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Abstract—A discrete denoising algorithm estimates the input se-
quence to a discrete memoryless channel (DMC) based on the ob-
servation of the entire output sequence. For the case in which the
DMC is known and the quality of the reconstruction is evaluated
with a given single-letter fidelity criterion, we propose a discrete
denoising algorithm that does not assume knowledge of statistical
properties of the input sequence. Yet, the algorithm is universal
in the sense of asymptotically performing as well as the optimum
denoiser that knows the input sequence distribution, which is only
assumed to be stationary. Moreover, the algorithm is universal also
in a semi-stochastic setting, in which the input is an individual
sequence, and the randomness is due solely to the channel noise.
The proposed denoising algorithm is practical, requiring a linear
number of register-level operations and sublinear working storage
size relative to the input data length.

Index Terms—Context models, denoising, discrete filtering, dis-
crete memoryless channels (DMCs), individual sequences, noisy
channels, universal algorithms.

“If the source already has a certain redundancy and no
attempt is made to eliminate it a sizable fraction of the
letters can be received incorrectly and still reconstructed
by the context.” Claude Shannon, 1948

I. INTRODUCTION

CONSIDER the problem of estimating a signal
from a noisy version , which has been corrupted

by a memoryless channel. The estimation is assumed to depend
on the entire signal . In the Shannon paradigm [59] re-
dundancy is added to the noiseless signal in order to protect it
from the channel noise, and a decoder that knows the codebook
and the channel statistics can recover the noiseless signal with
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arbitrary reliability, provided that the coding scheme respects
the fundamental limits of information theory. In contrast, sit-
uations abound where no channel coding is performed and the
recovery of the noiseless signal can only be accomplished with a
certain distortion. This problem, for various types of index sets

, input–output alphabets, and channels, arises naturally in a
wide range of applications spanning fields such as statistics, en-
gineering, computer science, image processing, astronomy, bi-
ology, cryptography, and information theory.

The continuous case, where the input and output alphabets
are the real line (or other Euclidean spaces), has received signif-
icant attention for over half a century. From the linear filters of
Wiener [75], [6] and Kalman [34], to Donoho and Johnstone’s
nonlinear denoisers [20], [22], the amount of work and literature
in between is far too extensive even to be given a representative
sample of references. In fact, the practice of denoising, as influ-
enced by the theory, at least for the problem of one-dimension-
ally indexed data corrupted by additive Gaussian white noise,
is believed by some to have reached a point where substantial
improvement in performance is unlikely for most applications
of interest [8].

Less developed are the theory and practice of denoising for
the case where the alphabet of the noiseless, as well as that of the
noise-corrupted signal, are finite. The problem arises in a variety
of situations ranging from typing and/or spelling correction [1],
[15], [40] to hidden Markov model (HMM) state estimation (cf.
[24] for the many applications); from DNA sequence analysis
and processing [60], [63], [64] to enhancement of facsimile and
other binary images; from blind equalization problems to joint
source–channel decoding when a discrete source is sent uncom-
pressed (or suboptimally compressed) through a noisy channel
[9], [45] (and references therein).

A commonly analyzed denoising setting is one in which the
underlying noiseless signal and noisy channel are assumed to
be stochastic with known distributions. It is assumed that the
goal of a denoising algorithm is to minimize the expected distor-
tion of its output with respect to the unobserved noiseless signal,
where the distortion is measured by a single-letter loss function.
In such a Bayesian setting, the joint distribution of the noiseless
and noisy signals can be obtained. The latter, in turn, gives rise to
the posterior distribution of the noiseless signal conditioned on
the noisy observation signal, which determines an optimal de-
noiser achieving the above minimization. Thus, though it may
not always be practical to explicitly obtain this posterior distri-
bution, in principle it is computable from the statistical descrip-
tions of the input and the channel.

Certain instances of the discrete denoising problem have
been extensively studied, particularly in the context of state

0018-9448/$20.00 © 2005 IEEE



6 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 51, NO. 1, JANUARY 2005

estimation for hidden Markov processes (cf. [24] and the
many references therein). Indeed, for the case where the states
evolve according to a known Markov process and the channel
(from state to observation) is known, the optimum Bayesian
scheme can be implemented with reasonable complexity via
forward–backward dynamic programming [13], [4]. It should
be mentioned, however, that even for the simplest among cases
where the underlying signal has memory, namely, the case
of a binary-symmetric Markov chain observed through a bi-
nary-symmetric channel (BSC), the bit-error rate of the optimal
denoiser is not explicitly known for all values of the transition
probability and the channel error rate; only the asymptotic
behavior of the bit-error rate, as the transition probabilities
become small [35], [61], and conditions for the optimality of
“singlet decoding” (cf. [19], [47]), are known.

In this work, we address a universal version of the discrete
denoising problem in which there is uncertainty about the dis-
tribution of the underlying noiseless signal, so that the posterior
distribution on which the optimal Bayesian denoiser is based is
not available. We are thus interested in denoisers which operate
independently of the noiseless signal distribution and consider
the following basic questions.

1) Theoretical. How well can a distribution-independent de-
noiser perform? Can it attain, universally, the performance
of the best distribution-dependent denoiser?

2) Algorithmic. If we can answer the previous question in
the affirmative, can we find a practically implementable
universal denoiser? What is its complexity?

To study these questions, we restrict our attention to the case of
finite alphabets and a known discrete memory channel (DMC)
whose transition probability matrix has full rank.1 In this case,
the distribution of the channel output uniquely determines the
distribution of the input.

The main contribution of this work is a discrete denoising al-
gorithm performing favorably from both the theoretical and the
algorithmic viewpoints. Specifically, we propose and analyze an
algorithm with the following properties.

1) The algorithm is asymptotically optimal in

a) The semi-stochastic setting. In this setting, we
make no assumption on a probabilistic or any
other type of mechanism that may be generating
the underlying noiseless signal and assume it
to be an “individual sequence” unknown to the
denoiser. The randomness in this setting is due
solely to the channel noise. We show that for every
underlying individual sequence, our denoising
algorithm is guaranteed to attain the performance
of the best finite-order sliding-window denoiser,
tuned to the noiseless sequence and the observed
noisy sequence. Competing with finite-order
sliding-window denoisers is similar to the setting
introduced in universal lossless coding by Ziv and
Lempel (LZ) [79].

b) The stochastic setting. We show that our denoising
algorithm asymptotically attains the performance

1Here and throughout, by “full rank” we mean “full row-rank.”

of the optimal distribution-dependent scheme, for
any stationary source that may be generating the un-
derlying signal. This property follows easily from
the result in the semi-stochastic setting.

2) The algorithm is practical. Implementation of the denoiser
requires a linear number of register-level operations, and
working storage complexity which is sublinear in the data
size. Register-level operations are arithmetic and logic
operations, addresscomputations, andmemoryreferences,
on operands of size bits, where is the input size.
Working storage refers to the memory required by the algo-
rithm for its internal data structures, book-keeping, etc.

The proposed universal denoising algorithm is the first dis-
crete denoiser to provably attain the distribution-dependent op-
timum performance in either the semi-stochastic or stochastic
universal settings described above (and in more detail later in
Sections V and VI).

For concreteness and simplicity of the exposition, we as-
sume one-dimensionally indexed data, though all our results
can be readily extended to the multidimensional case. In fact,
Section VIII presents experimental results for two-dimensional
image denoising, and the multidimensional formalism is dis-
cussed in more detail in [46]. For the sake of clarity, most of the
presentation is given for the case where the channel input and
output alphabets are identical. In Section IV-C, it is indicated
how our algorithm and results carry over to the general case
where this condition might not hold.

The proposed denoising algorithm makes two passes over
the noisy observation sequence. For a fixed , counts of the
occurrences of all the strings of length appearing along
the noisy observation sequence are accumulated in the first
pass. The actual denoising is done in the second pass where,
at each location along the noisy sequence, an easily imple-
mentable metric computation is carried out (based on the known
channel matrix, the loss function, and the counts acquired in
the previous pass) to determine what the denoised value of the
symbol at that location should be. A judicious choice of (as
a function of the sequence length) yields a denoiser with the
claimed properties.

Our work is conceptually connected with some of the pre-
vious literature on universal denoising and related problems.
Most closely connected to our stochastic and semi-stochastic
settings are the empirical Bayes and compound decision
methods, respectively, from the statistics literature [51], [31],
[53]–[55], [57], [58] (cf. [77] for a more comprehensive list
of references). Most of the work on the compound decision
problem has focused on competing with a “symbol-by-symbol”
denoiser, and can be viewed as a particularization of our
semi-stochastic setting to the case . Under the rubric of

-extended compound decision problems, competition with
higher order sliding-window denoisers was also considered to
a limited extent in that framework [2], [3], [66], [67]. After
concretely describing the problem and stating our main results
for the semi-stochastic setting in Section V, we elaborate on
the connections between the problems and on how our results
can be regarded as contributions to the compound decision
problem.
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One basic element common to our denoiser and the approach
in compound decision theory is the step of estimating the empir-
ical distribution of the noiseless signal from the observed
statistics of the noisy signal . This step has also been at the
heart of an algorithm proposed in [1] for learning the empirical
distribution of -blocks in by solving a system of linear
equations involving the empirical distribution of -blocks in

, similar to the -extended compound decision problem.
In contrast to this blockwise approach, our denoiser proceeds
in symbol-by-symbol fashion using conditional marginal distri-
butions of . The resulting estimate of the distribution of

-blocks in the noiseless signal is used in [1] to build a fi-
nite-state tree model [68] of , whose accuracy is analyzed
when is assumed to be distributed according to an arbi-
trary Markov source of order bounded by . Empirical re-
sults are provided in [1] for text correction using dynamic pro-
gramming to compute the likeliest state sequence given
under the assumption that is distributed according to the
learned finite-state tree model.

