.24 \times 10^{-2} \times 75 \mathrm{~V}=180 \mathrm{mV}
$$

v. The critical load resistance, $R_{\text {crit }}$, produces an inductor current with $\Delta i_{L}=10 \mathrm{~A}$ ripple. From equation (15.95)

$$
R_{\text {crit }}=\frac{2 L}{\tau(1-\delta)^{2}}=\frac{2 \times 300 \mu \mathrm{H}}{100 \mu \mathrm{~S} \times(1-3 / 5)^{2}}=37^{1 / 2 \Omega}
$$

The minimum inductance for continuous inductor current operation, with a $2^{1} / 2 \Omega$ load, can be found by rearranging the critical resistance formula, as follows:

$$
L_{\text {cit }}=1 / 2 R \tau(1-\delta)^{2}=1 / 2 \times 2.5 \Omega \times 100 \mu \mathrm{~s} \times(1-3 / 5)^{2}=20 \mu \mathrm{H}
$$

vi. The $\pm 5 \mathrm{~A}$ inductor ripple current is independent of the load, provided the critical resistance of $371 / 2 \Omega$ is not exceeded. When the average inductor current is less than 5 A more than the output current, the capacitor must provide load current not only when the
switch is on but also when the switch is off. The transition is given by equation (15.83), that is

Alternately, when

$$
\delta \leq 1+\frac{L}{\tau R}-\sqrt{\left(1+\frac{L}{\tau R}\right)^{2}-1}
$$

$$
\begin{aligned}
& \bar{I}_{i}-\bar{I}_{o}=5 \mathrm{~A} \\
& \frac{\bar{I}_{o}}{1-\delta}-\bar{I}_{o}=5 \mathrm{~A}
\end{aligned}
$$

For $\delta=3 / 5, \bar{I}_{o}=31 / 3 \mathrm{~A}$. whence

$$
R=\frac{v_{o}}{\bar{I}_{o}}=\frac{75 \mathrm{~V}}{10 / 3}=22^{1 / 2 \Omega}
$$

The average inductor current is $81 / 3 \mathrm{~A}$, with a minimum value of $31 / 3 \mathrm{~A}$, the same as the load current. That is, for $R<22^{1 / 2 \Omega}$ all the load requirement is provided from the inductor when the switch is off, with excess energy charging the output capacitor. For $R>22^{1} / 2 \Omega$ insufficient energy is available from the inductor to provide the load energy hroughout the whole of the period when the switch is off. The capacitor supplements the load requirement towards the end of the off period. When $R>371 / 2 \Omega$ (the critical urely duty cycle dependent ransfer function is no longer valid.
vii. When the load resistance is increased to 125Ω, four times the critical resistance, the output voltage is given by equation (15.91):

$$
v_{o}=E_{i} \delta \sqrt{\frac{\tau R}{2 L}}=50 \mathrm{~V} \times 3 / 5 \times \sqrt{\frac{100 \mu \mathrm{~S} \times 125 \Omega}{2 \times 300 \mu \mathrm{H}}}=137 \mathrm{~V}
$$

15.5 The output reversible converter

The basic reversible converter, sometimes called an asymmetrical half bridge converter (see chapter 13.5), shown in figure 15.7a allows two-quadrant output voltage operation. Operation is characterised by both switches operating simultaneously, being either both on or both off.
The input voltage E_{i} is chopped by switches T_{1} and T_{2}, and because the input voltage is greater than the load voltage v_{o}, energy is transferred from the dc supply E_{i} to L, C, and the load R. When the switches are turned off, energy stored in L is transferred via the diodes D_{1} and D_{2} to C and the load R but in a path involving energy being returned to the supply, E_{i}. This connection feature allows energy to be transferred from he load back into E_{i} when used with an appropriate load and the correct duty cycle

Parts b and c respectively of figure 15.7 illustrate reversible converter circuit current and voltage waveforms for continuous and discontinuous conduction of L, in a forward converter mode, when $\delta>1 / 2$
For analysis it is assumed that components are lossless and the output voltage v_{o} is maintained constant because of the large capacitance magnitude of the capacitor C across the output. The input voltage E_{i} is also assumed constant, such that $E_{i} \geq v_{o}>0$, as shown in figure 15.7 a

(a)

(b)
gure 15.7. Basic reversible converter with $\delta>1 / 2$
(a) circuit diagram; (b) waveforms for continuous inductor current; and (c) discontinuous inductor current waveforms.

5.5.1 Continuous inductor curren

When the switches are turned on for period t_{T}, the difference between the supply voltage E_{i} and the output voltage v_{0} is impressed across L. From $V=L d i / d t$, the rising current change through the inductor will be

$$
\begin{equation*}
\Delta \hat{i}_{L}=\hat{i}_{L}-\hat{i}_{L}=\frac{E_{i}-v_{o}}{L} \times t_{T} \tag{15.111}
\end{equation*}
$$ When the two switches are turned off for the remainder of the switching period, $\tau-t_{T}$,

the two freewheel diodes conduct in series and $E_{i}+v_{o}$ is impressed across L. Thus, assuming continuous inductor conduction the inductor current fall is given by

$$
\begin{equation*}
\Delta i_{L}=\frac{E_{i}+v_{o}}{L} \times\left(\tau-t_{T}\right) \tag{15.112}
\end{equation*}
$$

Equating equations (15.111) and (15.112) yield

$$
\begin{equation*}
\frac{v_{o}}{E_{i}}=\frac{\bar{I}_{i}}{\bar{I}_{o}}=\frac{2 t_{r}-\tau}{\tau}=2 \delta-1 \quad 0 \leq \delta \leq 1 \tag{15.113}
\end{equation*}
$$

The voltage transfer function is independent of circuit inductance L and capacitance C. Equation (15.113) shows that for a given input voltage, the output voltage is determined by the transistor conduction duty cycle δ and the output voltage $\left|v_{o}\right|$ is always less than the input voltage. This confirms and validates the original analysis assumption that $E_{i} \geq\left|v_{o}\right|$. The linear transfer function varies between -1 and 1 for $0 \leq \delta \leq 1$, that is, the output can be varied between $v_{o}=-E_{i}$, and $v_{o}=E_{i}$. The significance
-for 1 / 1 cor

- for $\delta<1 / 2$, if the output is a negative source the but
onverter with energy transfered to the supply E converter acts as a boost converter with energy transferred to the supply E_{i}, from the negative output Thus the transfer

$$
\frac{v_{o}}{E_{i}}=\frac{\bar{I}_{i}}{\bar{I}_{o}}=2 \delta-1=2(\delta-1 / 2) \quad 1 / 2 \leq \delta \leq 1
$$

and

$$
\begin{equation*}
\frac{E_{i}}{v_{o}}=\frac{\bar{I}_{o}}{\bar{I}_{i}}=\frac{1}{2 \delta-1}=\frac{1}{2(\delta-1 / 2)} \quad 0 \leq \delta \leq 1 / 2 \tag{15.115}
\end{equation*}
$$

where equation (15.115) is in the boost converter transfer function form.

5.5.2 Discontinuous inductor curren

In the forward converter mode, $\delta \geq 1 / 2$, the onset of discontinuous inductor current operation occurs when the minimum inductor current \check{i}_{L}, reaches zero. That is $\bar{I}_{L}=1 / 2 \Delta i_{L}=\bar{I}_{o}$
(15.116)

If the transistor on-time t_{T} is reduced or the load resistance increases, the discontinuous condition dead time t_{x} appears as indicated in figure 15.7c. From equations (15.111) and (15.112), with $i_{L}=0$, the following output voltage transfer function can be derived

$$
\begin{equation*}
\Delta i_{L}=\hat{i}_{L}-0=\frac{E_{i}-v_{o}}{L} \times t_{T}=\frac{E_{i}+v_{o}}{L} \times\left(\tau-t_{T}-t_{x}\right) \tag{15.117}
\end{equation*}
$$

which after rearranging yields

$$
\begin{equation*}
\frac{v_{o}}{E_{i}}=\frac{2 \delta-1-\frac{t_{x}}{\tau}}{1-\frac{t_{x}}{\tau}} \tag{15.118}
\end{equation*}
$$

$$
0 \leq \delta<1
$$

15.5.3 Load conditions for discontinuous inductor current

In the forward converter mode, $\delta \geq 1 / 2$, as the load current decreases, the inductor average current also decreases, but the inductor ripple current magnitude is unchanged. If the load resistance is increased sufficiently, the bottom of the triangular inductor current, \check{i}_{L}, eventual reduces to zero. Any further increase in load resistance causes discontinuous inductor current and the linear voltage transfer function given by equation (15.113) is no longer valid. Equation (15.118) is applicable. The critical load resistance for continuous inductor current is specified by

$$
\begin{equation*}
R_{c r i t} \leq \frac{v_{o}}{\bar{I}_{o}} \tag{15.119}
\end{equation*}
$$

Substituting $\bar{I}_{c}=\bar{I}_{L}$ and using equations (15.111) and (15.116), yields

$$
\begin{equation*}
R_{\text {ctit }} \leq \frac{v_{o}}{\bar{I}_{o}}=\frac{v_{o}}{1_{2} \Delta i_{L}}=\frac{2 v_{o} L}{\left(E_{i}-v_{o}\right) t_{T}} \tag{15.120}
\end{equation*}
$$

Dividing throughout by E_{i} and substituting $\delta=t_{T} / \tau$ yields

$$
\begin{equation*}
R_{c r i t} \frac{v_{o}}{\bar{I}_{o}}=\frac{(2 \delta-1) L}{(1-\delta) \delta \tau} \tag{15.121}
\end{equation*}
$$

By substituting the switching frequency ($f_{s}=1 / \tau$) or the fundamental inductor reactance ($X_{L}=2 \pi f_{s} L$), critical resistance can be expressed in the following forms.

$$
R_{\text {cot }} \leq \frac{v_{o}}{I_{s}}=\frac{2\left(\delta-\frac{1}{2}\right) L}{(1-\delta) \delta \tau}=\frac{2\left(\delta-1_{2}\right) f_{L} L}{(1-\delta) \delta}=\frac{(\delta-1 / 2) X_{L}}{\pi(1-\delta) \delta}
$$

If the load resistance increases beyond $R_{\text {crit, }}$, the output voltage can no longer be maintained with duty cycle control according to the voltage transfer function in equation (15.113).

5.5.4 Control methods for discontinuous inductor current

Once the load current has reduced to the critical level as specified by equation (15.117) the input energy is in excess of the load requirement. Open loop load voltage regulation control is lost and the capacitor C tends to overcharge.
As with the other converters considered, hardware and control approaches can mitigate this overcharging problem. The specific control solutions for the forward converter in section 15.3.4, are applicable to the reversible converter. The two time domain control approaches offer the following operational modes.
15.5.4i- fixed on-time t_{T}, variable switching frequency $f_{\text {var }}$

The operating frequency $f_{\text {var }}$ is varied while the switch-on time t_{T} is maintained constant such that the magnitude of the ripple current remains unchanged. Operation is specified by equating the input energy and the output energy, thus maintaining a constant capacitor charge, hence output voltage. That is, equating energies

$$
\begin{equation*}
1 / 2 \Delta i_{L} E_{i} t_{T}=\frac{v_{o}^{2}}{R} \frac{1}{f_{\text {var }}} \tag{15.123}
\end{equation*}
$$

Isolating the variable switching frequency $f_{v a r}$ and using $v_{o}=\bar{I}_{o} R$ to eliminate R yields

$$
\begin{align*}
& f_{\text {var }}=f_{s} R_{\text {crit }} \times \frac{1}{R}=f_{s} \frac{R_{\text {cut }}}{v_{o}} \times \bar{I}_{o}^{o} \tag{15.124}\\
& f_{\text {var }}
\end{align*} \propto \frac{1}{R} \quad \text { or } \quad f_{\text {var }} \propto \alpha \overline{I_{o}}
$$

That is, once discontinuous inductor current occurs at $\bar{I}_{o}<1 / 2 \Delta i_{t}$ or $\bar{I}_{o}<v_{o} / R_{c i t}$, a constant output voltage v_{o} can be maintained if the switch on-state period t_{T} remains onstant and the switching frequency is varied

- inversely with the load resistance R°
- inversely with the load resistance, R_{c}.
15.5.4ii - fixed switching frequency $f_{\text {s, }}$, variable on-time t_{T}

The operating frequency f_{s} remains fixed while the switch-on time $t_{T \text { var }}$ is reduced, resulting in the ripple current magnitude being reduced. Equating input energy and output energy as in equation (15.27), thus maintaining a constant capacitor charge, hence voltage, gives

$$
\begin{equation*}
1 / 2 \Delta i_{L} E_{t} t_{\text {ruar }}=\frac{v_{o}^{2}}{R} \frac{1}{f_{s}} \tag{15.125}
\end{equation*}
$$

Isolating the variable on-time $t_{\text {Tvar }}$, substituting for Δi_{L}, and using $v_{o}=\bar{I}_{o} R$ to eliminate R, gives

$$
\begin{align*}
& t_{T \text { var }}=t_{T} \sqrt{R_{\text {crit }}} \times \frac{1}{\sqrt{R}}=t_{T} \sqrt{\frac{R_{\text {cuit }}}{v_{o}}} \times \sqrt{\bar{I}_{o}} \\
& \text { (15.126) } \tag{10.120}\\
& t_{T \text { ur }} \propto \frac{1}{\sqrt{R}} \text { or } t_{T \text { ar }} \propto \sqrt{\bar{I}_{o}}
\end{align*}
$$

That is, once discontinuous inductor current commences, if the switching frequency f_{s} remains constant, regulation of the output voltage v_{o} can be maintained if the switch on-state period t_{T} is varied

- proportionally with the square root of the load current, $\sqrt{I_{o}}$
inversely win the square

Example 15.5: Reversible forward converter

The step-down reversible converter in figure 15.7 o operates at a switching frequency of 10 kHz . The output voltage is to be fixed at 48 V dc across a 1Ω resistive load. If the input voltage $E_{i}=192 \mathrm{~V}$ and the choke $L=200 \mu \mathrm{H}$
i. calculate the switch T on-time duty cycle δ and switch on-time t_{T}
ii. calculate the average load current \bar{I}_{o}, hence average input current \bar{I}_{t}
iii.

- the veltage ans for ${ }^{2}$ the current through $L_{\cdot} v_{L}$ and i_{L}
- the capacitor current, i_{c}
- the switch and diode voltage and current; $v_{T}, v_{D}, i_{T}, i_{D}$
iv. calculate
- the maximum load resistance $R_{\text {crit }}$ before discontinuous inductor current with $L=200 \mu \mathrm{H}$ and
- the value to which the inductance L can be reduced before discontinuous inductor current, if the maximum load resistance is $I \Omega$.

