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Blahut [14, p. 6621 suggests that E,( R, W) and D,(R) are 
actually equal. The very example of [ 14, p. 6651 shows, however, 
that this cannot hold in general, for E,( R, W”)/n can be larger 
than E,( R, W)-even if the channel W has zero-error capacity 
equal to zero-while D,(R) does not increase when passing 
from X to !X.“. 
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Universal Modeling and Coding 
JORMA RISSANEN AND GLEN G. LANGDON, JR, SENIOR MEMBER, IEEE 

Absrracr--The problems arising in the modeling and coding of strings 
for compression purposes are discussed. The notion of an information 
source that simplifies and sharpens the traditional one is axiomatized, and 
adaptive and nonadaptive models are defined. With a measure of complex- 
ity assigned to the models, a fundamental theorem is proved wbicb states 
that models that use any kind of alphabet extension are inferior to the best 
models using no alphabet extensions at all. A general class of so-called 
first-in first-out (FIFO) arithmetic codes is described which require no 
alphabet extension devices aud wbicb therefore can be used in conjunction 
with the best models. Because tbe coding parameters are the probabilities 
tbat define the model, their design is easy, and tbe application of the code 
is straightforward even with adaptively changing source models. 

I. INTRODUCTION 

D ATA compression problems arising in digital 
processing differ in one important respect from the 

traditionally studied ones in communication theory: there 
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is no well defined statistical information source to which 
the code can be tuned. Moreover, often a set of strings to 
be compressed cannot even be adequately modeled by a 
single source, of say, the Markov type. Instead, one is 
given a long string of symbols in some alphabet, often 
binary, after which another different string is received and 
so on. An example of this is the finite but indefinite set of 
scanned black and white documents consisting of text, 
drawings, tables, and so forth. 

What is needed in such problems is a universal modeler 
encoder. In broad terms, modeling involves a determina- 
tion of certain source-string events and their contexts, 
which uniquely describe the source string. We regard the 
model as consisting of two parts: 1) the structure which is 
the set of events and their context, and 2) the parameters 
which are the probabilities assigned to the events. 

The structure is intended to capture the redundancies in 
the entire set of source strings under consideration, such 
as the set of black and white documents, while the param- 
eters are tailored to each individual string separately. This 

0018-9448/81/0100-0012$00.75 01981 IEEE 



RISSkEN AND LANGDON: UNIVERSAL MODELING AND CODING 

way a degree of “universality” can be achieved. The 
encoder, in turn, encodes the string using the statistics 
provided by the model. It should clearly be capable of 
doing its job without imposing restriction on the modeler, 
and it should produce a code string with a length close to 
the ideal that the modeled source can provide. 

Model building starts with the decision whether or not 
to use an alphabet extension of some kind. The selection 
of the alphabet is particularly important because it affects 
the nature and complexity of the source model. Usually 
alphabet extension is done by grouping the initially given 
symbols into fixed or variable-length blocks. Particularly 
with binary alphabets, the groups formed of runs of zeros 
or ones, or of both, are popular. In the case of scanned 
black and white images, some of the early model struc- 
tures used straight run-lengths while other more sophisti- 
cated ones condition the end of a white run to that on the 
line above, the deviations forming a new alphabet. Yet 
other models read two lines at a time which are converted 
into run-like segments as further-derived symbols. All of 
these structures appear to be based on and intertwined 
with a preselected coding technique that tends to obscure 
the important role played by the source itself. 

In the light of such a multitude of models, it may seem 
appropriate to study the problems of modeling in a sys- 
tematic manner with the hope of demonstrating that some 
models are inherently better than others. We begin with a 
notion of an information source which differs from the 
customary one in a subtle but significant manner. The 
models for such sources are partitioned into two classes: 
those that use the original symbols in which the strings are 
described, and those that use some form of alphabet 
extension, i.e., extended sources. We further distinguish in 
each class between stationary and adaptive models, where 
the latter in particular are not just nonstationary but 
nonstationary in a special way which permits their param- 
eters to change only in accordance with certain sound 
estimation principles. In order to be able to compare the 
performance of different models we introduce a model 
cost, which essentially is the number of independent 
parameters needed to describe that part of the model 
which is not shared by all of the strings to be encoded. 
This enables us to prove the main result in this paper: 
there is nothing to gain and something to lose with al- 
phabet extension, and the best models with a given cost 
use no alphabet extension of any kind. 

An implication of this theorem is that the coding must 
be done without the use of tables larger than the number 
of parameters in the model. This means in particular that 
with small alphabets, the traditional “concatenation” codes 
that require alphabet extension for good code efficiency, 
are very difficult to apply. How then is the coding to be 
done? One answer is by arithmetic coding. (This should 
not be confused with “arithmetic error coding” which is 
an entirely different subject.) Arithmetic coding was intro- 
duced by Rissanen in 1975 in the form of a last-in-first-out 
(LIFO) code [l], which may be regarded as a practicable 
derivative of the earlier enumerative codes due to Lynch 
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[13], Davisson [14], Schalkwijk [4], and Cover [5], in that 
the inherent problem of a growing precision was solved. 
In the following year, Pasco constructed a first-in-first out 
(FIFO) code [2], starting from Elias’ code [6]. A dual pair 
of LIFO and FIFO codes were further described by 
Rissanen and Langdon [3], and recently other versions of 
FIFO arithmetic codes under different names have been 
proposed [7], [8]. In Section VI we study a very large class 
of arithmetic codes in an abstract manner, making them 
thereby independent of specific program 
implementations. This class includes all 
codes as special cases. 

II. INFORMATION SOURCE 

and hardware 
of the above 

In this paper we select a statistical framework within 
which we wish to describe, or equivalently, encode the 
principal objects of interest-the strings. The most obvi- 
ous choice for the statistical structure in question is a 
random variable. In some way we characterize a family of 
strings with a probability distribution such that our given 
string is one of the outcomes. The string can then be 
encoded with a codelength determined by its probability. 
The strings we are interested in are very long, however, 
and to calculate their extremely small probabilities in a 
practicable manner, we must be able to assign a prob- 
abilistic meaning to their prefixes. In other words, in 
addition to the entire string, we also want their parts and 
above all their prefixes, to be valid outcomes. This means 
that we need another statistical structure-the informa- 
tion source. 

Traditionally, for communication purposes an informa- 
tion source has been taken to be a random process {x(i)} 
that emits outcomes of random variables x(i) in a never- 
ending stream. The time index i then runs through all the 
integers. In addition to the random variables x(i), the 
process also defines all the finite joint variables 
(x(i), x(j), . . . ). The most frequently studied information 
sources are either independent, stationary, or Markovian. 

In the traditional notion of an information source, we 
particularly object to the idea of a source emitting sym- 
bols in a never-ending manner. We feel that such a view is 
not only unrealistic but that it also puts an emphasis upon 
the wrong things concerning an information source and its 
coding problems. We therefore construct a different and 
more realistic notion of an information source. The set of 
events of interest in this is the set S* of all finite sequences 
of the symbols from a d-element alphabet S, including the 
empty string “null”. The absolute-time instance of the 
occurrence of the i th symbol in the string, and in particu- 
lar that of the first symbol, is totally irrelevant. The 
relevant thing instead, is the symbol’s position counted, 
for example, from the left end of the string. Similarly, we 
are not interested in outcomes which are not sequences. 

