Obligatorio Combinatoria Analítica Rep. 1

UdelaR/Fing.

22 de Mayo de 2019

Ejercicio 8:

Primero recordamos como que sobre el conjunto de las series formales podemos definir una distancia. En efecto, dadas f, g series formales, se define

$$d(f,g) = \begin{cases} 2^{-\text{val}(f-g)} & \text{si } f \neq g \\ 0 & \text{si no} \end{cases}$$

donde val es el exponente del primer término no nulo de la serie.

Sea f_i la serie asociada a la clase $A^{[j]}$ y f la correspondiente a $A^{[\infty]}$.

La condición $A^{[j]}\subset A^{[j+1]}$ respetando la noción de tamaño significa que para todo $n,\,A_n^{[j]}\subset$

 $A_n^{[j+1]}$. Entonces, para todo n, la serie $([z^n]f_j)_{j\in\mathbb{N}}$ es creciente. Por otro lado, $A^{[\infty]} = \bigcup_{j=1}^\infty A^{[j]}$ implica $A_n^{[\infty]} = \bigcup_{j=1}^\infty A_n^{[j]}$ para todo n. Como $A_n^{[\infty]}$ es finito (por definición de clase combinatoria), la sucesión $([z^n]f_j)_{j\in\mathbb{N}}$ debe ser acotada, para cada n.

Como $([z^n]f_j)_{j\in\mathbb{N}}$ es creciente, acotada y entera, se deduce que para algún k_n estabiliza; es decir, se tiene $[z^n]f_j = [z^n]f_{k_n} \forall j \geq k_n$. Además es claro, dicho valor debe ser $[z^n]f_{\infty}$. Finalmente, veamos $f_{[\infty]} = \lim_n f_j$:

Dado $\epsilon > 0$, tomemos v de modo que $\frac{1}{2^v} < \epsilon$. Si tomamos $n_0 = \max\{k_1, ..., k_{v-1}\}$ y $n \ge n_0$, entonces $[z^i]f_n = [z^i]f_\infty$ para i < v. Por lo tanto, $\operatorname{val}(f_n - f_\infty) \ge v$, y, por definición de v, $d(f_n, f_\infty) < \epsilon$.

Ejercicio 16:

Parte I:

Observemos primero que la formula se puede reescribir como

$$P^{\langle k,l \rangle}(z) = \frac{(1 - z^{k+1}) \cdots (1 - z^{k+l})}{(1 - z) \cdots (1 - z^{l})}$$

Siguiendo la sugerencia en el libro, veamoslo la validez de la fórmula por inducción en l:

- Si l=1, $P^{< k,l>}(z)=P^{< k,1>}(z)=\frac{(1-z^{k+1})}{(1-z)}=\sum_{i=1}^k z^i$, lo cual indica indica que hay una única forma de escribir cada número entre 0 y k con 0 ó 1 sumando de tamaño menor o igual a k.
- Si $l \geq 1$, y suponiendo que $P^{< k, l>}$ tiene la forma indicada, veámoslo para $P^{< k, l+1>}$. Es decir, basta ver que $P^{< k, l+1>}(z) = \frac{1-z^{k+l+1}}{1-z^{l+1}} P^{< k, l>}(z)$, o lo que es lo mismo: $(1-z^{l+1})P^{< k, l+1>}(z) = (1-z^{k+l+1})P^{< k, l>}(z)$:

Si llamamos $p_n^{k,i}$ a $[z^n]P^{\langle k,i\rangle}$, observamos que lo úlitmo es equivalente a tener

$$p_n^{k,l+1} - p_{n-(l+1)}^{k,l+1} = p_n^{k,l} - p_{n-k-(l+1)}^{k,l}$$

, es decir

$$p_n^{k,l+1} - p_n^{k,l} = p_{n-(l+1)}^{k,l+1} - p_{n-k-(l+1)}^{k,l}$$

Verifiquemos la validez de ésta igualdad viendo que cada lado de igualdad resuelve el mismo problema de conteo:

- $-\ p_n^{k,l+1}-p_n^{k,l}$ es el número de particiones de n con a lo sumo k sumandos, de tamaño a lo sumo l+1, pero donde algún sumando és l+1.
- $-\ p_{n-(l+1)}^{k,l+1}$ puede pensarse como el número de particiones de n con a lo sumo k+1 sumandos, donde al menos uno de ellos es l+1.

 $p_{n-k-(l+1)}^{k,l}$ es la solución al problema de conteo

$$[\{x_1, \dots, x_k \in \{0 \dots l\} : x_1 + \dots + x_k = n - k - (l+1)\}]$$

 $^{1},$ o bien, sumando k de ambos lados y llamando y_{i} a $x_{i}+1,$ es equivalente a

$$[\{y_1, \dots, y_k \in \{1 \dots l+1\} : y_1 + \dots + y_k + (l+1) = n\}]$$

Entonces, $p_{n-k-(l+1)}^{k,l}$ denota al número de particiones de n con exáctamente k+1 sumandos, donde al menos uno de ellos es l+1.

