
Thinking the Unthinkable: 
The Story of Complex Numbers 

(with a Moral) 

ISRAEL 

'L.. USUAL DEFINITION of complex numbers, 
either as ordered pairs (a, b) of real numbers or as 
"numbers" of the form a + bi, does not give any 
indication of their long and tortuous evolution, 
which lasted about three hundred years. I want to 
describe this evolution very briefly because I think 
some lessons can be learned from this story, just as 
from many other such stories concerning the evo
lution of a concept, result, or theory. These lessons 
have to do with the impact of the history of math
ematics on our Understanding of mathematics and 
on our effectiveness in teaching it. But more about 
the moral of this story later. 

Birth 

This story begins in 1545. What carne earlier can 
be summarized by the following quotation from 
Bhaskara, a twelfth-century Hindu mathemati

cian (Dantzig 1967): 

The square of a positive number, also that of a 
negative number, is positive; and the square root of 
a positive number is two-fold, positive and negative; 
there is no square root of a negative number, for a 
negative number is not a square. 
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KLEINER 

Jerome Cardan {1501-1576) 

From A Portfolio of Eminent Mathematicians, ed. David Eugene 
Smith {Chicago: Open Court, 1896) 

In 1545 Jerome Cardan, an Italian mathemati

cian, physician, gambler, and philosopher, pub
lished a book entitled Ars Magna (The great art), 
in which he described an algebraic method for 
solving cubic and quartic equations. This book was 
a great event in mathematics. It was the first major 

achievement in algebra since the time, 3000 years 
earlier, when the Babylonians showed how to solve 
quadratic equations. Cardan, too, dealt with qua
dratics in his book. One of the problems he pro
posed is the following (Struik 1969): 

If some one says to you, divide 10 into two parts, one 
of which multiplied into the other shall produce ... 
40, it is evident that this case or question is impos
sible. Nevertheless, we shall solve it in this fashion. 
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Cardan then applied his algorithm (essentially 
the method of completing the square) to x + y = 10 
and xy = 40 to get the two numbers 5 + ,t=l5 and 
5 - ..J-15. Moreover, "putting aside the mental 
tortures involved" (Burton 1985), Cardan formally 
multiplied 5 + '-1-15 by 5 - '-1-15 and obtained 40. 
He did not pursue the marter but concluded that 
the result was "as subtle as it is useless" (NCTM 

1969). Although eventually rejected, this event 
was nevertheless historic, since it was the first time 

ever that the square root of a negative number was 
explicitly written down. And, as Dantzig (1985) 
has observed, "the mere writing down of the im

possible gave it a symbolic existence." 
In the solution of the cubic equation, square 

roots of negative numbers had to be reckoned 
with. Cardan's solution for the cubic x3 = ax + b 
was given as 

+ J(~)- )(~)'-(;)', 
the so-called Cardan formula. When applied to 
the historic example x3 = 15x + 4, the formula 

yields 

X = '112 d-121 + '1/2- ..J-121. 

Although Cardan claimed that his general formula 
for the solution of the cubic was inapplicable in 
this case (because of the appearance of ..J-121), 

square roots of negative numbers could no longer 
be so lightly dismissed. Whereas for the quadratic 
(e.g., x 2 + 1 = 0) one could say that no solution 
exists, for the cubic x3 = 15x + 4 a real solution, 
namely x = 4, does exist; in fact, the two other 
solutions, -2 ± f3, are also real. It now remained 
to reconcile the formal and "meaningless" solution 

of x 3 = 15x + 4, found by using Cardan's formula, 
with the solution x = 4, found by inspection. The 
task was undertaken by the hydraulic engineer 
Rafael Bombelli about thirty years after the publi
cation ofCardan's work. 

