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Rare events analysis by Monte Carlo

techniques in static models
Héctor Cancela, Mohammed El Khadiri and Gerardo Rubino

This chapter discusses Monte Carlo techniques for rare event simulation in the case of
static models, that is, models where time is not an explicit variable. The main example
and the one that will be used in the chapter is the network reliability analysis problem,
where the models are graphs with probabilities associated with their components (arcs
or edges, and/or nodes). Other typical names in this domain are fault trees, block dia-
grams, etc. All these models are in general solved using combinatorial techniques, but
only for quite small sizes, because their analysis is extremely costly in computational
resources. The only methods able to deal with models having arbitrary size are Monte
Carlo techniques, but there, the main difficulty to face with is the rare event case, the
focus of this chapter. In many areas (in telecommunications, transportation systems,
energy productions plants...), either the components are very reliable or redundancy
schemes are adopted, resulting in extremely reliable systems. This means that a sys-
tem’s failure is (or should be) a rare event.

7.1 Introduction

The most referenced example in the area of static models in dependability analysis is
the network reliability problem. It concerns the evaluation of reliability metrics of large
classes of multicomponent systems. We will denote by £ the set of components in the
system (which will be, in a few lines, identified to the set of edges of the undirected
graph modeling the system). In general, the structure of such a system is represented
by a binary function ® of |£| binary variables. The usual convention for the state of a
component or for the whole system is that 1 represents the operational state (the device,
component or system, is operational or up) and 0 represents the failed or down state. A
state vector or system configuration is a vector ¥ = (x1,... ,X| g|) where x; is a possible

state, 0 or 1, of the ith component (that is, X is an element of [0, 1] €] ). With this notation,
®(X) = 1if the system is up when the configuration is ¥, and 0 otherwise.
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We may have different structure functions associated with the same system, each
addressing a specific aspect of interest that must be evaluated (see below). Frequently
(but not always) structure functions are coherent, corresponding to systems verifying
the following properties: (i) when all the components are down (resp. up), the system
is down (resp. up); (ii) if the system is up (resp. down) and we change the state of a
component from 0 to 1 (resp. from 1 to 0), the system remains up (resp. down); (iii) all
the components are relevant (a component i is irrelevant if the state of the system does
not depend on the state of ). Formally, let us denote by 0 (resp. by 1) a state vector
having all its entries equal to 0 (resp. equal to 1). We also denote by ¥ < i/ the relation
x; < y; for all i, by ¥ < ¥ the fact that ¥ < i with, for some j, x; < y;, and by (X,0;)
(resp. by (¥, 1;)) the state vector constructed from X by setting x; to 0 (resp. to 1). Then,
® is coherent iff (i) ®(0) = 0, ®(T) = 1; (ii) if ¥ < 7 then ®(¥) < ®(¥) and (iii) for each
component i there exists some state vector X such that ®(X,0;) # ®(X,1;) (and thus,
due to (i), ®(¥,0;) = 0 and ®(¥,1;) = 1).

After specifying the function ®, which defines what means that the system provides
the service for which it was designed, a probabilistic structure must be added to take
into account the failure processes. The usual framework is to assume that the state of
the ith component is a random binary (Bernoulli) variable (r.v.) X; with expectation
E(X;) = r;, and that the || r.v. Xy, ..., X|¢| are independent. The numbers r; = IP(X; =
1) (called the elementary reliabilities) are input data. Sometimes we will also use the
notation g; for the unreliability of link i, thatis, g; = 1 — r;. The output parameter is the
reliability R of the system, defined by

=

R=P(®X) =1) = E(®(X)) (7.1)

where X = (X1,.. .,X‘g‘), or its unreliability Q = 1 — R. Observe that this is a static
problem, that is, time is not explicitly used in the analysis. When time relations are
considered, the context changes and the general framework in which the analysis is
usually done is the theory of stochastic processes and, in particular, of Markov pro-
cesses (see Chapter 6 in this monograph). For an exposition concerning the general
theory (including dynamic models) the reader can see [6], [7] or [31].

The structure function can be specified by providing a table describing the map-
ping from [0, 1] €l into [0,1], a sort of exhaustive description, or, at the other side of the
spectrum, by a program (or an algorithm), which usually is a compact way of giving
the function. An intermediate option is to define it by giving a stochastic graph, some-
times called a network in this context. These models are very useful, in particular, for
communication network analysis. We will adopt them here as the reference systems.
The lines of the communication network are modeled by the edges (or by the arcs in
the directed case) of the graph, and the vertices represent the nodes. The basic model
in this class (and in this chapter) is an undirected graph (lines are assumed to be bi-
directional) with perfect nodes (corresponding to the situation where the reliability of
a node is much higher than the reliability of a line), assumed to be connected and with-
out loops. The state of line i at some instant of interest is a binary r.v. X;. The structure
function ® is then specified by means of some property of the graph. To be more spe-
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cific, let us denote by G = (V, ) the graph where V is the set of vertices and £ is the
set of edges. The set £’ of operational lines at the fixed considered instant defines a
random subgraph G = (V, £’) of the previous one. The reliability of the system is then
the probability that G has some graph property. For instance, if we are interested in
the fact that all the nodes can communicate with each other and we want to quantify
the ability of the network to support this, the corresponding metric, called all-terminal
reliability, is the probability that G is connected. Another important case is when the
user is interested only in the communications between two particular nodes, usually
called source and terminal. Denoting these nodes by s and ¢, the associated metric is the
so-called 2—terminal or source—to—terminal reliability, defined as the probability that there
exists in G at least one path between s and t having all its lines operational. This last
case of graphs having an “entry” point s and an “exit” point f (the terminology is used
even if the graph is undirected), has a broad field of applications since it is a general
tool describing the structure of a system, its block diagram, not only in the communica-
tions area. For instance, it is widely used in circuit analysis or more generally in the
description of electrical systems. The previous considered metrics are particular cases
of the K~terminal reliability in which a subset K of nodes is defined and the associated
measure is the probability that all the nodes in K can communicate, that is, the proba-
bility that the nodes of K belong to the same connected component of G. By far, most
of the research effort in the network reliability area has been done on the evaluation
(exact or approximate) of this measure and the two particular cases described before
(the all-terminal and 2-terminal ones).

These problems (and several other related reliability problems) have received con-
siderable attention from the research community (see, for instance, [45], [18], [4] and
[55] for references) mainly because of the general applicability of these models, in par-
ticular in the communication network area, and because of the fact that in the general
case the computation of these metrics is in the #P—complete class [59], [3], a family of
NP-hard problems not known to be in NP. A #P-complete problem is equivalent to
counting the number of solutions to a NP-complete one (about connections between
counting problems and rare event simulation, see Chapter 8 in this book). This im-
plies that a #P—complete problem is at least as hard as a NP-complete one. This last
fact justifies the continued effort to find faster solution methods. Concerning network
reliability, even if we limit the models to very particular classes, the problems remain
#P—complete. For instance, this is the case if we consider the 2-terminal reliability eval-
uation on planar graph with vertex degree at most equal to three.

