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1. INTRODUCTION

In a recent work [1], the authors introduced a discrete
universal denoiser (DUDE) for recovering a signal with
finite-valued components corrupted by finite-valued, un-
correlated noise. The DUDE is asymptotically optimal and
universal, in the sense of asymptotically achieving, with-
out access to any information on the statistics of the clean
signal, the same performance as the best denoiser that does
have access to such information. It is also practical, and
can be implemented in low complexity. In this work, we
extend the definition of the DUDE to two-dimensionally
indexed data, and present results of an implementation
of the scheme for binary images. Section 2 presents the
problem setting, definitions, and notation used through-
out the paper. Section 3 describes the DUDE for two-
dimensional data (this description readily extends to higher
dimensions). Section 4 presents theoretical performance
guarantees establishing the DUDE’s asymptotic optimal-
ity. The denoiser assumes a particularly simple form for
binary alphabets, which is presented in Section 5. Practical
considerations in the implementation of the binary scheme
are presented in Section 6, while experimental results of
its application to noisy binary images are presented in Sec-
tion 7. In the examples considered we find that the DUDE
outperforms current popular schemes [2, 3] for binary im-
age denosing. Finally, in Section 8 we discuss conclusions
and directions for ongoing and future research.

2. PROBLEM SETTING AND NOTATION

Throughout we let A, of size |A|=M , denote the finite al-
phabet where the components of the clean, as well as those
of the noise-corrupted image, take their values. We assume
that the noiseless image, for which no statistical model
is available, is corrupted by a discrete memoryless chan-
nel (DMC) characterized by a transition probability matrix
Π = {Π(a, b)}a,b∈A. That is to say that the noise compo-
nents are statistically independent and the probability that
the observed noisy symbol at a given location is b when the
underlying clean symbol is a is given by Π(a, b). Our as-
sumption is that Π is invertible, which holds for channels
arising in practice. We also assume a given loss function
(fidelity criterion) Λ : A2→[0,∞), represented by a ma-
trix Λ = {Λ(i, j)}i,j∈A, where Λ(i, j) is the loss incurred
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by estimating the symbol i with the symbol j.
The i-th component of a vector u will be denoted by

ui or u[i]. For M -dimensional vectors u and v, we denote
by u � v the component-wise product of the vectors, i.e.,
(u � v)[i] = u[i]v[i], 1 ≤ i ≤ M . An image is a two-
dimensional array over A. Let x = {xi}i∈N2 denote the
(conceptually infinite) noise-free image and z = {zi}i∈N2

its noise-corrupted version. Here, N is the set of positive
integers, and we extend the indexing notations ui and u[i]
to two-dimensional indices. For any S ⊆ N2 we denote
x(S) = {xi}i∈S and z(S) = {zi}i∈S . Thus, x(S) is a |S|-
dimensional vector with A-valued components indexed by
the elements of S, and we denote by AS the set of all such
vectors. For m,n ∈ N let Vm×n denote the m×n rectangle
{(ix, iy) ∈ N2 : ix ≤ m, iy ≤ n}. To simplify notation,
we shall write xm×n for x(Vm×n), zm×n for z(Vm×n),
and Am×n for AVm×n . Finally, for S ⊆ N2 and i ∈ N2 we
let S + i = {j + i : j ∈ S}.

A m×n image denoiser is a mapping X̂m×n :
Am×n→Am×n. For xm×n, zm×n∈Am×n we let
LX̂m×n(xm×n, zm×n) denote the normalized denoising
loss, as measured by Λ, of the image denoiser X̂m×n when
the observed noisy image is zm×n and the underlying one
is xm×n, i.e.,

LX̂m×n(xm×n, zm×n) =
1

mn

∑
i∈Vm×n

Λ(xi, X̂
m×n(zm×n)[i]),

with X̂m×n(zm×n)[i] denoting the component of
X̂m×n(zm×n) at the i-th location.

A neighborhood is a subset of Z2 not containing the
origin (0, 0) (the center of the neighborhood). If S is a
neighborhood we shall refer to any element of AS as a S-
context, or simply a context. For r ≥ 0 we let Br denote
the L2 ball of radius r in Z2, centered at (0, 0), i.e., Br =
{i ∈ Z2 : ‖i‖2 ≤ r}. Sr will denote the neighborhood
Sr = Br \ (0, 0).

For a neighborhood S ⊆ Z2 and a S-context b(S)
we let m(zm×n, b(S)) denote the M -dimensional column
vector whose α-th component, m(zm×n, b(S))[α], α ∈ A,
is given by

|{i ∈ Vm×n : S + i ⊆ Vm×n, z(S + i) = b(S), zi = α}| .