Concluimos con que $p_{n-(l+1)}^{k,l+1} - p_{n-k-(l+1)}^{k,l}$ es también el número de particiones de n con a lo sumo k sumandos menores o iguales a l+1, donde al menos uno de ellos es l+1.

 $^{^{1}[\{...\}]}$ es mi notación para multiconjunto

Al haber probado el caso base y el caso inductivo, queda probada la afirmación.

Parte II:

Vemos que con $z \longrightarrow 1$, $P^{< k, l>}(z) \longrightarrow {k+l \choose l}$ por inducción en l:

- Si l=0, vimos que $P^{< k,l>}(z)=\sum_{i=1}^k z^i$, y cuando $z\longrightarrow 1$ tiende a $k+1={k+1\choose 1}$
- Si $l \ge 1$, $P^{< k, l>}(z) = \frac{1-z^{k+l}}{1-z^l} P^{< k, l-1>}(z)$, y como sabemos, $\binom{k+l}{l} = \frac{k+l}{l} \binom{k+l-1}{l-1}$, por lo que basta ver que $\frac{1-z^{k+l}}{1-z^l} \longrightarrow \frac{k+l}{l}$.

La regla de L'Hopital indica que $\lim_{z\longrightarrow 1}\frac{1-z^{k+l}}{1-z^l}=\lim_{z\longrightarrow 1}\frac{-(k+l)z^{k+l-1}}{-lz^{l-1}}=\frac{k+l}{l}$, con lo que queda probada la afirmación.

Ejercicio 59:

Teorema (Polya-Redfield): Sea G un grupo finito actuando sobre un conjunto X. Sea $\mathcal{B} = \overline{(B, w)}$ una clase combinatoria.

- Consideremos $\mathcal{B}^X = (B^X, \hat{w})$ como una clase combinatoria, donde $\hat{w}(f) = \prod_{x \in X} w(f(x))$
- Extendemos la acción a B^X , siendo $(g \cdot f)(x) = f(g \cdot x)^2$
- El conjunto de órbitas $\mathcal{B}^X/\mathcal{G}=(B^X/G,\hat{w})$ como clase combinatoria, ya que \hat{w} está bien definida³

Sea f la función generatriz de \mathcal{B}^X y \hat{f} la generatriz de $\mathcal{B}^X/\mathcal{G}$. La construcción

$$\mathcal{B}\mapsto \mathcal{B}^X/\mathcal{G}$$

es admisible y se tiene:

$$\hat{f}(z) = Z(G, f(z), ..., f(z^m))$$

siendo $Z(G,x_1,..,x_m)=\frac{1}{|G|}\sum_{g\in G}x_1^{c_1(g)}...x_m^{c_m(g)}, m=|X|$ y $c_i(g)$ el número de ciclos de tamaño i en g visto como permutación de X.

Lema 1 (Burnside): Sea G un grupo finito actuando sobre el conjunto finito |X|. Dado g, sea $X^g = \{x \in X : g \cdot x = x\}$. Notemos X/G al conjunto de orbitas de la acción. Entonces se tiene:

$$|X/G| = \frac{1}{|G|} \sum_{g \in G} |X^g|$$

dem Lema: Sabemos que $X/G = \{X_1, ..., X_k\}$, siendo X_i las órbitas de la acción. Sabemos que la acción restringe a cada órbita, por lo que es posible considerar X_i/G . Pero las acciones son transitivas en las órbitas, luego $|X_i/G| = |\{X_i\}| = 1$.

Como las órbitas forman una partición de X, se tiene que $|X^g| = \sum_{i=1}^k |X_i^g|$. Luego, basta ver

$$1 = \frac{1}{|G|} \sum_{g \in G} |X_i^g| \quad \forall i \in \{1..k\}$$

Si consideramos $\sum_{q \in G}$ como el operador de suma disjunta⁴, es claro que

$$\sum_{g \in G} |X_i^g| = |\sum_{g \in G} X_i^g| = |\{(g, x) \in G \times X_i : g \cdot x = x\}| = \text{Fix}(G, X_i)$$

 $^{^2\}mathrm{Se}$ verifica trivialmente que es una acción

 $^{^3}$ Por la propiedad universal del cociente, ya que \hat{w} es constante en cada órbitas

⁴indexada en G

Ahora, llamemos $\text{Fix}(G, x) = \{(g, x) \in G \times X_i : g \cdot x = x\}$ Por un lado sabemos que $\text{Fix}(G, x) \simeq \{g \in G : g \cdot x = x\} = \text{Stab}_G(x)$ Por otro lado, sabemos que $\text{Fix}(G, X_i) = \biguplus_{x \in X_i} \text{Fix}(G, x)$. Luego:

$$\sum_{g \in G} |X_i^g| = |\mathrm{Fix}(G, X_i)| = \sum_{x \in X_i} |\mathrm{Stab}_x(G)|$$