The recovery of noise-corrupted signals generated by un-
known deterministic dynamical systems is considered in
[36]–[38] in a continuous alphabet setting. Conditions are
found under which signals generated by classes of unknown
discrete-time dynamical systems can be recovered in an asymp-
totically lossless fashion after being corrupted by additive
memoryless noise known only to have zero-mean and bounded
support.

Compression-based approaches for denoising have been pro-
posed in a variety of universal settings, involving both contin-
uous and discrete signals, in several papers including [11], [12],
[21], [42]–[44], [50], [63], [64], and references therein. The in-
tuition motivating the compression-based approach is that the
noise constitutes that part of the noisy signal which is hardest to
compress. Thus, by lossily compressing the noisy signal and ap-
propriately tuning the fidelity level of the compressor to match
the noise level, it may be expected that the part of the noisy
signal that will be lost will mainly consist of the noise, so that
the reconstructed signal will, in effect, be a denoised version of
the observation signal. A variant of the compression-based ap-
proach to denoising is formalized and analyzed in [21] as one
of the applications of the “Kolmogorov sampler.” At the heart
of this denoising algorithm is an optimal (in the rate-distortion
sense) universal lossy compression of the noisy signal. The re-
sulting denoiser is shown in [21] (cf. also [74]) to achieve an
asymptotic distortion that is bounded strictly away from (but
is within a factor of two of) the distortion achieved by the op-
timum distribution-dependent denoiser in certain instances of
the stochastic setting (see 1a) described above. In addition, the
complexity of the “Kolmogorov sampler” is at least that of op-
timal universal lossy compression for which no known com-
putationally efficient algorithms exist (cf. [5, Sec. VI]). Com-
pression-based schemes for denoising under source uncertainty
have been also considered from a somewhat different perspec-
tive in [16], [69]. These papers are concerned with rate-distor-
tion coding of noisy sources and characterize tradeoffs that are
universally attainable between denoising performance and the
rate constraint. An essential difference between the above men-
tioned compression-based approach and the setting of [16], [69]

is that while in the former the rate constraint is imposed as a tool
to facilitate denoising, in the latter this constraint is assumed real
and the goal is to obtain a (Shannon-theoretic) characterization
of optimum performance subject to this constraint.

The remainder of the paper is organized as follows. Section II
presents our notation and conventions. In Section III, we show
the form of the optimal nonuniversal denoiser in a stochastic
Bayesian setting. In Section IV, we describe the proposed de-
noiser, analyze its complexity, and explain, at an intuitive level,
why it can indeed be expected to attain universal optimality. Al-
though the form of the denoiser is motivated in the Bayesian
setting of Section III, the most powerful optimality results for
the universal denoiser are those pertaining to a semi-stochastic
setting where the input to the channel is an unknown individual
sequence. This analysis is presented in Section V. The results
for the fully stochastic setting, where the noiseless sequence is
assumed emitted by a probabilistic source, then follow using
standard techniques in Section VI. In Section VII, we discuss
some theoretical and practical aspects of the choice of context
model size for the denoiser. In Section VIII, we report the re-
sults of experiments in which our algorithm was employed on
simulated data, English text, and images. We also briefly discuss
some additional practical aspects of the implementation, as well
as possible theoretical and practical extensions.

II. NOTATION AND CONVENTIONS

Throughout we assume that the components of the noiseless
signal, as well as those of the noisy observation sequence and
the reconstruction sequence, take their values in an -letter al-
phabet . We will sometimes use ele-
ments of as indices to -vectors and matrices, in
which cases we identify a symbol with its index in the alphabet.
The simplex of -dimensional column probability vectors will
be denoted by .

As stated in the Introduction, we assume a given channel
whose transition probability matrix is
known to the denoiser. Here, denotes the probability of
output symbol when the input is . Moreover, we extend this
notation to subsets , by denoting

We also assume a given loss function (fidelity criterion)
, represented by the matrix ,

where denotes the loss incurred by estimating the symbol
with the symbol . The maximum single-letter loss will be

denoted . We let denote the th
column of , and denote the th column of . Hence, we
have

Note that the columns of the channel transition probability ma-
trix need not be probability vectors (though all the rows are).

For a vector or matrix , will denote transposition and,
for an invertible matrix, will denote the transpose of .
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The th component of a vector will be denoted by or, when
indexing some vector-valued expressions, (in the case of a
probability vector , the th component is denoted ). For

-dimensional vectors and , will denote the vector
obtained from componentwise multiplication, i.e.,

In terms of order of operations, will have the usual multi-
plicative precedence over addition and subtraction. Notice that
for column -vectors and , we have

(1)

The norm of any vector will be denoted by . Simi-
larly, following standard conventions (cf., e.g., [28]), will
denote the matrix norm of defined by

with denoting a column vector. The notation will be used to
denote both absolute value and cardinality, according to whether
the argument is real- or set-valued.

We let denote the set of one-sided infinite sequences
with -valued components, i.e., is of the form

, , . For , let
and . More generally, we will allow the indices
of vector components to be negative as well, so, for example,

. For positive integers and
strings , we let denote the string of length
formed by concatenation.

For , let

(2)

denote the Bayes envelope (cf., e.g., [30], [56], [41]) associated
with the distribution and the loss function . Following [30],
it will be convenient to extend the definition of to cases
in which the argument is any -vector , not necessarily in the
simplex . We denote the minimizing symbol in (2), namely,
the Bayes response to , by , i.e.,

(3)

where throughout denotes the min-
imizing (maximizing) argument, resolving ties by taking the
letter in the alphabet with the lowest index.

An -block denoiser is a mapping . We let
denote the normalized cumulative loss, as mea-

sured by , of the denoiser when the observed sequence is
and the underlying noiseless one is , i.e.,

(4)

Additional notation will be introduced in the sequel where
needed.

III. NONUNIVERSAL DISCRETE DENOISING

In this section, we consider a stochastic Bayesian setting in
which the distribution of the input is known and the optimality
criterion is the expected loss between the noiseless and denoised
sequences. The optimal denoiser for this setting is readily seen
to output the symbol that minimizes the expected loss, given
the available noisy observations. In other words, the output is
the Bayes response (3) to the posterior distribution of the noise-
less symbol given the noisy sequence. The optimal nonuniversal
denoiser that we obtain in this section will play a role in the mo-
tivation of the structure of the universal denoiser.

Denoting by the column -vector whose th com-
ponent is according to the given input
and channel distributions, the optimal nonuniversal denoiser for
the symbol in position is the Bayes response to , namely

(5)

where the -vector is equal to the -vector
multiplied by the scalar . Thus, the two vectors can
be used interchangeably where scaling is immaterial, as in (5).

The conditional marginals of the input given the ob-
served process can be computed from the distribution of the
input process and the channel transition probability matrix .
Alternatively, when is invertible we can derive an equivalent
denoiser which uses only the conditional marginals of the output
given the other outputs. The structure of the universal denoiser
will be motivated by this alternative.

For any sequence and integer such that , de-
note by the sequence . As usual, we omit the sub-
script when . By the memorylessness of the channel,
we have that for every

(6)

or, in vector notation

(7)

Here, denotes the -vector whose th component is
. Furthermore, marginalizing (6)

with respect to and iterating over all possible we
obtain

(8)

Putting together (7) and (8) yields

(9)

which together with (5) and (1) leads to the following nonuni-
versal estimator that minimizes the expected loss:

(10)

Note that the foregoing derivation of the nonuniversal de-
noiser has used the memoryless nature of the channel but has
not assumed any statistical properties on the input process.
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IV. THE DISCRETE UNIVERSAL DENOISER (DUDE)

In this section, we present our Discrete Universal DEnoiser
(DUDE). We describe the algorithm and assess its complexity
in Section IV-A before we proceed to provide intuition on
its optimality in Section IV-B. For the sake of clarity, we
concentrate on the case of a square channel matrix (equal
channel input and output alphabets), which is invertible. The
more general case, in which is nonsquare, is treated in
Section IV-C, assuming the matrix rows are linearly inde-
pendent. In Section IV-D, we particularize the algorithm to
several channels of interest, and conclude with Section IV-E
emphasizing that the core of the DUDE can be viewed as an
estimation of a conditional distribution.