In words, m(zm×n, b(S))[α] denotes the number of loca-
tions in the noisy image zm×n where the symbol α appears
(after appropriate translation) in context b(S).

3. DESCRIPTION OF THE DENOISER

Let S ∈ Z2 be a neighborhood, and let λa and πa denote
the ath columns of Λ and Π, respectively, for all a ∈ A.



The m× n image denoiser X̂m×n
S is defined by

X̂m×n
S (zm×n)[i] =

arg minx̂∈AmT (zm×n, z(S+i))·Π−1· (λx̂�πzi) ,
(1)

for locations i where S+i ⊆ Vm×n. The specific definition
of the denoiser output for other locations i ∈ Vm×n will
be inconsequential for the validity of the theoretical results
below. For concreteness, we can assume that the value of
any “out of bound” sample is set to some arbitrary constant
from A, so that the values in z(S + i) are well defined
for all i ∈ Vm×n. Notice that the definition of the denoiser
assumes knowledge of the channel Π. Ways to address this
need in practical situations where a full description of the
channel might not be available are discussed in Section 6.
Finally, for given m, n, we let our m × n universal image
denoiser be given by

X̂m×n
univ = X̂m×n

Sr(m,n)
, (2)

where r(m,n) = g(min{m,n}) and g is an unboundedly
increasing function such that g(t)Mg(t) = o(t1/4), for ex-
ample, g(t) = c logM t with c < 1

4 .

4. ASYMPTOTIC OPTIMALITY

In this section we present theoretical results assessing
the universal asymptotic optimality of the image denoiser
X̂m×n

univ . Analogous results for one-dimensionally indexed
signals were derived and proved in [1]. The proofs of the
results below are similar in nature, though they require
some additional ingredients that have no analogues in the
one-dimensional case and will be detailed in [4].

A sliding window denoiser of radius r is one that de-
termines the denoised value at a location i as a function
of z(Br + i). Let Dr(xm×n, zm×n) denote the r-th order
denoisability of (xm×n, zm×n), defined by

min
f :ABr→A

 1
mn

∑
i:Br+i∈Vm×n

Λ (xi, f(z(Br + i)))

 . (3)

This definition of Dr(xm×n, zm×n) can be interpreted as
the denoising performance of a “genie-aided” scheme, al-
lowed to select the best sliding-window denoiser of radius
≤ r, based on knowledge of both the noisy and the under-
lying noiseless image. Note that most image denoisers ap-
plied in practice, such as median filters morphological op-
erators , and context-dependent spatial operators (see, e.g.,
[2, 3]) are sliding-window denoisers, so the r-th order de-
noisability is a lower bound on the performance of all such
schemes (for r large enough). Our main theoretical result
guarantees that the image denoiser X̂m×n

univ , for large im-
ages, does essentially as well as this genie-aided scheme,
regardless of the underlying noiseless image. The setting
for Theorem 1 below is one where the image x is some ar-
bitrary, unknown, deterministic element of AN2

, while Z
is the random field resulting when x is corrupted by the
memoryless channel Π.

Theorem 1 For all x ∈ AN2
, with probability one,

LX̂m×n
univ

(xm×n, Zm×n)−Dr(m,n)(xm×n, Zm×n) → 0
(4)

as m,n →∞.

Consider now a fully stochastic setting where the noiseless
image X is assumed generated by a spatially stationary and
ergodic source. Letting PXm×n

and PX denote, respec-
tively, the distributions of Xm×n and X, and denoting by
Dm×n the class of all m× n image denoisers, we define

D(PXm×n ,Π) = min
X̂m×n∈Dm×n

E
[
LX̂m×n(Xm×n, Zm×n)

]
,

with expectation on the right side taken with respect to
PXm×n

and the channel Π. We further define

D(PX,Π)
4
= inf

m,n≥1
D(PXm×n ,Π).

D(PX,Π) is the optimal asymptotic image denoising per-
formance attainable with full knowledge of the statistical
characterization of the image. The following result guaran-
tees that this performance is universally attained by X̂m×n

univ ,
without any knowledge of PX.

Theorem 2 For all spatially stationary and ergodic X,

(a) lim sup
m,n→∞

LX̂m×n
univ

(Xm×n, Zm×n) ≤ D(PX,Π), with

probability one.

(b) lim
m,n→∞

E
[
LX̂m×n

univ
(Xm×n, Zm×n)

]
= D(PX,Π).