The set S* of valid outcomes, also called messages, can 
be conveniently viewed as a d-ary tree with the null string 
as the root at the top. From the node representing string s 
there is an arc corresponding to each symbol x and 
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connecting s to the successor node sx, associated with the 
string sx~. Formally, we define an information source, or 
just a source, to be the pair (S*, P), where P is a function 
from S* into [0, l] satisfying the conditions: 

P(nul1) = 1, 

P(s) = x&P(sx), (2-l) 

for all s in S*. Accordingly, we may view an information 
source as the infinite d-ary tree S* where each node s has 
the number P(s) attached to it. Condition (2.1) states that 
the sum of the numbers attached to the immediate succes- 
sors of node s equals its own number P(s). 

The interpretation here is that P assigns a probability to 
each outcome or sequence. However, the sum of these 
probabilities over all sequences is generally greater than 
unity; in fact, the probabilities of the d sequences of 
length one already add up to one, which means that an 
information source is not a random variable. Neverthe- 
less, the important condition (2.1) insures that the proba- 
bility P(s) of string s is unambiguous and independent of 
the countably many random variables that include s as an 
outcome that we might wish to pick. To make this more 
precise, consider a finite subtree T of S* sharing the root. 
Call T complete if all of its interior nodes have all their d 
immediate successors in T. The noninterior nodes are 
called leaves. It follows from (2.1) that the set of leaves of 
each complete subtree with null as the root defines a 
random variable; i.e., the sum of the numbers P(s) over 
the leaves is one. Clearly, each node s of S* belongs to the 
countably many such random variables, and in all of them 
the probability of s is the same, namely P(s). 

To further clarify the difference between a random 
variable and an information source, we add that the 
outcomes of a random variable are independent objects 
competing for the total probability mass. In contrast, the 
outcomes of an -information source are not independent 
by their very construction, since each string is a nested 
collection of its prefixes. Condition (2.1) reflects this 
generic constraint in the construction of the strings. Fi- 
nally, (2.1) is related to the compatibility condition for 
random processes. An information source however, is a 
weaker structure than a random process because the valid 
events are only sequences. This is what reduces the more 
complex compatibility conditions for random processes to 
the single condition (2.1). 

Further, we can express stationarity in this setting as 
follows. An information source is called stationary if 

P(s)= 2 P(xs) 
XES 

(2.2) 

for all s in S*. Observe the perfect symmetry between (2.1) 
and (2.2). This notion of stationarity implies the usual 
shift-invariance property of the joint probabilities, as the 
reader can easily verify. Finally, a source is called indepen- 
dent if 

P(ss’)=P(s)P(s’) 

for all s and s’ in S*. 

(2.3) 

In the context where s is an outcome of a random 
variable with probability P(s), the quantity 

I(s)= -log P(s) (2.4) 

is known as the self-information. Because of the unam- 
biguity of P(s) in the notion of an information source, we 
can now extend the same interpretation to information 
sources, and we rename I(s) as the information content of 
the string s. There are various ways to justify the informa- 
tion content as the ideal codelength for string s. For 
instance, its mean, i.e., the entropy, 

H(n) =(1/n) E P(sV(s), 
SEStl 

(2.5) 

over the set S” of all strings with length n is for large n an 
increasingly good approximation of the minimum mean 
per symbol codelength, where a code is defined to be any 
one-to-one function from S* into B*, B denoting the 
binary alphabet. The reason we do not require the code to 
be a concatenation code, i.e., one which preserves the 
concatenation, let alone a prefix code, is that the powerful 
arithmetic codes are of neither kind. Because of this, the 
entropy above is not a lower bound on the minimum 
codelength, and the “ideal codelength” interpretation 
loses some of its justification. Other justifications exist, 
however, which we hope to be able to discuss in another 
context; for some such results we refer to [12]. Somewhat 
curiously, as seen in Subsection III-B, the ideal codelength 
in an optimized model also has the interpretation of an 
entropy. 

To conclude this section we write the probability of a 
string s=s(l). . * s(n) as follows: 

p(s>=p(s(l))p(s(2)l~(1)) 

***P(s(n)ls(l)**.s(n-1)), (2.6) 

where the conditional probabilities are uniquely defined 
by P: 

P(xls)=P(sx)/P(s). (2.7) 

Conversely, such conditional probabilities determine P; 
hence they serve as generators for P. When we construct 
models for sources, the information source function P has 
to be generated. The conditional probabilities serve as a 
convenient way for doing this as discussed further in the 
next sections. 

III. MODELING 

The discussion of an abstract information source in 
Section II does not say how to obtain or calculate the 
function P which assigns the probabilities to the strings. 
The purpose of this section is to describe how such 
functions P can be constructed when one or more strings 
are given. In other words, rather than first having an 
information source as a generator of strings, we realisti- 
cally start with a string and construct or model a source to 
fit it. We first consider the case where the atomic events 
are the original symbols and defer the more general al- 
phabet extension case to Section IV. 
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A. Model Structure 

The problem of obtaining the function P is basically the 
problem of estimating P from the data provided by the 
given string or strings. As in any estimation, we somehow 
must select a structure within which the numerical values 
determining P can be estimated. A quite natural structure 
is suggested by (2.6) and (2.7) that define P in terms of the 
conditional probabilities. Conditional probabilities con- 
cern events with context formalized as follows. Let f; 
s*-+z, z= (0; * * ) K- l}, be a general recursive function 
which partitions the set of all strings into K equivalence 
classes or “contexts”. We call f a structure function, and 
the equivalence classes (conditioning) classes. 

The conditioning classes will be used as a means to 
simplify the estimation of the conditional probabilities 
P(x Is) of (2.7). Depending on how the estimation is to be 
done, we distinguish between two basic cases: the adap- 
tive and the nonadaptive models discussed in detail in the 
subsequent two subsections. Here we merely describe the 
essential features of these two cases which are pertinent to 
the structure of models. In the nonadaptive models, the 
dependency of the conditional distribution on s is 
restricted to the conditioning class f(s) determined by s, 
which means that we only need to estimate the numbers 
P(x( f(s)). If d is the size of the alphabet, this involves the 
estimation of K(d- 1) numbers, because for each class the 
d probabilities add up to one. In the adaptive models we 
permit P(xls) to depend both on z=f(s) and on the 
sequence of the “next” symbols at the previous occur- 
rences of the conditioning class z in the string. To make 
this more precise, consider a string s=s( l)s(2)* * * s(t). Let 

f(m)* . * s(i)) =z be the first occurrence of class z, 

f(m)* . . s(j)) = z the second, and so on. Denote by s[z] 
the string s(i+ l)s(j+ 1). * * of the “next” symbols at the 
successive occurrences of class z in the string s. Then in 
adaptive models we put 

P(xIs)=P(xIz,s[ z]), (3.1) 

where z=f(s). The nature of the function P will be 
specified in Subsection III-C. Clearly the nonadaptive 
models form the special case where s[z] is taken as the 
null string, and we write P(xlz, null)=P(x]z). 