A. The Algorithm: Description and Implementation

For , , , , let
denote the -dimensional column vector whose th compo-
nent is equal to

(11)
namely, the number of appearances of the string along
the sequence . For such an appearance, we say that oc-
curs in left context , right context , and double-sided con-
text . The normalized (unit sum) version of the vector

gives the empirical conditional distribution of a
single letter given that the double-sided context is

For a given noisy sequence , the output of the algorithm
at location will be defined as a fixed function of and of the
vector of counts , where the context length

may depend on . Specifically, for a sequence , a
context length , a double-sided context , and a
symbol , we define the function

(12)
For arbitrary , let denote the -block denoiser
given by

(13)
Notice the similarity between the right-hand sides of (10) and
(13). The value of for and will be
(asymptotically) inconsequential in subsequent developments
but, for concreteness, can be assumed to be identically given
by an arbitrary fixed symbol.2 Finally, for each , our asymp-
totic analysis of the DUDE algorithm will focus on the -block
denoiser defined as

(14)

where, for asymptotic optimality is any unboundedly in-
creasing function of such that3

(15)

2In practice, a more judicious choice for the boundary symbols is the corre-
sponding estimate obtained with the longest possible context that fits within the
data sequence.

3As will be discussed in Section V, the condition (15) can be slightly relaxed
depending on the type of universality that is required.

A valid choice of is given, for example, by
with . Notice that this freedom in the choice of is sim-
ilar to the situation arising in universal prediction of individual
sequences, where any growth rate for the order of a Markov pre-
dictor slower than some threshold guarantees universality [25].
The choice of a logarithmic growth rate (the fastest in the al-
lowable range) would be similar to the choice implicit in the
LZ predictor. The tradeoffs involved in this choice will become
clearer in the sequel.

A natural implementation of the DUDE algorithm for a given
makes two passes through the observations . The empir-

ical counts , for the various strings ap-
pearing along the sequence , are accumulated and stored in
the first pass while the actual application of , as deter-
mined by the accumulated empirical counts via (12), is per-
formed in the second pass. We analyze the computational com-
plexity of the following embodiment of the algorithm.

• Preprocessing. Before the data is read, the inverse of the
channel transition probability matrix is computed in addi-
tion to for all . This takes
arithmetic operations and requires storage.

• Computation of counts. The computation of the em-
pirical counts can be organized efficiently in various
ways. One possibility is to regard the double-sided
context of an input symbol as a state of a
finite-state automaton with states. As the denoiser
transitions from location to location , the state
following can assume possible values of
the form . Associated with each state

is an -vector of counts, which, at time ,
contains . Each automaton transition
requires a constant number of register-level operations:
incrementing one of the components in one of the count
vectors, and retrieving a pointer to the next state. Thus,
the number of operations required in the first pass of the
DUDE is linear in . The storage requirements for this
pass are, in the worst case, . Using an alterna-
tive lexicon, the finite automaton can also be described
as a trellis with the same set of states, with the
input sequence representing a path through the trellis. In
many applications such as text correction, only a small
subset of states are actually visited, and the implementa-
tion can allocate their storage dynamically as new states
occur, resulting in significant storage savings. It can be
shown that the data structure can be dynamically grown
with arithmetic operations, where we denote

.
The described finite state automaton lends itself to a

representation with the additional properties of a tree data
structure, similar to the tree model representations used in
source coding (cf., e.g., [68]). This representation is con-
venient when the function is to be computed for
multiple values of , since internal nodes of the tree corre-
spond to different possible double-sided context lengths.
In this case, the information stored at the leaves is suf-
ficient to infer the counts corresponding to the internal
nodes.
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• Precomputations for the second pass. The unnor-
malized input probability vectors
are computed for each double-sided context
actually encountered in the sequence. Since there are

double-sided contexts in the worst case, and each
computation takes arithmetic operations, the
computational complexity and the space required to store
the computations are both . The algorithm then
proceeds to precompute the values of
according to (12), for each state and alphabet
symbol . There are at most such combinations,
each requiring operations, for a total of
operations requiring storage.

• Denoising. The algorithm scans the sequence a second
time. At each sequence location, the context
and input symbol are observed, and used to address the
table of precomputed values of from the previous
step. The automaton transitions are followed as in the first
pass, yielding, again, running time linear in .

Adding up the contributions of the various steps, the overall
running time complexity of the algorithm, measured in reg-
ister-level operations, is . The working
storage complexity is , which is sublinear when
satisfies (15). This choice of growth rate for will also allow us
to prove the asymptotic optimality of the DUDE. This estimate
does not take into account memory that might be required to
store the input sequence between the two passes. In many prac-
tical applications, the sequence is stored in secondary memory
(e.g., hard disk), and read twice by the algorithm. Notice that the
computation does not require more than symbols from
the input sequence at any one time. In applications where there
is no distinction between fast working memory and secondary
storage, the storage complexity becomes linear in .

The linear time complexity of the DUDE implementation just
described stems from the fact that the data is scanned sequen-
tially, and that in the transition from one symbol to the next, a
constant number of “new” symbols is introduced to the context.
This will not be the case in multidimensional implementations,
however, where the number of new symbols introduced in a con-
text transition will generally be of the form , where
is the total number of symbols in the context, and .
Since the multidimensional case still requires
with for asymptotic optimality as , the
running time of the denoiser will be super-linear, but no worse
than for any . This upper bound holds for the
DUDE also in the one-dimensional case under the more strin-
gent computational model where we count bit operations, rather
than register-level ones. Notice also that the fact that a sequen-
tial scanning is not essential for the DUDE’s function makes the
algorithm highly parallelizable.

B. Intuition Behind the Optimality of the DUDE

The -block denoiser , as is evident from (13), employs
a denoising function , which depends on

but is the same for all locations .
This property characterizes th order sliding-window schemes,
which will be formally defined in Section V. Our main goal in

the present subsection is to heuristically argue why this partic-
ular sliding-window scheme can be expected to do well and, in
fact, essentially as well as the best scheme of its type, regard-
less of the characteristics of the underlying noise-free sequence.
Moreover, we will argue that with and at an
appropriate rate, this property guarantees asymptotic optimality
in a strong sense.

For , , , let de-
note the -dimensional column vector whose th component,

, is

(16)

namely, the number of appearances of the string along the
sequence when the letter in the sequence corresponding
to the center of is . Observe that

(17)

Now, by summing over all possible -tuples, the cu-
mulative loss incurred by a sliding-window denoiser that uses a
denoising function on takes the form

(18)

Therefore, a genie getting to select the best th order
sliding-window scheme (in the sense of minimizing the
overall loss) based on knowledge of both and would
choose (in analogy with (5) in the nonuniversal setting) the
function given by the Bayes response to , namely

(19)
Thus, if we are ambitious enough to strive for attaining the per-
formance of the genie, a plausible approach would be via a de-
noiser given, for , by

(20)

where, for , would be some estimate,
based on alone, for the unobserved . Indeed,
comparing (20) with (19), it is natural to expect, by continuity
arguments, that the normalized loss of the denoiser in (20) be
“close” to that of the genie whenever is “close” to

for all . Note that the denoiser in (13) is
exactly of the form (20) if we choose

(21)

It thus remains to be argued why the right-hand side of (21)
can be expected to be close to . To this end, take
a double-sided context and a symbol , and
consider the number of locations for which , ,
appears in context and the noiseless symbol is , i.e.,
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It seems plausible to expect that the fraction of locations for
which the noise-corrupted symbol is be approximately

, i.e.,

(22)
or, in vector notation

(23)

This will indeed be shown in Section V to be the case, in the
sense that the magnitude of the difference between the two sides
of (22) divided by vanishes with high probability and in ex-
pectation as tends to infinity. Observe that (23) can be formally
obtained from (7) by replacing the vector with the vector

and the equality with the sign. Thus, a deriva-
tion formally identical to the one leading, in the nonuniversal
setting, from (6) to (9), will now lead us, by (17), to the desired
conclusion that in (21) is close to . Notice that this obser-
vation, together with the correspondence between (19) and (5),
establishes a complete analogy between the two settings in case
the observed data in Section III is limited to a -tuple.
Specifically, summing over the components of the vectors on
both sides of (23), using (17), and iterating over all possible

, we obtain

(24)

(which corresponds to (8)). Putting together (23) and (24) yields

(25)

as claimed (the precise statement of this conclusion will be given
in the proof of Theorem 2, Section V).

Finally, to perform asymptotically as well as any given
sliding-window denoiser, we need . At first sight,
it may seem that the higher the value of the better the perfor-
mance since this is certainly the case for the target genie-aided
denoiser. However, not only is there a computational disin-
centive to make too large, but there is also a performance
penalty for letting grow too fast with : the context counts
become too sparse and noisy. In particular, the error term in the
above approximations will be seen to increase rapidly with ,
necessitating a limit on the growth rate of .