Bombelli had the "wild thought" that since the 
radicands 2 + ..J-121 and 2 - ..J-121 differ only in 
sign, the same might be true of their cube roots. 
Thus, he let 

and 

and proceeded to solve for a and b by manipulating 
these expressions according to the established rules 
for real variables. He deduced that a = 2 and b = 1 
and thereby showed that, indeed, 

= (2 + ..J-i) + (2- R) = 4 

(Burton 1985). Bombelli had thus given meaning 
to the "meaningless." This event signaled the birth 
of complex numbers. In his own words (Leapfrogs 
1980): 

It was a wild thought, in the judgement of many; 
and I too was for a long time of the same opinion. 
The whole matter seemed to rest on sophistry rather 
than on truth. Yet I sought so long, until I actually 
proved this to be the case. 

Of course, breakthroughs are achieved in this 
way-by thinking the unthinkable and daring to 
present it in public. 

The equation x3 = 15x + 4 represents the so
called irreducible case of the cubic, in which all 
three solutions are real yet they are expressed (by 
Cardan's formula) by means of complex numbers. 
To resolve the apparent paradox of cubic equa
tions exemplified by this type of equation, Bombelli 
developed a calculus of operations with complex 
numbers. His rules, in our symbolism, are(± 1)i = 
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±i, (+i)(+i)=-1, (-i)(+i)=+1, (±1)(-i)= + 
i, (+ i)(- i) = + 1, and (- i)(- i) = -1. He also 
considered examples involving addition and 
multiplication of complex numbers, such as 8i + 

(-5i) = + 3i and 

c -'i4 + ..J2i)(lJ3 + f&) =lis+ 11..f2i. 

Bombelli thus laid the foundation stone of the 
theory of complex numbers. 

Many textbooks, even at the university level, 
suggest that complex numbers arose in connection 
with the solution of quadratic equations, especially 
the equation x 2 + 1 = 0. As indicated previously, 
the cubic rather than the quadratic equation forced 
the introduction of complex numbers. 

Growth 

Bombelli's work was only the beginning of the 
saga of complex numbers. Although his book 
L'Algebra was widely read, complex numbers were 
shrouded in mystery, little understood, and often 
entirely ignored. Witness Simon Stevin's remark 
in 1585 about them (Crossley 1980): 

There is enough legitimate matter, even infinitely 
much, to exercise oneself without occupying oneself 
and wasting time on uncertainties. 

Similar doubts concerning the meaning and 
legitimacy of complex numbers persisted for two 
and a half centuries. Nevertheless, during that same 
period complex numbers were extensively used and 
a considerable amount of theoretical work was 
done. We illustrate this work with a number of 
examples. 

fu early as 1620, Albert Girard suggested that 
an equation of degree n may have n roots. Such 
statements of the fundamental theorem of algebra 
were, however, vague and unclear. For example, 
Rene Descartes, who coined the unfortunate word 
"imaginary" for the new numbers, stated that al
though one can i~agine that every equation has as 
many roots as is indicated by its degree, no (real) 
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numbers correspond to some of these imagined 
roots. 

The following quotation, from a letter in 1673 
from Christian Huygens to Gottfried von Leibniz 
in response to the latter's letter that contained the 
identity 

was typical of the period (Crossley 1980): 

The remark which you make concerning 
imaginary quantities which, however, when added 
together yield a real quantity, is surprising and 
entirely novel. One would never have believed that 

-.11 + .pj + -.11--Pl 

make ...f6 and there is something hidden therein 
which is incomprehensible to me. 

Gottfried Wilhelm von Leibniz (1646-1716) 

From A Portfolio ofEminent Mathematicians, ed. David Eugene 
Smith (Chicago: Open Court, 1896) 

Leibniz, who spent considerable time and ef
fort on the question of the meaning of complex 
numbers and the possibility of deriving reliable 
results by applying the ordinary laws of algebra to 
them, thought of them as "a fine and wonderful 
refuge of the divine spirit-almost an amphibian 
between being and non-being" (Leapfrogs 1980). 