Solution

The switch on-state duty cycle δ can be calculate from equation (15.113), that is

$$
2 \delta-1=\frac{v_{o}}{E_{E}}=\frac{48 \mathrm{~V}}{192 \mathrm{~V}}=1 / 4 \Rightarrow \delta=5 / 8
$$

Also, from equation (15.113), for a 10 kHz switching frequency, the switching period τ is $100 \mu \mathrm{~s}$ and the transistor on-time $t_{\text {T }}$ is given by

$$
\delta=\frac{t_{T}}{\tau}=\frac{t_{T}}{100 \mu \mathrm{~s}}=5,
$$

whence the transistor on-time is $62^{1 / 2} \mu \mathrm{~s}$ and the diode conducts for $371 / 2 \mu$.
ii. The average load current is $\bar{I}_{o}=\frac{v_{o}}{R}=\frac{48 \mathrm{~V}}{1 \Omega}=48 \mathrm{~A}=\bar{I}_{L}$

From power-in equals power-out, the average input current is

$$
\bar{I}_{i}=v_{o} \bar{I}_{o} / E_{i}=48 \mathrm{~V} \times 48 \mathrm{~A} / 192 \mathrm{~V}=12 \mathrm{~A}
$$

ii. The average output current is the average inductor current, 48A. The ripple current is given by equation (15.113), that is

Figure: Example 15.5
v. Critical load resistance is given by equation (15.122), namely
$R_{\text {crit }} \leq \frac{v_{o}}{\bar{I}_{o}}=\frac{(2 \delta-1) L}{\tau \delta(1-\delta)}$

$$
=\frac{(2 \times \%-1) \times 200 \mu \mathrm{H}}{100 \mu \mathrm{~s} \times 5 / 8 \times(1-5 / 8)}=32 / 15 \Omega
$$

$$
=22 / 5 \Omega \text { when } \bar{I}_{o}=22^{\frac{1}{2} / 2}
$$

Alternatively, the critical load current is $22^{1 / 2 \mathrm{~A}}\left(1 / 2 \Delta i_{L}\right)$, thus the load resistance must not be greater than $v_{o} / \bar{I}_{o}=48 \mathrm{~V} / 22.5 \mathrm{~A}=32 / 15 \Omega$, if the inductor current is to be continuous.
The critical resistance formula given in equation (15.122) is valid for finding critical inductance when inductance is made the subject of the equation, that is, rearranging equation (15.122) gives
$L_{\text {crit }}=R \times(1-\delta) \times \delta \times \tau /(2 \delta-1)$
$=1 \Omega \times(1-5 / 8) \times 5 / 8 \times 100 \mu \mathrm{~S} /(2 \times 5 / 8-1)$
$=93^{3} \frac{3}{4} \mathrm{H}$
That is, the inductance can be decreased from $200 \mu \mathrm{H}$ to $93^{3} / 4 \mu \mathrm{H}$ when the load is 1Ω and continuous inductor current will flow.

15.5.5 Comparison of the reversible converter with alternative converters

The reversible converter provides the full functional output range of the forward converter when $\delta>1 / 2$ and provides part of the voltage function of the buck-boost converter when $\delta<1 / 2$ but with energy transferring in the opposite direction.
Comparison of example 15.1 and 15.4 shows that although the same output voltage range can be achieved, the inductor ripple current is much larger for a given inductance L. A similar result occurs when compared with the buck-boost converter. Thus in each case, the reversible converter has a narrower output resistance range before discontinuous inductor conduction occurs. It is therefore concluded that the reversible onverter should only be used if two quadrant operation is needed
The equation (15.111) for the reversible converter when $v_{o}>0$, yield the following current ripple relationship

$$
\begin{align*}
& \bar{I}_{f}=\left(2-1 / \delta_{r}\right) \times \bar{I}_{r} \\
& \text { where } 2 \delta_{r}-1=\delta_{f} \text { for } 0 \leq \delta_{r} \leq 1 \text { and } 1 /<\leq \delta_{r} \leq 1 \tag{15.127}
\end{align*}
$$

This equation shows that the ripple current of the forward converter I_{f} is never greater than the ripple current \bar{I}_{r} for the reversible converter, for the same output voltage In the voltage inverting mode, from equations (15.73) and (15.111), the relationship
between the two corresponding ripple currents is given by between the two corresponding ripple currents is given by

$$
\begin{aligned}
& \bar{I}_{f y}=\frac{2\left(\delta_{r}-1\right)}{2 \delta_{r}-1} \times \bar{I}_{r} \\
& \text { where } \frac{2\left(\delta_{r}-1\right)}{2 \delta_{r}-1}=\delta_{f y} \text { for } 0 \leq \delta_{f y} \leq 1 / 2 \text { and } 0 \leq \delta_{r} \leq 1 / 2
\end{aligned}
$$

Again the reversible converter always has the higher inductor ripple current. Essentially the higher ripple current results in each mode because the inductor energy elease phase involving diode occurs back supply, which is effectively in The revible conveter offers some function
The reversible converter offers some functional flexibility, since it can operate as a fact, in this mode, switch turn-off is alternated between T_{1} and T_{2} so as to balance switch and diode losses.

15.6 The Cuk converter

The Cuk converter in figure 15.8 performs an inverting boost converter function with inductance in the input and the output. As a result, both the input and output currents can be continuous. A capacitor is used in the process of transferring energy from the input to the output and ac couples the input boost converter stage ($L_{l}, \mathrm{~T}$) to the output forward converter (D, L_{2}). Specifically, the capacitor C_{l} ac couples the switch T in the boost converter stage into the output forward converter stage.

Figure 15.8. Basic Ćuk converter.

15.6.1 Continuous inductor curren

When the switch T is on and the diode D is reversed biased

When the switch is turned off, inductor currents $i_{L I}$ and $i_{L 2}$ are divert through the diode and

$$
i_{\text {Cl(on) }}=\bar{I}_{i}
$$

Over one steady-state cycle the average capacitor charge is zero, that is
which gives

$$
\begin{equation*}
i_{C l(0 n)} \delta \tau+i_{C l(0) 7}(1-\delta) \tau=0 \tag{1.131}
\end{equation*}
$$

From power-in equals power-out

$$
\frac{i_{C l(0) \mid}}{i_{C l(0)}}=\frac{\delta}{(1-\delta)}=\frac{\bar{I}_{i}}{\bar{I}_{o}}
$$

$$
\begin{equation*}
\frac{v_{o}}{E_{i}}=\frac{\bar{I}_{i}}{\bar{I}_{o}}=\frac{\bar{I}_{L 1}}{\bar{I}_{L 2}} \tag{15.133}
\end{equation*}
$$

Thus equation (15.132) becomes

$$
\begin{equation*}
\frac{v_{o}}{E_{i}}=\frac{\bar{I}_{i}}{\bar{I}_{o}}=\frac{\bar{I}_{L 1}}{\bar{I}_{L 2}}=-\frac{\delta}{(1-\delta)} \tag{15.134}
\end{equation*}
$$

15.6.2 Discontinuous inductor current

The current rise in L_{1} occurs when the switch is on, that is

$$
\begin{equation*}
\Delta i_{L_{11}}=\frac{\delta \tau E_{i}}{L_{1}} \tag{15.135}
\end{equation*}
$$

For continuous current in the input inductor L_{l}, $\bar{I}_{i}=\bar{I}_{L 1} \geq \frac{1}{2} \Delta i_{L 1}$
which yields a maximum allowable load resistance, for continuous inductor current, of

$$
\begin{equation*}
R_{c r i t} \leq \frac{v_{o}}{\bar{I}_{o}}=\frac{2 \delta L_{1}}{\tau(1-\delta)^{2}}=\frac{2 f_{s} L_{L} \delta}{(1-\delta)^{2}}=\frac{\delta X_{L 1}}{\pi(1-\delta)^{2}} \tag{15.136}
\end{equation*}
$$

This is the same expression as that obtained for the boost converter, equation (15.65), which can be re-arranged to give the minimum inductance for continuous input inductor current, namely

$$
\begin{equation*}
\check{L}_{1}=\frac{(1-\delta)^{2} R \tau}{2 \delta} \tag{15.138}
\end{equation*}
$$

The current rise in L_{2} occurs when the switch is on and the inductor voltage is E_{i}, that is

$$
\begin{equation*}
\Delta i_{L 2}=\frac{\delta \tau E_{i}}{L_{2}} \tag{15.139}
\end{equation*}
$$

For continuous current in the output inductor L_{2},
$\bar{I}_{o}=\bar{I}_{L 2} \geq{ }^{1} / \Delta i_{L 2}$
(15.140)
which yield

$$
\begin{gather*}
\text { Power Electronics } \\
R_{\text {cit }} \leq \frac{v_{o}}{\bar{I}_{o}}=\frac{2 L_{2}}{\tau(1-\delta)}=\frac{2 f_{s} L_{2}}{(1-\delta)}=\frac{X_{L 2}}{\pi(1-\delta)} \tag{15.141}
\end{gather*}
$$

This is the same exprescion This is the same expression as that obtained for the forward converter, equation (15.26)
which can be re-arranged to give the minimum inductance for continuous output inductor current, namely

$$
\check{L}_{2}=1 / 2(1-\delta) R \tau
$$

15.6.3 Optimal inductor relationship

Optimal inductor conditions are that both inductors should both simultaneous reach the Optimal inductor conditions are that both isconctors should both simultaneous reach the
verge of discontinuous conduction. The relationship between inductance and ripple current is given by equations (15.135) and (15.139).

$$
\Delta i_{L 1}=\frac{\delta \tau E_{i}}{L_{1}} \text { and } \Delta i_{L 2}=\frac{\delta \tau E_{i}}{L_{2}}
$$

After diving these two equations

$$
\begin{equation*}
\frac{L_{2}}{L_{1}}=\frac{\Delta i_{L_{11}}}{\Delta i_{t 2}} \tag{15.143}
\end{equation*}
$$

Critical inductance is given by equations (15.138) and (15.142), that is

$$
\check{L}_{2}=1 / 2(1-\delta) R \tau \text { and } \check{L}_{1}=\frac{(1-\delta)^{2} R \tau}{2 \delta}
$$

After dividing

$$
\begin{equation*}
\frac{\check{L}_{2}}{\check{\Sigma}_{1}}=\frac{\delta}{1-\delta} \tag{15.144}
\end{equation*}
$$

At the verge of simultaneous discontinuous inductor conduction

$$
\begin{equation*}
\frac{\check{L}_{2}}{\check{L}_{1}}=\frac{\delta}{1-\delta}=\frac{\Delta i_{11}}{\Delta i_{L 2}}=\left|\frac{v_{o}}{E_{i}}\right| \tag{15.145}
\end{equation*}
$$

That is, the voltage transfer ratio uniquely specifies the ratio of the minimum inductances and their ripple current.

5.6.3 Output voltage ripple

The output stage $\left(L_{2}, C_{2}\right.$ and $\left.R\right)$ is the forward converter output stage; hence the per unit output voltage ripple on C_{2} is given by equation (15.35), that is

$$
\begin{equation*}
\frac{\Delta v_{c 2}}{v_{o}}=\frac{\Delta v_{o}}{v_{o}}=1 / 8 \times \frac{(1-\delta) \tau^{2}}{L_{2} C_{2}} \tag{15.146}
\end{equation*}
$$

If the ripple current in L_{l} is assumed constant, the per unit voltage ripple on the ac

$$
\begin{equation*}
\frac{\Delta v_{c 1}}{v_{o}}=\frac{\delta \tau}{R C_{1}} \tag{15.147}
\end{equation*}
$$

Example 15.6: Ćuk converter

The Cuk converter in figure 15.8 is to operate at 10 kHz from a 50 V battery input and produces an inverted non-isolated 75 V output. The load power is 1.8 kW .
i Calculate the duty cycle hence switch on and off times, assuming continuous current in both inductors.
ii Calculate the mean input and output, hence inductor, currents.
iii At the 1.8 kW load level, calculate the inductances $L 1$ and $L 2$ such that the ripple current is $1 \mathrm{~A} p$ pp in each.
iv Specify the capacitance for $C 1$ and $C 2$ if the ripple voltage is to be a maximum of 1% of the output voltage.
v Determine the critical load resistance for which the purely duty cycle dependant voltage transfer function becomes invalid.
vi At the critical load resistance value, determine the inductance value to which the non-critically operating inductor can be reduced.
vii Determine the necessary conditions to ensure that both inductors operate simultaneously on the verge of discontinuous conduction, and the relative ripple currents for that condition

Solution

1. The voltage transfer function is given by equation (15.134), that is

$$
\frac{v_{o}}{E_{i}}=-\frac{\delta}{(1-\delta)}=-\frac{75 \mathrm{~V}}{50 \mathrm{~V}}=-1 / 2
$$

from which $\delta=3 / 6$. For a 10 kHz switching frequency the period is $100 \mu \mathrm{~s}$, thus the switch on-time is $60 \mu \mathrm{~s}$ and the off-time is $40 \mu \mathrm{~s}$.
ii. The mean output current is determined by the load and the mean input current is related to the output current by assuming 100% efficiency, that is
$\bar{I}_{o}=\bar{I}_{L 2}=P_{o} / v_{o}=1800 \mathrm{~W} / 75 \mathrm{~V}=24 \mathrm{~A}$
$\bar{I}_{i}=\bar{I}_{L 1}=P_{o} / E_{i}=1800 \mathrm{~W} / 50 \mathrm{~V}=36 \mathrm{~A}$
The load resistance is therefore $R=v_{o} / I_{o}=75 \mathrm{~V} / 24 \mathrm{~A}=31 / 8 \Omega$.
iii The inductor ripple current for each inductor is given by the same expression, that is equations (15.135) and (15.139). Thus for the same ripple current of 1 A pp

$$
\Delta i_{L 1}=\frac{\delta \tau E_{i}}{L_{1}}=\Delta i_{L 2}=\frac{\delta \tau E_{i}}{L_{2}}
$$

which gives

$$
L_{1}=L_{2}=\frac{\delta \tau E_{i}}{\Delta i}=\frac{3 / 2 \times 100 \mu \mathrm{~s} \times 50 \mathrm{~V}}{1 \mathrm{~A}}=3 \mathrm{mH}
$$

iv The capacitor ripple voltages are given by equations (15.147) and (15.146), which after re-arranging gives

$$
\begin{aligned}
& C_{1}=\frac{v_{o}}{\Delta v_{c 1}} \times \frac{\delta \tau}{R}=\frac{100}{1} \times \frac{3 / 2 \times 100 \mu \mathrm{~s}}{2 / 8 \Omega}=1.92 \mathrm{mF} \\
& C_{2}=\frac{v_{o}}{\Delta v_{C 2}} \times 1 / 8 \times \frac{(1-\delta) \tau^{2}}{L_{2}}=\frac{100}{1} \times 1 / 8 \times \frac{(1-3 / 8) \times 100 \mu \mathrm{~s}^{2}}{3 \mathrm{mH}}=16.6 \mu \mathrm{~F}
\end{aligned}
$$

v The critical load resistance for each inductor is given by equations (15.137) and (15.141). When both inductors are 3 mH :

$$
\begin{aligned}
& R_{\text {citi }} \leq \frac{2 \delta L_{1}}{\tau(1-\delta)^{2}}=\frac{2 \times 3 / 5 \times 3 \mathrm{mH}}{100 \mu \mathrm{\mu} \times(1-3 / 5)^{2}}=225 \Omega \\
& R_{\text {citi }} \leq \frac{2 L_{2}}{\tau(1-\delta)}=\frac{2 \times 3 \mathrm{mH}}{100 \mu \mathrm{~s} \times(1-3 / 5)}=150 \Omega
\end{aligned}
$$

The limiting critical load resistance is 150Ω or for $I_{o}=v_{o} / R=75 \mathrm{~V} / 150 \Omega=1 / 2 \mathrm{~A}$, when a lower output current results in the current in L_{2} becoming discontinuous although the current in L_{I} is still continuous.
vi From equation (15.137), rearranged

$$
L_{\text {lorit }} \geq \frac{\tau R(1-\delta)^{2}}{2 \delta}=\frac{100 \mu \mathrm{~s} \times 100 \Omega \times(1-3 / 5)^{2}}{2 \times 3 / 5}=2 \mathrm{mH}
$$

That is, if L_{I} is reduced from 3 mH to 2 mH , then both L_{I} and L_{2} enter discontinuous conduction at the same load condition, $75 \mathrm{~V}, 1 / 2 \mathrm{~A}$, and 150Ω.
vii For both converter inductors to be simultaneously on the verge of discontinuous conduction, equation (15.145) gives

$$
\begin{gathered}
\frac{\check{L}_{2}}{\check{L}_{1}}=\frac{\delta}{1-\delta}=\frac{\Delta i_{L 1}}{\Delta i_{L 2}}=\left|\frac{v_{o}}{E_{i}}\right| \\
\frac{3 \mathrm{mH}}{2 \mathrm{mH}}=\frac{3 / 5}{1-3 / 5}=\frac{1 \mathrm{~A}}{2 / \mathrm{A}}=\left|\frac{75 \mathrm{~V}}{50 \mathrm{~V}}\right|=\frac{3}{2}
\end{gathered}
$$

15.7 Comparison of basic converters

The converters considered employ an inductor to transfer energy from one dc voltage level to another dc voltage level. The basic converters comprise a switch, diode, inductor, and a capacitor. The reversible converter is a two-quadrant converter with two switches and two diodes, while the Ćuk converter uses two inductors and two capacitors.
Table 15.1 summarises the main electrical features and characteristics of each basic converter. Figure 15.9 shows a plot of the voltage transformation ratios and the switch
 untep-down converter and the Cuk converter bot invert the input polarity.
r can operate in any one of three inductor current modes:

- discontinuous
- continuous
- both continuous and discontinuous

The main converter operational features of continuous conduction compared with discontinuous inductor conduction

- The voltage transformation ratio (transfer function) is independent of the load.
- Larger inductance but lower core hysteresis losses and saturation less likely.
- Higher converter costs with increased volume and weight
- Worse transient response (L / R)
- Power delivered is inversely proportional to load resistance, $P=V_{o}^{2} / R$. In the discontinuous conduction mode, power delivery is inversely dependent on inductance.
15.7.1 Critical load current

Examination of Table 15.1 show little commonality between the various converters and their performance factors and parameters. One common feature is the relationship between critical average output current I_{o} and the input voltage E_{i} at the boundary of continuous and discontinuous conduction.
Equations (15.14), (15.61), and (15.92) are identical, (for all smps), that is

$$
\bar{I}_{o_{\text {omasal }}}=\frac{E_{i} \tau}{2 L} \delta(1-\delta)
$$

(A)
(15.148)

This quadratic expression in δ shows that the critical mean output current reduces to zero as the on-state duty cycle δ tends to zero or unity. The maximum critical load current condition, for a given input voltage E_{i}, is when $\delta=1 / 2$ and

$$
\bar{I}_{o_{c}}=E_{i} \tau / 8 L
$$

Power Electronics
544

Figure 15.9. Transformation voltage ratios and switch utilisation ratios for five converters when operated in the continuous inductor conduction mode.