It must be stated that all known exact techniques available to evaluate R are unable
to deal with a network having, say, one hundred elements (except, of course, in case
of particular types of topologies). For instance, in [51], the effective threshold is placed
around 50 components. Our own experience confirms this figure. In [55] the different
approaches that can be followed to evaluate these metrics numerically (exact combi-
natorial methods and bounding procedures, together with reduction techniques that
allow to reduce the size of the models) are discussed, and some examples illustrate the
limits of the different possible techniques (including simulation). Let us observe that in
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the communication networks area, usual model sizes are often very large. For instance,
in [32] the authors report on computational results analyzing (in a deterministic con-
text) the topology of real fiber optic telephone networks. They give the sizes of seven
networks provided by Bell Communications Research, ranged from 36 nodes and 65
edges to 116 nodes and 173 edges. They also say that in this type of communication
system, the number of nodes in practical implementations is not larger than, say, 200
nodes. In [33], the same authors report on a realistic model of the link connections in
the global communication system of a ship, having 494 nodes and 1096 edges. Monte
Carlo algorithms appear then to be the only way to obtain (probabilistic) answers to
reliability questions for networks having, for instance, more than one hundred compo-
nents. But, of course, specific techniques allowing to deal with the rare event case must
be applied. This is the topic of this chapter.

The Crude Monte Carlo technique in this context consists of sampling N times the
system configuration, that is, generating independent samples X(*), ..., X(V) of X and
estimating the unknown parameter R by the unbiased estimator

IR e
R=— YV o(Xm).
Nﬂ;( )

The evaluation of ®(X) for a given configuration X takes the form of a graph explo-
ration. For instance, in the source-to-terminal case, a DFS (Depth First Search) pro-
cedure is typically implemented to check if source and terminal are connected in the
graph resulting from the initial model when all lines corresponding to the zeros in ¥
have been deleted.

The case of interest here is the case of R = 1, and so, Q = 1 — R = 0. The rare event
is “®(X) = 0”, and the methods used to deal with it are the object of the rest of the
chapter. After discussing about the many applications in this area through a literature
revision in next section, Section 7.3 describes the main ideas used so far in order to
analyze network reliability, focusing in the rare event situation. In Section 7.4 a specific
approach is presented in more detail. Section 7.5 presents some numerical examples of
the behavior of these techniques. Finally, Section 7.6 concludes the chapter.

7.2 Network reliability applications

There is a wide field of applications of network reliability techniques. We find these
problems in evaluations of electrical power networks, transportation systems (specially
urban transportation systems, see for instance [56]), interconnection networks (that is,
networks connecting processors, memories and other devices inside a multiprocessor
computer), fault tolerant computer architectures, etc. As stated before, a central ap-
plication area is in the evaluation of communication systems. The usefulness of “con-
nectivity” measures such as the ones presented before is clear for instance in packet
switching communication networks using dynamic routing which allows rerouting of
data in case of the failure of a link. It must be said that many modern packet switching
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networks are rather dense and that the considered reliability measures tend to be close
to one. The computation of the unreliability of the system systematically corresponds
then to the evaluation of the probability of a rare event. In this section, we give some
applications examples in different contexts, such as in the design of telecommunication
networks and other systems [5, 20, 21, 22, 23, 24, 25, 42, 43, 46, 50, 57], in the design
and evaluation of mobile ad hoc networks and of tactical radio networks (specially
in military contexts) [19], in the evaluation of transport networks and the assessment
of the reliability of road networks with respect to seismic hazards and other disasters
[34, 44, 49, 61]. The goal of this section is to underline the wide application range of
these problems, and thus, of the methods proposed to solve them. Once again, let us
recall that in most of the cases, the events of interest are rare.

The design of the topology of telecommunication and computer networks is one of
the settings where the application of reliability models is more direct. As such, there
are a number of paper which tackle different variants of this problem, which in gen-
eral consists in deciding which components (links, and sometimes nodes) to include in
the network so that the communication among terminals is reliable and the cost is as
low as possible. Such network design problems are in general NP-hard, so that most
literature includes the use of combinatorial optimization heuristics (most often Genetic
Algorithms) to find approximate solutions.

One of the first papers on applying Genetic Algorithms (GA) to solve reliable net-
work design problem was published by Kumar, Pathak and Gupta [42]. These authors
tackled three different network design problems: to maximize reliability under diame-
ter constraint, to maximize diameter under degree constraint, and to minimize average
distance under degree constraint. The solution method applied was based on a GA,
which solved very small (graphs up to 9 nodes) instances of these problems, attaining
optimal solutions. Even if the network size tackled was very small, this work showed
that GA could be designed to tackle reliable networks design problems.

The papers by Dengiz, Altiparmak and Smith [22, 23] study two variants of reliable
network design: maximizing the all-terminal network reliability metric given a cost
constraint, and minimizing the cost, given a reliability constraint. The node set is fixed,
and the problem consists in choosing which links to install. The problem is solved
using an evolutionary approach, based on GA plus a local search heuristic. Reliabil-
ity is estimated using a specific heuristic, upper bounds, and Monte Carlo simulation.
The authors evaluated their algorithm and an exact, branch-and-bound based alterna-
tive, using 79 randomly generated small test problems (with 6 to 20 nodes), and the
results showed that both algorithms found the optimal solutions, and that the GA was
the most computationally efficient. Deeter and Smith [20, 21] also faced the design of
networks considering all-terminal reliability. These authors consider minimizing the
network cost given a reliability constraint. In their setting, the nodes are given, and it
is possible to choose which links to employ, and different “link options”, each having
different reliability and cost values. A Genetic Algorithm is used to select the links and
the level of link connection; Monte Carlo simulation is used to compute estimates of
the network reliability. Experiments with different topologies showed the effectiveness
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of the approach in identifying low cost solutions meeting the reliability requirements.
Other more recent work by the same authors includes papers [1] and the GA by Al-
tiparmak et al. [2]. Other authors, like Lin and Gen [43], have also studied the same
all-terminal reliability network design problem and proposed alternative optimization
methods with improved performances.

Bardn and Laufer [5] proposed a parallel Asynchronous Team Algorithm (A-Team)
applied to the reliable network design problem, where the nodes and links are fixed,
but it is possible to choose (at a cost) a given reliability value for each link. A-Team
is a hybrid technique that combines different algorithms interacting to solve the same
global problem. Two approaches were used to estimate network reliability in this pa-
per: an upper bound of all the candidates included in the population is efficiently cal-
culated, and after that, a Monte Carlo simulation is used to get good approximations
of the all-terminal reliability. The empirical results show good values for medium-size
networks. Duarte and Bardn [24]) addressed a multiobjective version of the previous
problem, using a parallel asynchronous version of a Genetic Algorithm to search for op-
timal topologies for a network. The parallel version results outperform the sequential
ones, considering standard metrics in the multiobjective domain (where the solution is
not just a topology, but a set of Pareto efficient ones). Later, Duarte, Bardn, and Benitez
[25] published a comparison of several parallel multiobjective EAs for solving the same
reliable network design problem.

Taboada, Baheranwala and Coit [57] and Taboada, Espiritu and Coit [58] also look
at multiple-objective system reliability design problems, where it is necessary to decide
the level of redundancy to allocate at each stage, and reliability, cost and weight are
objective functions. In these papers different methodologies are explored; on one side,
to help the decision maker make a selection, a pseudo-ranking scheme and clustering
techniques to reduce the size of the Pareto optimal set are presented. The second paper
presents a multiple objective genetic algorithm for solving the problem.