Complex numbers were widely used in the 
eighteenth century. Leibniz and John Bernoulli 
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used imaginary numbers as an aid to integration. 
For example, 

f 1 f 1 ---dx = dx 
x 2 + a2 (x + ai)(x- ai) 

1 f 1 1 =-- (-----)dx 
2ai x+ai x-ai 

1 

2ai 

[log (x + ai) -log (x- ai)]. This use, in tum, raised 
questions about the meaning of the logarithm of 
complex as well as negative numbers. A heated con
troversy ensued between Leibniz and Bernoulli. 

Leibniz claimed, for example, that log i = 0, arguing 
that log ( -1)2 =log 12

, and hence 2 iog ( -1) = 2log 
1 = 0; thus log ( -1) = 0, and hence 0 =log( -1) =log 
i' = 2 log i, from which it follows that log i = 0. 
Bernoulli opted for log i = (1ti)/2; this equation 
follows from Euler's identity e" = - 1, which implies 
thatlog ( -1) = 1ti and hence thatlog i = hlog ( -1) = 
(1ti)/2, although this argument is not the one that 
Bernoulli used. The controversy was subsequently 
resolved by Leonhard Euler (Leapfrogs 1978). 

Complex numbers were used by Johann Lam
bert for map projection, by Jean D'Alembert in 
hydrodynamics, and by Euler, D'Alembert, and 
Joseph-Lonis Lagrange in incorrect proofs of the 
fundamental theorem of algebra. (Euler, by the 
way, was the first to designate ..J=1 by i.) 

Euler, who made fundamental use of complex 
numbers in linking the exponential and trigono
metric functions by the formula eix =cos x + i sin x, 

expressed himself about them in the following way 
(Kline 1972): 

Because all conceivable numbers are either greater 
than zero, less than zero or equal to zero, then it is 
clear that the square root of negative numbers can
not be included among the possible numbers .... 
And this circumstance leads us to the concept of 
such numbers, which by their nature are impossible 
and ordinarily are called imaginary or fancied num
bers, because they exist only in the imagination. 

Even the great Carl Friedrich Gauss, who in 
his doctoral thesis of1797 gave the first essentially 

Leonhard Euler (1707-1783) 

From A Portfolio ofEminent Mathematicians, ed. David Eugene 
Smith (Chicago: Open Court, 1908) 

correct proof of the fundamental theorem of alge
bra, claimed as late as 1825 that "the true meta
physics of v=J. is elusive" (Kline 1972). 

It should be pointed out that the desire for a 
logically satisfactory explanation of complex num
bers became manifest in the latter part of the 
eighteenth century, on philosophical, if not on 
utilitarian, grounds. With the advent of the Age of 
Reason in the eighteenth century, when math
ematics was held up as a model to be followed, not 
only in the natural sciences but in philosophy as 
well as political and social thought, the inadequacy 
of a rational explanation of complex numbers was 
disturbing. 

The problem of the logical justification of the 
laws of operation with negative and complex num

bers also hearne a pressing pedagogical issue at, 
among other places, Cambridge University at the 
tum of the nineteenth century. Since mathematics 
was viewed by the educational institutions as a 
paradigm of rational thought, the glaring inad
equacies in the logical justification of the opera
tions with negative and complex numbers became 
untenable. Such questions as, 'Why does 2 X i + i = 
2?" and "Is ...[;;;; = ,Ja ...fb true for negative a and b?" 
received no satisfactory answers. Ill fact, Euler, in 
his text of the 1760s on algebra, claimed 
...J=f '1/-4 = ...f4 = + 2 as a possible result. Robert 
Woodhouse opined in 1802 that since imaginary 
numbers lead to right conclusions, they must have 
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Karl Friedrich Gauss (1777-1855} 

From A Portfolio afEminent Mathematicians, ed. David Eugene 
Smith (Chicago: Open Court, 1908) 

a logic. Around 1830 George Peacock and others 
at Cambridge set for themselves the task of deter
mining that logic by codifYing the laws of opera
tion with numbers. Although their endeavor did 
not satisfactorily resolve the problem of the com
plex numbers, it was perhaps the earliest instance 
of"axiomatics" in algebra. 