Since power in equals power out, then from equation (15.148) the input average current and output voltage at the boundary of continuous conduction for all smps are related by

$$
\begin{equation*}
\bar{I}_{t_{\text {towat }}}=\frac{v_{v} \tau}{2 L} \delta(1-\delta) \tag{15.150}
\end{equation*}
$$

(A)

The maximum output current at the boundary, for a given output voltage, v_{o}, is

$$
\begin{equation*}
\bar{I}_{i_{i}}=v_{o} \tau / 8 L \tag{15.151}
\end{equation*}
$$

Table 15.1 Converter characteristics comparison with continuous inductor current

			converter			
			$\begin{gathered} \hline \text { Forward } \\ \text { Step-down } \\ \hline \end{gathered}$	Flyback Step-up	Flyback Step-up/down	Reversible
Output voltage continuous /	V_{0} / E_{i}		δ	$\frac{1}{1-\delta}$	$-\frac{\delta}{1-\delta}$	$2 \delta-1$
Output voltage discontinuous /	V_{0} / E_{i}		$1-\frac{2 L \bar{I}_{i}}{E_{i} \delta^{2} \tau}$	$1+\frac{E_{i} \delta^{2} t_{T}}{2 L \bar{I}_{o}}$	$\frac{E_{\text {d }} \delta^{2} \tau}{2 L \bar{I}_{o}}$	
Output polarity with respect to input			Non-inverted	Non-inverted	inverted	any
Current sampled from the supply			discontinuous	continuous	discontinuous	bi-directional
Load current			continuous	discontinuous	discontinuous	continuous
$\begin{aligned} & \text { Maximum transistor } \\ & \text { voltage } \end{aligned}$	v	v	E_{i}	vo	$E_{i}+v_{0}$	E_{i}
Maximum diode voltage	V	v	E_{i}	vo	$E_{i}+v_{0}$	E_{i}
Ripple current	Δi	A	$E_{i} \delta \tau(1-\delta) / L$	$E_{i} \delta \tau / L$	$E_{i} \delta \tau / L$	$2 E_{i} \delta \tau(1-\delta) / L$
Maximum transistor current	\hat{i}_{T}	A	$\bar{I}_{o}+\frac{v_{o} \tau(1-\delta)}{2 L}$	$\bar{I}_{i}+\frac{E_{i} \tau \delta}{2 L}$	$\bar{I}_{L}+\frac{E_{i} \tau \delta}{2 L}$	$\bar{I}_{o}+\frac{\left(E_{i}-v_{o}\right) \tau \delta}{2 L}$
switch utilisation ratio ratio	SUR		δ	1-ס	$\delta(1-\delta)$	
Transistor rms current			low	high	high	low
Critical load resistance	$R_{\text {crit }}$	Ω	$\frac{2 L}{\tau(1-\delta)}$	$\frac{2 L}{\tau \delta(1-\delta)^{2}}$	$\frac{2 L}{\tau(1-\delta)^{2}}$	$\frac{2(\delta-1 / 2) L}{\tau \delta(1-\delta)}$
Critical inductance	$L_{\text {crit }}$	H	1/2R(1- δ) τ	${ }^{1 / 2} R \tau \delta(1-\delta)^{2}$	${ }^{1 / 2} R \tau(1-\delta)^{2}$	$\frac{1 / 2 R(1-\delta) \delta \tau}{(\delta-1 / 2)}$
$\underset{\mathrm{p}-\mathrm{p}}{\mathrm{o} / \mathrm{p} \text { ripple voltage }}$	Δv_{0}	v	$\frac{\tau^{2}(1-\delta)}{8 L C} v_{o}$	$\frac{\tau \delta}{R C} v_{o}$	$\frac{\tau \delta}{R C} v_{0}$	$\frac{\tau \delta}{R C} v_{0}$

The reversible converter, using the critical resistance equation (15.122) derived in section 15.5.3, yields twice the critical average output current given by equation (15.148). This is because its duty cycle range is restricted to half that of the other converters considered. Converter normalised equations for discontinuous conduction are shown in table 15.2.
A detailed analysis summary of discontinuous inductor current operation is given in appendix 15.9 .

Table 15.2 Comparison of characteristics when the inductor current is discontinuous

$k=\frac{\delta^{2} R \tau}{4 L}$	Forward Step-down	Flyback Step-up	Flyback Step-up/down
$\delta_{\text {critual }}$	$\delta \leq 1-\frac{2 L}{R \tau}$	$\delta(1-\delta)^{2} \leq \frac{2 L}{R \tau}$	$\delta \leq 1-\sqrt{\frac{2 L}{R \tau}}$
$\frac{v_{o}}{E_{i}}$	$k\left[-1+\sqrt{1+\frac{2}{k}}\right]$	$1 /[1+\sqrt{1+8 k}]$	$\sqrt{2 k}$
$\frac{t_{x}}{\delta \tau}$	$1 /\left[1+\sqrt{1+\frac{2}{k}}\right]$	$\frac{1}{4 k}[1+4 k+\sqrt{1+8 k}]$	$1+\frac{1}{\sqrt{2 k}}$
$\hat{I}_{L} \times \frac{\delta R}{E_{i}}$	$4 k\left[1+k-k \sqrt{1+\frac{2}{k}}\right]$	$4 k$	$4 k$

15.7.2 Isolation

In each converter, the output is not electrically isolated from the input and a transformer can be used to provide isolation. Figure 15.10 shows isolated versions of well as providic converters. The transformer turns ratio provides electri
Figure 15.10a illustrates an isolated version of the forward converter shown in figure 15.2. When the transistor is turned on, diode D_{1} conducts and L in the ransformer secondary stores energy. When the transistor turns off, the diode D_{3} provides a current path for the release of the energy stored in L. However when the transistor turns off and D_{1} ceases to conduct, the stored transformer magnetising energy must be released. The winding incorporating D_{2} provides a path to reset the core flux. A maximum possible duty cycle exists, depending on the turns ratio of the primary winding and freewheel whing If a ..1 ratio (as shown) is enpla cycle lime will ensure the required vols-second for core reset
site 15.10 is little used. The wo transistors must be driven by complementary signals. Core leakage and reset functions are facilitated by a third winding and blocking diode D_{2}

The magnetic core in the buck-boost converter of part c of figure 15.10 performs a bifilar inductor function. When the transistor is turned on, energy is stored in the core. When the transistor is turned off, the core energy is released via the secondary winding into the capacitor. A core air gap is necessary to prevent magnetic saturation and an optional clamping winding can be employed, which operates at zero load.
The converters in parts a and c of figure 15.10 provide an opportunity to compare he main features and attributes of forward and flyback isolated converters. In the comparison it is assumed that the transformer turns ratio is 1:1:1.

Figure 15.10. Isolated output versions of the three basic converter configurations: (a) the forward converter; (b) step-up flyback converter; and (c) step up/dow flyback converter.
15.7.2i - The isolated output, forward converter - figure 15.10a:

- $v_{o}=n_{T} \delta E_{i}$ or $I_{i}=n_{T} \delta I$

The magnetic element acts as a transformer, that is, because of the relative有

- ouput, and not stored in the core, when the switch is on. The magnetising flux is reset by the current through the catch (feedback) winding and D_{3}, when the switch is off. The magnetising energy is returned to the supply E_{i}.
- The necessary transformer $\mathrm{V} \mu \mathrm{s}$ balance requirement (core energy-in equals core energy-out) means the maximum duty cycle is limited to $0 \leq \delta \leq 1 /\left(1+n_{f l b}\right)<1$ for $1: n_{f b}: n_{s e c}$ turns ratio. For example, the duty cycle
$0,0 \leq \delta \leq 1 /$, with a 1:1:1 turns ratio
- Because of the demagnetising winding, the off-state switch supporting voltage is $E_{i}+v_{o}$
- The blocking voltage requirement of diode D_{3} is E_{i}, v_{o} for D_{1}, and $2 E_{i}$ for D_{2}
- $V_{o}=n_{T} E_{i} \delta /(1-\delta)$ or $I_{i}=n_{T} I_{o} \delta /(1-\delta)$
ne magnetic element acts as a storage inductor. Because of the relative voltage polarities of the windings (dot convention), when the switch is on, energy is stored in the core and no current flows in the secondary.
- The stored energy, which is due to the core magnetising flux is released (reset) as current into the load and capacitor C when the switch is off. (Unlike the forward converter, where magnetising energy is returned to E_{i}, not the output,
- The third winding turns ratio is configured such that energy is only returned to the supply E_{i} under no load conditions.
The switch supporting off-state voltage is $E_{i}+v_{o}$.
- The diode blocking voltage requirements are $E_{i}+v_{o}$ for D_{1} and $2 E_{i}$ for D_{2}

The operational characteristics of each converter change considerably when the flexibility offered by tailoring the turns ratio is exploited. A multi-winding magnetic element design procedure is outlined in section 9.1.1, where the transformer turns ratio is not necessarily $1: 1$.
The basic approach to any transformer (coupled circuit) problem is to transfer, or refer, all components and variables to either the transformer primary or secondary circuit, whilst maintaining power and time invariance. Thus, maintaining power-in equals power-out, and assuming a secondary to primary turns ratio of n_{T} is to one, gives

$$
\begin{equation*}
\frac{v_{s}}{v_{p}}=\frac{n_{s}}{n_{p}}=n_{T} \quad \frac{i_{p}}{i_{s}}=\frac{n_{s}}{n_{p}}=n_{T} \quad \frac{Z_{s}}{Z_{p}}=\left(\frac{n_{s}}{n_{p}}\right)^{2}=n_{T}^{2} \tag{15.152}
\end{equation*}
$$

Time, that is switching frequency, power, and per unit values $\left(\delta, \Delta v_{o} / v_{o}\right)$, are invariant. The circuit is then analysed. Subsequently, the appropriate parameters are referred back to their original side of the magnetically coupled circuit.

If the coupled circuit is used as a transformer, magnetising current (flux) builds, which must be reset to zero each cycle. Consider the transformer coupled forward converter in figure 15.10a. From Faraday's equation, $v=N d \phi / d t$, and for maximum on-time duty cycle $\hat{\delta}$ the conduction $\mathrm{V}-\mu \mathrm{S}$ of the primary must equal the conduction $\mathrm{V}-\mu \mathrm{S}$ of the feedback winding which is returning the magnetising energy to the supply E_{i}.

$$
\begin{equation*}
E_{i} t_{o n}=\frac{E_{i}}{n_{f / b}} t_{\text {off }} \tag{15.153}
\end{equation*}
$$

$$
t_{o n}+t_{o f f}=\tau
$$

That is

$$
\begin{gather*}
E_{i} \hat{\delta}=\frac{E_{i}}{n_{f / b}}(1-\hat{\delta}) \\
\hat{\delta}=\frac{1}{1+n_{f / b}} \tag{15.154}\\
0 \leq \delta \leq \frac{1}{1+n_{f / b}}
\end{gather*}
$$

From Faraday's Law, the magnetizing current starts from zero and increases linearly to

$$
\begin{equation*}
\hat{I}_{M}=E_{t} t_{o n} / L_{M} \tag{15.155}
\end{equation*}
$$

where L_{M} is the magnetizing inductance referred to the primary. During the switch off period, this current falls linearly, as energy is returned to E_{i}. The current must reach zero before the switch is turned on again, whence the energy taken from E_{i} and stored .
Two examples illustrate the features of magnetically coupled circuit converters. Example 15.7 illustrates how the coupled circuit in the flyback converter acts as an inductor, storing energy from the primary source, and subsequently releasing that energy in the secondary circuit. In example 15.8 , the forward converter coupled circuit act as a transformer where energy is transferred through the core under transformer action, but in so doing, self-inductance (magnetising) energy is built up in the core,
which must be periodically released if saturation is to be avoided. Relative orientation of the windings, according to the flux dot convention shown in figure 15.10 , is thus important, not only the primary relative to the secondary but also relative to the feedback winding.

Example 15.7: Transformer coupled flyback converter

The 10 kHz flyback converter in figure 15.10 c operates from a 50 V input and produces a 225 V dc output from a $1: 1: 3$ ($1: n_{f f}: n_{\text {sec }}$) step-up transformer loaded with a $22^{1 / 2 \Omega}$ resistor. The transformer magnetising inductance is $300 \mu \mathrm{H}$, referred to the primary
i. Calculate the switch duty cycle, hence transistor off-time, assuming continuous inductor current.
. Calculate the mean input and output current.
iii. Draw the transformer currents, showing the minimum and maximum values.
iv. Calculate the capacitor rms ripple current and p-p voltage ripple if $C=1100 \mu \mathrm{~F}$
. Determine

- the critical load resistance
- the minimum inductance for continuous inductor conduction for a $22 \frac{1}{2} \Omega$ load

Solution

The feedback winding does not conduct during normal continuous inductor current operation. This winding can therefore be ignored for analysis during normal operation.

Figure 15.11. Isolated output step up/down flyback converter and its equivalent circuit when the output is referred to the primary.

Figure 15.11 shows secondary parameters referred to the primary, specifically

$$
v_{o}=225 \mathrm{~V} \quad v_{o}=v_{o} / n_{T}=225 \mathrm{~V} / 3=75 \mathrm{~V}
$$

$$
R_{s}=225 \Omega \quad R_{p}=R_{s} / n_{t}^{2}=225 \Omega / 3^{2}=22^{1} / 2 \Omega
$$

Note that the output capacitance is transferred by a factor of nine, n_{T}^{2}, since capacitive reactance is inversely proportion to capacitance.
It will be noticed that the equivalent circuit parameter values to be analysed, when referred to the primary, are the same as in example 15.4. The circuit is analysed as in
example 15.4 and the essential results from example 15.4 are summarised in Table 15.3 and transferred to the secondary where appropriate. The waveform answers to part iii are shown in figure 15.12 .