Marseguerra, Zio, Podofillini and Coit [46] used a stochastic model for network re-
liability, considering a function of imperfectly known reliability parameters of network
components. The problem to solve is again a multiobjective one, the objective being
to find the network topologies that maximize the network reliability and minimize the
variance of this estimation (taking into account the imperfectly known reliability pa-
rameters). The decision variable is the type and the redundancy level of components
to be allocated within a fixed network topology, where each component has an asso-
ciated reliability probability distribution. The optimization method is based on GA,
and a Monte Carlo evaluation algorithm is used to incorporate the uncertainty in the
reliability values; the repeated evaluations of the good individuals are accumulated, to
enhance the significance of the estimations. The numerical examples consider only very
small networks (with 7 and 8 links), and allow to examine the Pareto optimal solutions
obtained and to easily identify the differences in the configurations.

Premprayoon and Wardkein [50] tackle another variant of the reliable network de-
sign problem, where it is possible to define for each pair of nodes whether they will be
connected by a link, whose characteristics (cost and reliability) can also be chosen from
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a given set. The objective is to minimize network cost subject to a requirement of attain-
ing at least a given reliability level. The authors compare an Ant Colony Optimization
method, a Tabu Search method and a Local Search method; the network reliability eval-
uation is done by backtracking (as only very small network topologies are studied). The
computational results show better results for the Ant Colony Optimization.

Cook and Ramirez-Marquez [19] study mobile ad hoc wireless networks (MAWN),
in particular in a military context. MAWN have their own characteristics, which this
work describes, and a proposal is presented on how to adapt the classical analysis of
network reliability to this new context. The methods proposed rely on considering
the effect of node mobility and the continuous changes in the network’s connectivity.
Wakabayashi [61] also studies highway network reliability, takint into account normal
and abnormal periods. The motivation of this work is to detect the critical link on the
network, whose improvement will give the larger network reliability improvement.
This paper presents a comparative study between using a probability importance in-
dex (Birnbaum’s structural importance) and a criticality importance based on network
reliability measures, which address some problems in the previous mentioned index.

Yan Li [44] proposes to employ an Accessible Node Rate (ANR) index based on
two-terminal reliability to evaluate the anti-disaster level of a city road network. In
particular, this author evaluates the connectedness to the start points of emergency ve-
hicles, and provides a method of accessing such accessibility to individual residences in
areal city by using GIS. Nojima [49] employs network reliability models to represent the
risks on road networks caused by seismic activity. The performance measure of interest
is defined as the system flow capacity of road networks subject to failures. In this pa-
per, a variance reduction technique for Monte Carlo simulation method is presented to
perform efficient reliability analysis in terms of the system flow capacity. This method
is used to define performance-based prioritization order; this results in a road priori-
tization strategy according to various levels of vulnerability and system requirement.
Giinnec and Salman [34] propose to assess the post-disaster performance of a road net-
work under most likely disaster scenarios for the purpose of both strengthening the
components of the network and for planning the post-disaster logistics activities. In
this paper, the authors seek to measure the reliability and the expected post-disaster
performance of a network under disaster risk. In particular, they evaluate the relia-
bility of connection between different pairs of origin-destination (O-D) nodes in the
network, in terms of expected weighted sum of shortest travel time/distance between
the O-D pairs. The estimation of this measure is done by Monte Carlo sampling.

7.3 Variance reduction techniques

There are many generic variance reduction techniques that have been proposed in order
to improve the performance of Monte Carlo simulations, especially for the rare event
case. Importance sampling is probably the most used one, but we also find techniques
based on antithetic variates, on control variables, stratified sampling, etc. These tech-
niques can be also applied to network reliability evaluation, with varying degrees of
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performance. Nevertheless, the special characteristics of this problem opens the oppor-
tunity to develop more specialized variance reduction methods, sometimes inspired by
the classical ones and sometimes completely original, which attain much better perfor-
mances. As many methods have been proposed, it is not possible to describe each of
them in detail. In this section, we will briefly present the main ideas which have ap-
peared in the literature, and we will reference the publications which fall in the same
broad categories. We also give an assessment about the most promising approaches.

7.3.1 Sampling techniques based on bounds

This family of methods can be interpreted as an hybrid of classical Importance Sam-
pling with control variates. Its first application to network reliability problems was
presented by Van Slyke and Frank [60], and afterwards by Kumamoto [40] and Fishman
[30]. It can be applied to any reliability evaluation problem where there are available
two functions ®* and ®Y which bound below and above the system structure function
®. These functions must fulfill the following properties:

o OL(X) < ®(¥) < ®YU(X) for any state vector X.

e Fork =1,...,|€| and for any value assignment k) = (x1,...,Xx) of the first k
components of the state vector ¥, the values

REGEF) = P(@M(X) =1|X1 = %1,..., Xk = %)
and

RI(zH) =P(@Y(X) =1|X; = 1,..., X = &)
can be computed in polynomial time.

The numbers Ry and RY are defined by R} = P(®!(X) = 1) and RY = P(®Y(X) = 1).
For the bound based sampling, we define the remaining state space

W= {x: %) =0, dY(¥) =1}

from where the samples will be chosen proportionally to their probability in the original
state space. From the estimator obtained there and the previous information, we con-
struct an estimator of the system reliability. The variance reduction attained is directly
proportional to the fraction of the total probability that is included in the subspace W.
We give now a more detailed description of the sampling routine M for the bound
based sampling:

Input: network G, terminal set K, ®* and ®Y
Output: an estimator of R (/C-terminal reliability)

Procedure M :
Sample X; result: & = (%1,...,%¢|)
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Compute R = Rk + @ (%) (R — R})
Return R

The sample X = (5(1, ceey X‘g‘) is chosen by sampling succesively, for I = 1,..., |€|, the
state X; of link I following the Bernoulli distribution with parameter

i =PX =1|Xy=%,...,X_1 = _1 and ®¥(X) = 1,®*(X) = 0)
R (z!71) — Rp(x(71)

= Rlu_l(f(l_l)) — RlL_l(f(l_l)) 7.

The variance of each sample of the methods of this family is:

Var = R(R{' —R) — R§(R{ — R)
= R(1—R) — (1 -RY)R — RE(RY — R)

which is lower than the crude Monte Carlo one (R(1 — R)). The difference will depend
on the tightness of bounds ®' and ®Y. The execution time performance depends on
the computational complexity of the evaluation of these bounds.

In [27] a variant of this family is proposed, for the case where all links have the
same elementary reliability. The method is based on the efficient computation of a
lower bound of the network reliability, based on the evaluation of a subset of states
with number of failed links less than the cardinal of the smallest minimal cutset of the
network, and it does not employ any upper bound. The variance reduction obtained
with this method is of order 1/[1 — R} |, for a computational cost per sample similar
to the crude Monte Carlo one. The authors classify their method within the antithetic
variates based family.

7.3.2 Dagger sampling and other related techniques

Dagger sampling was proposed by Kumamoto et al. [41] and can be seen as an exten-
sion of the antithetic variates technique. The main idea behind this sampling method
is the generation of sample blocks of size L such that within each block the random
variables are chosen in order to induce negative correlations between the individual
samples. The size of the blocks, L, is fixed in such a way that for each edge I the se-
quence of L replications can be partitioned in exactly N sub-blocks of size L/ N;, where
N; = |1/g;]. For each of these sub-blocks, a single position is randomly chosen; this
position corresponds to a sample where link / will fail. In this way, the failure pattern is
such that the sampled failure frequency for each link of the network is proportional to
the link unreliability value. After all random variables have been sampled, the method
checks every replication within the block, checking in each case whether the resulting
network is connected or not, in order to obtain an estimation of R.
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In this method, a single invocation of M corresponds to L crude Monte Carlo sam-
ples; this must be taken into account when comparing the computational complexity of
the algorithms.