The structure function and the probability assignment 
define the source (S*, P), where P is obtained by 

P(sx)=P(s)P(x( f(s),s[ f(s)]), P(null)= 1. (3 *2) 

The term (recursive) model is now refined to mean the set 
of strings S* together with the structure function f and the 
algorithm specifying the conditional distributions (3.2). 
Often we do not distinguish between a model and the 
source induced by it. 

We define the complexity of the model to be the number 
K(d- 1). In the nonadaptive models, the complexity is 
seen to be the number of free parameters required to 
specify the conditional probabilities P(x I z). Another re- 
lated way to view the complexity is to imagine that each 
probability is to be written with, for example, 4 binary 
digits. Then it takes K(d- I)q binary digits to specify P if 

we exclude the lengths of the algorithms needed to de- 
scribe f and the product (3.3), which may be regarded as 
overhead costs shared by all the strings to be encoded for 
which the same structure function is being used. In con- 
trast, these K(d- I)q bits of information must be com- 
municated to the decoder for each string. In adaptive 
models, these parameters need not be sent to the decoder, 
because there is an algorithm calculating values for each 
symbol along the string. The decoder needs K(d- 1) reg- 
isters, however, each having width 4, to store these param- 
eter values for decoding the symbol. In either case K(d- 1) 
is seen to be an appropriate measure of the complexity in 
implementing the coding system based on these models. 

The structure function permits one to model an infor- 
mation source schema for a set of strings that are similar 
in some respects. Each string will get its own information 
source defined by the common structure function and the 
probabilities (3.2) tailored to that string. This is very 
important because often such natural sets of strings can- 
not be adequately modeled by a fixed information source. 
An example which the authors have worked on quite 
extensively [9], is the set of black and white scanned 
documents. There obviously is something that such docu- 
ments have in common; for instance, text documents have 
a characteristic of their own due to the predominance of 
printed letters in their makeup which differs from that in, 
for example, black and white photographs. The purpose of 
the structure function is to capture such characteristic 
features. Exactly how this is to be done is a different 
matter; a consolation however, is that to find an optimum 
structure function is an undecidable problem, as can be 
shown by arguments similar to those used by Kolmogorov 

WI. 
A familiar and attractive subclass of recursive sources is 

obtained by restricting the structure function so that it is 
definable by a finite state machine (FSM) as follows: 

x(t)=F(x(t- l), s(t)), x(O)=a, 

z(t) = G(x(t)), (3.3) 

where x(t) is a state from, for example, the set (0, * * * , N 
- l}, z(t) is a conditioning class in Z, and the input s(t), 
an element of the alphabet S, denotes the successive 
symbols in s=s(l)* . * s(n). The output z(n)= G(x(n)), 
resulting from the terminal state x(n) where the machine 
stops after s has been processed, defines the value of the 
structure function f at s. 

The purpose in separating the conditioning classes from 
the internal state is to permit a large number of states and 
still have a relatively small number of classes and hence a 
small number of free parameters in the source: namely, 
K(d- 1). An example of this is the FSM model used in 
black and white image processes, where the state x( t - 1) 
is taken as the string s( t - 1). . . s( t - M) with M as large 
as 2000. The output G(x( t - l)), on the other hand, is the 
binary number z( t - 1) defined by the substring s( t - l)s( t 
-M+ l)s(t-M). In geometric terms, s(t - 1) is the sym- 
bol preceding the “current” symbol s( t ), s( t - M+ 1) is the 
symbol above s(t) in a two-dimensional raster scan of the 
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image, and s(t -M) is the symbol nearest to s(t) in the 
upper left direction. These three symbols can be expected 
to have a strong influence on the value of the current 
symbol s(t) and hence cause the conditional probability 
P(s(t))=Olz(t- 1)) to be far away from l/2. 

B. Nonadaptive Models 

For a given structure function f and string s, the condi- 
tional probabilities P(x I z) can be determined in such a 
manner that the probability P(s) of (3.2) is maximized, 
and hence the ideal length -log P(s) is minimized. It is 
readily shown that such optimizing probabilities are given 
by the ratios 

P(xIz)=c(xIz)/c(z), (3 *4) 

where c(z) denotes the number of times class z “occurs” 
in the string s, and c(x I z) denotes the number of times 
the “next” symbol at these occurrences is x. More pre- 
cisely, c(x I z) denotes the number of times the following 
pairs of equalities hold: 

f(nul1) = 0, and s(l)=x, 

fw)=z? and s(2)=x, 

fW’ ..s(n-l))=z, and s(n)=x, 

and c(z) is the sum of the c(x lz) over the symbols x in S. 
Here we have arbitrarily set the value of f(nul1) to be zero. 

The minimized ideal codelength itself is given by 
K-l K-l 

I(s)= 2 c(z)logc(z)- x x c(x~z)logc(x~z). 
z=o r=O XES 

(3.5) 

Observe that this expression is also the same as the 
entropy of the random variable whose outcomes are the 
strings of the same length as s in the just-optimized 
source. So in this sense we may perfectly well speak about 
the entropy of the string s. We illustrate nonadaptive 
models with an example. 

Example I: For the string s=00011010100101, put S= 
(0, 1 } and count the symbols conditioned on the previous 
symbol; i.e., model this as a first-order Markov source. 
With the initial state as zero we get the conditional counts 

c(OJO)=4, c(110)=5, 

c(Ol1)=4, c(lll)= 1. 

Put P(OI0) = 4/9, and P(OI 1) = 4/5, and define P(s) recur- 
sively by (3.2). We find that the ideal codelength with this 
model is 

I(s)=9log9+5log5-(5log5+8log4)=12.53, 

where the result is given to two decimal places. Two 
parameters are required to describe P. 

C. Adaptive Models 

From a practical standpoint the main shortcoming of 
the nonadaptive recursive models is the fact that the string 

must be prescanned by the encoder to get the optimum 
probabilities (3.4). Moreover, these or their equivalents 
must be transmitted to the decoder as a preamble in the 
code string. To avoid a prescan and the preamble, as well 
as to provide an opportunity to adjust the probabilities as 
the string is being encoded, we consider adaptive models 
in this section. The main problem here is to define the 
currently prevalent diffuse notion of adaptation in a 
meaningful manner. 

In Subsection III-A we showed how the structure func- 
tion permits consideration of the conditional probabilities 
of the form P(xIz,s[z]), where s[z] denotes the string of 
the “next” symbols at the successive past occurrences of 
the class z=f(s). Here s refers to a growing prefix of the 
string to be encoded that enables the decoder to decode 
the symbols shortly after they have been encoded. 