By 1831 Gauss had overcome his scruples con
cerning complex numbers and, in connection with 
a work on number theory, published his results on 
the geometric representation of complex numbers 
as points in the plane. Similar representations by 
the Norwegian surveyor Caspar Wessel in 1797 
and by the Swiss clerk Jean-Robert Argand in 
1806 went largely unnoticed. The geometric rep
resentation, given Gauss's stamp of approval, dis
pelled much of the mystery surrounding complex 
numbers. In the next two decades further develop
ment took place. In 1833 William Rowan Hamil
ton gave an essentially rigorous algebraic defini
tion of complex numbers as pairs of real numbers. 
(To Hamilton the complex number (a, b) con
sisted of a pair of"moments of time," since he had 
earlier defined real numbers, under Immanuel 

Kant's influence, as "moments of time.") In 1847 
Augustin-Louis Cauchy gave a completely rigor
ous and abstract definition of complex numbers in 
terms of congruence classes of real polynomials 
modulo x 2 + 1. In this, Cauchy modeled himself 
on Gauss's definition of congruences for integers 
(Kline 1972). 

Maturity 

By the latter part of the nineteenth century all 
vestiges of mystery and distrust of complex num
bers could be said to have disappeared, although a 
lack of confidence in them persisted among some 
textbook writers well into the twentieth century. 
These authors would often supplement proofs us
ing imaginary numbers with proofs that did not 
involve them. Complex numbers could now be 
viewed in the following ways: 

1. Points or vectors in the plane 
2. Ordered pairs of real numbers 
3. Operators (i.e., rotations of vectors in the plane) 
4. Numbers of the form a + bi, with a and b 

real numbers 
5. Polynomials with real coefficients modulo 

x 2 + 1 
6. Matrices of the form 

[_~ !1 
with a and b real numbers 

7. An algebraically closed, complete field 
(This is an early twentieth-century view.) 

Although the preceding various ways of view
ing the complex numbers might seem confusing 
rather than enlightening, it is of course common

place in mathematics to gain a better understand
ing of a given concept, result, or theory by viewing 
it in as many contexts and from as many points of 
view as possible. 

The foregoing descriptions of complex num
bers are not the end of the story. Various develop
ments in mathematics in the nineteenth century 
enable us to gain a deeper insight into the role of 
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William Rowan Hamilton (1805-1865} 

complex numbers in mathematics and in other 
areas. Thus, complex numbers. offer just the right 
setting for dealing with many problems in math
ematics in such diverse areas as algebra, analysis, 
geometry, and number theory. They have a sym
metry and completeness that is often lacking in 
such mathematical systems as the integers and real 
numbers. Some of the masters who made funda
mental contributions to these areas say it best: The 
following three quotations are by Gauss in 1801, 
Riemann in 1851, and Hadamard in the 1890s, 
respectively: 

Analysis ... would lose immensely in beauty and 
balance and would be forced to add very hampering 
restrictions to truths which would hold generally 
otherwise, if . . . imaginary quantities were to be 
neglected. (Birkhoff1973) 

The origin and immediate purpose of the introduc
tion of complex magnitudes into mathematics lie in 
the theory of simple laws of dependence betw"een 
variable magnirudes expressed by means of opera
tions on magnirudes. If we enlarge the scope of 
applications of these laws by assigning to the vari
ables they involve complex values, then there ap
pears an otherwise hidden harmony and regularity. 

(Ebbinghaus 1983) 

The shortest path between two truths in the real 
domain passes through the complex domain. 