Remark: Note that implicit in the statements of Theorems 1
and 2 are the results that the associated limits do not depend
on the way in which m and n are sent to infinity.

5. THE BINARY IMAGE DENOISER FOR A BSC

Consider the case where A={0, 1} and the image is cor-
rupted by a binary symmetric channel (BSC) with param-
eter δ. Thus, the observed binary value at each image lo-
cation is the result of flipping the clean image sample with
probability δ. In this case, and assuming δ < 1/2 and
Hamming loss, the denoiser in (1) simplifies to

X̂m×n
S (zm×n)[i] =

{
zi

m(zm×n,z(S+i))[zi]
m(zm×n,z(S+i))[zi]

≥ 2δ(1−δ)
(1−δ)2+δ2 ,

zi otherwise,
(5)

zi denoting the binary complement of zi. Namely, for each
location in the noisy image, we count, among the locations
sharing the same context, how many had the same value
and how many had the opposite value. If the ratio of these
counts is below 2δ(1−δ)

(1−δ)2+δ2 , then zi is deemed in error and
is flipped. Otherwise, it is left unchanged.



6. IMPLEMENTATION OF THE BINARY IMAGE
DENOISER

The binary version of the DUDE was implemented in soft-
ware. While the results of Theorems 1 and 2 establish the
asymptotic optimality of the scheme, special care must be
taken in the implementation design to enable good per-
formance with practical, finite images. In particular, the
growth of the neighborhood size as a function of the “or-
der” (e.g., the radius r in Section 3) must be kept in check,
to avoid dilution of the context statistics, one aspect of the
more general concept of model cost [5]. In our imple-
mentation, a finer sequence of neighborhoods was adopted,
rather than the sequence of center-less spheres Sr implied
by the discussion in Section 3. Specifically, we order pairs
i = (ix, iy) ∈ Z2\{(0, 0)} in increasing order of ‖i‖2, then
in increasing order of ‖i‖∞, then in increasing order of |iy|,
and so on. The initial sequence is (−1, 0), (1, 0), (0,−1),
(0, 1), (−1,−1), (−1, 1), (1,−1), (1, 1), (−2, 0),(2, 0), ...
The neighborhood of order k, denoted Nk, is defined to
consist of the first k elements of this sequence. Notice that
neighborhoods are kept as symmetric as possible, and that
the sequenceNk is indeed a refinement of the sequence Sr,
with |Nk| = k.

A neighborhood order k, and a channel parameter δ are
provided to the program as parameters, together with an in-
put (presumed noisy) image zm×n. The denoiser runs two
passes over the image. In the first pass, statistics are col-
lected for context patterns zm×n(Nk + i), i ∈ Vm×n. For
each context pattern, counts of occurrences of the values 0
and 1 at the center of the context are collected. The second
pass uses these counts, together with the criterion in (5), to
denoise the image samples.

As noted, the DUDE requires the values of the parame-
ters δ and k in order to process an image. In the theoretical
setting, the channel parameter δ is assumed known, and the
context order is only loosely based on the image size (see
discussion following Equation (2). In practice, the channel
parameter is often unknown, and the specific policy used
to choose the context order significantly affects denoising
performance. Moreover, even with the benefit of several
runs of the denoiser, it is not clear a priori how one would
search for the optimal parameters, since the original noise-
less image is not available to assess the performance of the
denoiser for a given parameter setting. Fortunately, experi-
mental results show that near-optimal values for both δ and
k can be heuristically, but quite accurately derived as func-
tions of observable parameters.

Given k, a good estimate of the channel parameter δ is
given by

min
c

min{m(zm×n, c)[0],m(zm×n, c)[1]},

the minimum taken over contexts c ∈ ANk that occur with
“sufficient frequency” in zm×n. The intuition behind this
heuristic is that if the image is denoisable, then some sig-
nificant context must exhibit skewed statistics, where the
least probable symbol has a low count, thus “exposing” the
outcomes of the BSC. Notice that this estimation of δ re-
quires running just the first pass of the denoiser.

As for k, it was observed in experiments where the
original noiseless image was available as a reference, that

Channel parameter δ
Image Scheme 0.01 0.02 0.05 0.10
Shannon DUDE 0.00096 0.0018 0.0041 0.0091
1800×2160 k=11 k=12 k=12 k=12

median 0.00483 0.0057 0.0082 0.0141
morpho. 0.00270 0.0039 0.0081 0.0161

Einstein DUDE 0.0035 0.0075 0.0181 0.0391
896×1160 k=18 k=141 k=121 k=121

median 0.156 0.158 0.164 0.180
morpho. 0.149 0.151 0.163 0.193

Table 1. Denoising results

the value of k that minimizes the distortion of the denoised
image x̂m×n relative to the original xm×n, also consis-
tently minimizes the compressibility of x̂m×n. This com-
pressibility can be estimated from observable data by a
practical implementation of a universal lossless compres-
sion scheme. A more detailed discussion of the issues in-
volved in choosing the best value of k for a given finite data
sequence can be found in [1].