Note that the above argumentation involved no assumption
on a probabilistic (or any other type of) mechanism that may
have generated the noise-free signal. The approximate rela-
tionship (22) on which the whole line of reasoning hinges was
argued solely on the basis of the randomness in the channel.
We now argue heuristically how the semi-stochastic optimality
of the DUDE just sketched translates into optimality in the
fully stochastic setting. Let be a stationary
ergodic process with -valued components, and let denote
the output of the memoryless channel whose input is .
The semi-stochastic optimality of the DUDE implies that

it performs no worse, asymptotically, than the nonuniversal
sliding-window denoiser obtained by replacing in
(10) with , on any individual sequence , and

hence in any conceivable probabilistic sense. That the DUDE
performs at least as well as (10) then follows by a martingale
argument (plus the ergodic theorem for the almost sure case)
showing that the asymptotic performance of these nonuni-
versal sliding-window denoisers converges to that of (10). This
argument is made precise in Section VI. We emphasize that
our method for establishing the fully stochastic optimality of
the DUDE does not rely on showing (nor does it imply) that

converges to in any sense

whatsoever.4 Instead, not unlike the proofs of analogous results
in universal compression and prediction, we establish the fully
stochastic optimality of the DUDE by leveraging its stronger
semi-stochastic optimality.

C. Nonsquare Channel Transition Probability Matrix

It is easy to generalize the DUDE to the case where the
channel transition probability matrix is nonsquare, as long as its
rows are linearly independent. The input and output alphabets
are now denoted by and , respectively, with
and . Note that the channel transition probability
matrix is where . The loss matrix is
still since we assume the reconstruction alphabet to
equal the noiseless source alphabet .5 A common channel
encompassed by this generalization is the erasure channel.

In order to generalize the DUDE to this setting, it suffices to
replace (12) by

(26)

To motivate (26), write

(27)

where (27) follows from (24). Substituting the rightmost side of
(27) in lieu of in (21) yields (26).

The above derivation can be readily extended by re-
placing the Moore–Penrose generalized inverse (cf., e.g., [39])

appearing in (26) with any other generalized
inverse of the form , where is any
matrix for which is invertible. While any generalized
inverse of this form will give rise to an asymptotically optimal
DUDE, some choices may be more effective than others in
terms of convergence rates. For expository convenience, sub-
sequent sections will assume , though all the results we
present can be seen to carry over to the case for full
row rank and the DUDE defined through (26).

4On the other hand, stochastic optimality of the DUDE among all th
order sliding-window denoisers can be established directly from the fact that

converges to for fixed (by ergodicity).

5The derivation extends to a general reconstruction alphabet in a straightfor-
ward way.
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D. A Closer Look at Special Cases

We now derive the explicit form of the denoiser for a few
cases of special interest. Hamming loss is assumed (with equal
loss for any errors in the nonbinary case) in all the examples
below.

• BSC: For a BSC with error probability ,

Substituting the value of into (12) yields, following
simple algebraic manipulations:

if

otherwise
(28)

where denotes the binary complement of . In words,
for each bit in the noisy sequence, the DUDE counts
how many bits occurring within the same double-sided
context are equal to . If the fraction of such occurrences
among the total number of occurrences of this double-
sided context is below then is deemed to be
an error introduced by the BSC.

To gain some intuition regarding the form that the
DUDE assumes in this case, consider the situation of an in-
dependent and identically distributed (i.i.d.) Bernoulli
process corrupted by the BSC with crossover probability

. It is easy to see that the optimal (distri-
bution-dependent) scheme for this case leaves the ones
in the noisy signal untouched whenever , and flips
all ones into zeros otherwise. Notice that the condition

for leaving the signal untouched can be written in
the equivalent form , and
that the noisy signal is Bernoulli .
Now, since the frequency of ones in the noisy signal is
an efficient estimate for , a scheme
which compares the frequency of ones in the noisy signal
to the threshold , flipping the ones only if the
threshold is exceeded, will be asymptotically optimal in
this i.i.d. example. Comparing this now with (28), it can
be seen that this is precisely the kind of scheme that the
DUDE is independently employing within each of the
occurring double-sided -contexts.

Another point we mention in this context is that the
DUDE, as well as the optimal distribution-dependent
scheme, may be making as few as zero flips (corre-
sponding to the case, for the i.i.d. example above, of

) and as many as flips (for ).
This is in contrast to the compression-based scheme of
[21] which makes at most flips.

• -ary Symmetric Channel: Generalizing the previous ex-
ample, we consider the channel

if
otherwise

for which the matrix is easily seen to be invertible for
, and the inverse takes the form

if
otherwise

where , and or according to
whether or . Substituting
into (12) yields, after straightforward manipulations, for

if

otherwise

(29)

where

and .
• The Channel: The channel probability matrix, and its

inverse, for this case are given by

Since only locations where may need correc-
tion, we are only interested in the evaluation of at

. Equation (12) takes the form

if

otherwise.
(30)

• The Erasure Channel: Consider the case where
is the alphabet of the noiseless signal, which

is corrupted by an erasure channel with erasure probability
. Thus, the channel output alphabet is and

the channel matrix is of the form

... (31)

where denotes the identity matrix. This
setting falls within the purview of the DUDE derived in
Section IV-C, (26). Evaluating the explicit form of this
denoiser shows (after straightforward manipulations) that,
as one may have expected, it corrects every erasure with
the most frequent symbol for its context. In particular, the
denoiser does not depend on the channel parameter .

E. Estimation of Distributions

To conclude this section, we emphasize that the core of the
DUDE can be viewed as the estimation of the statistics of the
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noiseless signal components, given the observed noisy data. In-
deed, the DUDE bases its estimates of the noiseless symbols on
the vector

As was heuristically argued in Section IV-B, and will be made
precise in the next section, this vector is, up to normalization,
an efficient estimate of the conditional distribution of the noise-
less symbol given the noisy data . There are problems
[45] outside denoising where the computation of these quanti-
ties plays a fundamental role.

We also mention that having an efficient way of estimating the
empirical distribution of given (as well as the empirical
joint distribution of and ) allows us to efficiently estimate
the empirical distribution of any function of these variables, and,
in turn, any quantity corresponding to an expectation under such
an empirical distribution.

As one example, consider the following explicit estimate, ob-
tained with this approach, of the empirical joint distribution of

and the DUDE’s output (defined in (13)).
For , the estimate takes the form of (32) at the bottom
of the page. It is not hard to show that, in various quantitative
senses is an efficient estimate of the joint empirical distri-
bution of (cf., e.g., [27] for a more general result). In
particular, the expected value of with respect to
gives an efficient estimate of the overall normalized cumulative
loss of the DUDE. This estimate, as well as the estimated empir-
ical conditional distribution of given , play important roles
in algorithms for channel decoding with redundant information
sources [45].

V. THE SEMI-STOCHASTIC SETTING

In this section, we assess the strong asymptotic optimality of
the DUDE, as defined in Section IV-A. To this end, we define a
semi-stochastic setting, in which is an individual sequence and
its noise-corrupted version, a random variable , is the output
of the memoryless channel , whose input is . This setting is
assumed throughout this section. We shall use to denote an in-
dividual sequence, or a specific sample value of . Though we
suppress this dependence in the notation for readability, prob-
abilities of events (as well as associated expectations) relate to
the underlying individual sequence. Thus, we shall write, for ex-
ample, to denote the probability that the channel
output is , when the input sequence was the individual se-
quence . Note that in this case we have the explicit relation

A setting involving a noise-corrupted individual sequence
was introduced into information theory by Ziv in his work
[78] on rate-distortion coding of individual sequences. More
recently, problems of prediction [70], [73], as well as of lim-
ited-delay coding [71] of noise-corrupted individual sequences
were also considered. As mentioned in Section I and as we
elaborate on below, denoising in the semi-stochastic setting is
also closely related to the classical compound decision problem
[31], [54], [55], [57], [58].

A. Main Results: Statement and Discussion

To state our results in the semi-stochastic setting, we define a
class of -block denoisers, characterized by sliding windows of
length . Specifically, a th-order sliding-window denoiser

is characterized by the property that for all

whenever

Thus, for each sequence , the denoiser defines a mapping

so that

We let denote the class of th-order sliding-window de-
noisers. Note that these are two-pass denoisers in the sense that
the (fixed) sliding-window function is allowed to depend on the
entire observed sequence. For an -block denoiser , we now
extend the scope of the notation by defining, for

namely, the normalized cumulative loss incurred between (and
including) locations and . Note that for with an
associated collection of mappings we have

(33)

where the statistics are defined in (16). Note also that the
DUDE, , is a member of , with each mapping given

(32)
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by for (see (14)). Here, is any unboundedly in-
creasing function of with certain limitations on the growth
rate, which are required for universality (recall (15)).

For an individual noiseless sequence , noisy obser-
vation sequence , and integers and , we
define the th-order minimum loss of by

(34)

The minimum loss is the benchmark against which
we will assess the performance of denoisers in the class (we
ignore any loss contributed by the boundaries, as
in the cases of interest). The minimizing argument in (34) de-
pends on both and . It follows, a fortiori, that the definition
of the class of th-order sliding-window denoisers could have
been restricted to only those denoisers for which the mapping

is the same for all sequences (“one-pass” denoisers).
This restricted class would still contain at least one denoiser
achieving . As noted, the DUDE is a member of

, yet note that it does not belong to the restricted class of
th-order sliding-window one-pass denoisers.
By (33), the th-order minimum loss takes the form

(35)

Our main result, Theorem 1, states that for any input sequence
, the DUDE, as defined in (14), performs essentially as well as

the best sliding-window denoiser with the same window length.