The fact that the estimates of the conditional probabili- 
ties are to be made from the processed portion s of the 
string implies certain natural restrictions on the recursive 
function P performing the estimation. For instance, sup- 
pose that we have estimated the probabilities P(x I z, s[z]) 
at class z=f(s) from the past string s=s(l)... s(i), and 
we observe s( i + 1) =y. Let the next occurrence of the class 
z be z=f(s(l). . . s(t)). Because the latest observed symbol 
at class z was y, and we are not supposed to have 
information about the string other than what can be 
extracted from the scanned string s’ =s( 1). * ’ s(t), we 
must not decrease the old estimate; i.e., we must require 
that 

p(YIz,~czl)~p(YIz~~‘[zl>~ (3.6) 

for all y, where the symbol immediately following s is y, 
and s’ is the shortest extension of s such that f(s’) =z. This 
condition serves as a criterion for what we mean by 
adaptive recursive models, provided that the adjustments 
of the probabilities are done at every occurrence of class 
z. For practical reasons, however, it may be desirable to 
perform the adjustments only after certain sets of observa- 
tions are made, which is why we wish to modify the 
criterion accordingly. 

Let an adjustment of the conditional probabilities at a 
class z be made after the string s has been received; i.e., 
f(s)=z, and let the next adjustment at the same class be 
made after s’ has been received, hence f(s’) = z. Of course, 
a rule is required to specify what these adjustment points 
s, s’, * * * ) are. Suppose that in the examination interval, 
i.e., in the segment between s and s’, the symbol y was 
observed in class z, a total of c(y I z) times. Let 

c(z)= &C(Y Iz). 

.The general adaptation criterion can now be expressed as 
follows. If 

then 
P(x~z,s[z])~P(x~z,s’[s]). (3.7) 

As a matter of notation we write P(y Is) if the adaptive 
model has only the trivial conditioning class S*. A simple 
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example of adaptive recursive sources is obtained by 
putting 

P(Y Is) =c(y IS)/ISI~ 
where c(y Is) denotes the number of times the symbol y 
occurs in s and IsI denotes the length of s. Clearly (3.6) 
holds. Fairly sophisticated adaptive sources for black and 
white documents are constructed in [9] with performance 
quite superior to that of the nonadaptive ones of the same 
complexity. 

IV. ALPHABETEXTENSION 

Frequently the symbols in which the string to be en- 
coded has originally been given are extended to certain 
segments of the primary symbols. This is done in particu- 
lar for small alphabets in order to achieve a better per- 
symbol codelength. Another reason is the fact that the 
per-symbol entropy of a source decreases as the size of the 
groups is increased; a frequently quoted example of this is 
the family of sources for an English text resulting when 
first the individual letters, then every pair, and finally all 
words are regarded as independent. In fact, there is a 
strong feeling that a suitable grouping of the symbols 
captures certain natrual features of the strings, and thereby 
a low entropy source should result. 

For the purpose of the main theorem in the next section 
we describe a quite general alphabet-extension process. 
For a d-element alphabet S, let T(O), . . . , T( m - 1) denote 
the subsets of S* such that: 1) in each T(i) no string is a 
substring of another (the prefix property); and 2) the 
subtree of S* defined by T(i) with its elements as the 
leaves is complete. Further, there is defined an m-state 
machine with state space (0, * + * , m - 1 } whose input space 
T is the union of the T(i). The state transitions are 
defined by a function R(w, r), where w is a state, and t is 
an (extended) symbol in T(w). 

A string s in S* is parsed into segments as follows. 
Starting at the initial state zero, a string t(0) in T(0) is 
recognized by the prefix property as the first segment in s. 
The machine moves to the next state R(0, t(O)), and the 
process is repeated with s= t(O). * * t(k)s’ as the result. 
The last segment s’ is a proper prefix of some of the 
symbols in the final tree determined by the final state 
R(k, t(k)). To simplify matters we “pad” such leftovers to 
form a complete extended symbol in the last tree, so that 
s’ is null, and we regard s to be a sequence in T*, i.e., a 
sequence over the extended alphabet. 

Example 2: For a binary alphabet, let T= T(0) = 
{ l,Ol, OO}. Observe how these symbols appear as leaves in 
a binary tree as illustrated in Fig. 1. The leaves represent 
“runs” of symbol zero of lengths zero and one, while the 
last symbol is used to describe runs of any length. These 
symbols occur in the string s of Example 1, a total of two, 
four, and two, times, respectively, which gives the proba- 
bilities P(1)=1/4, P(Ol)= l/2, and P(OO)=1/4 for the 
symbols. Extend these to strings by independence, which 
defines a nonadaptive run-length model. We get the ideal 

Fig. 1. Binary tree for run-length source. 

codelength for the string s of Example 1 to be 

I(s)=8logS-(4log4+4log2)=12. 

Two parameters are again enough to describe P, so this 
model is better for the given string than the one in 
Example 1. 

Example 3: This is an example of a double run-length 
extension. There are four extended symbols for runs of 
zero and three for runs of one. Let T(O)= { l,Ol,OOl,OOO}, 
and T(l)= {O,lO, ll}. Put R(O,1)=R(O,01)=R(O,OO1)= I, 
R(O,OOO)=O, and R(l,O)=R(l, lO)=O, R(l,ll)= 1. When 
starting at state zero, the string s=000110101001011 parses 
into the segments 000, 1, 10, 1, 0, 1, 001, 0, 11. 

The recursive models of Section III can also be con- 
structed for extended alphabets. The states of the machine 
affecting the alphabet extension are then included as a 
component of the equivalence classes, so that the structure 
function maps T*, i.e., the set of all strings in the extended 
alphabet, into (0; . . , K- l} x (0; * . , m - l}. This means 
that we may write the structure as (f, g), where f: T*--+ 
(0,. . . > K- l} is any recursive function as discussed in 
Section III, and g: T*+{O, * * + , m- l} takes each parsed 
sequence s = t(O). .. t(k) to the terminal state w=g(s)= 
R*(O, s), where the machine stops after receiving the 
successive symbols in s when started in the initial state 
zero. 

Because the symbol following the last read-in symbol 
t(k) in s must be taken from T(w), which is determined 
by the last state w=R*(O, s), the parameters in the ex- 
tended model are the conditional probabilities 

p(tl(z,w)?S[z~wl), tin T(w), (4.1) 

in which z=f(s), w=g(s), and s[z,w] denotes the se- 
quence of the past occurrences of the “next” symbols in T 
at the conditioning class (z, w) as explained in Subsection 
III-A. These, of course, must satisfy the condition (3.6). 

If T(w) has D(w) symbols, then D(w) - 1 probability 
parameters are required for every pair (z, w). Hence the 
total number of parameters in an extended model is given 

by 
m-1 

2 (D(w) - l)qw), (4.2) 
w=o 

where K(w) denotes the number of classes in the set 

{f(s)lg(s)=w,sin T*}. 

We illustrate these notions with an example. 
Example 4: We construct a first-order Markov model 

of the extended symbols in Example 3, i.e., of the runs of 
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zero, T(O), and the runs of one, T(1). We have to construct 
the overall structure function (f, g). The two-state ma- 
chine in Example 3 defines the second component g by 
g(s) = R*(O, s), where s = t(O). . . t(k). The first component 
f is defined by f(t(O)- * * t(k)) = t(k). We next define the 
conditional probabilities (4.1). For the symbols in T(O), 
define the conditional probabilities at each conditioning 
class (f(s), g(s)) = (preceding symbol, state) by the follow- 
ing table. 

