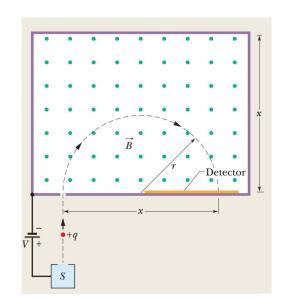
Examen de Física 3

Instituto de Física, Facultad de Ingeniería

9 de Febrero de 2017

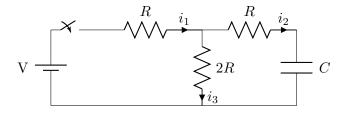

Problema 1

Un ión de masa m y carga q > 0 es acelerado desde el reposo por una diferencia de potencial V. Posteriormente entra en una región donde existe un campo magnético \vec{B} constante, uniforme y saliente al plano de la hoja (ver figura).

Determinar, en función de los parámetros del problema:

- a) La distancia x a la cual la partícula choca con el detector
- b) El tiempo τ que la partícula demora en llegar al detector (desde que entró en la zona con campo magnético).

Suponga ahora que el campo magnético invierte su sentido un tiempo $\frac{\tau}{2}$ después de que el ión entra en la región con campo magnético.

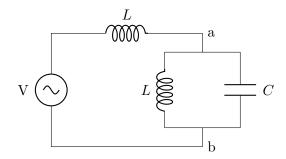


La región tiene una altura x y está limitada superiormente por una pantalla paralela al plano del detector.

- c) Dibujar la trayectoria de la partícula entre t=0 (tiempo en que la carga ingresa a la región de \vec{B}) y $t=\tau$.
- d) Determinar la velocidad $\vec{v_f}$ con la que la partícula choca contra la pantalla superior.

Problema 2

El circuito de la figura está compuesto por una fuente de potencial, tres resistencias, un capacitor inicialmente descargado y un interruptor inicialmente abierto. En el instante t=0 se cierra el interruptor.



Calcule:

- a) los valores de las corrientes i_1 , i_2 y i_3 inmediatamente después de cerrado el interruptor
- b) la diferencia de potencial entre placas del capacitor , $V_C(t)$, como función del tiempo
- c) el valor del producto RC para que en t=1s se cumpla que $V_C=V/2$.

Problema 3

En el circuito de la figura la fuente suministra una diferencia de potencial alterna de valor efectivo (rms), $V_{\rm ef}$, y frecuencia angular ω . Calcule, como función de ω ,

- a) la corriente efectiva $I_{\mbox{\footnotesize ef}}$ que entrega la fuente,
- b) la diferencia de potencial efectiva entre los puntos a y b, $V_{\rm ef}^{ab}$,
- c) los valores de ω para los cuales $V_{\mbox{ef}}^{ab}=V_{\mbox{ef}}$