Theorem 1: For all , the sequence of denoisers
defined in (14) satisfies

a)
a.s.

provided that .

b) .

Remark: Part b) of the theorem states convergence in expec-
tation provided that , a condition slightly less
stringent than the one required in Part a). This convergence,
however, may be seen as less relevant to the semi-stochastic
setting than the almost sure convergence of Part a), since an
expectation criterion is more naturally targeted to situations in
which repeated experiments can be carried out. The result is,
in any case, in line with the fully stochastic setting assumed in
Section VI. We include it here as it does not require a proba-
bilistic assumption on , and its proof uses similar tools as that
of Part a).

Theorem 2 is the key result underlying the proof of
Theorem 1. To state this theorem, we further define the
function6 [32, Theorem 1]

,

.
(36)

The function is continuous and
(see [32, Theorem 1]).

Theorem 2: Let

and

Then, for any , , , and , the denoiser
defined in (13) satisfies

(37)

(38)

where depends only on the channel.
In words: Regardless of the underlying noiseless individual

sequence, the event that the normalized cumulative loss of
the denoiser will exceed that of the best th-order
sliding-window denoiser by is exponentially unlikely
in the sequence length. In addition, the expected excess loss
vanishes at a rate for fixed . The factor in
the right-hand side of (38) tells us that the bound on the
expected excess loss becomes smaller for “skewed” chan-
nels. For example, for the BSC with transition probability ,

. The factor , which also tends to zero
as the channel becomes less “noisy” (as ),
captures the analogous dependency on in the exponent of
(37). In any case, by the Cauchy–Schwarz
inequality, whereas . The factor , on the other
hand, tends to infinity as the channel matrix “approaches” a
nonfull-rank matrix, reflecting the fact that universal denoising
becomes increasingly difficult in this regime. The proof of
Theorem 2 is deferred to Section V-B.

6Throughout this section, and in the statement of Theorem 2 in particular, we
assume the following conventions concerning , as shorthand for more formal
but straightforward limit and continuity arguments: For any , ,

, , , and . Furthermore,
denotes the natural logarithm throughout.
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Remark: It can be shown that the minimum over appearing
in the definition of is achieved at

Proof of Theorem 1: Fix throughout the proof .
To prove Part a), choose , and, for each , use (37) with

. It is easy to see that for , the
right-hand side of (37) is summable. Thus, by the Borel–Cantelli
lemma

eventually almost surely (39)

Now, for any -block denoiser and 7

(40)

In particular, (40) holds for the sequence of denoisers .
Taking limit suprema in (39), using (40) with , and
noticing that vanishes, we obtain, for any

a.s.

Since is arbitrary, the proof of Part a) is complete by noticing
that , and therefore, for all pairs of sequences
and all

implying, in turn

Part b) follows directly from using (38) in Theorem 2 with
and (40).

It should be noticed that, in the semi-stochastic setting, it is
possible to define a notion of “denoisability” of an individual
sequence, analogous to the finite-state (FS) compressibility of
[79], the FS predictability of [25], and, in particular, the con-
ditional FS predictability of [73]. To this end, we define the
sliding-window minimum loss of by

(41)

where

(42)

Note that is nonincreasing with so that is
well defined. The corresponding random variable in
principle depends on the realization of the channel noise. How-
ever, it turns out to be degenerate.

7Here and throughout, equalities or inequalities between random variables
can be understood to hold, when not explicitly mentioned, for all possible real-
izations.

Claim 1: For any , there exists a deterministic real
number (which depends on ) such that

a.s. (43)

Remark: We refer to as the denoisability of . Intu-
itively, (43) is to be regarded as a law of large numbers, as

depends on and only through the joint
th-order empirical statistics of the two sequences, which for

each given noise-free -tuple will converge to deter-
ministic (channel-dependent) values. The technical proof is best
handled by direct use of Kolmogorov’s – law (cf., e.g., [23]).

Proof of Claim 1: For fixed and , is,
by definition, invariant to changes in a finite number of coordi-
nates of . Thus, by Kolmogorov’s – law, there exists a de-
terministic constant such that a.s.
Letting completes the proof.

The following result, which is a corollary to Theorem 1, es-
tablishes the asymptotic optimality of the DUDE in the semi-
stochastic setting.

Corollary 1: The sequence of denoisers satisfies

a.s. (44)

provided that and .
Proof: For fixed and large enough to guarantee

, we have

It follows that

(45)

implying, by the arbitrariness of , that

(46)

The proof is completed by combining Theorem 1, Part a), with
(46), and invoking Claim 1.

To end this subsection, we discuss the form of our denoiser
and its semi-stochastic performance guarantees (Theorems 1
and 2) in relation to the algorithms and results pertaining to
the compound decision problem. Whereas in the classical hy-
pothesis testing problem one out of distributions is selected
upon observation of a realization, Robbins [51] proposed the
“compound decision problem” (also known as the “compound
Bayes decision problem”), where such independent hypoth-
esis tests are to be solved simultaneously. In our terminology
this is nothing but the problem of denoising an individual se-
quence with -valued components corrupted by a memory-
less channel, where the distributions are given by the rows
of . Instead of assuming a Bayesian setting in which a prior
distribution is available, the goal Robbins set was to compete
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with the “time-invariant” scalar (also known as “symbol-by-
symbol” [19], [47]) decision rule that minimizes its expected
loss, as selected by a “genie” that knows the true hypotheses.
Robbins’ setting has since been further developed in various di-
rections such as accommodating sequentiality and refining con-
vergence rates [31], [52]–[55], [57], [58], [65]. The proposed
schemes obtain estimates of the unknown prior probabilities of
the hypotheses from the noisy observations, and then use the
Bayesian “symbol-by-symbol” scheme replacing the unknown
priors with those estimated probabilities. It can be verified that
the nonsequential solution to the compound decision problem
(given in its most general form in [53]), when specialized to a
DMC of equal input and output alphabets, coincides with the
DUDE in the special case , i.e., the “contextless” DUDE.
The compound decision literature shows that as , the
proposed schemes indeed achieve the performance of the best
“symbol-by-symbol” decision rule aided by a genie that is al-
lowed to observe the true hypotheses and select the rule with
minimum expected loss (expectation with respect to the ran-
domness in the noise). In contrast, our semi-stochastic result is
stronger in the sense that the genie is allowed to see not only the
clean signal but also the channel realization, thus selecting the
rule minimizing the actual (rather than the expected) loss.

Competition with classes of schemes other than the
symbol-by-symbol denoisers has received far less attention in
the literature pertaining to the compound decision problem.
The idea of using standards more stringent than attaining
the performance of the best symbol-by-symbol scheme was
suggested by Johns [33]. Whereas the rationale underlying
Robbins’ compound decision problem (and its solution) is that
the ordering of the hypotheses plays no role and therefore
any arbitrary shuffling of them leads to the same solution,
Johns [33] realizes the importance of context and considers
sliding-window denoisers of a given order . Under the label
of “the extended compound decision problem” subsequent
work [2], [3], [66], [67] reduced the problem back to one of
competing with symbol-by-symbol schemes by regarding the
noisy observations in the sliding window as one observation
from a th-order “super-symbol.” This approach does not en-
tirely reduce the problem to its classical setting since the noisy
super-symbols are statistically dependent. The dependence
is, however, rather weak (complete independence between
components farther than symbols apart, a property referred
to as -dependence [2]), allowing to extend the performance
guarantees from the original problem. Although this reduction
to the original symbol-by-symbol approach is conceptually
straightforward, it gives rise to computationally complex
schemes. While the computation performed by the DUDE
at every location in the denoising pass is of a “single-letter”
nature regardless of the value of , the computation employed
at each location by a scheme induced from the “super-symbol”
approach is exponentially complex in . More concretely, for
a fixed , , and , the running time of the latter is
times greater than that of the DUDE. This difference is of
considerable practical significance for even moderate values of

and .

It can be shown via a derivation similar to that in [17, Sec. 6]
that, after appropriate simplification, the (nonsequential ver-

sion of the) denoising rule induced from the “super-symbol”
approach would coincide with the th-order DUDE when the
input and output alphabets coincide.8 More generally, however,
when the input and output alphabets are not equal, the schemes
significantly differ: while the DUDE (recall Section IV-C
for its form in this case) retains its “single-letter” nature, the
“super-symbol” approach yields schemes requiring computa-
tions that are exponentially complex in for the estimation of
each signal component.

Finally, the issue of whether and how to increase the window
order with the sequence length has not been addressed in the
literature on the extended compound decision problem, which
deals with a regime of a fixed and . In contrast, the in-
crease of with , along with the characterization of the allow-
able rate for this increase, are key to the performance guarantees
of the DUDE in both the semi-stochastic setting (attaining the
denoisability of any individual sequence) and the stochastic set-
ting of the next section (where optimum performance is shown
to be attained for every stationary source).

B. Proof of Theorem 2

To prove Theorem 2, we first present three lemmas. The
first two lemmas formalize the continuity intuitively claimed
in Section IV-B and establish inequalities that are valid for any
pair of sequences , . The third lemma, on the other hand,
is probabilistic, and formalizes the approximate relation (22).