1 01 001 ooo 

(03 1) l/2 l/4 l/8 l/8 
(lO,l> l/4 l/4 l/4 l/4 

PO, 0) 5/8 l/8 l/8 l/8 

Observe that only the symbols 0, 10 and 000 can possibly 
precede those in T(0). Hence K(0) in (4.2) is three. Simi- 
larly, only the symbols 1, 01, 001, and 11 can precede 
those in T(l), and we define the probabilities for T(1) by 

0 10 11 

(130) l/2 l/4 l/4 
(Ol,O) 3/4 l/8 l/8 

(OOl,O) 2/3 l/6 l/6 
(ll,l) l/8 5/8 l/4 

The total number of free parameters in this model is 
9+8= 17. 

V. MAIN THEOREM 

Markov models of some order k, such as illustrated in 
Example 1 for k = 1, and block models with block length k 
illustrate the familiar tug of war between the two tech- 
niques in modeling, Markov conditioning, and blocking. 
Without imposing a cost on the complexity of the model, 
there is no winner, and even with the cost introduced 
above, the best type of model depends on the string to be 
encoded. However, if we widen the Markov models to the 
set of recursive models, either adaptive, nonadaptive, or 
both, then we can say something about the best way to do 
modeling. At the same time we may include in the contest 
any alphabet extension of the kind described above rather 
than just simple blocking. 

Theorem 1: For every adaptive or nonadaptive recur- 
sive model using alphabet extension, there exists another 
adaptive or nonadaptive recursive model respectively, 
using no alphabet extension, which has the same number 
of parameters (and hence requiring the same number of 
binary digits for its description), and which has the same 
ideal codelength -log P(s) for every string s. The con- 
verse is not true. 

Remarks: The meaning of the converse part of the 
theorem is that there exists an FSM binary source such 
that no adaptive or nonadaptive source satisfying the 
condition (3.7) exists using any kind of alphabet exten- 
sion, which can produce the same or better ideal code- 

length with the same number of parameters. Hence, al- 
though stationary binary sources can be simulated by 
extended sources, the required source must have a greater 
complexity. 

Proof: The heart of the proof is to show that the 
process affecting the alphabet extension can be described 
or simulated by a finite-state machine model. Before 
showing this in full generality required in the theorem, we 
illustrate the simulation process with a simple example. 
We simulate the run-length model of Example 2 with a 
two-state FSM model which therefore will also have two 
parameters. 

Assign one state A, which is taken as the initial state, to 
the set of nodes consisting of the root and the leaves of 
the tree in Fig. 1, and another B to the node also marked 
B. Define the state transition function as follows: 

F(A,O)=B, F(B,O)=A, 

F(A,l)=A, F(B,l)=A. 

Assign the two conditional probabilities as follows: 

Extend these conditional probabilities to the strings in S* 
by the independence of the transitions: 

P(sx)=P(s)P(xl44), x=0,1, 

where z(s) is the state which the machine reaches when 
started at state A and given the string s. Observe how each 
extended symbol always takes the machine to the state A. 
Because of this and the way the conditional probabilities 
were chosen from the tree, every string has the same 
probability and hence the same ideal codelength with this 
model as with the run-length model. 

We now describe the general construction. The given 
extended model assigns the probabilities to the strings of 
T* by the recursion 

P(st)=P(s>P(tl(z,w),~[~,~l), (5.1) 

where s = t(O). . . t(k), t is an extended symbol in T(w), 
z =f(s), and w =g(s). This notation is explained further in 
Section IV. 

In order to simulate this model, we first construct for 
each tree T(w), an FSM model under which every ex- 
tended symbol t (leaf) gets the correct probability 
P( t I( z, w), s[z, w]). The construction was illustrated above 
in a special case; the general case is quite similar. We start 
by assigning a state marked “null” to the set of nodes in 
T(w) consisting of the root and the leaves. Further, we 
assign one state to each internal node. If x( 1) * . * x(j) 
denotes the path from the root to an internal mode, then 
we denote the corresponding state by this path. Hence the 
states are in one to one correspondence with the proper 
prefixes of all strings in T(w). The state transition func- 
tion of this machine is simply given by 

(u, x)+x, (5.2) 

where u is a proper prefix of a string in T(w) and x a 
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symbol in S; the right side becomes the state “null” if ux 
is a leaf in T(w). 

We next combine these FSM’s with the extended model 
to form a recursive source with alphabet S. The new 
structure function is 

19 

=4fWP g(s), u>, 

where su is any string in S*, s is the unique prefix of su 
which is in T*, and hence either “null” or a string of the 
form t(O)* * * t(k), and u is a proper prefix of some symbol 
in T(w). 

We need to define the conditional probabilities 

We define them as follows: 

P(xl(z, w, u), su[ z, w, u]) 

= probability of node ux in T(w) 

probability of node u in T(w) ’ 
(5 *3) 

where z =f(s), w =g(s), u is a proper prefix of some string 
in T(w), and x is symbol of S. Further, the probability of 
a node in the tree T(w) is defined to be the sum of the 
probabilities of its descendant leaves. These conditional 
probabilities generate the probability of any string su in 
S* by the rule (3.2), which says 

P(sux)=P(su)P(x~(z,w,u),su[z,w,u]). (5.4) 

It follows from (5.3) and (5.4) that this probability agrees 
with that in (5.1) for every string in P. 

The tree T(w) has (D(w) - l)/(d- 1) internal nodes. 
Hence the FSM constructed for T(w) has the same num- 
ber of states, and for each z and w the number of free 
probability parameters P(x [(z, w, u), su[ z, w, u]), one of 
each state, is (d- l)(D(w)- l)/(d- l)=D(w)- 1. This is 
the same as the number of free parameters in the extended 
model for each z and w. Accordingly, we have completely 
simulated the extended model by a nonextended one, 
which proves the first part of the theorem. 

It remains for us to exhibit a nonextended model that 
cannot be matched by any extended one with the same 
number of free parameters. It is in this part that condition 
(3.7) is needed. Consider the two-state binary source where 
at state A the next state for symbol zero is A, and for 
symbol one is B. At state B the next state for symbol zero 
is B and for symbol one is A. The symbol probabilities are 
P(OIA)=3/4 and P(OIB)=1/2. 

Any extended source with two free parameters must 
have three symbols as leaves in a complete binary tree. 
Hence they are either 1, 00, and 01, or the binary comple- 
ments of these, for example, the former. The probabilities 
Q(lls) and Q(OOls) assigned to the first two symbols may 
depend on the past string s, and they determine the third 
symbol probability. 