Table 15.3 Transformer coupled flyback converter analysis

parameter		value for primary analysis	$\begin{gathered} \text { transfer factor } \\ n_{T}=3 \\ \rightarrow \\ \hline \end{gathered}$	value for secondary analysis
E_{i}	v	50	3	150
V。	v	75	3	225
R_{L}	Ω	21/2	3^{2}	$22^{1 / 2}$
C°	$\mu \mathrm{F}$	10,000	3^{-2}	1100
Iolave)	A	30	1/3	10
Po	w	2250	invariant	2250
$\mathrm{l}_{\text {(iave) }}$	A	45A	1/3	15A
$\bar{\delta}$	p.u.	3/5	invariant	3/5
t	$\mu \mathrm{s}$	100	invariant	100
$t_{\text {on }}$	Hs	60	invariant	60
$t_{\text {off }}$	Hs	40	invariant	40
f_{s}	kHz	20	invariant	20
Δi_{L}	A	5	1/3	12/3
\hat{I}_{L}	A	80	1/3	80/3
\check{I}_{L}	A	70	1/3	70/3
$i_{\text {crms }}$	A rms	21.3	1/3	7.1
$R_{\text {crit }}$	Ω	$371 / 2$	3^{2}	3371/2
$L_{\text {crit }}$	uH	20	3^{2}	180
$V_{D r}$	V	125	3	375
ΔV_{0}	mV	180	3	540
$\Delta v_{0} / v_{0}$	p.u.	0.24\%	invariant	0.24\%

Figure 15.12. Currents for the transformer windings in example 15.7.

Example 15.8: Transformer coupled forward converter

The 10 kHz forward converter in figure 15.10 a operates from a 192 V dc input and a 1:3:2 (1:n $\left.n_{f b}: n_{\text {sec }}\right)$ step-up transformer loaded with a 4Ω resistor. The transformer magnetising inductance is 1.2 mH , referred to the primary. The secondary smp magnetising inductan inductance is $800 \mu \mathrm{H}$.
i. Calculate the ma

Calculate the maximum s
continuous inductor current.
At the maximum duty cycle:
i. Calculate the mean input and output current.
iii. Draw the transformer currents, showing the minimum and maximum values.
iv. Determine

- the critical load resistance
- the minimum inductance for continuous inductor conduction for a 4Ω load

Solution

The maximum duty cycle is determined solely by the transformer turns ratio between the primary and the feedback winding which resets the core flux. From equation (15.154)

$$
\begin{aligned}
\hat{\delta} & =\frac{1}{1+n_{f / b}} \\
& =\frac{1}{1+3}=1 / 4
\end{aligned}
$$

The maximum conduction time is 25% of the 100μ s period, namely $25 \mu \mathrm{~s}$. The secondary output voltage is therefore

$$
v_{\mathrm{sec}}=\delta n_{T} E_{i}
$$

$$
\begin{aligned}
& =o n_{r} L_{i} \\
& =1 / 42 \times 192=96 \mathrm{~V}
\end{aligned}
$$

The load current is therefore $96 \mathrm{~V} / 4 \Omega=24 \mathrm{~A}$, as shown in figure 15.13
Figure 15.13 b shows secondary parameters referred to the primary, specificall

$$
\begin{aligned}
& R_{s}=4 \Omega \quad R_{p}=R_{s} / n_{T}^{2}=4 \Omega / 2^{2}=1 \Omega \\
& v_{o}=96 \mathrm{~V} \quad v_{o}^{\prime}=v_{o} / n_{T}=96 \mathrm{~V} / 2=48 \mathrm{~V} \\
& L_{o}=800 \mu \mathrm{H} \quad L_{o}^{\prime}=L_{o} / n_{T}^{2}=800 \mu \mathrm{H} / 2^{2}=200 \mu \mathrm{H}
\end{aligned}
$$

Note that the output capacitance is transferred by a factor of four, n_{T}^{2}, since capacitive reactance is inversely proportion to capacitance.
Inspection of example 15.1 will show that the equivalent circuit in figure 15.13 b is the same as the circuit in example 15.1, except that a magnetising branch has been added. The various operating condition and values in example 15.1 are valid for example 15.8.

1:3:2 (a)

Figure 15.13. (b) (c) output is referred to the primary.
ii. The mean output current is the same for both circuits, 48 A , or 24 A when referred i1. The mean output current is the same for both circuits, 48 A , or 24 A when referred
to the secondary circuit. The mean input current from E_{i} remains 12A, but the switch mean current is not 12A. Magnetising current is provided from the supply E_{i} through the switch, but returned to the supply E_{i} through diode D2, which bypasses the switch. The net magnetising energy flow is zero. The magnetising current maximum value is given by equation (15.155)
$\hat{I}_{M}=E_{i} t_{o n} / L_{M}$
$=192 \mathrm{~V} \times 25 \mu \mathrm{~S} / 1.2 \mathrm{mH}=4 \mathrm{~A}$
This current increases the switch mean current to
$I_{T}=12 \mathrm{~A}+1 / 2 \times \delta \times 4 \mathrm{~A}=121 / 2 \mathrm{~A}$
Figure 15.13 c show the equivalent circuit when the switch is off. The output circuit unctions independently of the input circuit, which is returning stored core energy to the supply E_{i} via the feedback winding and diode D2. Parameters have been referred to the feedback winding which has three times the turns of the primary, $n_{f b}=3$. The 192 V input voltage remains the circuit reference. Equation (15.155), Faraday's law, referred input voltage remains the circuit reference. Equation (15.155), Faraday slaw,

$$
\begin{aligned}
& \frac{\hat{I}_{M}}{n_{f / b}}=\frac{E_{i, t / t_{\text {t }}}^{n_{f / b}^{2}} L_{M}}{\frac{4}{3}=\frac{192 \mathrm{~V} \times 75 \mu \mathrm{~s}}{3^{2} \times 1.2 \mathrm{mH}}}
\end{aligned}
$$

The diode D 2 voltage rating is $\left(n_{n}+1\right) \times E_{7} 768 \mathrm{~V}$ and its mean current is

$$
\bar{I}_{D 2}=1 / 2(1-\delta) \frac{I_{M}}{n_{f l b}}=1 / 2 \times(1-0.25) \times \frac{4 \mathrm{~A}}{3}=1 / 2 \mathrm{~A}
$$

iii. The three winding currents for the transformer are shown in figure 15.14

igure 15.14. Currents for the three transformer windings in example 15.8
iv. The critical resistance and inductance, referred to the primary, from example 15.1 are $51 / 3 \Omega$ and $371 / 2 \mu \mathrm{H}$. Transforming into secondary quantities, by multiplying by 2^{2} give critical values of $R_{L}=21^{1 / 3} \Omega$ and $L=150 \mu \mathrm{H}$

15.8 Multiple-switch, balanced, isolated converters

The basic single-switch converters considered have the limitation of using their magnetic components only in a unipolar mode. Since only one quadrant of the $B-H$ characteristic is employed, these converters are generally restricted to lower powers because of the limited flux swing, which is reduced by the core remanence flux.
The high-power forward converter circuits shown in figure 15.15 operate the magnetic transformer component in the bipolar or push-pull flux mode and require two or four switches. Because the transformers are fully utilised magnetically, they tend to be almost half the size of the equivalent single transistor isolated converter at power being fully reset to zero each cycle, is not a major issue, since with balanced bidirectional fluxing, the average magnetising current is zero.

15.8.1 The push-pull converter

Figure 15.15 a illustrates a push-pull forward converter circuit which employs two switches and a centre-tapped transformer. Each switch must have the same duty cycle in order to prevent unidirectional core saturation. Because of transformer coupling action, the off switch supports twice the input voltage, $2 E_{i}$, plus any voltage associated with leakage inductance stored energy. Advantageously, no floating gate drives are The vol
equivalege transfer function, for continuous inductor conduction, is based on the equivalent secondary output circuit show in figure 15.16 . Because of transformer
action the input voltage is $N \times E_{i}$ where N is the transformer turns ratio. When a primary switch is on, current flows in the loop shown in figure 15.16. That is

$$
\begin{equation*}
\Delta i_{L}=\hat{i}_{L}-\mathfrak{i}_{L}=\frac{N \times E_{i}-v_{o}}{L} \times t_{T} \tag{15.156}
\end{equation*}
$$

When the primary switches are off, the secondary voltage falls to zero and current continues to flow through the secondary winding due to the energy stored in L. Efficiency is increased if the diode D_{f} is used to bypass the transformer winding, as shown in figure 15.16 . The secondary winding $i^{2} R$ losses are decreased and minimal oltage is coupled from the secondary back into the primary circuit. The current in the off loop shown in figure 15.16 is given by

$$
\begin{equation*}
\Delta i_{L}=\frac{v_{o}}{L} \times\left(\tau-t_{T}\right) \tag{15.157}
\end{equation*}
$$

Equating equations (15.156) and (15.157) gives the following voltage and current transfer functions

$$
\frac{v_{o}}{E_{i}}=\frac{\bar{I}_{i}}{\bar{I}_{o}}=2 N \frac{t_{T}}{\tau}=2 N \delta
$$

igure 15.15. Multiple-switch, isolated output, pulse-width modulated converters: a) push-pull; (b) half-bridge; and (c) full-bridge

Figure 15.16. Equivalent circuit for transformer bridge converters based on a forward converter in the secondary
The output voltage ripple is similar to that of the forward converter

$$
\begin{equation*}
\frac{\Delta v_{c}}{v_{o}}=\frac{\Delta v_{o}}{v_{o}}=\frac{(1-2 \delta) \tau^{2}}{32 L C} \tag{15.159}
\end{equation*}
$$

15.8.2 Bridge converters

Figures 15.15 b and c show half and full-bridge isolated forward converters respectively.
i. Half-bridge

In the half-bridge the transistors are switched alternately and must have the same conduction period. This ensures the core volts-second balance requirement to prevent saturation due to bias in one direction.
Using similar analysis as for the push-pull converter in 15.8.1, the voltage transfer unction of the half bridge with a forward converter output stage, for continuous inductor conduction, is given by

$$
\begin{equation*}
\frac{v_{o}}{E_{i}}=\frac{\bar{I}_{i}}{\bar{I}_{o}}=N \frac{t_{r}}{\tau}=N \delta \tag{15.160}
\end{equation*}
$$

$$
0 \leq \delta \leq 1 / 2
$$

A floating base drive is required. Although the maximum winding voltage is $1 / 2 E_{i}$, the switches must support E_{i} in the off-state, when the complementary switch conducts. The output ripple voltage is given by

$$
\begin{equation*}
\frac{\Delta v_{c}}{v_{o}}=\frac{\Delta v_{o}}{v_{o}}=\frac{(1-2 \delta) \tau^{2}}{16 L C} \tag{15.161}
\end{equation*}
$$

ii. Full-bridge

The full bridge in figure 15.15 c replaces the capacitor supplies of the half-bridge converter with switching devices. In the off-state each switch must support the rail voltage E_{i} and two floating gate drive circuits are required. This bridge converter is usually reserved for high-power applications.

Using similar analysis as for the push-pull converter in 15.8.1, the voltage transfer function of the full bridge with a forward converter output stage, with continuous conduction is given by

$$
\begin{equation*}
\frac{v_{o}}{E_{i}}=\frac{\bar{I}_{i}}{\bar{I}_{o}}=2 N \frac{t_{T}}{\tau}=2 N \delta \tag{15.162}
\end{equation*}
$$

$$
0 \leq \delta \leq 1 / 2
$$

Any volts-second imbalance (magnetising flux build-up) can be minimised by asing dc block capacitance C_{c} as shown in figures 15.15 b and c .

The output ripple voltage is given by

$$
\begin{equation*}
\frac{\Delta v_{c}}{v_{o}}=\frac{\Delta v_{o}}{v_{o}}=\frac{(1-2 \delta) \tau^{2}}{32 L C} \tag{15.163}
\end{equation*}
$$

In each forward converter in figure 15.15, a single secondary transformer winding and full-wave rectifier can be used. If the output diode shown dashed in figure 15.15 c is the in two diode voltage drops to one. oltage ratio action occurs for each transformer based smps, where, independent of δ :

$$
\frac{v_{o}}{E_{i}}=\frac{\bar{I}_{i}}{\bar{I}_{o}}=\frac{n_{s}}{n_{o}}=N
$$

15.9 Resonant dc-to-dc converters

Converter switching losses may be significantly reduced if zero current or voltage switching can be utilised. This switching loss reduction allows higher operating frequencies hence smaller L and C c
Two main techniques can be used to achieve near zero switching losses

- a resonant load that provides natural voltage or current zero instances for switching
- a resonant circuit across the switch which feeds energy to the load as well as introducing zero current or voltage instances for switching.
15.9.1 Series loaded resonant dc-to-dc converters

The basic converter operating concept involves a H -bridge producing an ac squarewave voltage V_{H-B}. When fed across a series $L-C$ filter, a near sinusoidal oscilation current results, provided the square wave fundamental frequency is near the natural resonant frequency of the $L-C$ filter. Because of $L-C$ filter action, only fundamental current flows and harmoniss of the square wave are attenuated due to the gain roll-off oad voltage v order L The output voltage is highly dependant on the frequency relationship between the square-wave drive voltage period and the $L-C$ filter resonant frequency.

Figure 15.17 a shows the circuit diagram of a series resonant converter, which uses an output rectifier bridge to converter the resonant ac oscillation into dc. The converter is based on the series converter in figure 14.27 b . The rectified ac output charges the dc output capacitor, across which is the dc load, $R_{\text {boad }}$. The non-dc-decoupled resistance, which determines the circuit Q, is account for by resistor R_{c}. The dc capacitor C capacitance is assumed large enough so that the output voltage $v_{o / p}$ is maintained constant, without significant ripple voltage. Figures 15.17 b and c show how the dc and finally this source is transferred to the dc link as a constant dc voltage source v, which opposes the dc supply V_{s}. These transformation steps enable the series $L-C-R$ which opposes the de supply V_{s}. These transformation steps enable the series $L-C-R$
resonant circuit to be analysed with square wave inverter excitation, from a dc source $V_{s}-v_{o p p}$. This highlights that the output voltage must be less than the dc supply, that is $V_{s}-v_{o p p} \geq 0$, if current oscillation is to occur. The analysis in chapter 14.3.2 is valid for this circuit, where V_{s} is replaced by $V_{s}-v_{o p}$. The equations, modified, are repeated for completeness.

