Primer parcial de Física 3-Solución

Instituto de Física, Facultad de Ingeniería

2 de Mayo de 2018

Constantes:

- masa del electrón: $m_e = 9.1 \times 10^{-31} K_g$.
- $\bullet\,$ carga del electrón: $q=-1.6\times 10^{-19}$ C.
- \bullet permitividad del vacío: $\epsilon_0 = 8.85 \times 10^{-12}~C^2 N^{-1} m^{-2}$.

Ejercicio 1

Se cierra S_1 y se carga C_1 , luego de un tiempo muy largo $Q_{\text{máx}} = \epsilon C_1$. Se abre y se cierra S_2 .

$$\frac{q_{C_1}}{C_1} - \frac{q_{C_2}}{C_2} - Ri = 0$$

- a) Inicialmente, $q_{C_2} = 0$ y $q_{C_1} = Q_{\text{máx}} \implies i(0) = \frac{\epsilon}{R}$. Una vez alcanzado el equilibrio, i = 0
- b) Por lo cual, $\frac{q_{C_1}}{C_1}=\frac{q_{C_2}}{C_2}$ y, además, la carga se conserva $Q_{\max}=q_{C_1}+q_{C_2}$ entonces $q_{C_1}=\frac{2}{3}Q_{\max}$ y $q_{C_2}=\frac{Q_{\max}}{3}$.
- c) $U = U_{C_1} + U_{C_2} = \frac{1}{3} \frac{Q_{\text{máx}}^2}{C_1}$

Ejercicio 2

a)
$$\frac{q_{\text{encerrada}}}{\epsilon_0} = \oint \vec{E} \cdot \hat{n} da = (E(x=2) - E(x=0)) \, \acute{\mathbf{A}}_{\text{transversal}} = -100 \, Nm^2/C$$

$$q_{\text{encerrada}} = -885 \times 10^{-12} C$$

b) El potencial disminuye en el sentido del campo eléctrico.

$$\Delta V = -\int_{x=0}^{x=2} E(x) dx = -\int_{x=0}^{x=2} \frac{a}{b+cx} dx = -\frac{a}{c} \operatorname{Ln}\left(\frac{b}{b+2c}\right) = -100 \operatorname{Ln}(3) = -109,8 \operatorname{Volt}(3) = -100 \operatorname{Ln}(3) = -100 \operatorname{Ln}($$

- c) Por conservación de la energía $|q\Delta V| = \frac{1}{2}mv^2 \Rightarrow v = \sqrt{\frac{2|q||\Delta V|}{m}} = 6,2 \times 10^6 \text{ m/s}.$
- d) $\vec{B}=(0,B_y,B_z)$. Con B_z según $-\hat{e_z}$ y B_y arbitrario. Para que $|F_e|=|F_M|\Rightarrow qvB_z=qE=q\frac{a}{b+c.1}\Rightarrow B_z=25$ Teslas.

Ejercicio 3

- a) $C_0=a^2\epsilon_0/d=8,85\times 10^{-11}$ F. La carga almacenada $Q=C_0\Delta V=3,54\times 10^{-7}$ C.
- b) Al estar en paralelo $C_f = \frac{a(a-h)}{d}\epsilon_0 + \frac{ah}{d}K_\epsilon\epsilon_0 = C_0\left(\frac{a-h}{a} + \frac{h}{a}K_\epsilon\right)$
- c) Como la energía se conserva en el proceso, $\frac{Q^2}{2C_f}-\frac{Q^2}{2C_0}=-mgh.$

Por lo cual,
$$K_{\epsilon} = \frac{\left(\frac{a}{1-\frac{2C_0}{Q^2} mgh} + h - a\right)}{h} = 2, 9.$$