Lemma 1: Fix and some collection of -vec-
tors indexed by . Construct a th-order
sliding-window denoiser with sliding-block function given
by the Bayes responses to

Then, for all

(47)

Proof: The first inequality in (47) follows trivially from
the fact that . To derive the second inequality, notice
that by (35), (33), and the definition of the denoiser , we
have (48)–(49) at the top of the following page, where, for sim-
plicity, we have dropped the arguments of and when used
for indexing columns of , and (48) holds since, for any pair of

-vectors and , we have

The continuity property established in Lemma 1 is, in fact,
typical of finite matrix games [30, eq. (14)]. In particular, the
proposed denoiser is clearly of the form covered by the lemma,
with

(50)

8Consequently, our stronger performance guarantees apply also to that ap-
proach.
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(48)

(49)

For this case, the upper bound (47) can be further upper-
bounded as follows.

Lemma 2: For all , , and

(51)

where

(52)

Lemma 2 is proved in Appendix I.

As hinted by Lemmas 1 and 2, a key step in the proof of
Theorem 2 will be to show that, with high probability, the vector

is close to . As discussed in
Section IV-B, this step is indeed plausible (see (23), where the
right-hand side is precisely ). However, there
are two apparent obstacles to making the intuition given in
(23) precise. One is that the number of symbols in which
occur in double-sided context , and such that the
corresponding noiseless symbol is , is itself a random vari-
able. The other is that these symbols are in general dependent
random variables, since their contexts might also consist of
symbols with the same property. In the technique that follows,
we surmount these difficulties by first deinterleaving into
subsequences, and then conditioning the contribution of each
subsequence to the right-hand side of (51) on all symbols not
in the subsequence. The symbols in each subsequence are
just far enough apart for the conditioning to determine each
symbol’s context, thereby fixing the cardinality and positions of
those symbols in the subsequence which occur in double-sided
context , and such that the corresponding noiseless
symbol is . Additionally, since the channel is memoryless,
the symbols in a subsequence are conditionally independent.
Thus, the conditioning permits a conventional analysis, and the
final result is obtained by extracting the worst case conditional
behavior. To implement this analysis, we first break the statis-
tics into partial counts, each corresponding to
occurrences of at indices such that ,

. There are thus intervening symbols between
any two symbols contributing to a given partial count, which is

the smallest gap that induces fixed contexts after conditioning
on all noncontributing symbols.

Specifically, for , , let
denote the -dimensional column vector

whose th component is

(53)
where

The cardinality of the index set is .
By definition

Similarly, we define, as in (52)

In the sequel, for simplicity, our notation will occasionally omit
the first two arguments of the vectors , , , and , as
these arguments will always be and , respectively. By the
triangle inequality, we can further upper-bound the bound in
Lemma 2 to obtain

(54)

where

We will bound each sum in probability
and expectation, conditioned on the collection of random vari-
ables given by

We denote by a particular realization of .
Now, for each , let
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denote the number of times , , occurrs in double-sided
context , when . Notice that (for the fixed )
conditioned on , is deterministic, as
it depends only on and .

Lemma 3: Let

where the function is given in (36), and let

Then, for all ,
and , we have

(55)

and

(56)

Remark: Notice that
are the only random variables in the lemma that have not been
fixed.

We will obtain the bound (55) of Lemma 3 by applying the
following proposition, where

will denote the binary divergence, which we take to be if
.

Proposition 1: Let be a probability distribution on the set
and . Let

be i.i.d. random variables distributed according to , and let
denote the probability vector

corresponding to the empirical distribution . Then, for all

(57)

(58)

where the function is given in (36).
Proof: By the well-known equality

(59)

a union bound implies that

(60)
Applying the standard Chernoff bounding technique to each
term in the summation yields (57), as in [32, Theorem 1, eq.
(2.1)]. The terms in the summation of (57) corresponding to

and are clearly . Equation (58) then follows
from [32, Theorem 1, eq. (2.2)] by lower-bounding the smallest
exponent.

Proof of Lemma 3: For all such that , and for
each , we have . Thus, by
definition, conditioned on , is
the sum of the i.i.d. Bernoulli- random
variables , where belongs to the index set

which is completely determined by and . Moreover,
by (52)

Therefore, after normalization by , the sum in the
left-hand sides of (55) and (56) is the -distance between the
distribution on , and the corresponding empirical
distribution . The upper bound (55)
then follows from Proposition 1 with and

.
As for the bound on the expectation, notice that each term

is the expected magnitude of the difference between the number
of successes in Bernoulli trials with success probability

and its average , with
and . In particular, for [26,
Ch. IX, Problem 35]

(61)

where and . For a given positive
integer , it is easy to see that the value of that maximizes
the right-hand side of (61) is . Thus, applying
Stirling’s formula to we obtain, after straightforward al-
gebraic manipulations

Clearly

where Moreover,
and , so that
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The proof is complete by observing that ,
applying the resulting upper bound to each , and then sum-
ming over .

Regarding Lemma 3, note the following.

a) It can be shown that the smallest exponent of the terms
in the summation of (57) coincides with that given by
Sanov’s theorem and hence is the best possible.9 A
stronger version of Lemma 3, based on this optimal rate,
could have been derived. The use of this rate in obtaining
a closed-form bound on the probability of Theorem 2,
however, appears to require the weaker version (55).

b) The constant in the exponent of (55) is
lower-bounded by , and indeed replacing by

coincides simply with the application of the more
widely used weaker form of Hoeffding’s inequality
[32, Theorem 1, eq. (2.3)] to each probability on the
right-hand side of (60) in the proof of Proposition 1.
Such a bound, however, would not reflect the intuitively
appealing fact that less “noisy” channels result in larger
denoising exponents.

Proof of Theorem 2: Using Lemma 1 with
given by (50), and (54), we obtain, for any

(62)

where is a set of nonnegative constants (to be specified
later) satisfying , and the last inequality follows
from the union bound. To further upper-bound each probability

9Moreover, note that the bound in (57) is preferable since it avoids the factor
resulting from the use of the method of types in Sanov’s theorem, which is
polynomial in ; cf., e.g., [14, Theorem 12.4.1].

in the rightmost side of (62) via Lemma 3, we condition the
events on the random variables , to obtain (63) at the bottom
of the page. Letting denote the conditional probability in
the right-hand side of (63), the union bound yields the second
equation at the bottom of the page, where, again, conditioned on

, is a set of nonnegative constants (to
be specified later) satisfying . We can now
apply (55) in Lemma 3, which yields (64) at the bottom of the
page. Now, choose

so that

where we used the Cauchy–Schwarz inequality and the fact
that . With this choice, which
equalizes the exponents in (64), (63) and (64) yield the fourth
equation at the bottom of the page. We complete the proof of
the bound (37) by choosing

applying similarly the Cauchy–Schwarz inequality, and using
the fact that .

To prove the bound (38), we use again Lemma 1 with
given by (50), and (54), to obtain the equation at

the top of the following page. By (56) in Lemma 3, we can
further upper-bound the expectation to obtain the second set of
expressions at the top of the following page, where the second
and fourth lines follow from the Cauchy–Schwarz inequality,
completing the proof of (38).

(63)

(64)
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VI. THE STOCHASTIC SETTING

Consider the fully stochastic analogue of the setting of
Section V where the underlying noiseless signal is a stochastic
process rather than an individual sequence. Specifically, we
assume that is the output of the memoryless, invertible,
channel whose input is the double-sided stationary process

. Letting denote, respectively, the distributions
of , and denote the class of all -block denoisers,
define

(65)

the expectation on the right-hand side assuming that was
generated according to (and is the output of the DMC

whose input is ). By stationarity, for all

(66)
Thus, by the Subadditivity Lemma (cf., e.g., [18, Lemma
6.1.11])

(67)

By definition, is the (distribution-dependent) op-
timal asymptotic denoising performance attainable when the
noiseless signal is emitted by the source and corrupted by
the channel . The main goal of this section is to establish
the fact that the DUDE asymptotically attains no
matter what stationary source has emitted . Note that in the
definition leading to we minimize over all denoising
schemes, not necessarily sliding-block schemes of the type
considered in Section V. This is in accord with analogous
situations in universal compression [79], prediction [41], and
noisy prediction [72], where in the individual-sequence setting
the set of schemes in the comparison class is limited in some
computational sense. In the fully stochastic setting, on the
other hand, such a limitation takes the form of a restriction on
the class of allowable sources (cf. discussion on the duality
between the viewpoints in [41]).

Let denote the -dimensional probability

vector whose th component is10 .

Claim 2: .

The claim results from its well-known counterpart for a finite
set of noisy observations, and from the following lemma.

Lemma 4:

1) For , is decreasing in both
and .

2) For any two unboundedly increasing sequences of posi-
tive integers

Lemma 4 and Claim 2 parallel similar results in sequential
decision theory [41] (e.g., in the data compression case, the
limiting values of the block and conditional entropies coincide,
defining the entropy rate). Their proofs are also standard, but are
given in Appendix II for completeness.

The first main result of this section, Theorem 3, follows now
from the properties shown for the semi-stochastic setting and
the above claims.