The steps of empirically estimating δ and k might need
to be iterated, as the estimate of one depends on the esti-
mate of the other. In practice, however, it was observed that
very few, if any, iterations are needed if one starts from a
reasonable guess of the channel parameter. The best k is
estimated given this guess, and from it a more accurate es-
timate of δ is obtained. In the majority of cases, no further
iterations were needed. In some practical applications, a
denoiser is offered as part of a toolkit used in an interac-
tive environment. In those cases, the search for the best
parameters δ and k could be aided by visual inspection.

7. EXPERIMENTAL RESULTS

We report on results of running the denoiser on two binary
images. The first image is the first page from a scanned
copy of Shannon’s seminal paper [6], available in the pub-
lications data base of the IEEE Information Theory Soci-
ety. The image was corrupted by running it through BSCs
of various parameter values. The noisy image was then de-
noised with the DUDE, estimating the best parameters δ
and k as outlined above. The results are shown in the up-
per portion of Table 1, which lists the normalized bit-error
rate of the denoised image, relative to the original one. The
table also shows results of denoising the same image with a
3× 3 median filter [2], and a morphological filter [3] avail-
able under MATLAB. The results for the morphological
filter are for the best ordering of the morphological open
and close operations based on a 2 × 2 structural element,
which was found to give the best performance. The results
in the table show that the DUDE significantly outperforms
the reference filters. Figure 1 shows corresponding por-
tions of the noiseless, noisy, and DUDE-denoised images,
respectively, for the experiment with δ = 0.05 (the whole
image is not shown due to space constraints).

1One-dimensional contexts of size k, consisting of k/2 samples to
the left, and k/2 to the right of the denoised sample, were used in these
cases to obtain the best results. While a two-dimensional context scheme
obtains bit error-rates that come close to those reported, the visual quality
of the denoised halftone was superior with the one-dimensional contexts.



top-right: original

bottom-left: noisy, δ=0.05

bottom-right: denoised,
k=12 (2D)

Fig. 1. Denoising of a scanned text page

The second image reported on is a half-toned photo-
graph of Albert Einstein. While it is arguable whether de-
noising of half-tone images is a common application, these
images provide good test cases for a denoiser, which has to
distinguish between the random noise and the “texture” of
the half-tone pattern. The results are shown in the lower
part of Table 1, which shows that the DUDE is able to
achieve significant denoising of the half-tone. In contrast,
the more traditional algorithms fail, and, in fact, signifi-
cantly amplify the distortion. Portions of the clean, noisy,
and DUDE-denoised half-tone images for the experiment
with δ = 0.02 are shown in Figure 2. The experiments on
half-tones serve to showcase the universality of the DUDE:
the same algorithm that performed well on the scanned text
of the first example, also performs well for the half-toned
photograph, a very different type of image.

8. CONCLUSION

It is often the case that theoretically optimal schemes of-
fer an excellent foundation for practical algorithms, but
the path from theory to practice is not straightforward, and
it involves judicious compromises, heuristics, and experi-
mentation. The DUDE is no different in this respect. In
this paper, we extended the theory underlying the DUDE
to two-dimensionally indexed data, and reported on its im-
plementation for binary images. It can be argued that the
binary case is one whose implementation can be kept clos-
est to the asymptotically optimal scheme. Yet, even the bi-
nary case exhibits some of the fundamental practical chal-
lenges, including the design of a feasible and efficient con-
text model. The requirement for such a design becomes es-
sential when extending the domain of application to larger
alphabets (e.g., continuous tone images). However, similar
issues have been addressed in related areas of image pro-
cessing, e.g. lossless image compression (see, for instance,

top-right: original

bottom-left: noisy, δ=0.02

bottom-right: denoised,
k=14 (1D)

Fig. 2. Denoising of a halftone image

[7]), and significant knowledge and experience have been
generated, which can be brought to bear on the discrete
denoising problem. In particular, techniques for context
model optimization through context quantization and ag-
gregation, as well as incorporation of prior knowledge on
the data, are likely to yield significant improvements on
the DUDE’s practical performance. Research is ongoing
on these issues, with promising initial results.
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