(Kline 1972) 

The descriptions of such developments are 
rather technical. Only the barest of illustrations 
can be given: 

(1) In algebra, the solution of polynomial equa
tions motivated the introduction of complex num
bers: Every equation with complex coefficients has 
a complex root-the so-called fundamental theo
rem of algebra. Beyond their use in the solution of 
algebraic polynomial equations, the complex num
bers offer an example of an algebraically closed 
field, relative to which many problems in linear 
algebra and other areas of abstract algebra have 
their "natural" solution. 

(2) In analysis, the nineteenth century saw the 
development of a powerful and beautiful branch of 
mathematics, namely complex function theory. We 
have already seen how the use of complex numbers 
gave. us deeper insight into the logarithmic, expo
nential, and trigonometric functions. Moreover, 
we can evaluate real integrals by means of C?mplex 
function theory. One indication of the efficacy of 
the theory is that a function in the complex do
main is infinitely differentiable if once differen
tiable. Such a result is, of course, false in the case of 
functions of a real variable (e.g.,f(x) = x 413). 

(3) The complex numbers lend symmetry and 
generality in the formulation and description of 
various branches of geometry, for example, Eu
clidean, inversive, and non-Euclidean. Thus, by 
the introduction of ideal points into the plane any 

two circles can now be said to intersect at' two 
points. This idea aids in the formulation and proof 
of many results. As another example, Gauss used 
the complex numbers to show that the regular 
polygon of seventeen sides is constructible with 
straightedge and compass. 

( 4) In number theory, certain Diophantine 

equations can be solved nearly and conceptually by 

the use of complex nurpbers. For example, the 
equation x 2 + 2 = y 3

, when expressed as (x + ..J2i) 
(x - -{21) = y 3, can readily be solved, in integers, 
using properties of the complex domain consisting 
of the se\ of elements of the form a + b ..J2i, with a 
and b integers. 
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(5) An elementary illustration of Hadamard's 
dictum that "the shortest path between two truths 
in the real domain passes through the complex 
domain" is supplied by the following proof that 
the product of sums of two squares of inte
gers is again a sum of two squares of integers; 
that is, 

(a 2 + b2)(c2 +d2
) = u2 + v 2, 

for some integers u and v. For, 

(a 2 + b2)(c2 + d'-) 
=(a+ bi)(a- bi)(c + di)(c- di) 

= [(a +bi)(c + di)][(a- bi)(c- di)] 

= (u + vi)(u- vi) 
= u2 + v2. 

Try to prove this result without the use of complex 
numbers and without being given the u and v in 
terms of a, b, c, and d. 

In addition to their fundamental uses in math
ematics, some of which were previously indicated, 
complex numbers have become a fixture in science 

· and technology. For example, they are used in 
quantum mechanics and in electric circuitry. The 
"impossible" has become not only possible but 
indispensable. 

The Moral 

Why the history of mathematics? Why bother 
with such "stories" as this one? Edwards (1974) 
puts it in a nutshell: 

Although the study of the history of mathematics 
has an intrinsic appe!ll of its own, its chief raison 
d'C:tre is surely the illumination of mathematics 
itself. 

My colleague Abe Shenitzer expresses it as fol
lows: 

One can invent mathematics withOut knowing much 
of its history. One can use mathematics without 
knowing much, if any, ofits history. But one cannot 

have a mature appreciation of mathematics without 
a substantial knowledge of its history. 

Such appreciation is essential for the teacher to 
possess. It can provide him or her with insight, 
motivation, and perspective-crucial ingredients 
in the making of a good teacher. Of course, whether 
this story has succeeded in achieving these objec
tives in relation to the complex numbers is for the 
reader to judge. However, beyond the immediate 
objective of lending insight, this story and others 
like it may furnish us with a slightly better under
standing of the nature and evolution of the math
ematical enterprise. It addresses such themes or 
issUes as the following: 

(1) The meaning of number in mathematics. 