Consider the three strings 1, 00, and 01. The binary 
source with A as the starting state assigns to these the 
probabilities l/4, 9/16, and 3/16, respectively. To match 

these, the extended source must have 

Q(llnul1) > l/4, 

Q(OO(nul1) > 9/16, 

Q(Ollnul1) > 3/16, 

which can be satisfied only when the equalities hold. 
Next, consider the strings 11, 100, and 101. To these the 
binary source assigns the probabilities l/8, l/16, and 
l/ 16, respectively. Again, to match these the extended 
source must have Q( 100) = Q( 1 ~null)Q(OO~ 1) = l/ 16. Fi- 
nally, consider the strings 1001, 10001, and 10000, to 
which the binary source assigns the probabilities l/32, 
l/64, and l/64, respectively. To match these we must 
have Q(OOllOO)> l/4, Q(OlllOO)> l/4, and Q(lllOO)> 
l/2. If this adjustment is made, then we have a contradic- 
tion to (3.6), because Q(OOllO0) = l/4 < Q(OOlnul1). On the 
other hand, if we keep the value 9/16 for Q(OOllOO), as we 
are allowed to do within the wider notion of adaptation 
according to (3.7), then, Q( 1 I 100) must be chosen smaller 
than l/2. But then the largest probability we can generate 
for the string 1001 is smaller than l/32, or less than what 
the binary source assigns to the same string. Hence, re- 
gardless of when the adjustments of the probabilities are 
made, we cannot match the performance of the binary 
source. This completes the proof. cl 

Remarks: The first implication of this theorem is that 
an alphabet extension has no inherent value; absolutely 
nothing is lost if we confine the search for a good model 
to the class of recursive d-ary sources without extending 
the alphabet. This is true if the performance is measured 
in terms of available compression; if we include other 
performance measures such as the speed with which the 
coding operations can be performed, alphabet extension 
may well have advantages. Secondly, for any set of strings 
arising in real applications, a given number of parameters 
is strictly better spent in letting them describe probabili- 
ties in the d-ary model than wasting them in the descrip- 
tion of the probabilities of the extended symbols, no 
matter what these symbols are. This result may be some- 
what counter intuitive, because one is tempted to believe 
that by picking the extended symbols in a ‘natural’ way an 
economical usage of the available parameters results. Ac- 
tually, there is a bit of truth behind this belief since if the 
symbols are perfectly independent, then the resulting 
model cannot be improved. However, there still is an 
equally optimum d-ary model. More important, in ‘real 
strings where the new symbols as random variables are 
not independent, better d-ary models with the same num- 
ber of parameters can be found. 

Finally, in some respect the most devastating implica- 
tion of this theorem is that it makes the use of all the 
traditional codes in conjunction with the best models 
cumbersome and wasteful, above all when the original 
alphabet size is small. This is because an alphabet exten- 
sion is needed for the code to have a near-optimal length. 
To illustrate the inherent difficulty, suppose that a binary 
adaptive model assigns the probability P(Ols) for the 
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symbol following s to be zero, and we wish to design a 
run-length code for this source with the symbols 
1,01;**,0***01,0~ . -0, up to the length n. Suppose that 
the string to be encoded is ~001. . . , where the last symbol 
of the so far encoded string s is a one. The task then, is to 
encode the run 001 following s. If the encoder wishes to 
use a compact code, i.e., a Huffman code, he must first 
work out the probabilities of all the runs with help of the 
binary model 

P(l)=P(lls), 

P(01)=P(0~s)P(1~s0),* * * 

P(O* . * 0) = P(Ols)* * * P(OlsO* * * 0). 

Only then can he construct the optimum codeword for the 
run 001 actually occurring, the calculation of all the other 
probabilities is wasted. The same is true for the decoder. 
Because of the adaptive nature of the run probabilities, 
this entire optimum-code tree can be used only once! It is 
easy to show that this problem is not peculiar to the 
Huffman algorithm, which proceeds backwards. There is 
no forward-progressing algorithm for the construction of 
the compact codes: all probabilities are needed for the 
construction of even the very first codeword. It is obvi- 
ously possible to construct forward moving ad hoc code 
trees, but they are not generally optimal. 

VI. CODING UNIT 

In our view all coding should be a matter of represent- 
ing sequences as numbers in an order-preserving manner. 
The sequences are then thought to have a natural order 
such as the lexical one, and the numbers of course, are 
ordered by magnitude. The most familiar example of such 
coding is the decimal number representation of decimal 
sequences. The decimal string 3407 can be represented or 
encoded as the integer 7 +4X 10’ + 3 X 103, or as the 
fractional number 3~10-‘+4~10-~+7~10-~, pre- 
cisely because these codes preserve the lexical ordering of 
the decimal sequences. Similarly, in enumerative codes 
([4] and [5]), in which a sequence is encoded as its index in 
a certain lexically ordered set, the order is evidently 
preserved, and the same is true in the closely related Elias 
code, which in fact can now be viewed as a dual of the 
enumerative codes [ 111. 

When the numerical coding of strings is done for com- 
pression purposes the strings to be compressed are nor- 
mally long, and the numbers used for their representation 
are very large indeed, requiring hundreds of thousands of 
binary digits. It is clear that in the generations of such 
numbers or codes, special attention must be paid to the 
question of how to do the calculations in normal-size 
registers. This problem was addressed and solved in [l] 
with the first “arithmetic code” as the result. The con- 
structed code was of the LIFO type in which the last 
encoded symbol was decoded first, i.e., the code string 
medium was of the nature of a pushdown storage. Subse- 
quently Pasco [2] considered the same problem for Elias’ 
code [6] and constructed a FIFO arithmetic code which 

decoded the symbols in the same order in which they were 
encoded. One advantage of FIFO codes is that the decod- 
ing process can be started almost immediately after the 
first symbol has been encoded; that is to say, ‘instanta- 
neously’ in the practical sense that only a few adjacent 
symbols need be altered when a symbol is encoded or 
decoded. Evidently the same criterion for instantaneous- 
ness is applicable even to LIFO codes. We should add 
that because of a carry-over problem, which is inherent in 
FIFO arithmetic codes, Pasco’s code is not instantaneous 
in our sense. In fact, he specifically wanted a prefix block 
code. Another class of LIFO and FIFO codes has been 
discussed in detail in [3], and recently, further versions of 
Pasco’s type of FIFO codes were rediscovered by Jones 
[7] and Martin [8] both with knowledge of and reference 
to the original LIFO code in [l]. 

In view of the several different versions of FIFO codes 
proposed by the authors referred to previously, it seems 
appropriate to introduce arithmetic codes from an ab- 
stract number representation viewpoint. The number rep- 
resentation viewpoint is natural and free from specific 
implementation details, and it is sufficiently general to 
include all the known arithmetic codes as special cases. 