(a)

(c)

Figure 15.17. Series resonant converter and its equivalent circuit derivation
The series $L-C-R$ circuit current for a step input voltage $V_{s}-v_{o p p}$, with initial capacitor voltage v_{o}, assuming zero initial inductor current, is given by

$$
i(\omega t)=\frac{\left(V_{s}-v_{o / p}\right)-v_{o}}{\omega L} \times e^{-\alpha t} \times \sin \omega t
$$

(15.165)
where
$\omega^{2}=\omega_{o}^{2}\left(1-\xi^{2}\right) \quad \omega_{o}=\frac{1}{\sqrt{L_{R} C_{R}}} \quad \alpha=\frac{R_{c}}{2 L_{R}} \quad \frac{1}{2 Q_{s}}=\xi=\frac{R_{c}}{2 \omega_{o} L_{R}} \quad Z_{o}=\sqrt{\frac{L_{R}}{C_{R}}}$
is the damping factor. The capacitor voltage is important because it specifies the energy retained in the $L-C-R$ circuit at the end of each half cycle.

$$
v_{c}(\omega t)=\left(V_{s}-v_{o / p}\right)-\left(\left(V_{s}-v_{o / p}\right)-v_{o}\right) \frac{\omega_{o}}{\omega} e^{-\alpha t} \cos (\omega t-\phi)
$$

(15.166)
where

$$
\tan \phi=\frac{\alpha}{\omega} \quad \text { and } \quad \omega_{o}^{2}=\omega^{2}+\alpha^{2}
$$

At the series circuit resonance frequency ω_{o}, the lowest possible circuit impedance results, $Z=R_{c}$. The series circuit quality factor or figure of merit, Q_{s} is defined by

$$
\begin{equation*}
Q_{s}=\frac{\omega_{o} L}{R_{c}}=\frac{1}{2 \xi}=\frac{Z_{o}}{R_{c}} \tag{15.167}
\end{equation*}
$$

Operation is characterised by turning on switches T 1 and T 2 to provide energy from he source during one half of the cycle, then having turned T1 and T2 off, T3 and T4 are turned on for the second resonant half cycle. Energy is again drawn from the supply, and when the current reaches zero T3 and T4 are turned off.
Without bridge freewheel diodes, the switches support high reverse bias voltages, but he switches control the start of each oscillation half cycle. With freewheel diodes the oscillations can continue independent of the switch states. The diodes return energy to he supply, hence reducing the energy transferred to the load. Correct timing of the needlessly being returned to the supply. Energy to the load is maximised. The switches can be used to control the effective load power factor. By advancing turn-off to occur before the switch current reaches zero, the load can be made to appear inductive, while delaying switch turn-on produces a capacitive load effect.
The series circuit steady-state current at resonance for the H -bridge with a high circuit Q can be approximated by assuming $\omega_{o} \sim \omega$, such that

$$
\begin{equation*}
i(\omega t)=\frac{2}{1-e^{\frac{-\alpha \pi}{\theta}}} \times \frac{\left(V_{s}-V_{o t p}\right)}{\omega L_{R}} \times e^{-\omega t} \times \sin \omega t \tag{15.168}
\end{equation*}
$$

which is valid for the $\pm(V-v)$ voltage loops of cycle operation at resonance. For a igh circuit Q this equation is approximately

$$
i(\omega t) \approx \frac{4}{\pi} \times Q \times \frac{\left(V_{s}-v_{o / p}\right)}{\omega_{o} L_{R}} \times \sin \omega_{o} t=\frac{4}{\pi} \times \frac{\left(V_{s}-v_{o / p}\right)}{R_{c}} \times \sin \omega_{o} t
$$

(15.169)

The maximum current is

$$
\begin{equation*}
\hat{I} \approx \frac{4}{\pi} \times \frac{\left(V_{s}-V_{o / p}\right)}{R_{c}} \tag{15.170}
\end{equation*}
$$

while the average current with this peak value must equal to load current, that is

$$
\bar{I}=\frac{2}{\pi} \times \hat{I}=\frac{8}{\pi^{2}} \times \frac{\left(V_{s}-v_{o / p}\right)}{R_{c}}=\frac{v_{o / p}}{R}
$$

The output voltage is obtained from equation (15.171) by isolating $v_{o / p}$

$$
\begin{equation*}
v_{o l p}=\frac{V_{s}}{1+\frac{8}{\pi^{2}} \times \frac{R_{e}}{R}} \tag{15.172}
\end{equation*}
$$

In steady-state the capacitor voltage maxima are

$$
\begin{aligned}
\hat{V}_{c} & =\left(V_{s}-v_{o / p}\right) \frac{1+e^{-\alpha \pi / \omega}}{1-e^{-\alpha \pi / \omega}}=\left(V_{s}-V_{o / p}\right) \times \operatorname{coth}(\alpha \pi / 2 \omega)=-\check{V}_{c} \\
& \approx\left(V_{s}-v_{o / p}\right) \times 2 \omega_{o} / \alpha \pi=\frac{4}{\pi} \times Q \times\left(V_{s}-v_{o / p}\right)
\end{aligned}
$$

The peak-to-peak capacitor voltage, by symmetry is therefore

$$
\begin{equation*}
V_{c_{p-p}} \approx \frac{8}{\pi} \times Q \times\left(V_{s}-V_{o / p}\right) \tag{15.174}
\end{equation*}
$$

The energy lost in the coil resistance R_{c}, per half sine cycle (per current pulse) is

$$
\begin{aligned}
W & =\int_{0}^{\pi / \omega} i^{2} R_{c} d t \approx \int_{0}^{\pi / \omega_{o}}\left(4 \frac{2}{\pi} \times \frac{\left(V_{s}-v_{o / p}\right)}{R_{c}} \times \sin \omega_{o} t\right)^{2} R_{c} d t \\
& =\frac{8}{\pi \omega_{o} R_{c}}\left(V_{s}-V_{o / p}\right)^{2}
\end{aligned}
$$

The relationship between the output voltage $v_{o / p}$ and H-bridge switching frequency, ω_{s}, is not a simple linear function. Because of the L - C series filter cut-off frequency $\omega_{s} \approx$ ω_{o}, only which has a magnitude of $4 / V$. A series $R-C-L$ ac circuit at frequency $\omega_{\text {ce }}$ can be used to derive a relationship between the output voltage v and ω_{1}. The effective load resistance, from equation (15.171) becomes $R=8 / z_{2} R$ such that Kirchhoff's voltage lew for the series circuit, shown in figure 15.18 eq is law for the series circuit, shown in figure 15.18a, is

$$
\begin{align*}
\frac{4}{\pi} V_{s} & =i \times\left(R_{e q}+R_{c}+j\left(\omega_{s} L_{R}-\frac{1}{\omega_{s} C_{R}}\right)\right) \tag{15.176}\\
\frac{4}{\pi} v_{o / p} & =i \times R_{e q}
\end{align*}
$$

The equivalent output voltage is therefore given by

$$
v_{o}=V_{s} \times \frac{R_{e q}}{R_{e q}+R_{c}+j\left(\omega_{s} L_{R}-\frac{1}{\omega_{s} C_{R}}\right)}
$$

where the H -bridge switching frequency is $\omega_{s}=2 \pi f_{s}$.
Figure 15.18 shows equation (15.177) for different circuit Q. The plot can be used to extract output voltage $v_{o / p}$ and H -bridge switching frequency. The output voltage is scaled to eliminate the coil resistance component from the total resistive voltage.

15.9.1i - Modes of operation - series resonant circuit

The basic series converter can be operated in any of three difference modes, depending on the switching frequency in relation to the $L-C$ circuit natural resonant frequency. In all cases, the controlled output voltage is less than the input voltage, that is $V_{s}-$
The switching frequency involves one complete symmetrical square-wave output cycle from the inverter bridge. Waveforms for the three operational modes are shown in figure 15.19

i. $\quad f_{s}<1 / 2 f_{o}$:- discontinuous inductor current (switch conduction $1 / 2 f \leq t_{T} \leq 1 / f$) If the switching frequency is less than half the $L-C$ circuit natural resonant frequency, as shown in figure 15.19 c , then discontinuous inductor current results. This because once one complete $L-C$ resonant ac cycle occurs and current stops, being unable to reverse, since the switches are turned off when the diodes conduct and the capacitor voltage is less than $V_{s}+v_{o}$. Turn-off occurs at zero current. Subsequent turn-on occurs at zero current but the voltage is determined by the voltage retained by the capacitor. Thyristors are therefore applicable switches in this mode of operation. The freewheel the load current average current, the H -bridge switching frequency controls the output voltage. Therefore at low switching frequencies, relative to the resonance frequency, the peak resonant current will be relatively high.
ii. $\quad 1 / f_{o}<f_{s}<f_{o}$:- continuous inductor current

If the switching frequency is just less than natural resonant frequency, as shown in figure 15.19 b , such that turn-on occurs after half an oscillation cycle but before a complete ac oscillation cycle is complete, continuous inductor current results. Switch turn-on occurs with finite inductor current and voltage conditions, with the diodes freewheeling. Diode reverse recovery losses occur and noise in injected into the turn-off occurs at zero voltage and current, when the inductor current passes through zero and the freewheel diodes take up conduction. Thyristors are applicable as switching devices with this mode of control.
iii. $f_{s}>f_{o}$:- continuous inductor current

If turn-off occurs before the resonance of half a resonant cycle is complete, as shown in figure 15.19a, continuous inductor current flows, hard switching results, and commutable switches must be used. Switch turn-on occurs at zero voltage and current hence no diode recovery snap occurs. This zero electrical condition turn-on allows lossless turn-off snubbers to be employed (a capacitor in parallel with each switch). continuously transferred to the output stage, which tends to progressively overcharge the output voltage towards the input voltage level, V_{s}. The charging progressively decreases as the $V_{\text {s }}$ is backed off by the increasing output voltage. That is $V_{s}-v_{o}$ shown in figure 15.17 c tends to zero such that the effective square wave input is reduced to zero, as will the input energy.

15.9.1ii- Circuit variation

The number of semiconductors can be reduced by using a split dc rail as in figure 15.20 a , at the expense of halving the bridge output voltage swing V_{H-B} to $\pm 1 / 2 V_{s}$. Although the number of semiconductors is halved, the already poor switch utilisation support V_{s}. In the full-bridge case the corresponding switch and diode voltages are both

Voltage and impedance matching, for example voltage step-up, can be obtained by using a transformer coupled circuit as shown in figure 15.20 b . When a transformer is used as in figure 15.20 c , a centre tapped secondary can reduce the number of high
frequency rectifying diodes from four to two, but diode reverse voltage rating is doubled from V_{s} to $2 V_{s}$. Secondary copper winding utilisation is halved.
A further modification to any series converter is to used the resonant capacitor to form a split dc rail as shown in figure 15.20 c , where each capacitance is $1 / 2 C_{R}$. In ac terms the ging while the discharges, and visa versa, such that their voltage sum is V

(b)

(c)

Figure 15.20. Series load resonant converters variations:
(a) half bridge, split tcc supply rail; (b) transformer couple full bridge; and (c) split
resonant capacitor, with a centre tapped output rectifier stage.
15.9.2 Parallel loaded resonant dc-to-dc converters

The basic parallel load resonant dc-to-dc converter is shown in figure 15.21 a and its equivalent circuit is shown in figure 15.21 b . The inductor L_{o} in the rectified output circuit produces a near constant current. A key feature is that the output voltage $v_{o / p}$ can ee greater than the input voltage V_{s}, that is $0 \leq v_{o f p} \geq V_{s}$.
for the equivalent circuit in figure 15.2 lb , for a constant current load I_{o}, are

$$
\begin{align*}
i_{L}(t) & =I_{o}+\left(i_{L o}-I_{o}\right) \cos \omega_{o} t+\frac{V_{s}-v_{C o}}{Z_{o}} \sin \omega_{o} t \\
& =I_{o}+\frac{V_{s}}{Z_{o}} \sin \omega_{o} t \text { for } v_{C_{o}}=0 \text { and } i_{L o}=I_{o} \\
v_{c}(t) & =V_{s}-\left(V_{s}-v_{C o}\right) \cos \omega_{o} t+Z_{o}\left(i_{L_{o}}-I_{o}\right) \sin \omega_{o} t
\end{align*}
$$

(a)

(b) $\begin{aligned} & \text { (b) } \\ & \text { igure 15.21. Parallel resonant dc-to-dc converter } \\ & (\text { c) }\end{aligned}$

Figure 15.21. Parallel resonant dc-to-dc converter:
(a) circuit (b) equivalent ac circuit; (c) equivalent fundamental input voltage circuit; nd (d) series-parallel resonant circuit stage.

The relationship between the output voltage and the bridge switching frequency can determined from the equivalent circuit shown in figure 15.2 cc where the output resistance has been replaced by its equivalent resistance related to the H -bridge output fundament frequency magnitude, $4 / \pi V_{s}$. The voltage across the resonant capacitor C_{R} is assumed to be sinusoidal.

Kirchhoff analysis of the equivalent circuit in figure 15.22 b gives

$$
\frac{v_{o}}{V_{s}}=\frac{8}{\pi^{2}} \times\left|\frac{1}{1-\frac{X_{L}}{X_{C}}+\frac{X_{L}}{R_{e q}}}\right|=\frac{8}{\pi^{2}} \times \frac{1}{\left(1-\frac{X_{L}}{X_{C}}\right)^{2}+\left(\frac{X_{L}}{R_{e q}}\right)^{2}}
$$

where the load resistance R is related to the equivalent resistance, at the switching frequency ω_{s}, by $R_{e q}=\frac{8}{\pi^{2}} \times R$. Series stray non-load resistance has been neglected.
15.9.2i-Modes of operation - parallel resonant circuit

Three modes of operation are applicable to the parallel-resonant circuit, dc-to-dc converter, and waveforms are shown in figure 15.22 x .
$f_{s}<1 / 2 f_{o}$:- discontinuous inductor current (switch conduction $1 / 2 f_{o} \leq t_{T} \leq 1 / f_{o}$)
nitially all switches are off and the load current energy stored in L_{o} freewheels hrough the bridge diodes.
Both the inductor current and capacitor voltage are zero at the beginning of the cycle and at the end of the cycle. Thus switch turn-on and turn-off occur with zero current losses. At H -bridge turn-on the resonant inductor current increases linearly according to $i=V_{s} t / L_{R}$ until the output current level I_{o} is reached at time $t_{t}=L_{R} I_{o} / V_{s}$, when the capacitor is free to resonant. The capacitor voltage is given by

$$
\begin{equation*}
v_{c}(t)=V_{s}\left(1-\cos \omega_{o} t\right) \tag{15.181}
\end{equation*}
$$

while the inductor current is given by

$$
\begin{equation*}
i_{L}(t)=I_{o}+\frac{V_{s}}{Z_{o}} \sin \left(\omega_{o} t\right) \tag{15.182}
\end{equation*}
$$

The resonant circuit inductor current reverses as on-switch antiparallel freewheel diodes conduct, at which time the switches may be turned off at zero current and voltage conditions. A further inductor current reversal is therefore not possible. At the attempted reversal instant, any retained capacitor charge is discharged at a constant rate I_{o} in the inductor L_{o}. The capacitor voltage falls linearly to zero at which time the current in L_{o} freewheels in the output rectifier diodes.
ii. $1 / f_{o}<f_{s}<f_{o}:$ - continuous inductor current

When switching below resonance, the switches commutate naturally at turn-off, as shown in figure 15.22 b , making thyristors a possibility.
Hard turn-on results, necessitating the use of fast recovery diodes.
Hiird $^{\text {in }}>f_{s}>f_{o}:$ - continuous inductor current
When switching at frequencies above the natural resonance frequency, no turn-on losses occur since turn-on occurs when a switches antiparaliel diode is conducting. Turn-off occurs with inductor current flowing, hence hard turn-off occurs, with switch current commutated to a freewheel diode. In mitigation, lossless capacitive turn-off snubber can be used (a capacitor in parallel with each switch).

Figure 15.22. Three modes of parallel load resonant converter operation:
(a) $f_{s}>f_{o i}$ (b) $1 / 2 f_{o}<f_{s}<f_{o}$; and (c) $f_{s}<1 / 2 f_{o}$

15.9.2ii - Circuit variations

A parallel resonant circuit approach, with or without transformer coupling, can also be use as indicated in figure 15.21a. The centre tapped secondary approach shown in figure 15.20 c is also applicable. A dc capacitor split dc rail can also be used, as shown for the series load resonate circuit in figure 15.20a. A further resonant circuit variation is a combined series-parallel resonant stage as shown in figure 15.21 d .