Complex numbers do not fit readily into students' 
notions of what .a number is. And, of course, the 
meaning of number has changed over the centu
ries. This story presents a somewhat better per
spective on this issue. It also leads to the question 
of whether numbers beyond the complex numbers 
exist. 

(2) The relative roles of physical needs and intel

lectual curios£ty as motivating factors in the develop
ment of mathematics. In this connection it should 
be pointed out that the problem of the solution of 
the cubic, which motivated the introduction of 
complex numbers, was not a practical problem. 
Mathematicians already knew how to find ap
proximate roots of cubic equations. The issue was 
to find a theoretical algebraic formula for the solu
tion of the cubic-a question without any practical 
consequences. Yet how useful did the complex 
numbers turn out to be! This is a recurring theme 
in the evolution of mathematics. 

(3) The relative roles of intuition and logic in 

the evolut£on of mathematics. Rigor, formalism, and 
the logical development of a concept or result 
usually come at the· end of a process of math
ematical evolution. For complex numbers, too, first 
came use (theoretical rather than practical), then 
intuitive understanding, and finally abstract 
justification. 

717 



PART VIII/THE SEARCH FOR CERTAINTY 

( 4) The nature of proof in mathematics. This 
question is related to the preceding item. But 
although (3) addresses the evolution of complex 
numbers in its broad features, this item deals with 
local questions of proof and rigor in establishing 
various results about complex numbers (cf., e.g., 
the derivation of the value oflogi by von Leibniz 
and Bernoulli). One thing is certain-what was 
acceptable as a proof in the seventeenth and eigh
teenth centuries was no longer acceptable in the 
nineteenth and twentieth centuries. The concept 
of proof in mathematics has evolved over time, as 
it is still evolving, and not necessarily from the 
less to the more rigorous proof (cf. the recent 
proof, by means of the computer, of the four
color conjecture). Philip Davis goes a step further 
in outlining the evolution of mathematical ideas 
(Davis 1965): 

It is paradoxical that while mathematics has the 
reputation of being the one subject that brooks no 
contradictions, in reality it has a long history of 
successful living with contradictions. This is best 
seen in the extensions of the notion of number that 
have been made over a period of 2500 years. From 
limited sets ofintegers, to infinite sets of integers, to 
fractions, negative numbers, irrational numbers, 
complex numbers, transfinite numbers, each exten
sion, in its way, overcame a contradictory set of 
demands. 

(5) The relative roles of the individual and the 
environment in the creation of mathematics. What 
was the role of Bombelli as an individual in the 
creation of complex numbers? Cardan surely had 
the opportunity to take the great and courageous 
step of"thinking the unthinkable." Was the time 
perhaps not ripe for Cardan, but ripe for Bombelli 
about thirty years later? Is it the case, as John 
Bolyai stated, that "mathematical discoveries, like 
springtime violets in the woods, have their season 
which no human can hasten or retard" (Kline 
1972)? This conclusion certainly seems to be borne 
out by many instances of independent and simul
taneous discoveries in mathematics, such as the 
geometric representation of complex numbers by 

George P61ya (1887-1985) 

Courtesy ofBirkhauser Boston 

Wessell, Argand, and Gauss. The complex num
bers are an interesting case study of such ques
tions, to which, of course, we have no definitive 
answers. 

(6) The genetic principle in mathematics educa
tion. What are the sources of a given concept or 
theorem? Where did it come from? Why would 
anyone have bothered with it? These are fascinat
ing questions, and the teacher should at least be 
aware of the answers to such questions. "When and 
how he or she uses them in the classroom is an
other matter. On this matter George P6lya (1962) 
says the following: 

Having understood how the human race has ac
quired the knowledge of certain facts or concepts, 
we are in a better position to judge how the human 
child should acquire such knowledge. 