In the decimal representation of decimal strings, each 
term added to the code depends both on the symbols’s 
position in the alphabet and on its position in the string; 
for instance, the fourth symbol “7” in the above given 
example string, encodes in the fractional representation as 
the fourth power of l/10 multiplied by seven. In arith- 
metic coding this same principle is generalized. We dis- 
cuss here the FIFO codes because of their practicality. 
For each symbol k of the alphabet S= (0; * a, d- l} as 
the next symbol to the string s (yielding string sk), we add 
a term, B(sk), called augend, which depends on the sym- 
bol’s position k in the alphabet as well as on s, rather than 
merely on the symbol’s position in the string. With C(s) 
denoting the code of string s as a number, we then have 
the recursion 

C(nul1) = 0, 

C(sk)=C(s)+B(sk). (6.1) 
A convenient way to encode k for a given s is to make 
B(sk) an increasing function of k starting from B(sO)=O. 
With this convention we can write it as 

B(sk)=A(sO)+ . . . +A(s(k- l)), (6.2) 
where the increments A(si) are called addends. Because 
the right-most zeros in the strings cannot be.decoded, we 
append a dummy nonzero symbol to the end of the strings 
to be encoded. 

The decoding is done by magnitude comparison with 
the following rules. Let s’ run through all proper prefixes 
of s starting at null string. The symbol following s’ is 
decoded as that index k for which 

Rule 1: C(s) - C(s’) - B(s’k) > 0, 

Rule 2 : C(s)-C(s’)-B(s’(k+l))<O; 

the second condition is not needed if Rule I holds for 
k=d- 1. 
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Because we have not yet added any precision require- 
ments to these codes, we may call them “pre-arithmetic” 
codes. We have deliberately removed the dependency of 
the addends and the augends of any given source proba- 
bilities, as opposed to Elias’ scheme, to achieve greater 
freedom in their selection. It then becomes important to 
understand when such codes are decodable; which issue 
we will settle next. The main decodability theorem for the 
class of FIFO codes (6.1) is as follows. 

Theorem 2: All strings with the right-most symbol non- 
zero can be decoded by Rules 1 and 2 if and only if for all 
s=s’k, k not d- 1, 

i) A(s)>lim[B(s(d-l))+B(s(d-l)(d-l))+...]. 

If A(null) = 1, then i) implies C(s) < 1. In particular, 
decodability is implied by 

ii) A(s) > B(sd) 

=A(sO) + * * * +A(s(d- l))>O, for all s. 

Proof: We show that ii) implies i), and i) implies the 
decodability. By (6.2) 

B(sd)=B(s(d- l))+A(s(d- 1)) 

>B(s(d-l))+B(s(d-l)(d-1)) 

+A(s(d- l)(d- l)), 

which by iteration and by one more application of ii) 
gives i). Let s=s’(d- 1)s”. By (6.1), (6.2) and the fact that 
addends are positive, Rule 2 of the decoding process fails 
for k<d- 1 while Rule 1 holds for k=d- 1. Hence d- 1 
is decoded correctly. Let s =s’ks” for k not d- 1. By (6.1) 

C(s)-C(s’)> C(s’k)-C(s’)=B(s’k), 

and Rule 1 holds. Consider 

C(s)-C(s’)-B(s’(k+l))=-A(s’k)+B(s’kj)+..., 

where j is the first symbol of s”, or S” is null. By an 
application of i) to A(s’k) we see that Rule 2 holds, and k 
gets decoded correctly. 

Suppose next that i) fails; i.e., 

A(s)<B(s(d-l))+... +B(s(d-l)...(d-I)), 

m repeated symbols d- 1, for some s = s’k, k < d- 1. Pick 
S” =s’k( d- 1). . . (d- l), where the number of repeated 
symbols is m. Then 

C(s”)-C(s’)-B(s’k)=B(s’k(d-l))+*** 

+B(s’k(d- 1). . . (d- 1)) > 0 

C(s”)-C(s’)-B(s’(k+ l))= -A(s’k)+B(s’k(d- 1)) 

+ -1. +B(s’k(d-l)+..(d-l))>O. 

Hence Rule 1 holds, and Rule 2 fails, which means that k 
will not be correctly decoded. The proof is complete. i-~ 

Remark: Observe that the equality in ii) is just an 
instance of (2.1) and the code matches a source precisely 
if A(s) = P(s). 

For practical reasons we wish to put further restrictions 
on the augends. Above all, we require that the addition in 
(6.1) must be done in a fixed-size register, and it must not 

affect more than a fixed number of digits in C(s), when 
the latter is written for example in a binary notation. In 
FIFO codes this amounts to the requirement that the 
augends are added to the right end of the code string and 
they can have no more than, for example, r significant 
floating-point binary digits; i.e., there are r- 1 digits fol- 
lowing the first one. Such “instantaneous” codes are called 
(proper) arithmetic codes. 

The purpose of using arithmetic codes is to obtain 
compression, which is possible only if the augends are 
selected appropriately. Ideally, the length of C(s) should 
be -log P(s), see Section II, where we assume that the 
string is taken from an information source with a proba- 
bility function P. But because the length of the code string 
is nearly the same as that of the last added augend, the 
leading zeros included, that has no more than r significant 
floating-point digits, it follows that the A(sk) must be 
approximately P(sk). Observe that this argument relies on 
the assumption that the addends and the augends have a 
fixed maximum number of significant floating-point digits 
only. We give now two examples of classes of arithmetic 
codes. 

Example 5: Let 

Nsk)= [4MWl’ (6.3) 

where [xl’ denotes the number obtained when the binary 
number x has been truncated to r significant floating-point 
binary digits, and p( k Is) is a number also with no more 
than r significant floating-point digits satisfying the condi- 
tion 

P(Ob) + . * dd- l>ls) ( 1, (6.4) 

for all s. Ideally, p( k (s) should be taken as the conditional 
probability of the symbol following s being k given s. 

The code (6.1)-(6.3) is a modification of Pasco’s code. 
One difference is that here the precision of all the parame- 
ters p(j Is) is the same, and the addition in (6.1) can be 
made in the same size register, namely r, as that needed 
for the calculation of the addends, provided though, that 
we add the individual A(si) to the code one at a time 
rather than first collecting them to form the augend (6.2). 

Example 6 (N. Martin): Let p(i Is) be the numbers hav- 
ing r- 1 fractional digits which satisfy (6.4) with equality, 
and put 

P(kIs)=p(Ols)+... +p(k-lls), P(O(s)=O. 

Clearly the numbers P(k Is) also have r - 1 fractional 
digits. Suppose A(s) is a number with r- 1 digits follow- 
ing the first one (the last may well be a zero). The product 
A(s)P(kls) has no more than 2r- 1 significant floating- 
point digits, and because the smallest p(ils) is at least 
2i-‘, the leading one of this product remains within the 
range of the significant digits of A(s). Let [A(s)P(kls)]” 
denote the truncation of the product to the range of the 
significant digits of A(s). In other words, the length of the 
truncated product is the same as the length of A(s). As an 
example let r=5, A(s)=0.00010100, and P(1]s)=.OllO. 
Then [A(s)P(1]s)]“=0.00000111. Now put 

A(sk)=[ A(s)P(k+lls)]“- [A(s)P(kls)]“. 
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Clearly, each A(sk) has no more than r significant digits, 
and ii) in Theorem 2 holds with equality. 