Input: network G, terminal set
Output: an estimator of R (/C-terminal reliability)

Initialization Z:
Compute the integer vector (N, : 1 € £): Ny = |1/q].
Choose the sample number: L = Icm{N; : I € £}.

Procedure M:
For each link [
For each sub-block of replications of size L/ Nj,
sample random state vectors X0 in this sub-block:
Choose randomly a replication from the sub-block :
Sample U uniformly on [0,1]; result: u; setk = [u/q;]
Link [ is failed in that replication:
XV =1,vj £k xH =0, ifk < L/N,.
endFor
endFor
Initialize T = 0.
Forifrom1lto L
Count replications corresponding to an operational state of the network:
T =T+ ®(X0).
endFor
Return R = T/L.

The complexity analysis of this algorithm, given in [29], shows that the execution
time per sample has worst case complexity O(|£]), as in the case of crude Monte Carlo.
Nevertheless, as the number of random variables that are needed in the Dagger method
is much smaller than in the crude Monte Carlo, there can be a large gain in execution
time, which is an important advantage of the method in relation to the crude one.

The variance reduction obtained by the Dagger method is based on the induced
negative correlation among the samples which belong to the same sub-block for some
link of the network, and is relatively small, approaching 0 when the link reliability is
near 1. El Khadiri and Rubino in their work [26] discuss some problems of the Dagger
method, which happen in particular when value L is too large. As it is necessary to
generate and save into memory L states of the network, memory requirements grow
linearly with L. The authors show that the block size L may be chosen arbitrarily, and
they propose an alternative method, inspired on Dagger and applying a generalization
of the standard antithetic method. This new method obtains better results, both because
L can be chosen arbitrarily, and because the sampling algorithm used incorporates some
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features to improve its efficiency. The algorithm employs mechanisms similar to those
used in discrete event simulation, employing a list with the incumbent failure instants
for each link, and finding which is the first replication including at least one failure. This
implementation has important gains in execution time and also results in a minimal
memory complexity (which depends linearly on the network size and is independent
of L).

When all links have the same reliability p, the generalized Antithetic algorithm has
sample complexity O(«|€|), where

a« =max(1/L,1— p).

This shows an improvement over the crude method which grows with the block size L,
up to a bound given by the inverse of the link reliabilities (in the worst case, p = 0.5,
we have that the maximum gain that can be attained is a factor of 2, corresponding to
setting L = 2).

7.3.3 Graph evolution models

These methods, instead of using the static network reliability model, employ alternative
timed models where the states of the links are assumed to change over time. These
models correspond to Markov processes, whose properties can then be exploited to
obtain efficient estimators of the classical reliability.

Easton and Wong [47] proposed the Sequential Construction and Sequential De-
struction methods, which complement the previous idea with the use of an ordering
of the network links. In the Sequential Construction method, all links are considered
as being failed at an initial instant, and then they are successively repaired, one by one
following the ordering chosen, until the network reaches an operative state. The relia-
bility estimator can be interpreted as a function of the expectation of how much time is
needed to reach an operative state of the network. The Sequential Destruction is similar,
but all links are considered to be operating at the initial time, and they are progressively
put into a failure state. These techniques can be classified as hybrids between stratified
sampling and Importance Sampling procedures.

The sample space for the Sequential Construction method consists in pairs (¥, 77)
where ¥ is a state vector or configuration and 7 = (7, . .., 7T g|) is a permutation of the
link indexes in £. There exists an index k such that

fry=.. =%z, =1, %g,, =...= %, =0.
If we choose a vector ¥ following the system state probabilities (i.e, with the same dis-
tribution as X) and we choose a permutation 7 independently and uniformly over all
the compatible permutations, then the probability of observing a given pair (%, 77) is

o(%,7) = % _ ﬁckff}p(f( — )
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where k is the number of links working in ¥. The Sequential Construction method
samples 77, and considers simultaneously the set Pz of all possible pairs (%, 77), such
that ¥ is consistent with 7 following the previous criterion. The reliability estimator
R is then the conditional probability of operation of the system given P, correspond-
ing to the quotient of the sum of the probabilities of the pairs (&, 77) € Pz such that
®(%) = 1 divided by the probability of Px. We give below a more detailed description
of the algorithm M for generating a Sequential Construction sample (no initialization
is needed):

Input: network G, terminal set
Output: an estimator of R (XC-terminal reliability)

Procedure M :
Sample 77 = (7%1,...,7%|g|)
Fork=1,...,|&| (Define X))

S(k ~(k Sk (k
xg-rl) =... :xgik) :1’3‘5%,3“ =... :x%; =0
endFor

Determine firstr € 0,...,|&]
such that ®(x(")) =1

Compute
€ - &l Ao o
R— Ll ®EM)p(x®, 7) T ¢FIP(X = 20)
Zz'f'o p(x), 7) yIfl clElp(% = 20)
Return R.

It is possible to show that the estimator obtained by this method has smaller variance
than the one corresponding to a crude Monte Carlo sample. The larger computational
effort is needed to determine the first index », which depends on the effort needed
to compute ® (), as it is necessary to determine when the network arrives to an
operational state when the links are repaired one by one. In the worst case, and using a
DFS for computing ®, the complexity is O(|€| max(|V|, |€])). Nevertheless, for the case
of the 2—terminal metric, it is possible to determine the value of r with a computational
cost similar to a single computation of ®, so that this method obtains a single sample
with a cost similar to the one of the crude method.

As mentioned previously, the Sequential Destruction method is very similar; in the
case of very low reliability systems, it may have better computational performances, as
the value of r would be determined in less iterations than those needed by the Sequen-
tial Construction method.

Other methods based in graph evolution models have been published in [28]. In
particular, three methods are discussed in that work: destruction processes, construction
processes, and merge processes. All the methods rely on constructing a Markov chain
(Y(t)) such that at time t = 1 we have that P(®(Y(1)) = 1) = P(®(X) = 1), so that
computing the expectation of ®(Y(1)) gives also the reliability R. Then, the algorithm
samples a permutation of the order at which links go up (in a creation or merge pro-
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cess) or go down (in destruction process), it identifies the critical link (the one which
causes the system to change from down to up state, or vice-versa), and it exactly com-
putes (using a convolution of exponential r.v.) the exact conditional probability that at
time 1 the critical link will have changed its state. In the case of merge processes, they
improve the previous ideas identifying irrelevant links and partitions of the subjacent
network. In these methods, the sample complexity is higher, of order O(|€|?), but the
variance is much smaller than the one obtained by the Sequential Construction method.
An important result is that, for fixed £, the merge processes method has coefficient of
variation uniformly bounded for all values of links’ reliabilities. Anoher related work is
[35], which gives an hybrid variant of crude Monte Carlo and graph evolution models,
completed with the use of Importance Sampling to further speed-up the simulations.

More recently, Hui et al. [36] have applied Cross-Entropy techniques to improve
the performances of crude Monte Carlo and of graph evolution methods, in particu-
lar creation processes and merge processes. The main idea is to apply an Importance
Sampling scheme, changing the underlying network reliability parameters, and to use
Cross-Entropy to search for an optimal change of measure. Their results show that
Cross-Entropy does indeed give better accuracy; the improvement is quite large over
crude Monte Carlo. In the case of construction and merge processes based Monte Carlo,
the application of Cross-Entropy results in much more modest improvements. Similar
results have been obtained by Murray and Cancela [48], who compared the behavior of
these methods (and of a generalized antithetic method) when evaluating the diameter
constrained reliability of a network, a variant of the classical model taking into account
a bound on path lengths).