Table 15.4 Switch and diode turn-on/turn-off conditions for resonant switch converters

	series load resonance		parallel load resonance		
	switch diode on off	switch diode off on	switch diode on off	switch diode off on	power factor
$f_{s}<1 / 2 f_{0}$	zcs	$\begin{aligned} & \text { zcs } \\ & \text { zvs } \end{aligned}$	zcs	$\begin{aligned} & \text { zcs } \\ & \text { zvs } \end{aligned}$	N/A
$f_{s}<f_{0}$	hard	$\begin{aligned} & \text { zcs } \\ & \text { zvs } \end{aligned}$	hard	$\begin{aligned} & \text { zcs } \\ & \text { zvs } \end{aligned}$	leading
$f_{s}>f_{\text {o }}$	$\begin{aligned} & \text { zcs } \\ & \text { zvs } \end{aligned}$	hard	$\begin{aligned} & \text { zcs } \\ & \text { zvs } \end{aligned}$	hard	lagging

Example 15.9: Transformer-coupled, series-resonant, dc-to-dc converter

The series resonant dc step down voltage converter in figure 15.17a is operated at just above the resonant frequency of the load circuit and is used with a step up transformer, 1:2 $\left(n_{T}=1 / 2\right)$, as shown in figure 15.19a. It produces an output voltage for the armature of a high voltage dc motor that has a voltage requirement that is greater than the 50 Hz are $L=100 \mu \mathrm{H}, C=0.47 \mu \mathrm{~F}$, and the coil resistanke filter. The
For a 10Ω armature resistance, $R_{\text {load }}$, calculate
the circuit Q and ω_{o}
the output voltage, hence dc armature current and power delivered
iii. the secondary circuit dc filter capacitor voltage and rms current rating
iv. the resonant circuit rms ac current and capacitor rms ac voltage
. the converter average input current and efficiency
i. the ac current in the input L - C dc rectifier filter decoupling capacito
vii. the H -bridge square-wave switching frequency $\omega_{s,}$, greater than ω_{0}.

Solution

The resonant circuit Q is

Power Electronics

$$
Q=\sqrt{\frac{L_{R}}{C_{R}}} / R_{c}=\sqrt{\frac{100 \mu \mathrm{H}}{0.47 \mu \mathrm{~F}}} / 1 \Omega=14.6
$$

For this high Q , the circuit resonant frequency and damped frequency will be almost the same, that

$$
\begin{aligned}
\omega \approx \omega_{o} & =1 / \sqrt{L_{R} C_{R}} \\
& =1 / \sqrt{100 \mu \mathrm{H} \times 0.47 \mu \mathrm{~F}}=146 \mathrm{krad} / \mathrm{s} \\
& =2 \pi f \\
f= & 146 \mathrm{krad} / \mathrm{s} / 2 \pi=23.25 \mathrm{kHz}
\end{aligned}
$$

ii. From equation (15.171), which will be accurate because of a high circuit O of 14.6

$$
\begin{aligned}
\bar{I} & =\frac{2}{\pi} \hat{I}=\frac{8}{\pi^{2}} \frac{\left(V_{s}-n_{T} \times v_{o / p}\right)}{R_{c}}=\frac{8}{\pi^{2}} \times \frac{\left(340 \mathrm{~V}-1 / 2 v_{o / p}\right)}{1 \Omega} \\
& =0.81 \times\left(340 \mathrm{~V}-1 / 2 v_{o / p}\right)
\end{aligned}
$$

Note that the output voltage $v_{o / p}$ across the dc decoupling capacitor has been referred to the primary by n_{T}, hence halved, due to the turns ratio of $1: 2$. The rectified resonant current provides the load current, that is

$$
\begin{aligned}
\bar{I} & =\frac{1}{n_{T}} \times \frac{v_{o / p}}{R_{\text {ood }}}=2 \times \frac{v_{o / p}}{10 \Omega} \\
& =\frac{v_{o / p}}{5}
\end{aligned}
$$

Again the secondary current has been referred to the primary. Solving the two average primary current equations gives

$$
\begin{aligned}
& \bar{I}=0.81 \times\left(340-1 / 2 v_{o}\right)=\frac{v_{o / p}}{5} \\
& v_{o / p}=456 \mathrm{~V} \text { and } \bar{I}=91.2 \mathrm{~A}
\end{aligned}
$$

That is, the load voltage is 456 V dc and the load current is $456 \mathrm{~V} / 10 \Omega=91.2 \mathrm{~A} / 2=$ 45.6 A dc. The power delivered to the load is $456^{2} / 10 \Omega=20.8 \mathrm{~kW}$.
ii. From part ii, the capacitor dc voltage requirement is at least 456 V dc. The secondary rms current is

$$
\begin{aligned}
I_{\text {smas }} & =n_{T} \times I_{P_{p m s}}=n_{T} \times \frac{1}{\sqrt{2}} \times \hat{I}_{p}=1 / 2 \times \frac{1}{\sqrt{2}} \times \frac{\pi}{2} \times \bar{I}_{p} \\
& =0.555 \times \bar{I}_{p}=0.555 \times 91.2 \mathrm{~A}
\end{aligned}
$$

$$
=50.65 \mathrm{~A} \mathrm{rms}
$$

The primary rms current is double the secondary rms current, 101.3 A rms.

By Kirchhoff's current law, the secondary current (50.65 A rms) splits between the load (45.6 Adc) and the decoupling capacitor. That is the rms current in the capacitor is

$$
I_{C m s}=\sqrt{I_{s m s}^{2}-\bar{I}_{s}^{2}}=\sqrt{50.65^{2}-45.6^{2}}=22 \mathrm{Arms}
$$

That is, the secondary dc filter capacitor has a dc voltage requirement of 456 V dc and a current requirement of 22 A rms at 46.5 kHz , which is double the resonant frequency because of the rectification process.
v. The primary rms current is double the secondary rms current, namely from part iii, $I_{P_{r m s}}=101.3 \mathrm{~A}$ rms. The $0.47 \mu \mathrm{~F}$ resonant capacitor voltage is given by

$$
\begin{aligned}
v_{\text {cup }} & =I_{\mathrm{Prms}} X_{c}=\frac{I_{\mathrm{Pms}}}{\omega_{0} C_{R}} \\
& =\frac{101.3 \mathrm{~A}}{146 \mathrm{krad} / \mathrm{s} \times 0.47 \mu \mathrm{~F}}=1476 \mathrm{~V} \mathrm{rms}
\end{aligned}
$$

The resonant circuit capacitor has an rms current rating requirement of 101.3 A rms and an rms voltage rating of 1476 V rms.
v. From part ii, the average input current is 91.2 A . The supply input power is therefore $340 \mathrm{Vdc} \times 91.2 \mathrm{~A}$ ave $=31 \mathrm{~kW}$. The power dissipated in the resonant circuit resistance $R_{c}=1 \Omega$ is given by $I_{\text {pms }}^{2} \times R_{c}=101.3^{2} \times 1 \Omega=10.26 \mathrm{~kW}$. Note that the coil 31 kW). The efficiency is

$$
\begin{aligned}
\eta & =\frac{\text { output power }}{\text { input power }} \times 100 \% \\
& =\frac{20.8 \mathrm{~kW}}{31 \mathrm{~kW}} \times 100=67.1 \%
\end{aligned}
$$

vi. The average input dc current is 91.2 A dc while the resonant bridge rms current is 101.3A rms. By Kirchhoff's current law, the 340 V dc rail decoupling capacitor ac current is given by

$$
\begin{aligned}
I_{o c} & =\sqrt{I_{P_{\text {pus }}}^{2}-I_{p_{p u e}}^{2}} \\
& =\sqrt{101.3^{2}-91.2^{2}}=44.1 \mathrm{~A} \mathrm{ac}
\end{aligned}
$$

This is the same ac current magnitude as the current in the dc capacitor across the load in the secondary circuit, 22A, when the transformer turns ratio, 2, is taken into account. vii. The voltage across the load resistance is given by equation (15.177)

$$
\begin{gathered}
\frac{v_{o}}{V_{s}}=\frac{R_{\text {eq }}}{R_{e q}+R_{c}+j\left(\omega_{s} L_{R}-\frac{1}{\omega_{s} C_{R}}\right)}=\frac{\frac{8}{\pi^{2}} \times n_{T}^{2} \times R_{\text {Lood }}}{\frac{8}{\pi^{2}} \times n_{T}^{2} \times R_{\text {Lood }}+R_{c}+j\left(\omega_{s} L_{R}-\frac{1}{\omega_{s} C_{R}}\right)} \\
\frac{226 \mathrm{~V}}{340 \mathrm{~V}}=0.66=\left|\frac{\frac{8}{\pi^{2}} \times 1 / 4 \times 10 \Omega}{\frac{8}{\pi^{2}} \times 1 / 4 \times 10 \Omega+1 \Omega+j\left(\omega_{s} 100 \mu \mathrm{H}-\frac{1}{\omega_{s} 0.47 \mu \mathrm{~F}}\right)}\right| \\
0.66=\left|\frac{2}{3+j\left(\omega_{s} 100 \mu \mathrm{H}-\frac{1}{\omega_{s} 0.47 \mu \mathrm{~F}}\right)}\right| \\
1=\left|1+j 1 / 3\left(\omega_{s} 100 \mu \mathrm{H}-\frac{1}{\omega_{s} 0.47 \mu \mathrm{~F}}\right)\right|
\end{gathered}
$$

Because of the high circuit $Q=14.6$ and relatively high voltage transfer ratio $v_{o} / V_{s}=0.66, \omega_{s}$ is very close to ω_{o}, as can be deduced from the plots in figure 15.18 b . $\nu_{o} N_{s}=0.66, \omega_{s}$ is very close to ω_{o}, as can be deduced from the plots in figure 15.18b. frequency.

15.9.3 Resonant-switch, dc-to-dc converter:

There are two forms of resonant switch circuit configurations for dc-to-dc converters, namely resonant voltage and resonant current switch commutation. Each type reduces he switching losses to near zero.

- In resonant current commutation the switching current is reduced to zero by an $L-C$ resonant circuit current greater in magnitude than the load current, uch the switch is turned on and off with zero current.
- In resonant voltage commutation the switch voltage is reduced to zero by the epacitor of an $L-C$ resonant circuit with a voltage magnitude greater than the 15.23a showe, such that the switch can turn on and off with zero voltage ge dc-to-dc converter. Resonant switch converters are an extension of the standard switch mode forward converter, but the switch is supplement with passive components $L_{R}-C_{R}$ to provide resonant operation through the switch, hence facilitating zero current or voltage switching. A common feature is that the resonant inductor L_{R} is in series with he switch to be commutated. Parasitic series inductance is therefore not an issue with resonant switch converters.

(b) $1 / 2$ wave ZCS (c)
(a)
(d) $1 / 2$ weve ZVS (e)

Figure 15.23. Dc to dc resonant switch converters:
(b) and (c) half-waventional switch moderre forward step-down conitcherter; (d) and (e) half-wave zero voltage switching ZVS resonant switch converters.

The resonant capacitor C_{R}, can be either in a parallel or series arrangement as shown in figure 15.23 , since small-signal ac-wise the connections are the same. A welldecoupled supply is essential when the capacitor C_{R} is used in the parallel switch arrangement, as shown in figure 15.23 part b and d. A further restriction is that a diode must be used in series or in antiparallel with T1 if a switch without reverse blocking capability is used. The use of an antiparallel connected diode changes the switching arrangement from half-wave resonant operation with reverse impressed voltage switch independent of the switch reverse blocking capabilities. Reconnecting the capacitor C_{R} terminal not associated with V_{s}, to the other end of inductor L_{R} in figure $15.23 \mathrm{~b}-\mathrm{e}$, will
create four full-wave resonant switch circuits (the commutation type, namely voltage or current, is also interchanged). An important operational requirement is that the average load current never falls to zero, otherwise the resonant capacitor C_{R} can never fully discharge when performing its zero switch current turn-off function.

15.9.3i Zero-current, resonant-switch, dc-to-dc converter

The zero current switching of T1 in figure $15.24(15.23 \mathrm{~b})$ can be analysed in five The zero current switching of T1 in figure 15.24 (15.23b) can be analysed in five
distinctive stages, as shown in the capacitor voltage and inductor current waveforms. The switch is turned on at t_{o} and turned off after t_{4} but before t_{5}.
The circuit has attained steady state load conditions from one cycle to the next. The cycle commences, before t_{o}, with both the capacitor voltage and inductor current being zero, and the load current is freewheeling through D1. The current in the output inductor L_{o}, is large enough such that its current, I_{o} can be assumed constant. The switch T1 is off
Time interval I
At t_{0} the switch is turned on and the series inductor L_{R} acts as a turn-on snubber for the switch. In the interval t_{o} to t_{t}, the supply voltage is impressed across L_{R} since the switch zero volts. Because of the fixed the output current, thereby clamping the inductor to the current in L_{R} increases from zero,
according to

$$
t_{I}=I_{o} L_{R} / V_{S}
$$

(15.183)

Time interval IIA
When the current in L_{R} reaches I_{o} at time t_{l}, the capacitor C_{R} and L_{R} are free to resonant. The diode DI blocks as the voltage across C_{R} sinusoidally increases. The constant load current component in L_{R} does not influence its ac performance since a constant inductor current does not produce any inductor voltage. Its voltage is specified by the resonant cycle, provided $I_{o}>V_{s} / Z_{o}$. The capacitor resonantly charges to twice he supply V_{s} when the inductor current falls back to the load current level I_{o}, at time t_{5} Time interval IIB
Between times t_{3} and t_{4} the load current is displaced from L_{R} by charge in C_{R}, in a quasi resonance process. The resonant cycle cannot reverse through the switch once the inductor current reaches zero at time t_{4}, because of the series blocking diode (the The time for period II is approximately

$$
\begin{equation*}
t_{l l}=\left(\pi-\sin ^{-1}\left(I_{o} Z_{o} / V_{s}\right)\right) / \omega_{o} \tag{15.185}
\end{equation*}
$$

where $Z_{o}=\sqrt{L_{R} / C_{R}}$, while the capacitor voltage is given by

$$
v_{c_{g}}(t)=V_{s}\left(1-\cos \omega_{0} t\right)
$$

(15.186)

Time interval III
At time t_{4} the input current is zero and the switch T 1 can be turned off with zero current, ZCS. The constant load current requirement I_{o} is provided by the capacitor, which discharges linearly to zero vols at ime t_{5}. according to

$$
v_{C_{R}}(t)=V_{C_{R}}-\frac{I_{o}}{\left(1-\cos \omega_{o} t_{H}\right) C_{R}} \times
$$

The time for interval III is therefore load current dependant and is given by

$$
t_{t I I}=\frac{V_{C_{R}} C_{R}}{I_{o}} \times\left(1-\cos \omega t_{t}\right)
$$

Time interval IV
After t_{5}, the switch is off, the current freewheels through D1, the capacitor voltage is zero and the input inductor current is zero. At time t_{1} the cycle recommences. The interval $I V$, t_{5} to t_{0}, is used to control the rate at which energy is transferred to the load.