Remarks: For a binary alphabet these examples sim- 
plify. For instance, in Example 6 we may write the param- 
etersp(i Is) with a maximum of r significant floating-point 
digits, and still maintain the same for A(s) provided that 
we keep track of the symbol which has the higher condi- 
tional probability. Let x be that symbol and x’ the other 
symbol. Put A(sx) = [A(s)p(x I S)]‘, truncated to r signifi- 
cant floating-point digits, and A(sx’) =A(s) -A(sx). A(s) 
will then have no more than r significant floating-point 
digits. Finally, and more importantly, the multiplication 
involved in these codes can be avoided with only a small 
loss of compression. One such scheme is described in [9]. 
In the nonbinary case, again the multiplications can be 
avoided by constructing the codes from length parameters 
rather than from the probabilities p(k Is), as discussed in 

[31* 
It is clear from these remarks that there is great flexibil- 

ity in the design of arithmetic codes, with ample room for 
engineering trade-offs, which in view of the great variety 
of coding needs is highly valuable. Several questions of 
both conceptual and practical nature arise in this number 
representation view of coding. For instance, we would like 
the binary strings that result when the fractional numbers 
C(s) are first written in binary notation and then the 
binary point deleted, to fill the tree defined by all binary 
strings terminating at a one. It is easy to show that this 
certainly is not achievable unless perhaps the equality in 
ii) holds. Hence the code in Example 6 is a good candi- 
date for such an onto or “almost” onto map. 

We illustrate the coding operations by a specific ins- 
tance of the code in Example 5. Let d=3, and s=O212. 
Let p(0]null)=p(l~null)=0.011, p(2]null)= 0.010, p(OlO)= 
0.011, p(l]O)=O.OOl, p(210)=0.1, and for the remaining 
prefixes s’ let p(O]s’)=O.Ol, p(l]s’)=p(2]~‘)=0.011. With 
r = 3 we get the following table. 

S A(s) B(s) C(s) 

0 0.01 I 0 0 
2 0.00110 0.00110 0.00110 
1 0.000100 0.0000110 0.001111 
2 0.00000110 0.00000100 0.01 

This example also illustrates the carry-over problem, which 
causes only the first trivial prefix code, namely, zero to be 
a prefix of the final code. 

We sketch a solution to the carry-over problem. After 
an agreed number of consecutive ones, say t, has been 
detected in the code string, the remaining symbols to the 
right of the t ones in the code string are shifted right one 
position and a zero is inserted in the vacated position 
immediately to the right of the t ones. Moreover, all the 
future addends are halved so as to preserve their correct 
position relative to the tail (the working end) of the code 
string. In reality the addends are added in a fixed register, 
and the generated symbols of the code string are shifted 
left out of the register, but the equations above are written 

as if the addends were shifted right along the code string. 
Because the decoding is done by magnitude comparison, 
the important aspect of the code generation is the relative 
position of the code string and the addends. 

Then the decoder, when seeing t consecutive ones, 
removes and examines the t + l’th symbol. If it is a zero, 
the decoding proceeds as usual, but if it is a one, a 
carry-over must have occurred and been stopped by the 
added zero. Accordingly, this one is added to the t’th one 
so that the carry-over one ripples through the preceding 
t - 1 ones. In either case one can show that the decoder 
has the correct code string as the result. The proof, which 
we omit, rests on the crucial property that once any 
symbol in the code string is beyond the r augend bit range 
(or the working end of the code string), it can receive at 
most one carry-in. We illustrate this by the preceding 
example, rewritten for t =2. 

S 4s) B(s) C(s) C’(s) 

0 0.011 0 0 0 
2 0.00110 0.00110 0.0011 0.0011 
1 0.000100 0.000011 0.001111 0.0011011 
1 o.OOOOOO11 o.oOOOOO1 0.00111 

Here we wrote C’(s) for the modified code string which 
the decoder receives, and after seeing two consecutive 
ones, converts to the original code string as described 
above. Finally, if the code string is a random Bernoullian 
sequence as it ideally should be, then the probability of 
having t consecutive ones is 2-‘, which is also the per 
symbol increase in the code string due to this carry-over 
blocking mechanism. For a typical value of t = 16, the 
length increase is normally quite insignificant. 

If we arrange things in such a way that the last added 
augend is the smallest, then the length of the code string is 
determined by the last augend, and the per-symbol length 
of the code in Example 6 satisfies 

(l/n)JC(s)J =G -(l/n)log P(s)+r/n+22-‘, 

where P(s) denotes the probability of the string as the 
product of the conditional probabilities p(kls). This in- 
equality shows that the mean per-symbol length does not 
exceed the ideal codelength defined by the conditional 
probabilities by more than the two right-most terms. 
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On Lewis’ Simulation Method 
for Point Processes 

YOSIHIKO OGATA 

Abstract-A simple and efficient method of simulation is discwsed for 
point processes that are specified by their conditional intensities. The 
metbud is based on tbe thinning algorithm which was introduced recently 
by Lewis aud Shedler for the simulation of nonhomogeneous Poisson 
pmcesses. Algorithms are given for past dependent point processes con- 
tain@ multivariate processes. The simulations are performed for some 
parametric conditional intensity functions, and the accuracy of the simu- 
lated data is demonstrated by the liieliiood ratio test aud the miuimum 
Akaiie information criterion (AK) procedure. 

I. INTRODUCTION 

A NY point process (N,, 4, P) on a finite interval 
(0, T] is a submartingale and therefore by the 

Doob-Meyer decomposition may be written as N, =mt + 
A,, where m, is an (F,, P) martingale and A, is the natural 
increasing process. It is known that there is a predictable 
process (A,, F,), such that A, = jdh, ds, if and only if P is 
absolutely continuous with respect to the standard Pois- 
son process PO; furthermore A= {X,, 0 <t < T} corre- 
sponds uniquely to the process P, and the Radon- 
Nikodym derivative is given by 

rlogh,dN, +/‘(l -X,)dt). 
0 
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Similar results hold for multivariate or marked point 
processes [7], [8]. 

The main object of this paper is to discuss the applica- 
tions of Lewis’ thinning simulation algorithm to any point 
process which is absolutely continuous with respect to the 
standard Poisson process. Recently Ozaki [ll] generated 
simulation data for Hawkes’ self-exciting processes by 
making use of a recursive structure. However his method 
is not fast enough unless the process has a simple struc- 
ture, because given a past history of the process 
t,, t,; . * 7 t, and a uniform random number U,, i from the 
interval (0, l), we have to solve the equation U,, i = 
S(tn+*ltl,.-*, t,) by Newton’s iterative method to get the 
next point tn+l, where S is the conditional survivor func- 
tion 

qt/t,;.* ,tn)=exp - 
1 J 

‘X(slt,; . . , t,)ds . 
f” I 

We do not need to solve this equation to get the next 
point. The idea of simulating these point processes by 
thinning is developed using algorithms due to Lewis and 
Shedler [9] for the simulation of nonhomogeneous Poisson 
processes. 

In Section II we give the simulation method and a 
proof for past dependent point processes containing mul- 
tivariate processes. Some typical algorithms also will be 
given. In Section III we give some examples of parametric 
intensity functions for the simulation and obtain their 

0018-9448/81/0100-0023$00.75 0 1981 IEEE 