Finally, a quite different approach to exploit the Markov process modeling a creation
process of the network has been employed by Murray et al. [15]. This work applies the
well-know splitting technique (see Chapter 3), much employed for rare-event simula-
tion in the context of stochastic processes, to the stochastic process consisting in starting
from an empty network, and creating (or putting into operational states) the links one
by one, taking independent exponential distributions for these times. As it was men-
tioned before, the state of this system at time ¢t = 1 has the same distribution as the
state of the static network model; in a highly reliable network, almost always the net-
work becomes operational before time 1, and the rare event is to observe ®(Y(1)) = 0.
The splitting strategy developed in the mentioned work consists in taking a number of
intermediate time thresholds, and of splitting such trajectories of process (Y(t)) that at
these thresholds still verify ®(Y(t)) = 0. The results given by the mentioned authors
show that this method is very robust and can reach better performances than the one
by Hui et al. [36].

Last, let us also mention [37], where the authors propose to directly estimate the
reliability ranking of some edge relocated networks without estimating their reliabili-
ties and compare the proposed approach to the traditional approach using the Merge
Process estimation algorithm. Another recent related paper is [39], which is concerned
with network planning. Here, the objective is to maximize network’s reliability, sub-
ject to a fixed budget. The authors show how the Cross Entropy method can be easily
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modified to tackle the noise brought by the use of network reliability estimators in the
objective function instead of exact evaluations.

7.3.4 Coverage method

The Coverage method was proposed by Karp and Luby [38]. It can be seen as an hybrid
variant of Importance Sampling and Stratified Sampling, and employs the list of the
minimal cuts of the system to improve the crude sampling procedure. The main idea is
to embed the set F of network failure events within an universal weighted space (U, w),
where w is a non-negative weighting function in ¢/, satisfying the following criteria:

o w(F) = P(F) = Q.

e w(U) can be efficiently computed (in polynomial time). Moreover, it is possible
to efficiently sample values in I/ with probability proportional to the weights of
the elements of the set.

e It can be efficiently decided whether an element of I/ belongs to F.

e w(U)/w(F) is bounded above by a value M for all the instances in the considered
problem class.

e w(C) is the total weight of the elements of U/ with second component equal to C.

If we take a sample from U, and we obtain the estimator Q multiplying the propor-
tion of elements of this sample that are included in F by w(U/), then Q is an unbiased
estimator of Q.

Let C be the set of the K-mincuts of network G. We define the universal weighted
sample space U composed of the pairs (¥, C) where ¥ is a state vector of the network,
C € Cisacut, and x; = 0 for all links / belonging to C. This way every system failure
state X will appear in ¢/ as many times as the number of failed mincuts in ¥; in order
to embed F in U it is necessary to assign to each X a single cut C € C. To do this we
choose a node s € K, then we find the set N of all nodes reachable from s following
paths formed by operational links, and we select C = C(X) the set of links from N to
V — N. The elements of F appear then in U/ as pairs (¥, C) such that C = C(¥X), and it
can be decided in linear time if an element from U belongs to F just by verifying the
condition C = C(&¥). The weighting function w is given by w(¥,C) = P(X = ¥).

We give now a pseudocode of the initialization and sampling routines for the Cov-
erage method:

Input: network G, terminal set /C, list of mincuts C
Output: an estimator of R (XC-terminal reliability)

Initialization Z:
ForeachC ¢ C

Compute w(C) = [ [
leC
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endFor
Compute w(U) = Y w(C)
Cec

Procedure M:
Sample ()?, C) from U with distribution w:
Sample a cut C with probability w(C) /w(U)
Build X:
VieC, X =0
VI ¢ C, X; = 1 with probability p,
X; = 0 otherwise.
If C = C(X)
R=1-w(lU)
Else
R=1
endIf
Return R.

This method can obtain good variance reduction levels, but has the drawback of de-
pending on the previous calculation and storage of the list of all mincuts of the consid-
ered network. As the size of this list grows exponentially with the size of the network,
the requirements of time and space can quickly make unfeasible its application. Also,
there are some exact methods that compute the reliability in time polynomial in the
number of mincuts of the network [52], further reducing the interest of the approach.

7.3.5 State space partitioning and conditioning methods

A number of methods are based on sampling within the space of the state vectors of
the network, using techniques related to partitioning this space and/or to conditionally
sampling within it.

One of these methods is the Total Hazard one. Random hazard variables, and in
particular the total hazard ones, have been employed in different contexts to simulate
stochastic models [53]. Ross and Jun [54] developed a total hazard estimation to com-
pute the reliability R.

Let C; be a K-mincut. The first hazard, /1, is the probability that all the components
in C; are failed (implying that the network is not K-connected); so,

hl = H 6]1'.
i€eCq

The Total Hazard method consists of simulating the state of all the links belonging to
C;. If all the links are failed, the procedure ends. If at least one link is operational, we
fix the states of the simulated links, and we look for a new mincut C; in the modified
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network. From this new cut we compute the second hazard, h,, given by

hz = qu

ieCy

Afterwards we simulate the state of the links belonging to C; and the previous process
is repeated, generating new networks until all the components of a mincut are failed or
until a trivial network is reached, with no mincuts (all the links’ states have been fixed).
If we considered r hazards, the total hazard is given by

and it is an unbiased estimator of Q. The implementation suggested in [53] employs the
list of all mincuts of the system under consideration, and it updates it as the states of
the links are fixed; the mincut is chosen at each step in order to result in the maximum
risk.

Inputs: network G, set K, list of K-mincuts of G
Output: an estimation for R

InicializationZ:
H=0.

Procedure M:

Select a KC-mincut C.

Simulate the state of the links in C

Repeat until all the links in the selected mincut are failed
Update the list of mincuts of network G.
Compute the hazard: h = ;¢ g
Accumulate in H: H = H + h.
Select a KC-mincut C.
Simulate the state of the links in C.

endRepeat

Return R =1 — H.

The variance reduction that can be obtained with this method depends strongly on
how the K-mincut C is chosen. A heuristic with good behavior is to select in each step
the mincut with the highest associated hazard, but this implies an important computa-
tional overhead, as it must be implemented as a search in the list of mincuts (whose size
is exponential in the size of the graph), or employing a maximal flow algorithm in each
iteration of the method. The analysis of the computational complexity of generating
a sample strongly depends on this step. With the computationally less costly possible
choice for the mincut selection, the computational complexity per sample is of order

o(l€])-
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In [9], Cancela and El Khadiri highlighted that there are some cases where the Total
Hazard estimator is less efficient than the CMC one. They proposed a modification

leading to a more precise estimator and having always variance lower than that of the
CMC method.

7.4 The RVR sampling principle

Another family of related methods are the Recursive Variance Reduction (RVR) ones.
These methods, first proposed in [8], have been extensively discussed and adapted to
different contexts [10, 11, 12, 13, 14, 16, 17]. RVR methods combine different ideas to
obtain good performance estimators. On one hand, they employ either one or more
cutsets, pathsets, or both, of the network being evaluated, in order to partition the state
vector space in subsets depending on the operational/failed status of the links belong-
ing to the chosen sets. Some of the elements of this partition correspond to network
configurations known in advance (corresponding either to a failed or an operational
network). Then, the rest of the state vector space is explored by recursively sampling
one of the subsets in the partition, which corresponds to a subnetwork of the original
one, including some particular links failed and other ones operational; once this subnet-
work has been randomly chosen, an RVR method recursively searchs for new cutsets
and/or pathsets, and restarts the whole process.