Theorem 3: The sequence of denoisers in (14) with
satisfies

provided that .
Proof: By Claim 2

(68)

10The definition is rigorously extended to cases with and/or ,
by assuming to be a regular version of the conditional distribution (cf.,

e.g., [23]) of given , evaluated at .
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The first expectation on the right-hand side of (68) vanishes in
the limit by Lemma 4, whereas for the second expectation we
notice that, for any

(69)

(70)

(71)

(72)

where (70) follows by stationarity. Thus, the second expectation
in the right-hand side of (68) vanishes in the limit by Theorem 1,
Part b).

Regarding Theorem 3, note the following.

a) Equation (68) provides insight into the convergence of
to . The vanishing rate of

the first expectation in the right-hand side depends on
the underlying process, and there is no upper bound on
this rate which holds uniformly for all stationary . In
contrast, the second expectation is uniformly bounded by
Theorem 1, Part b). A slower growing rate for yields
a faster vanishing rate for the second expectation but the
price, of course, is a slower vanishing rate for the first one.

b) Inequality (71) parallels the well-known property that the
conditional entropy of order is an upper bound on the
expectation of the corresponding empirical entropy.

Theorem 3 guarantees the asymptotic expected performance
of the DUDE for any stationary noiseless process. Our goal in
the remainder of this section is to establish the sample path op-
timality of the DUDE, namely, the fact that its actual (rather
than expected) asymptotic performance is optimal, universally
for all stationary and ergodic sources. Our first step toward this
end is to show that when is also ergodic, the sliding-window
minimum loss (cf. the definition (41)) of the emitted source se-
quence coincides, with probability one, with . This
result parallels [79, Theorem 4], where it is shown that the fi-
nite-state compressibility of a sequence drawn from a stationary
ergodic source coincides with the entropy of the source with
probability one.

Claim 3: If is stationary and ergodic then, with proba-
bility one

Proof: Recall the definition of in (42), and no-
tice that assuming stationarity and ergodicity of , for each
and each map taking into

a.s. (73)

Since the set of all maps taking into is finite, (73)
implies

a.s.

The proof is completed by letting in (69) and invoking
Lemma 4 and Claim 2.

Our main result on the sample path behavior of the DUDE
now follows from Claim 3 and properties established in the
semi-stochastic setting.

Theorem 4: The sequence of denoisers with
satisfies

a.s.

for every stationary and ergodic , provided that
.

Proof: Corollary 1 (in Section V) holds for all sequences
and, a fortiori, almost surely. It thus follows by invoking Claims
1 and 3 that

a.s. (74)

The reverse inequality follows from Fatou’s lemma and the fact
(obvious from the definition of ) that

Remark: For stationary and ergodic and for the range of
values of covered by Theorem 4, the convergence in expecta-
tion of Theorem 3 could be directly derived from Theorem 4 via
Fatou’s lemma. In fact, this approach can be employed without
the additional ergodicity requirement, by first conditioning on
the ergodic mode and then applying Theorem 4 separately on
each mode.

VII. CONTEXT-LENGTH SELECTION

A. The “Best”

The optimality results shown in the preceding sections pro-
vide asymptotic guidance on the choice of the context length
for universal denoising. However, these results refer to a se-
quence of problems, shedding little light on how the order
ought to be selected for a specific sequence . In particular,
notice that even though Theorem 2 provides nonasymptotic in-
formation about how the denoiser compares with the best

th-order sliding-window denoiser, it does not address the issue
of comparing different choices of .

The problem of choosing is, in many aspects, similar to that
of double-universality in universal data compression (see, e.g.,
[41]). In the data compression case, once a specific algorithm
is shown to be universal for a given model structure parame-
terized by a value (e.g., a mixture probability assignment for
some Markovian order ), the question arises as to what value
of minimizes the code length assigned by that specific algo-
rithm to an individual sequence. Notice that a comparison class
is used for analyzing universality for a given , but once a uni-
versal algorithm is selected, the criterion for choosing is inde-
pendent of the comparison class. The encoder can, for example,
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Fig. 1. Code length and loss of denoised signal as a function of .

search for the optimal , and describe its value to the decoder.
The key difference in the denoising problem, however, is that
the sequence on which the optimal depends is not observ-
able. Yet, the data compression analogy suggests the following
formalization as a possible criterion for choosing .

For a given pair , let

In words: is the optimal order for a denoiser having
the same form as the DUDE. This best value of is, of course,
unavailable as it depends on . Now, define the function

given by (75) at the bottom
of the page. The order provides a possible benchmark
for choosing as a function of (as opposed to the order

in previous sections, which depends just on and was
selected based on considerations of asymptotic optimality).
This choice aims at minimizing, in the worst case of , the
expected excess loss over the loss we would have achieved
with the optimal order (namely, the “regret”).
With , is a th-order
sliding-window denoiser. Notice that (75) would provide a
sensible order selection criterion only if this worst case regret
vanishes asymptotically. Beyond this open problem,
seems difficult to compute even in the simplest cases, and in the
next subsection we consider heuristics for selecting , or more
generally, an appropriately sized context model, in practice.

B. Heuristics for Choice of Context Size

As mentioned, choosing “the best” seems to present some
theoretical and practical difficulties. Ideally, we would like to
be able to choose a value of that approaches the DUDE’s best
denoising performance for the given input data sequence, and
such that its determination from observable quantities is compu-
tationally feasible. Fortunately, it was observed in experiments
where the original noiseless sequence was available as a ref-
erence, that the value of that minimizes the loss

is consistently close to the value that makes most
compressible. The intuition behind this heuristic is similar to the
motivation for the compression-based schemes for denoising:
the better the denoising performance is, the more structure of
the noiseless signal is unveiled, and thus the higher its compress-
ibility. Compressibility of can be estimated from ob-
servable data by using a practical implementation of a universal
lossless compression scheme. Fig. 1 shows (suitably scaled)
typical plots of compressed code length and loss of the de-
noised signal as a function of , corresponding to one of the
data sets reported on in Section VIII. All data sets mentioned in
Section VIII actually exhibit a similar behavior. A formalization
of the link between compressibility and the best for denoising
is an open problem of theoretical and practical interest.

The preceding discussion also applies to more general context
models, in which the context length depends not only on , but
may vary from location to location, similar to the tree models
customary in data compression (see, e.g., [68], [76]). Moreover,
the context length need not be equal on the left and on the right
(see [80] for a formal definition). As mentioned in Section IV,
the internal data structure of the DUDE can be readily designed
to support these models. Choosing an appropriately sized con-
text model is important in all applications, but essential in appli-
cations with large alphabets (e.g., continuous tone images), as is
evident from the error terms in Theorem 2 in Section V. Similar
issues of model cost [49] have been addressed in related areas
of lossless image compression (see, for instance, [10]), and sig-
nificant knowledge and experience have been generated, which
can be brought to bear on the discrete denoising problem.

VIII. EXPERIMENTAL RESULTS AND PRACTICAL

CONSIDERATIONS

In this section, we report on experimental results obtained by
applying the DUDE to a variety of noise-corrupted data sets.

(75)
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TABLE I
BIT-ERROR RATE OF DENOISED SEQUENCES EMITTED BY A MARKOV

SOURCE THROUGH A BSC

A. Binary-Symmetric Markov Source Corrupted by a BSC

We implemented the DUDE for the BSC, as derived in
Section IV-D. A first-order symmetric binary Markov source
was simulated and corrupted by a simulated BSC for five
values of the transition probability associated with the
Markov source, , and for three
values of the crossover probability associated with the BSC,

. In each case, only one realization of the source
was generated (with sequence length ).

Table I shows the bit-error rate (expressed as a multiple of
) of the denoised signal obtained when employing the DUDE

for the 15 combinations of the pair . The number in square
brackets is the value of employed, which was obtained using
the compressibility heuristic described in Section VII-B. For
each combination, we also show the residual error rate of the
optimal Bayesian distribution-dependent scheme tailored for the
specific corresponding value of the pair , as implemented
by the forward–backward recursions [13], [4]. Note that at times
the Bayes solution is shown to give worse bit-error rate than the
crossover probability of the channel, because in this experiment
no averaging is performed with respect to either input or channel
realization.

We observe that in the majority of the cases shown in the
table, the DUDE approaches optimum performance within a
rather small margin. The somewhat less negligible gaps between
the performance of the DUDE and that of the optimal scheme
are observed in the first line of the table, corresponding to

. A qualitative explanation for this performance may be
that in this case the process is less mixing or more “slowly
varying,” so in order to approach the performance of the op-
timal scheme (which bases its denoising decisions for each lo-
cation on the whole noisy signal) to within a certain margin,
a sliding-window denoiser of higher order is needed. However,
the sequence length in the experiments is probably not sufficient
to get close enough to the optimum for these larger values of .

B. Text Denoising

We employed the DUDE on a corrupted version of Don
Quixote de La Mancha (in English translation), by Miguel
de Cervantes Saavedra (1547–1616). The text of this novel11

consists of approximately characters. It was artifi-
cially corrupted by flipping each letter, independently, with
probability , equiprobably into one of its nearest neighbors
in the QWERTY keyboard. The resulting number of errors in

11Available online from the Project Gutenberg website at http://promo.
net/pg/.

the corrupted text came out to 89 087. The DUDE, employed
with , reduced the number of errors to 50 250, which
is approximately a 44% error-correction rate. Following are
two segments from the corrupted text, with the corresponding
DUDE output.