The output voltage can be specified by either evaluating the energy from the supply, hrough the input resonant inductor L_{R}, or by evaluating the average voltage across the resonant capacitor C_{R} which is filtered by the output filter $L_{o}-C_{o}$
By considering the input inductor energy for each shown period, from the waveforms in figure 15.24 b , the output voltage is given by

$$
\begin{equation*}
v_{o}=\frac{V_{s}}{\tau}\left(1 / 2 t_{I}+t_{I I}+t_{I I}\right) \tag{15.189}
\end{equation*}
$$

where the switching frequency $f_{s}=1 / \tau$.
The output voltage based on the average capacitor voltage is

$$
\begin{aligned}
v_{o} & =\frac{1}{\tau}\left[\int_{4}^{t_{4}} V_{s}(1-\cos \omega t) d t+\int_{4}^{t_{s}} V_{s} \frac{t}{t_{5}-t_{4}} d t\right] \\
& =\frac{1}{\tau}\left[\frac{V_{s}}{2 \pi} \times\left(\frac{3 \pi}{2}+1\right) \times 4 / 3 \times\left(t_{4}-t_{1}\right)+1 / 2 \times V_{s} \times\left(t_{5}-t_{4}\right)\right]
\end{aligned}
$$

The circuit has a number of features:
i. Turn-on and turn-off occur at zero current, hence switching losses are minimal.
ii. At light load currents the switching frequency may become extreme low.
ii. The basic half resonant period is given by $t_{n}=\pi \sqrt{L_{R} C}$
iii. The capacitor discharge time is $t_{\| I} \leq 2 \times V \times C_{\|} / I_{\text {a }}$, thus the output voltage is load current dependant
iv. L_{R} and C_{R} are dimensioned such that the capacitor voltage is greater than V_{s} at time t_{4}, at maximum load current I_{o}.
vi. Supply inductance is inconsequential, decreasing the inductance L_{R} requirement. voltage. The output increases with increased switching frequency.
vii. If a diode in antiparallel to the switch is added as shown dashed in figure 15.23 b , reverse inductor current can flow and the output voltage is $v_{o} \approx V_{s} \times f_{s} / f_{o}$ Operation of the ZCS circuit in figure 15.23 c , where the capacitor C_{R} is connected in parallel with the switch, is essentially the same as the circuit in figure 15.24. The capacitor connection produces the result that the capacitor voltage has a dc offset of V_{s}, meaning its voltage swings between $\pm V_{s}$ rather than zero and twice V_{s}, as in the circuit just considered. Any dc supply inductance must be decoupled when using the ZVS circuit in figure 15.23 c .
15.9.3ii Zero-voltage, resonant-switch, dc-to-dc converter

The zero voltage switching of T 1 in figure 15.25 (15.23e) can be analysed in five distinctive stages, as shown in the capacitor voltage and inductor current waveforms. The switch is turned off at t_{0} and turned on after t_{4} but before t_{5}.
The circuit has attained steady state load conditions from one cycle to the next. The cycle commences, before t_{0}, with the capacitor C_{R} voltage being V_{s} and the load current I_{o} being conducted by the switch and the resonant inductor, L_{R}. The output inductor L_{ρ}

Time interval I

At time t_{o} the switch is turned off and the parallel capacitor C_{R} acts as a turn-off nubber for the switch. In the interval t_{o} to t_{l}, the supply current is provided from V_{s} hrough C_{R} and L_{R}. Because the load current is constant, I_{o}, due to large L_{o}, the capacitor charges linearly from 0 V until its voltage reaches V_{s} in time

$$
t_{l}=\frac{V_{s} C_{R}}{I_{o}}
$$

according to

$$
\begin{equation*}
v_{c}(t)=V_{s}-\frac{I_{o}}{C_{R}} \times t \tag{15.192}
\end{equation*}
$$

ime interval II
When the voltage across C_{R} reaches V_{s} at time t_{1}, the load freewheel diode conducts, lamping the load voltage to zero volts. The capacitor C_{R} and L_{R} are free to resonant, where the initial inductor current is I_{o} and the initial capacitor voltage is V_{s}. The energy in the inductor transfers to the capacitor, which increases its voltage from V_{s} to a maximum at time t_{2} of

$$
v_{c}=V_{s}+I_{o} Z_{o}
$$

$\frac{-}{T}$

Figure 15.25. Zero voltage switching, ZVS, resonant switch dc to dc converter: (a) circuit: (b) waveforms; and (c) equivalents circuits.

The capacitor energy transfers back to the inductor which has resonated from $+I_{o}$ to I_{o} between times t_{1} to time t_{3}. For the capacitor voltage to resonantly return to $V_{s}, I_{o}>$ V_{s} / Z_{o}. Between t_{3} and t_{4} the voltage V_{s} on C_{R} is resonated through L_{R}, which conducts $-I_{o}$ at t_{3}, as part of the resonance process. The capacitor voltage and inductor current during period II are given by

$$
\begin{align*}
& v_{c}(t)=V_{s}+I_{o} Z_{o} \sin \omega_{o} t \tag{15.194}\\
& i_{L}(t)=I_{o} \cos \omega_{o} t
\end{align*}
$$

and the duration of interval II is

$$
\begin{equation*}
t_{u}=\left(\pi+\sin ^{-1} \frac{V_{s}}{I_{o} Z_{o}}\right) / \omega_{o} \tag{15.195}
\end{equation*}
$$

At the end of interval II the capacitor voltage is zero and the inductor current is

$$
\begin{equation*}
i_{L}\left(t_{u}\right)=I_{o} \cos \omega_{o} t_{u} \tag{15.196}
\end{equation*}
$$

ime interval III

At time t_{4} the voltage on C_{R} attempts to reverse, but is clamped to zero by diode D_{R}. The inductor energy is returned to the supply V_{s} via diode D_{R} and the freewheel diode $\mathrm{D}_{1 .}$. The inductor current decreases linearly to zero during the period t_{4} to t_{5}. During this period the switch T 1 is turned on. No turn-on losses occur because the diode D_{R} switch voltage is zero and the switch T1 can be turned on with zero voltage, ZVS. With the switch on at time t_{5} the current in the inductor L_{R} reverses and builds up, linearly to I_{o} at time t_{6}. The current slope is supply V_{s} dependant, according to $V_{s}=L_{R}$ $d i / d t$, that is

$$
\begin{equation*}
i_{L}(t)=\frac{V_{s}}{L_{R}} t+I_{o} \cos \omega_{o} t_{t} \tag{15.197}
\end{equation*}
$$

and the time of period $I I I$ is load current dependant:

$$
\begin{equation*}
t_{I I}=\frac{I_{o} L_{R}}{V} \times\left(1-\cos \omega_{o} t_{1}\right) \tag{15.198}
\end{equation*}
$$

Time interval IV
At t_{6}, the supply V_{s} provides all the load current and the diode D1 recovers with a controlled $d i / d t$ given by V_{s} / L_{R}. The switch conduction interval $I V, \mathrm{t}_{6}$ to t_{o}, is used to control the rate at which energy is transferred to the load.

The output voltage can be derived from the diode voltage (shown hatched in figure $15.25 b$) since this voltage is averaged by the output $L C$ filter.

$$
v_{o}=\frac{1}{\tau}(\text { Volt } \times \text { second area of interval } I+\text { Volt } \times \text { second area of interval } I V)
$$

$$
=\frac{1}{\tau}\left(1 / 2 t_{1}+\tau-t_{s}\right)=V_{s}\left(1-f_{s}\left(t_{6}-1 / 2 t_{1}\right)\right)
$$

The circuit has a number of features:
i. Switch turn-on and turn-off bo are minimal.
ii. At light load currents the switching frequency may become extreme high
ii. At The basic half-resonant period is approximately given by $t_{1-4}=\pi \sqrt{L_{R} C_{R}}$
iv. The inductor discharge time is $t_{I I} \leq 2 \times I_{o} \times L_{R} / V_{s}$, hence the output voltage is load current dependant.
v. L_{R} and C_{R} are dimensioned such that the inductor current is less than zero (being returned to the supply V_{s}) at time t_{5}, at maximum load current I_{o}.
vi. Being based on the forward converter, the output voltage is less than the input voltage. Increasing the switching frequency decreases the output voltage since τ t_{5} is decreased in equation (15.199)
Operation of the ZVS circuit in figure 15.23 d , where the capacitor C_{R} is connected in parallel with the load circuit (the freewheel diode D1), is essentially the same as the circuit in figure 15.25 . The capacitor connection produces the result that the capacitor voltage has a dc offset of V_{s}, meaning its voltage swings between $+V_{s}$ and $-I_{o} Z_{o}$, rather than zero and $V_{S}-I_{o} Z_{o}$, as in the circuit just considered. Any de supply inductance
must be decoupled when using the ZVS circuit in figure 15.23d.
It will be noticed that a ZCS converter has a constant on-time, while a ZVS converter has a constant off-time.

Example 15.10: Zero-current, resonant-switch, dc-to-dc converter

The ZCS resonant dc step-down voltage converter in figure 15.24 a produces an output voltage for the armature of a high voltage dc motor and operates from the voltage produced from the 50 Hz ac mains rectified, 340 V dc, with an $L-C$ dc link filter. The resonant circuit parameters are $L_{R}=100 \mu \mathrm{H}, C_{R}=0.47 \mu \mathrm{~F}$, and the high frequency ac esistance of the circuit is $R_{c}=1 \Omega$
Calculate
the circuit Z_{o}, Q, and ω_{o}
the minimum output current to ensure ZCS
iii. the maximum operating frequency, represented by the time between switch turn
on and the freewheel diode recommencing conduction, at minimum load curren
iv . the average diode voltage, hence load voltage at the maximum frequency

Solution

The characteristic impedance is given by

$$
Z_{o}=\sqrt{\frac{L_{R}}{C_{R}}}=\sqrt{\frac{100 \mu \mathrm{H}}{0.47 \mu \mathrm{~F}}}=14.6 \Omega
$$

The resonant circuit Q is

$$
Q=\frac{Z_{o}}{R_{c}}=\sqrt{\frac{100 \mu \mathrm{H}}{0.47 \mu \mathrm{~F}}} / 1 \Omega=14.6
$$

For this high Q, the circuit resonant frequency and damped frequency will be almost the same, that is

$$
\begin{aligned}
\omega \approx \omega_{o} & =1 / \sqrt{L_{R} C_{R}} \\
& =1 / \sqrt{100 \mu \mathrm{H} \times 0.47 \mu \mathrm{~F}}=146 \mathrm{krad} / \mathrm{s} \\
& =2 \pi f \\
f= & 146 \mathrm{krad} / \mathrm{s} / 2 \pi=23.25 \mathrm{kHz} \\
\text { or } \quad T & =43 \mu \mathrm{~s}
\end{aligned}
$$

ii. For zero current switching, the load current must be greater than the resonant current, that is

$$
I_{o}>V_{s} / Z_{o}=340 \mathrm{~V} / 14.6 \Omega=23.3 \mathrm{~A}
$$

iii. The commutation period comprises the four intervals, I to $I V$, shown in figure 15.24 b .

The switch turns on and the inductor current rises from 0 A to 23.3 A in a time given by $t_{I}=L_{R} \Delta I / V_{s}$

Intervals $I I$ and $I I I$
These two interval take just over half a resonant cycle, which takes $43 \mu \mathrm{~s} / 2=21.5 \mu \mathrm{~s}$ to complete. Assuming action is purely sinusoidal resonance with a 23.3 A offset, from 0 A to a maximum of 23.3A and down to -23.3A then from

$$
\left.I_{o}=V_{s} / Z_{o} \sin \omega t \text { for } \omega t\right\rangle
$$

$23.3 A=-23.3 \mathrm{~A} \times \sin \omega t$ gives

$$
t=3 / 4 \times 43 \mu \mathrm{~s}
$$

$=32.25 \mu \mathrm{~s}$
The capacitor voltage at the end of this period is given by
$V_{d V}=V_{s}(1-\cos \omega t)$
$=340 \mathrm{~V} \times\left(1-\cos \frac{3}{2} \pi\right)$
$=340 \mathrm{~V}$
The capacitor voltage must discharge from 340 V dc to zero volts, providing the 23.3 A load current. That is

$$
t_{l v}=V_{a V} \times C_{R} / I_{o}
$$

$=340 \mathrm{~V} \times 0.47 \mu \mathrm{~F} / 23.3 \mathrm{~A}=6.86 \mu \mathrm{~s}$
he minimum commutation cycle time is therefore $6.85+32.25+6.86=46 \mu \mathrm{~s}$. Thus the maximum operating frequency is 21.7 kHz .
v . The output voltage v_{o} is the average reverse voltage of freewheel diode D_{1}, which is in parallel with the resonant capacitor C_{R}. Integration of the capacitor voltage shown
in figure 15.24 b gives equation (15.190)

$$
\begin{aligned}
v_{o} & =\frac{1}{t_{5}}\left[\int_{t_{4}}^{4_{s}} V_{s}(1-\cos \omega t) d t+\int_{t_{4}}^{t_{s}} V_{s} \frac{t}{t_{5}-t_{4}} d t\right] \\
& =\frac{1}{46 \mu \mathrm{~s}} \times\left[\int_{0}^{3225 \mathrm{sws}} 340 \mathrm{~V} \times(1-\cos \omega t) d \omega t+\int_{0}^{6.86 \omega \mathrm{~s}} 340 \mathrm{~V} \times \frac{t}{6.86 \mu \mathrm{~s}} d t\right] \\
& =\frac{1}{46 \mu \mathrm{~s}} \times\left[340 \mathrm{~V} \times\left(\frac{3 \pi}{2}+1\right) \times \frac{43 \mu \mathrm{~s}}{2 \pi}+1 / 2 \times 340 \mathrm{~V} \times 6.86 \mu \mathrm{~s}\right] \\
& =\frac{1}{46 \mu \mathrm{~s}} \times[13292 \mathrm{~V} \mu \mathrm{~s}+1166 \mathrm{~V} \mu \mathrm{~s}]=314.3 \mathrm{Vdc}
\end{aligned}
$$

The maximum output voltage is 314 V dc. Alternatively, using the input inductor energy based equation (15.189):

$$
\begin{aligned}
v_{o} & =\frac{V_{s}}{\tau}\left(1 / 2 t_{l}+t_{\mu+\mu \mu}+t_{l V}\right) \\
& =\frac{340 \mathrm{~V}}{46 \mu \mathrm{~s}} \times(1 / 2 \times 6.85 \mu \mathrm{~s}+32.25 \mu \mathrm{~s}+6.85 \mu \mathrm{~s})=314.8 \mathrm{~V}
\end{aligned}
$$

xample 15.11: Zero-voltuge resonan-switch, dc-to-dc converter
The zero voltage resonant switch converter in figure 15.25 operates under the following conditions:

$$
\begin{array}{ll}
V_{s}=192 \mathrm{~V} & I_{o}=25 \mathrm{~A} \\
L_{R}=10 \mu \mathrm{H} & C_{R}=0.1 \mu \mathrm{~F}
\end{array}
$$

Determine
the switching frequency f_{s} for $v_{o}=48 \mathrm{~V}$
i. switch average current and
iii. the peak switch/diode/capacitor voltage.