In this section we provide some details about the RVR approach. For the presen-
tation of the RVR principle, we consider the 2-terminal problem where we look at the
unreliability between two given nodes s and t in G, the version using series—parallel
simplification for reducing the size of the network and a selected cut for transforming a
network reliability problem into a smaller one and then recursively until the considered
network has unreliability equal to 0 or to 1. This estimator has been proposed in [11].

If s and t are not connected in G, we define Z(G) = 1. Otherwise, let us denote
by sp-red(G) the result of making all possible series-parallel reductions in G. As these
reductions preserve the unreliability, we set Z(G) = Z(sp-red(G)). Let 7y be a st-cut in
sp-red(G), v = {l1,lo,- - - , 1z} where I, I5... are the links in the cut. Let L, be the event
“link I, is down”. If Q) is the set of all possible configurations in the model, consider the
partition Q = (Eo, Ey, ..., Ey) where

Eo = LiLy--- Ly = all links in vy are down,
Ei = L{ = at least one link in <y is up, and the first such link is [y,
E; = LiL§ = at least one link in <y is up, and the first such link is I,

E3 = L1L,L§ = at least one link in <y is up, and the first such link is I3,

Epg = L1Ly - - - L§; = at least one link in <y is up, and the first such link is [f.
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We have P(Ey) = g1 - - - qg where here we denote g, = P(L,) = 1 —ry, and P(E,) =
q192 - - - qu—1ry for h = 1,2,--- ,H. To simplify the notation, call 77 the product 71, =
q1q2---qp forh =1,2,--- ,H, my = 1. We have P(Ey) = mry and P(E,) = 741y, for
h=1,2,---,H.

Let I be the r.v. “index in 7y of the first link up”, with I = 0 if all links in 7 are down.
We have P(I = h) = IP(E;,). Define now ther.v. Von{1,2,--- ,H} by

P(V =h) =P(I =h|I#0)= _fh_lrh

Last, for h = 1,2,--- ,H, denote by G, = sp-red(G) | E; the network obtained from
sp-red(G) by deleting links I1, 15, - - - , 1,1 and contracting link [;,. We are now ready to
give the estimator proposed in [11]:

M=

Z2(G) =mu+ (1 —my) ) UV =h)Z(Gy).

h

1

Let us denote by v a sample from the distribution of V. Then a sample Z¥) (G) of Z(G)
can be deduced from a sample Z*) (G,) of Z(G,) by

z20(G) = i + (1 = pu)2M (Go).

If s and t are merged into final single node, the unreliability of G, is equal to 0 and
then Z0(G) = my + (1 — py) x 0 = 7. If s and t are not connected, unreliability
of G, is equal to 1 and then Z*)(G) = 7y + (1 — py) x 1 = 1. Otherwise, we found
an st-cut in G, and we proceed again as before. The main interest of this procedure is
that G, is smaller than G, and sometimes much smaller, because of the series-parallel
simplifications, deletions and contractions operations.

A function which returns a trial of Z(G) can be summarized as follows:

TRIAL-RVR(G, K)

1. Check end recursion condition:
If K| = 1 return(0)
If G is not KC-connected return(1)
. Construct sp-red(G) by applying series-parallel reductions to G
. Find a IC-cut 7t in sp-red(G): m = {l,..., Iy}
. Compute the probability 7ty that all links in 7t are down
. Compute the p.m.f. distribution of the r.v. V
. Generate a trial v of V
. Construct the network G, = sp-red((G — 11 —lb —--- —I,_1) x 1)
8. Recursive step: return(rty + (1 — 7ty) x Trial- RVR(gv,KU))

The memory space complexity of the function TRIAL-RVR(G, K) is of order O(|E|(|€] +
|V])) and time complexity is, in the worst case, of order O(|€|(|K|?|€||V]?)). The worst
case corresponds to a version using a maximal flow procedure in order to select a K-cut
7t at step 3 of the above algorithm.

N O ok WwN
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By calling N times the function TRIAL-RVR (G, K), we obtain N independent trials
Z®(G) of Z(G), 1 < k < N. The sample mean Z(G) of these trials leads to an estimate
of Q =1 — R and the variance is estimated by

N
Vrvr = mk; <2(g) — Z(k)<g)>2.

In [12] it is shown how the computational complexity of the RVR method can be
improved by generating simultaneously the N samples, and in that way avoiding repli-
cating a large part of the computations, and [13] discusses the sensitivity of the RVR’s
accuracy to the strategy of choosing cuts. Instead of using cuts for recursively changes
the original problem into smaller one, the method in [10] exploits paths and the one
in [14] exploits both paths and cuts leading to a more interesting behavior than the
versions based on only paths or cuts.

7.5 Numerical Results and conclusions

To the best of our knowledge, the CE-MP method [36] which uses the Cross-Entropy
technique to further improve the performances of the Merge Process method [28] and
the RVR technique which exploits series-parallel reductions and a minimum cost s, t-cut
strategy [13], where each link ! is valued by — In(g;), are the more adapted procedures
published in the literature to compute network reliability in a rare event context. In this
section we present some numerical illustrations of these methods.

| Network | common link unreliability g | Q |
Gs3 1072 4.01199 x 10~%
Gs 10°° 4.00001 x 10~
Ge 107 4.00800 x 10~%
Ge 10°° 4.00001 x 102

Table 7.1: Exact unreliabilities of grid networks (see Figure 7.1) used for numerical
illustrations [36].

For the examples, we consider highly reliable grid topologies Gz and G (see Figure
7.1), where links are assigned equal unreliability g = 103 org = 10 ° as in [36] and K
is the set of the four corner nodes. For those networks exact values of Q = 1 — R are
tabulated at column 3 of Table 7.1. Each exact unreliability Q serves in the computation
of the relative error parameter which helps to appreciate the quality of the estimates
produced by the two considered estimators. Tables 7.2 and 7.3 show that both methods
lead to small relative errors and the RVR method offers more accurate estimates. In
the general case, we do not know the exact values. Then, the best estimator in terms
of accuracy is the one having smaller variance for a fixed sample size N, leading to
smallest lengths of confidence intervals. Column 6 of Table 7.3 shows that the RVR
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Figure 7.1: G;: the grid network topology. The four corner nodes are the terminals.

Network q Estimate of Q [36] RE (%) Variance[36]
G 1073 | 4.01172 x107% [ 6.73 x 10~ | 1.84515 x 10~
Gs 107 | 3.99876 x 10~1> | 3.12 x 1079 | 1.85116 x 10~
Ge 1073 | 4.00239 x 1079 [ 1.40 x 10~ | 3.74067 x 10~/
Ge 107% [ 3.99869 x 1012 [ 3.30 x 1079 | 3.75850 x 10~ %

Table 7.2: Performances of the MP-CE method for the evaluation of G3 and Gg. Termi-
nals are the four corner nodes and N = 10°.

method reduces significantly the variance with respect to the CE-MP one and the best
gains are obtained for highly reliable cases.