Can we not at least have a better appreciation 
of students' difficulties with the concept of com
plex numbers, having witnessed mathematicians 
of the first rank make mistakes, "prove" erroneous 
theorems, and often come to the right conclusions 
for insufficient or invalid reasons? 
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Some Suggestions for the Teacher 

Let me conclude with some comments on, and 
suggestions for, the use of the history of math
ematics in the teaching of mathematics, in par
ticular with reference to complex numbers. Many 
of the points are implicit in the preceding story. 

(1) I first want to reiterate what I view as the 
major contribution of this story for the teacher. 
P6lya (1962) puts it very well: 

To teach effectively a teacher must develop a feeling 
for his subject; he cannot make his students sense its 
vitality if he does not sense it himself. He cannot 
share his enthusiasm when he has no enthusiasm to 
share. How he makes his point may be as important 
as the point he makes; he must personally feel it to 
be important. 

The objective of my story, then, is to give the 
teacher some feeling for complex numbers, to im
bue him or her with some enthusiasm for complex 
numbers. 

When it comes to suggestions for classroom use, 
it cannot be overemphasized that these are only 
suggestions. The teacher, of course, can better judge 
when and how, at what level, and in what context to 
introduce and relate historical material to the discus
sion at hand. The introduction ofhistorical material 
can, however, convey to the studen~ the following 
important lessons, which are usually not imparted 
through the standard curriculum. 

(2) Mathematics is far from a static, lifeless 
discipline. It is dynamic, constandy evolving, full 
of failures as well as achievements. 

(3) Observation, analogy, induction, and in
tuition are the initial and often the more natural 
ways of acquiring mathematical knowledge. Rigor 
and proof usually come at the end of the process. 

( 4) Mathematicians usually create their subject 
without thought of practical applications. The lat
ter, if any, come later, sometimes centuries later. 
This point relates to "immediate relevance" and to 
"instant gratification," which students often seek 
from any given topic presented in class. 

(5) We must, of course, supply the student 
with "internal relevance" when introducing a given 
concept or result. This point brings us to the im
portant and difficult issue of motivation. To some 
students the applications of a theorem are appeal
ing; to others, the appeal is in the inner logical 
structure of the theorem. A third factor, useful but 
often neglected, is the source of the theorem: How 
did it arise? What motivated mathematicians to 
introduce it? With complex numbers, their origin 
in the solution of the cubic, rather than the qua
dratic, should be stressed. Cardan's artempted di
vision of ten into two parts whose product is forty 
reinforces this point. How mUch further one con
tinues with the historical account is a decision 
better made by the teacher in the classroom, bear
ing in mind the lessons that should be conveyed 
through this or similar historical material. 

(6) Historical projects deriving from this story 
about complex numbers can be given to able students 
as topics for research and presentation to, say, a 
mathematics club. Possible topics are the following: 

(a) The logarithms of negative and 
complex numbers. 

(b) What is a number? That is, discuss the 
evolution of various number systems and the evo
lution of our conception of what a number is. 

(c) Hypercomplex numbers (e.g., the 
quaternions ). Their discovery is another fascinating 
story. 

(d) Gauss's congruences of integers and 
Cauchy's congruences of polynomials. The latter 
lead to a new definition (description) of complex 
numbers. 

(e) An axiomatic characterization of 
complex numbers (see (7) under the heading 
"Maturity''). In this connection we ought to discuss 
the notion of characterizing a mathematical system, 
and thus the concept of isomorphism. (Cf. the 
various equivalent descriptions of complex numbers 
discussed previously.) 

(7) Many elementary and interesting illustra
tions of Hadamard's comment demonstrate that 
"the shortest path between t:vvo truths in the real 
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domain passes through the complex domain." We 

are referring to elementary results from various 

branches of mathematics, results whose statements 

do not contain complex numbers but whose "best" 

proofs often use complex numbers. One such ex

ample was given previously. Some others by Cell 

(1950),Jones (1954), and the NCTM (1969) can 

be found in the Bibliography. 
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