Solution
i.
$\omega_{o}=\frac{1}{\sqrt{L_{R} C_{R}}}=\frac{1}{\sqrt{10 \mu \mathrm{H} \times 0.1 \mu \mathrm{~F}}}=1 \times 10^{6} \mathrm{rad} / \mathrm{s}$ that is $f_{o}=159.2 \mathrm{kHz}$

$$
Z_{o}=\sqrt{\frac{L_{R}}{C_{R}}}=\sqrt{\frac{10 \mu \mathrm{H}}{0.1 \mu \mathrm{~F}}}=10 \Omega
$$

The period of interval I is given by equation (15.191), that is

$$
t_{t}=\frac{V_{s} C_{R}}{I_{o}}=\frac{192 \mathrm{~V} \times 0.1 \mu \mathrm{~F}}{25 \mathrm{~A}}=0.768 \mu \mathrm{~s}
$$

The period of interval II is given by equation (15.195), that is

$$
t_{u /}=t_{3}-t_{1}=\left(\pi+\sin ^{-1} \frac{V_{s}}{I_{o} Z_{o}}\right) / \omega_{o}=\left(\pi+\sin ^{-1} \frac{192 \mathrm{~V}}{25 \mathrm{~A} \times 10 \Omega}\right) / 10^{6} \mathrm{rad} / \mathrm{s}=4.017 \mu \mathrm{~s}
$$

The period for the constant current period III is given by equation (15.198)

$$
t_{I I}=\frac{I_{o} L_{R}}{V_{s}} \times\left(1-\cos \omega_{o} t_{1}\right)=\frac{25 \mathrm{~A} \times 10 \mu \mathrm{H}}{192 \mathrm{~V}} \times\left(1-\cos \left(10^{6} \times 0.768 \mu \mathrm{~s}\right)\right)=0.365 \mu \mathrm{~s}
$$

After re-arranging equation (15.199), the switching frequency is given by

$$
f_{s}=\frac{\left(1-\frac{v_{o}}{V_{s}}\right)}{t_{5}-1 / 2 t_{1}}=\frac{\left(1-\frac{48 \mathrm{~V}}{192 \mathrm{~V}}\right)}{(0.768 \mu \mathrm{~s}+4.017 \mu \mathrm{~s}+0.365 \mu \mathrm{~s}-1 / 2 \times 0.768 \mu \mathrm{~s})}=157.4 \mathrm{kHz}
$$ ii. The switch current is shown by hatched dots in figure 15.25 . The average

value is dominated by interval IV, with a small contribution in interval II between t_{5} and t_{6}.
$\bar{I}_{T}=\frac{I_{o}}{\tau} \times\left(\frac{1 / 2 \times t_{I I}}{1+\left|\cos \omega_{o} t_{u}\right|}+\left(\tau-t_{6}\right)\right)$
$=25 \mathrm{~A} \times 157.4 \mathrm{kHz}\left(\frac{1 / 2 \times 0.365 \mu \mathrm{~s}}{1+\left|\cos \left(10^{6} \times 4.017 \mu \mathrm{~s}\right)\right|}+\left(\frac{1}{157.4 \mathrm{kHz}}-(0.768 \mu \mathrm{~s}+4.017 \mu \mathrm{~s}+0.365 \mu \mathrm{~s})\right)\right)$ $=5.17 \mathrm{~A}$
iii. The peak switch/diode/capacitor voltage is given by equation (15.193), namely

$$
\begin{aligned}
\hat{v}_{c} & =V_{s}+I_{o} Z_{o} \\
& =192 \mathrm{~V}+25 \mathrm{~A} \times 10 \Omega=442 \mathrm{~V}
\end{aligned}
$$

iv. For proper resonant action the minimum average output current must satisfy, $I_{o}>V_{s} / Z_{o}$, that is

$$
\check{I}_{o}=\frac{V_{s}}{Z_{o}}=\frac{192 \mathrm{~V}}{10 \Omega}=19.2 \mathrm{~A}
$$

Table 15.5. Transfer functions with constant input voltage, E_{i}, with respect to \bar{I}_{s}

$\begin{gathered} E_{i} \\ \text { constant } \end{gathered}$	converter		
	step-down	step-up	step-up/down
reference equation	(15.4)	(15.44)	(15.74)
current conduction	$\frac{v_{o}}{E_{i}}=\delta$	$\frac{v_{o}}{E_{i}}=\frac{1}{1-\delta}$	$\frac{v_{o}}{E_{i}}=\frac{-\delta}{1-\delta}$
reference equation	(15.21)	(15.59)	(15.91)
discontinuous current	$\frac{v_{o}}{E_{i}}=\frac{1}{1+\frac{2 L \bar{I}_{o}}{\delta^{2} \tau E_{i}}}$	$\frac{v_{o}}{E_{i}}=1+\frac{\delta^{2} E_{i} t_{T}}{2 L \bar{I}_{o}}$	$\frac{v_{o}}{E_{i}}=-\frac{\delta^{2} E_{i} \tau}{2 L \bar{I}_{o}}$
normalised $\begin{aligned} & \hat{\bar{I}}_{o}=\frac{E_{i} \tau}{8 L} \\ & @ \delta=1 / 2 \end{aligned}$	$\frac{v_{o}}{E_{i}}=\frac{1}{1+\frac{1}{4 \delta^{2}} 2 \frac{\bar{I}_{o}}{\overline{\bar{I}_{o}}}}$	$\frac{v_{o}}{E_{i}}=1+4 \delta^{2} / \frac{\bar{I}_{o}}{\frac{\bar{I}_{o}}{}}$	$\frac{v_{o}}{E_{i}}=-4 \delta^{2} / \frac{\bar{I}_{o}}{\hat{I}_{o}}$
change of variable	$\frac{\bar{I}_{o}}{\bar{I}_{o}}=\frac{4 \delta^{2}\left(1-\frac{v_{o}}{E_{i}}\right)}{\frac{v_{o}}{E_{i}}}$	$\frac{\bar{I}_{o}}{\frac{\bar{I}_{o}}{}}=\frac{4 \delta^{2}}{\frac{v_{o}}{E_{i}}-1}$	$\frac{\bar{I}_{o}}{\frac{\bar{I}_{o}}{}}=\frac{-4 \delta^{2}}{\frac{v_{o}}{E_{i}}}$
boundary	$\frac{\bar{I}_{o}}{\hat{I}_{o}}=4 \frac{v_{o}}{E_{i}}\left(1-\frac{v_{o}}{E_{i}}\right)$	$\frac{\bar{I}_{o}}{\frac{\bar{I}_{o}}{}}=\frac{4\left(\frac{v_{o}}{E_{i}}-1\right)}{\left(\frac{v_{o}}{E_{i}}\right)^{2}}$	$\frac{\bar{I}_{o}}{\overline{\bar{I}}_{o}}=\frac{-4 \frac{v_{o}}{E_{i}}}{\left(1+\frac{v_{o}}{E_{i}}\right)^{2}}$
duty cycle $\frac{a_{\text {ll with woundary }}^{\bar{I}_{o}}}{\frac{\bar{I}_{o}}{}}=4 \delta(1-\delta)$	$\delta=1 / 2 \sqrt{\frac{\frac{\bar{I}_{o}}{\hat{I}_{o}} \times \frac{v_{o}}{E_{i}}}{1-\frac{v_{o}}{E_{i}}}}$	$\delta=1 / 2 \sqrt{\frac{\bar{I}_{o}}{\bar{I}_{o}} \times\left(\frac{v_{o}}{E_{i}}-1\right)}$	$\delta=1 / 2 \sqrt{\frac{\bar{I}_{o}}{\bar{I}_{o}} \times \frac{v_{o}}{E_{i}}}$

Table 15.6. Transfer functions with constant input voltage, E_{i}, with respect to \bar{I}_{i}

VVons constant	converter		
	step-down	step-up	step-up/down
reference equation	(15.4)	(15.44)	(15.74)
current conduction	$\frac{v_{o}}{E_{i}}=\delta$	$\frac{v_{o}}{E_{i}}=\frac{1}{1-\delta}$	$\frac{v_{o}}{E_{i}}=\frac{-\delta}{1-\delta}$
reference equation	(15.20)	(15.60)	(15.91)
equation	$\frac{v_{o}}{E_{i}}=1-\frac{2 L \overline{L_{i}}}{\delta^{2} \tau E_{i}}$	$\frac{v_{o}}{E_{i}}=\frac{1}{1-\frac{E_{i} t_{T} \delta^{2}}{2 L \bar{L}_{i}}}$	$\frac{v_{o}}{E_{i}}=\frac{v_{o} \tau \delta^{2}}{2 L \bar{I}_{i}}$
normalised	$\frac{v_{o}}{E_{i}}=1-\frac{4}{27 \delta^{2}} \times \frac{\bar{I}_{i}}{\bar{I}_{i}}$	$\frac{v_{o}}{E_{i}}=\frac{1}{1-\delta^{2} /\left(\frac{\bar{I}_{i}}{\bar{I}_{i}}\right)}$	$1=\delta^{2} / \frac{\bar{I}_{i}}{\bar{I}_{i}}$
$\hat{\bar{I}}_{i} \max @ \delta=$	$\delta=2 / 3$	$\delta=1$	$\delta=1$
$\hat{\bar{I}}_{i}$	$\hat{\bar{I}}_{i}=\frac{4}{27} \times \frac{E_{i} \tau}{2 L}$	$\hat{\bar{I}}_{i}=\frac{E_{i} \tau}{2 L}$	$\hat{\bar{I}}_{i}=\frac{E_{i} \tau}{2 L}$
change of variable	$\frac{\bar{I}_{i}}{\bar{I}_{i}}=27 / 4 \delta^{2}\left(1-\frac{v_{o}}{E_{i}}\right)$	$\frac{\bar{I}_{i}}{\frac{I_{i}}{i}}=\frac{\delta^{2} \frac{v_{o}}{E_{i}}}{\left(\frac{v_{o}}{E_{i}}-1\right)}$	$\frac{\bar{I}_{i}}{\bar{I}_{i}}=-\delta^{2}$
boundary	$\frac{\bar{I}_{i}}{\frac{\bar{I}_{i}}{}}=27 / 4\left(1-\frac{v_{o}}{E_{i}}\right)\left(\frac{v_{o}}{E_{i}}\right)^{2}$	$\frac{\bar{I}_{i}}{\bar{I}_{i}}=\frac{\left(\frac{v_{o}}{E_{i}}-1\right)}{\frac{v_{o}}{E_{i}}}$	$\frac{\bar{I}_{i}}{\bar{I}_{i}}=-\left(\frac{\frac{v_{o}}{E_{i}}}{\frac{v_{o}}{E_{i}}+1}\right)^{2}$
duty cycle	$\delta=\sqrt{\frac{4 / 27 \frac{\bar{I}_{i}}{\bar{I}_{i}}}{1-\frac{v_{o}}{E_{i}}}}$	$\delta=\sqrt{\sqrt{\bar{I}_{i}} \frac{\frac{v_{o}}{\bar{I}_{i}} \times \frac{E_{i}}{\frac{E_{o}}{E_{i}}}}{\frac{v_{2}}{}}}$	$\delta=\sqrt{\frac{\bar{I}_{i}}{\bar{I}_{i}}}$
boundary	$\frac{\bar{I}_{i}}{\frac{\bar{I}_{i}}{i}}=27 / 4 \delta^{2}(1-\delta)$	$\frac{\bar{I}_{i}}{\hat{I}_{i}}=\frac{\delta}{(1-\delta)^{2}}$	$\delta=\sqrt{\frac{\bar{I}_{i}}{\hat{I}_{i}}}$

Table 15.7. Transfer functions with constant output voltage, \boldsymbol{v}_{o}, with respect to \bar{I}_{o}

	converter		
	step-down	step-up	step-up/down
reference equation	(15.4)	(15.44)	(15.74)
current conduction	$\frac{v_{o}}{E_{i}}=\delta$	$\frac{v_{o}}{E_{i}}=\frac{1}{1-\delta}$	$\frac{v_{o}}{E_{i}}=\frac{-\delta}{1-\delta}$
reference equation	(15.20)	(15.60)	(15.91)
equation	$\frac{v_{o}}{E_{i}}=1-\frac{2 L \overline{I_{i}}}{\delta^{2} \tau E_{i}}$	$\frac{v_{o}}{E_{i}}=\frac{1}{1-\frac{E_{t} t_{T} \delta^{2}}{2 L \overline{I_{i}}}}$	$\frac{v_{o}}{E_{i}}=\frac{v_{o} \tau \delta^{2}}{2 L \bar{I}_{i}}$
normalised	$\frac{v_{o}}{E_{i}}=1-\frac{1}{4 \delta^{2}} \times \frac{\bar{I}_{o}}{\frac{\bar{I}_{o}}{}} \times\left(\frac{v_{o}}{E_{i}}\right)^{2}$	$\frac{v_{o}}{E_{i}}=\frac{1}{1-4 \delta^{2} /\left(\frac{\bar{I}_{o}}{\bar{I}_{o}} \times\left(\frac{v_{o}}{E_{i}}\right)^{2}\right)}$	$\frac{v_{o}}{E_{i}}=\delta^{2} /\left(\frac{\bar{I}_{o}}{\hat{I}_{o}} \times \frac{v_{o}}{E_{i}}\right)$
$\hat{\bar{I}}_{o}$ max @ $\delta=$	$\delta=0$	$\delta=1 / 3$	$\delta=0$
$\hat{\bar{I}}$	$\hat{\bar{I}}_{o}=\frac{v_{o} \tau}{2 L}$	$\hat{\bar{I}}_{o}=\frac{4}{27} \times \frac{v_{0} \tau}{2 L}$	$\hat{\bar{I}}_{o}=\frac{v_{o} \tau}{2 L}$
change of variable	$\frac{\bar{I}_{o}}{\bar{I}_{o}}=\frac{\delta^{2}\left(1-\frac{v_{o}}{E_{i}}\right)}{\left(\frac{v_{o}}{E_{i}}\right)^{2}}$	$\frac{\bar{I}_{o}}{\hat{\bar{I}}_{o}}=\frac{27 / 4 \delta^{2}}{\left(\frac{v_{o}}{E_{i}}-1\right) \frac{v_{o}}{E_{i}}}$	$\frac{\bar{I}_{o}}{\overline{\bar{I}}_{o}}=\frac{-\delta^{2}}{\left(\frac{v_{o}}{E_{i}}\right)^{2}}$
boundary	$\frac{\bar{I}_{o}}{\overline{\bar{I}_{o}}}=1-\frac{v_{o}}{E_{i}}$	$\frac{\bar{I}_{o}}{\frac{\bar{I}_{o}}{}}=\frac{27 / 4\left(\frac{v_{o}}{E_{i}}-1\right)}{\left(\frac{v_{o}}{E_{i}}\right)^{3}}$	$\frac{\bar{I}_{o}}{\overline{\bar{I}}_{o}}=\frac{-1}{\left(1+\frac{v_{o}}{E_{i}}\right)^{2}}$
duty cycle	$\delta=\frac{v_{o}}{E_{i}} \sqrt{\frac{\frac{\bar{I}_{o}}{\hat{I}_{o}}}{1-\frac{v_{o}}{E_{i}}}}$	$\delta=\sqrt{4 / 27 \times \frac{\bar{I}_{o}}{\hat{I}_{o}}\left(\frac{v_{o}}{E_{i}}-1\right) \frac{v_{o}}{E_{i}}}$	$\delta=\frac{v_{o}}{E_{i}} \sqrt{\frac{\bar{I}_{o}}{\bar{I}_{o}}}$
boundary	$\delta=1-\frac{\bar{I}_{o}}{\hat{\bar{I}}_{o}}$	$\frac{\bar{I}_{o}}{\overline{\bar{I}}_{o}}=27 / 4 \delta(1-\delta)^{2}$	$\delta=1-\sqrt{\frac{\bar{I}_{o}}{\hat{I}_{o}}}$

Figure 15.26. Characteristics for three dc-dc converters, when the input voltage E_{i} is held constant.

Figure 15.27. Characteristics for three dc-dc converters,
when the output voltage v_{o} is held constant.

Reading list

Fisher, M. J.,Power Electronics,
PWS-Kent Publishing, 1991.
Hart, D.W., Introduction to Power Electronics,
Prentice-Hall, inc, 19974.
Hnatek, E. R., Design of Switch Mode Power Supplies, Van Nostrand Rein hold, 1981.

Mohan, N., Power Electronics, $3^{\text {rd }}$ Edition, Wiley International, 2003.

Thorborg, K., Power Electronics - in theory and practice, Chartwell-Bratt, 1993.
http://www.ipes.ethz.ch/

Problems

15.1. An smps is used to provide a 5 V rail at 2.5 A . If 100 mV p-p output ripple is allowed and the input voltage is 12 V with 25 per cent tolerance, design a flyback buckboost converter which has a maximum switching fre quency of 50 kHz .
15.2. Derive the following design equations for a flyback boost converter, which operates in the discontinuous mode.

$$
\begin{aligned}
& \hat{i}_{i}=2 \times \bar{I}_{o(\max)} \times \frac{v_{o}}{E_{i(\min)}}=\text { constant } \\
& t_{D}=\frac{1}{f_{(\text {max })} \frac{v_{o}}{E_{i(\min)}}} \\
& L=t_{T(\text { min })} \frac{v_{o}-E_{i(\text { min })}}{\hat{i}_{i}} \\
& f=\frac{1}{\tau}=f_{(\text {max })} \frac{\bar{I}_{o}}{\bar{o}_{o(\max)}} \times \frac{v_{o}-E_{i}}{v_{o}-E_{i(\min)}} \\
& C_{(\text {min })}=\frac{\Delta Q}{\Delta e_{o}}=\frac{\hat{\bar{i}}_{i} t_{T(\text { min })}}{2 \Delta e_{o}} \\
& E S R_{(\text {max })}=\frac{\Delta e_{o}}{\hat{i}_{i}}
\end{aligned}
$$

15.3. Derive design equations for the forward non-isolated converter, operating in the continuous conduction mode.
15.4. Prove that the output rms ripple current for the forward converter in figure 15.2 is given by $\Delta i_{o} / 2 \sqrt{3}$.