For illustrating the behavior of the RVR method on dense networks, let us now con-
sider the evaluation of complete topologies for which we calculate the exact values of
Q by a Maple program and we tabulate them at the column 2 of Table 7.4. We consider
a sample size N = 10 for each network. The estimates obtained by the RVR method
are given in column 3, associated relative errors and variances are in column 4 and 5
respectively. At column 6, we give the variance-gains when RVR method is compared
to the Crude Monte Carlo one. The CMC'’s variance is equal to Q(1 — Q)/N. We can

Network q Estimate of Q RE (%) Variance Vee—mp/ Vrvr
Gs 10~% | 4.01208 x 1079 | 2.16 x 1079 [ 3.01610 x 10~ | 6.12 x 107%
G 1079 [3.99992 x 10 12 [ 2.31 x 10~ % | 1.00018 x 10 % | 1.85 x 1010°
Ge 10-% | 4.00803 x 1079 | 7.49 x 107 %% | 4.02467 x 102! | 9.29 x 107%
Ge 1079 [ 4.00001 x 10 12 [ 5.00 x 10~ % | 3.99998 x 103 | 9.40 x 1010°

Table 7.3: Performances of the RVR method for the evaluation of G3 and G¢. Terminals
are the four corner nodes and N = 10°.
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Network Q Estimate RE (%) Variance Veme/ Vrvr
C1o 4.58481e — 02 | 4.67262¢ — 02 | 1.92¢ + 00 | 6.57617¢ — 06 | 6.65¢ + 02
Coo 2.33295¢ — 04 | 2.32376¢ — 04 | 3.94¢ — 01 | 2.07036e — 11 | 1.13e + 06
Cso 8.86419¢ — 07 | 8.74893e — 07 | 1.30e + 00 | 4.59076e — 16 | 1.93¢ + 08
Cyo 2.99368¢ — 09 | 3.00302¢ — 09 | 3.12¢ — 01 | 1.07423e —21 | 2.79¢ + 11
Cso 9.47855e — 12 | 9.58856e — 12 | 1.16e + 00 | 1.84357¢e —26 | 5.14¢ + 13

Table 7.4: Performances of the RVR method for the evaluation of complete networks.
K =V, the common link unreliability g is equal to 0.55 and the sample size N is equal
to 10.

see that relative errors are acceptable for all considered cases even if the sample size is
small (N = 10) and substantial gains in variance are obtained for all cases. In particu-
lar, the improvement of RVR over Crude Monte Carlo increases with the rarity of the
considered event.

7.6 Conclusions

As the reader can see, the literature on this topic is considerable, and the number of
ideas that have been explored so far to deal with rare event in the network reliability
family of metrics is high. One of the reasons of this is probably the fact that the compu-
tational cost of the exact computation of these measures of the quality of a system face
to the failures of the components is extremely high.

In the chapter, we underlined the qualities of some of the methods that have been
presented, and we can say that the algorithmic development in the area has reached
pretty good performances. Most of the methods combine, on one hand, the applica-
tion of some general probabilistic properties, and on the other the exploitation of the
particular structure of the network reliability evaluation problem, in order to reach an
efficient solution. The ideas based on putting the problem in terms of a dynamic aux-
iliary model, and the methods that operate recursively on the network while using
polynomial reduction techniques appear as the most promising ones. In both cases,
even if there are some results about the complexity of the procedures as a function of
some graph properties, and about their theoretical efficiencies, a considerable research
effort is still needed to better understand their behavior.

Bibliography

[1] F. Altiparmak, B. Dengiz, and A. E. Smith. Optimal design of reliable computer
networks: A comparison of metaheuristics. Journal of Heuristics, 9(6):471-487, 2003.

[2] F. Altiparmak, M. Gen, B. Dengiz, and A. Smith. A network-based genetic algo-
rithm for design of communication networks. Journal of Society of Plant Engineers
Japan, 15(4):184-190, 2004.



174 CHAPTER 7. STATIC MODELS

[3] M. O. Ball. Computational complexity of network reliability analysis: An
overview. IEEE Transactions on Reliability, R-35(3), 1986.

[4] M. O. Ball, C. J. Colbourn, and J. S. Provan. Network reliability. In Handbook of
Operations Research: Network Models, pages 673-762. Elsevier North-Holland, 1995.

[5] B. Bardn and F. Laufer. Topological optimization of reliable networks using a-
teams. In Proceedings of World Multiconference on Systemics, Cybernetics and Infor-
matics, 1999.

[6] E. E. Barlow and F. Proschan. Statistical Theory of Reliability and Life Testing.
Holt, Rinehart & Winston, New York, 1975.

[7] Y. K. Belyayev, B. V. Gnedenko, and A. D. Solovyev. Mathematical Methods of Relia-
bility Theory. Academic Press, New York, 1969.

[8] H. Cancela and M. El Khadiri. A recursive variance-reduction algorithm for
estimating communication-network reliability. IEEE Transactions on Reliability,
44(4):595-602, December 1995.

[9] H.Cancela and M. El Khadiri. An improvement to the total hazard method for sys-
tem reliability simulation. Probability in the Engineering and Informational Sciences,
10(2):187-196, 1996.

[10] H.Cancela and M. El Khadiri. A simulation algorithm for source-terminal commu-
nication network reliability. In Proceedings of the 29th Annual Simulation Symposium,
pages 155-161, New Orleans, Louisiana, April 1996. IEEE Computer Society Press.

[11] H. Cancela and M. El Khadiri. Series-parallel reductions in Monte Carlo network
reliability evaluation. IEEE Transactions Rel., 47(2):159-164, June 1998.

[12] H. Cancela and M. El Khadiri. On the RVR simulation algorithm for network
reliability evaluation. IEEE Transactions Rel., 52(2):207-212, June 2003.

[13] H. Cancela and M. El Khadiri. On the accuracy of the RVR estimator of K-terminal
unreliability parameter. In 7th International Workshop on Rare Event Simulation
(RESIM 2008), Rennes, France, September 2008.

[14] H. Cancela, M. El Khadiri, and G. Rubino. An efficient simulation method for K-
network reliability problem. In 6th International Workshop on Rare Event Simulation
(RESIM 2006), Bamberg, Germany, October 2006.

[15] H. Cancela, L. Murray, and G. Rubino. Splitting in source-terminal network reli-
ability estimation. In 7th International Workshop on Rare Event Simulation (RESIM
2008), Rennes, France, September 2008.

[16] H. Cancela, G. Rubino, and M. E. Urquhart. Path set based conditioning for tran-
sient simulation of highly dependable networks. In 7th IFAC Symposium on Cost
Oriented Automation, Gatineau/Ottawa, Canada, June 2004.



BIBLIOGRAPHY 175

[17] H.Cancela and M. E. Urquhart. RVR simulation techniques for residual connected-
ness network reliability evaluation. IEEE Transactions on Computers, 51(4):439—443,
April 2002.

[18] C.]J. Colbourn. The Combinatorics of Network Reliability. Oxford University Press,
New York, 1987.

[19] J. L. Cook and J. E. Ramirez-Marquez. Two-terminal reliability analyses for a mo-
bile ad hoc wireless network. Reliability engineering and systems safety, 92(6):821-
829, 2007.

[20] D. Deeter and A. Smith. Heuristic optimization of network design considering all-
terminal reliability. In Proceedings Annual Reliability and Maintainability Symposium,
pages 194-199, 1997.

[21] D. Deeter and A Smith. Economic design of reliable networks. IIE Transactions,
30(12):1161-1174, 1998.

[22] B. Dengiz, F. Altiparmak, and A.E. Smith. Efficient optimization of all-terminal
reliable networks, using an evolutionary approach. IEEE Transactions on Reliability,
46(1):18-26, 1997.

[23] B. Dengiz, F. Altiparmak, and A.E. Smith. Local search genetic algorithm for op-
timal design of reliable networks. IEEE Transactions on Evolutionary Computation,
1(3):179-188, 1997.