1) Noisy Text (21 errors):

“Whar giants?” said Sancho Panza. “Those

thou seest theee,” snswered yis master,

“with the long arms, and spne have tgem

ndarly two leagues long.” “Look, ylur wor-

ship,” sair Sancho; “what we see there zre

not gianrs but windmills, and what seem

to be their arms are the sails that turned

by the wind make rhe millstpne go.” “Kt is

easy to see,” replied Don Quixote, “that

thou art not used to this business of ad-

ventures; fhose are giantz; and if thou

arf wfraod, away with thee out of this and

betake thysepf to prayer while I engage

them in fierce and unequal combat.”

DUDE output (7 errors):

“What giants?” said Sancho Panza. “Those

thou seest there,” answered his master,

“with the long arms, and spne have them

nearly two leagues long.” “Look, your wor-

ship,” said Sancho; “what we see there are

not giants but windmills, and what seem

to be their arms are the sails that turned

by the wind make the millstone go.” “It is

easy to see,” replied Don Quixote, “that

thou art not used to this business of ad-

ventures; fhose are giantz; and if thou

arf wfraod, away with thee out of this and

betake thyself to prayer while I engage

them in fierce and unequal combat.”

2) Noisy Text (4 errors):

… in the service of such a masger ws Dpn

Qhixote …

DUDE output (0 errors):

… in the service of such a master as Don

Quixote …

C. Image Denoising

The binary implementation of the DUDE was used to denoise
binary images corrupted by BSCs of various parameter values.
In this setting, the input to the denoiser is a sequence ,
with components , where , ,

. We define two-dimensional context patterns as
follows. Let , be an ordering of by
increasing norm, with ties broken first by increasing
norm, then by increasing value of , and finally by increasing
value of . Denote by , , the th integer pair in the order.
For an integer , the th order context for consists of
the symbols with coordinates (with
appropriate provisions for image boundaries).
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For the image experiments, an attempt was made to estimate
the BSC parameter , rather than assume it known. It was found
that given , a good estimate of is given by12

the minimum taken over contexts that occur in
with frequency surpassing a given threshold (to avoid “diluted”
contexts). The intuition behind this heuristic is that if the image
is denoisable, then some significant context must exhibit skewed
statistics, where the least probable symbol has a low count, thus
“exposing” the outcomes of the BSC. Notice that this estimate
of can be computed after running the first pass of the DUDE,
and used during the second pass.

The compressibility heuristic of Section VII-B was used to
determine the context order . The steps of empirically esti-
mating and might need to be iterated, as the estimate of one
depends on the estimate of the other. In practice, however, it was
observed that very few, if any, iterations are needed if one starts
from a reasonable guess of the channel parameter. The best is
estimated given this guess, and from it a more accurate estimate
of is obtained. In the majority of cases, no further iterations
were needed.

We now present denoising results for two images. The first
image is the first page from a scanned copy of a famous paper
[59]. The results are shown in the upper portion of Table II,
which lists the normalized bit-error rate of the denoised image,
relative to the original one. The table also shows results of de-
noising the same image with a median filter [29], and a
morphological filter [62] available under MATLAB. The results
for the morphological filter are for the best ordering of the mor-
phological open and close operations based on a structural
element, which was found to give the best performance. The re-
sults in the table show that the DUDE significantly outperforms
the reference filters. Fig. 2 shows corresponding portions of the
noiseless, noisy, and DUDE-denoised images, respectively, for
the experiment with (the whole image is not shown
due to space constraints and to allow easy comparison of the
three versions).

The second image reported on is a halftoned portrait of a
famous physicist. While it is arguable whether denoising of
halftone images is a common application, these images provide
good test cases for a denoiser, which has to distinguish between
the random noise and the “texture” of the half-tone pattern. The
numerical results are shown in the lower part of Table II, which
shows that the DUDE is able to achieve significant denoising of
the half-tone. In contrast, the more traditional (median and mor-
phological filtering) algorithms fail, and, in fact, significantly
increase the bit-error rate as well as the perceived distortion.
Portions of the noiseless, noisy, and DUDE-denoised half-tone
images for the experiment with are shown in Fig. 3.
The experiments on halftones serve to showcase the universality
of the DUDE: the same algorithm that performed well on the
scanned text of the first example, also performs well for the
halftoned photograph, a very different type of image.

12The vector-valued function now takes two arguments, as represents
the whole context, which was represented by in the one-dimensional case.

TABLE II
BIT-ERROR RATES OF DENOISED BINARY IMAGES

One-dimensional contexts of size , consisting of sam-
ples to the left, and to the right of the denoised sample,
were used in these cases to obtain the best results. While a
two-dimensional context scheme obtains bit-error rates that are
not far from those reported, the visual quality of the denoised
halftone was superior with the one-dimensional contexts.

D. Other Practical Considerations and Improvements

We briefly mention a few other possible avenues for improve-
ment of the DUDE’s performance in practical settings, in ad-
dition to those discussed in conjunction with the experimental
results. Given the diversity of applications of the algorithm,
we expect that additional structure, specific to each application,
could be exploited to improve performance.

• Context aggregation. The crux of the DUDE algorithm
is the estimation of the empirical statistics of the noiseless
sequence from those of the noisy . If the context
of a particular symbol has been contaminated by one or
more errors, the count corresponding to the symbol will be
credited to the “wrong” context, and, conversely, the statis-
tics used for the correction of the symbol will be partially
based on counts of the “wrong” contexts. Thus, the statis-
tics of contexts that are close, in the sense of a higher prob-
ability of confusion due to the channel, get intermixed.
This suggests a strategy of making decisions based on the
counts obtained not only from the observed context, but
also from neighboring contexts. To that end, the first pass
of the denoiser proceeds as usual; for the second pass,
the counts of similar contexts are aggregated, weighing
them by the similarity of the context to the observed one.
The aggregation of statistics can occur before the second
pass, and its complexity is independent of the data size.
The context aggregation mechanism is different from, and
complementary to, the techniques of context tree pruning
from the data compression literature [68], [76] mentioned
in Section VII-B. In particular, context aggregation need
not reduce the size of the context model. The idea of esti-
mating a symbol at a given location based on counts asso-
ciated not only with the context observed at that location,
but also with other contexts that are only similar (but not
identical) to it, has been used in [38] (cf. also [36], [37])
for recovering a noise-corrupted chaotic signal.

• Nonstationary data. While the algorithm presented in
this work is well suited for stationary sources (or for indi-
vidual sequences having a low sliding-window minimum
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Fig. 2. Denoising of a scanned text image.

Fig. 3. Denoising of a binary halftone image.



26 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 51, NO. 1, JANUARY 2005

loss), it lends itself to nonstationarity. For example, when
the data may be assumed piecewise stationary (e.g., im-
ages and various types of audio signals), the counting of
the appearances of the strings can include a “forgetting
factor” to discount the contribution of strings according to
their distance from the relevant location. To that end, judi-
cious segmentation of the input data sequence depending
on the expected dynamics of the data statistics can be
helpful.

Related theoretical and practical directions that have
been pursued since the submission of this work include
causal denoising (filtering) [48], the case of channel un-
certainty [27], [81], the case of a general (not necessarily
discrete) channel output alphabet [17], the case of channel
memory [82], loss estimation for efficient pruning of bi-di-
rectional context trees [80], and applications of the DUDE
tojointsourcechanneldecodingofanunknownsource[45].

APPENDIX I
PROOF OF LEMMA 2

Throughout the proof, we will simplify our notation by omit-
ting the first two arguments in the vectors
and , as these arguments will always be

and , respectively, and we will replace the third argu-
ment, in which and are fixed, by its central symbol,

. Similarly, we will omit all the arguments in the vector
. Since, for all , we have by definition

it follows that, for all

(A1)

where the last equality follows from the fact that, by the defi-
nition (52), the only dependence of on is due to the
factor , and from the identity

. Thus, we have (A2) at the bottom of the page. Summing
(A2) over yields

(A3)

where (A3) follows from the definition (Section II)

APPENDIX II
PROOF OF CLAIM 2

A. Proof of Lemma 4

Recall first that the Bayes envelope is a concave func-
tion. Specifically, for two -vectors and and

(A4)

Next, to show that decreases with , observe
equation (A5) at the bottom of the page, where the inequality
follows by concavity. The fact that decreases
with is established similarly, concluding the proof of the first
item. For the second item note that, by martingale convergence

(A2)

(A.5)
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(cf., in particular, [7, Theorem 5.21]),

a.s., implying, by the (easily verified) continuity of that
a.s. Consequently, since

for all

the second equality following by bounded convergence.

Proof of Claim 2

We have

(A6)

where the last equality follows by stationarity. Since, by
Lemma 4

it follows from (A6) that

for all and, therefore,

On the other hand, for any , , Lemma 4 and (A6)
yield the upper bound

(A7)

Considering the limit as of both ends of the (A7) yields

Letting now and invoking Lemma 4 implies
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