Por lo tanto, para terminar basta ver que

$$|G| = \sum_{x \in X_i} |\operatorname{Stab}_G(x)|$$

Fijemos $x_0 \in X_i$. Sea Maps $\mathrm{To}_G(x) = \{g \in G : g \cdot x_0 = x\}$ Es claro que podemos escribir G como la unión disjunta $\biguplus_{x \in X_i} \mathrm{Maps}\mathrm{To}_G(x)$. Por otro lado, $\mathrm{Maps}\mathrm{To}_G(x) \simeq Stab_G(x)^5$. De aquí tenemos:

$$|G| = |\biguplus_{x \in X_i} \mathsf{MapsTo}_G(x)| = \sum_{x \in X_i} |\mathsf{MapsTo}_G(x)| = \sum_{x \in X_i} |Stab_G(x)|$$

dem Teorema Sea $(B^X/G)_k$ el conjunto de órbitas de tamaño k^6 . Si aplicamos el Lema de Burnside a la acción de G sobre el conjunto $(B^X/G)_k = (B^X)_k/G$, ⁷tenemos la ecuación:

$$|(B^X)_k/G| = \frac{1}{|G|} \sum_{g \in G} |(B^X)_k^g|$$
 (*)

Hagamos algunas observaciones:

- $(B^X)_k^g$ es el conjunto de funciones de tamaño k que verifican $f(g \cdot x) = f(x)$
- Podemos escribir g como una composición de ciclos en X^8 : $(x_{a_1^1}..x_{a_{i_1}^1})..(x_{a_i^1}..x_{a_i^j})^9$.
- Es claro que f está en $(B^X)_k^g$ si y solo si es constante en los ciclos de g.

En vista de las observaciones anteriores es claro que $|(B^X)_k^g|$ se puede calcular contando cuantas funciones de tamaño k son constantes en ciclos.

Vayamos un paso más e intentemos buscar una especificacion para $(\mathcal{B}^X)^g$ a partir de construcciones admisibles:

- Podemos pensar a g como la clase combinatoria producto $\prod_{i=1}^m \mathcal{C}_1^i \times ... \times \mathcal{C}_{c_i}^i$ que representa su descomposición en ciclos. Pensemos cada \mathcal{C}_i^j como la clase que tiene un sólo elemento de tamaño 1.
- Sabemos que $f \in (\mathcal{B}^X)^g$ si y solo es constante en ciclos de g. Luego, f puede ser visto como un elemento de $\prod_{i=1}^m (\mathcal{C}_1^i \times \mathcal{B}) \times ... \times (\mathcal{C}_{c_i}^i \times \mathcal{B})$
- ullet Para ser consistentes con el tamaño de f, cada elección de cierto b para el ciclo debe pesar según la multiplicidad del ciclo.

 $^{^5}$ Hay una biyección sencilla. Basta tomar $g_0 \in \mathrm{MapsTo}_G(x)$ y considerar $f(g) = gg_0^{-1}$

⁶Es decir, el conjunto subyacente a $(\mathcal{B}^X/\mathcal{G})_k$

⁷El lema lo tenemos probado para conjuntos finitos $y(B^X/G)_k$ es un conjunto finito

 $^{^8\}mathrm{Toda}$ biyección en Xadmite tal descomposición

⁹Esto significa que $g \cdot x_{a_j^r} = x_{a_{(j+1 \pmod{i_r})}^r}$

• En concordancia con el item anterior, llamemos $\mathcal{B}^{(k)}$ a la clase combinatoria (B, w^k) . La especificación para $(\mathcal{B}^X)^g$ es $\prod_{i=1}^m (\mathcal{C}_1^i \times \mathcal{B}^{(i)}) \times ... \times (\mathcal{C}_{c_i}^i \times \mathcal{B}^{(i)})$

La construcción que realizamos para $(\mathcal{B}^X)^g$ es admisible, ya que:

- La construccion $\mathcal{X} \times \mathcal{Y}$ es admisible con generatriz X(z)Y(z)
- El operador $\mathcal{X} \mapsto \mathcal{X}^{(i)}$, que es admisible con generatriz $X(z^i)$

Por lo tanto, la generatriz de $(\mathcal{B}^X)^g$ es $f^g(z) = f(z^1)^{c_1}...f(z^m)^{c_m}$. Luego $|(\mathcal{B}^X)^g_k| = [z^k]f^g(z)$ y en consecuencia, por (*), se tiene

$$[z^k]\hat{f} = |((B^X)/G)_k| = \frac{1}{|G|} \sum_{g \in G} [z^k] f^g = [z^k] \frac{1}{|G|} \sum_{g \in G} f^g$$

Es decir

$$\hat{f}(z) = \frac{1}{|G|} \sum_{g \in G} f(z)^{c_1(g)} ... f(z^m)^{c_m(g)}$$