[24] S. Duarte and B. Bardn. Multiobjective network design optimisation using parallel
evolutionary algorithms (text in spanish). In XXVII Conferencia Latinoamericana de

InformSvatica, 2001.

[25] S. Duarte, B. Bardn, and D. Benitez. Telecommunication network design with par-
allel multi-objective evolutionary algorithms. In Proceedings of the 2003 IFIP/ACM
Latin America conference, pages 1 —11. ACM, 2003.

[26] M. El Khadiri and G. Rubino. A Monte-Carlo method based on antithetic variates
for network reliability computations. Technical Report 626, IRISA, Campus de
Beaulieu, 35042 Rennes, France, 1992.

[27] M. El Khadiri and G. Rubino. Reliability evaluation of communication networks.
In SAFECOMP’92, International Conference on Safety, Security and Reliability of Com-
puters, Zurich, Suisse, October 1992.

[28] T. Elperin, I. Gertsbakh, and M. Lomonosov. Estimation of network reliability
using graph evolution models. IEEE Transactions on Reliability, 40(5), 1991.

[29] G. S. Fishman. A comparison of four Monte Carlo methods for estimating the
probability of s-t conectedness. IEEE Transactions on Reliability, R-35(2), June 1986.



176 CHAPTER 7. STATIC MODELS

[30] G.S. Fishman. A Monte Carlo sampling plan for estimating network reliability.
Operational Research, 34, 1986.

[31] L. B. Gertsbakh. Statistical Reliability Theory. Marcel Dekker, Inc., New York and
Bassel, 1989.

[32] M. Grotschel, C. L. Monma, and M. Stoer. Computational results with a cutting
plane algorithm for designing communication networks with low-connectivity

constraints. Technical Report 188, Institiit fur Mathematik, Universitdt Augsburg,
Allemagne, 1989.

[33] M. Grotschel, C. L. Monma, and M. Stoer. Polyhedral approaches for network sur-
vivability. Technical Report 189, Institiit fur Mathematik, Universitat Augsburg,
Allemagne, 1990.

[34] D. Giinnec and F. S. Salman. Assessing the reliability and the expected perfor-
mance of a network under disaster risk. In Proceedings of the International Network
Optimization Conference, INOC 2007, Spa, Belgium, 2007.

[35] K.-P. Hui, N. Bean, M. Kraetzl, and D. Kroese. The tree cut and merge algorithm
for estimation of network reliability. Probability in the Engineering and Informational
Sciences, 17:23-45, 2003.

[36] K-P. Hui, N. Bean, M. Kraetzl, and Dirk Kroese. The cross-entropy method for net-
work reliability estimation. Annals of Operations Research, 134:101-118(18), Febru-
ary 2005.

[37] Kin-Ping Hui. Monte Carlo Network Reliability Ranking Estimation. IEEE Trans-
actions on Reliability, 56(1):50-57, March 2007.

[38] R. Karp and M.G. Luby. A new Monte Carlo method for estimating the failure
probability of an n-component system. Computer Science Division, University of
California(Berkeley), 1983.

[39] Hui Kroese, D. P, K.-P.,, and S. Nariai. Network Reliability Optimization via the
Cross-Entropy Method. IEEE Transactions on Reliability, 56(2):275-287, June 2007.

[40] H. Kumamoto, K. Tanaka, and K. Inoue. Efficient evaluation of system reliability
by monte carlo method. IEEE Transactions on Reliability, R-26(5), Dec. 1977.

[41] H. Kumamoto, K. Tanaka, K. Inoue, and E. J. Henley. Dagger-sampling Monte
Carlo for system unavailability evaluation. IEEE Transactions on Reliability, R-29(2),
June 1980.

[42] A. Kumar, R Pathak, and M Gupta. Genetic algorithm based approach for de-
signing computer network topology. In Proceedings of the 1993 ACM Conference on
Computer Science, pages 358-365, 1993.



BIBLIOGRAPHY 177

[43] Lin L. and M. Gen. A self-controlled genetic algorithm for reliable communica-
tion network design. In IEEE Congress on Evolutionary Computation, pages 640647,
2006.

[44] Yan Li. Measuring individual residence’s accessible probability by using geo-
graphical information systems. In Proceedings of the 2nd Symposium on Transporta-
tion Network Reliability (INSTR 2004), pages vol.3, pp. 239 —244, Christchurch, New
Zealand, 2004.

[45] M. O. Locks and A. Satyanarayana, editors. Network Reliability — The State of the
Art, volume R-35, No. 3. IEEE Transactions on Reliability, 1986.

[46] M. Marseguerra, E. Zio, L. Podofillini, and D. Coit. Optimal design of reliable net-
work systems in presence of uncertainty. IEEE Transactions on Reliability, 54(2):243—
253, 2005.

[47] C.K. Wong M.C. Easton. Sequential destruction method for Monte Carlo evalua-
tion of system reliability. IEEE Transactions on Reliability, R-29(1), April 1980.

[48] L. Murray and H. Cancela. Comparison of five monte carlo methods to estimate
the network diameter constrained reliability. In Proceedings of CLEI 2007 (Latin
American Conference on Informatics), San José, Costa Rica, October 2007.

[49] Nobuoto Nojima. Prioritization in upgrading seismic performance of road net-
work based on system reliability analysis. In Third China-Japan-US Trilateral Sym-
posium on Lifeline Earthquake Engineering, Kunming, China, 1998.

[50] P. Premprayoon and P. Wardkein. Topological communication network design
using ant colony optimization. In The 7th International Conference on Advanced Com-
munication Technology, pages 1147-1151, 2005.

[51] ]J. S. Provan. Bounds on the reliability of networks. IEEE Transactions on Reliability,
R-35(3), 1986.

[52] ]J.S. Provan and M.O. Ball. Computing network reliability in time polynomial in
the number of cuts. Operational Research, 32, 1984.

[53] S. Ross. System reliability evaluation by simulation: random hazards versus im-
portance sampling. Probability in the Engineering and Informational Sciences, 6:119—
126, 1992.

[54] S.M. Ross. Variance reduction in simulation via random hazard. Probability in the
Engineering and Informational Sciences, 4, 1990.

[55] G. Rubino. Network reliability evaluation. In K. Bagchi and J. Walrand, editors,
State-of-the art in performance modeling and simulation. Gordon and Breach Books,
1998.



178 CHAPTER 7. STATIC MODELS

[56] B. Sanso and F. Soumis. Communication and transportation networks reliability
using routing models. IEEE Transactions on Reliability, R-30(5), 1981.

[57] H. A. Taboada, F. Baheranwala, and D. W. Coit. Practical solutions for multi-
objective optimization: An application to system reliability design problems. Reli-
ability Engineering and System Safety, 92:314-322, 2007.

[58] H. A. Taboada, J. Espiritu, and D. W. Coit. Moms-ga: A multi-objective multi-
state genetic algorithm for system reliability optimization design problems. IEEE
Transactions on Reliability, 57(1), 2007.

[59] L. G. Valiant. The complexity of enumeration and reliability problems. SIAM
Journal of Computing, 8:410-421, 1979.

[60] R.M. Van Slyke and H. Frank. Network reliability analysis: part i. Networks, 1,
1972.

[61] H. Wakabayashi. Network reliability improvement: Probability importance and
criticality importance. In Proceedings of the 2nd Symposium on Transportation Network
Reliability (INSTR 2004), pages vol.3, pp. 204-210, Christchurch, New Zealand,
2004.



