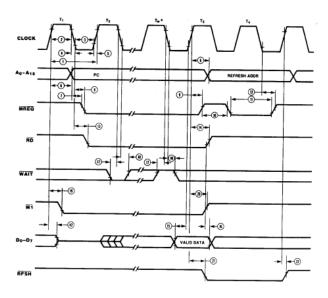


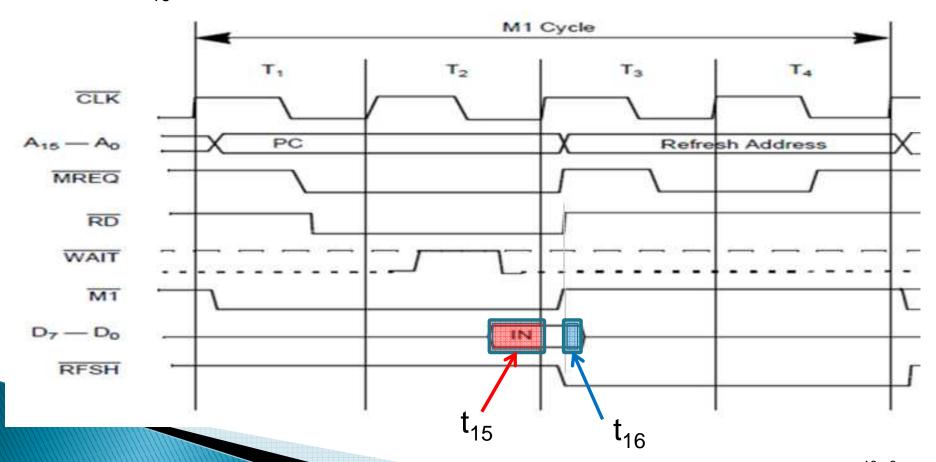
Introducción a los microprocesadores 2015


- Requerimientos de tiempo para:
 - el μP: ¡¡ Todos los ciclos !!
 - las memorias
 - los periféricos (E/S)

- Setup - Hold - Ancho de pulsos
- Varios grados de libertad:
- Frecuencia reloj
- Modelo μP
- Modelo de memoria
- Inserción de Tw

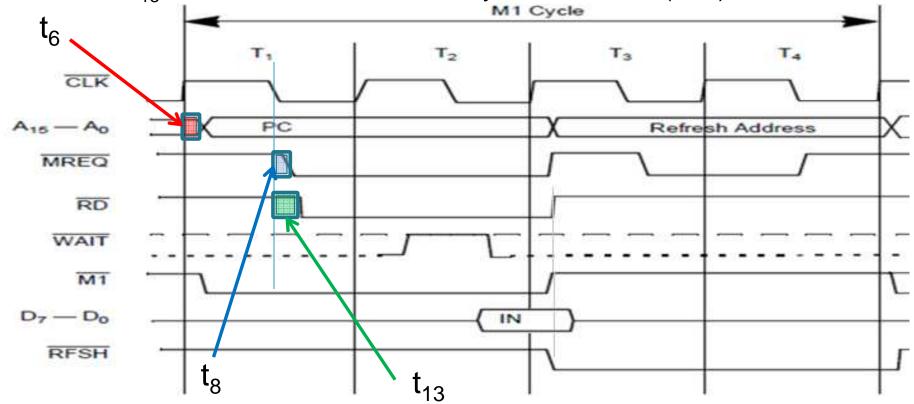
- Compromiso entre:
- Desempeño
- Consumo
- Costo
- Diferentes análisis según restricciones:
 - μP, fck fijo, 0 Tw => elegir la memoria
 - μP, fck fijo y chip memoria fijos => cuántos Tw necesito

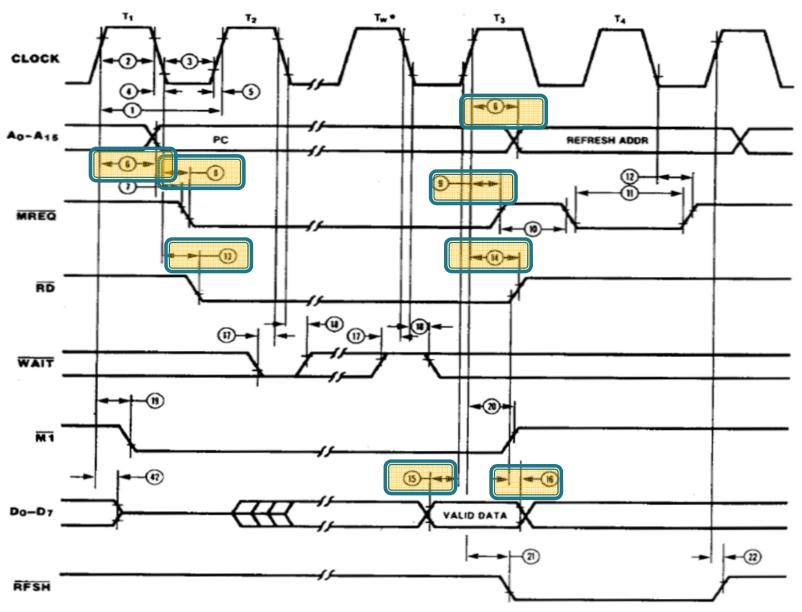
- Requerimientos y retardos del Z80
 - En la cartilla
 - Marcados en diagramas de tiempos "CPU Timing", pag. 24
 - Valores en sección "AC Characteristics", pag. 35



No	Symbol	Parameter	Z84C0004		Z84C0006		Z84C0008		Z84C0010		Z84C0020[1]		Lloit	Note
			Min	Max		Мах		Мах		Max		Max	Olik	1400
1	TcC	Clock Cycle time	250	DC	162*	DC	125*	DC	100*	DC	50°	DC	nS	
2	TwCh	Clock Pulse width (high)	110	DC	65	DC	55	DC	40	DC	20	DC	nS	
3	TwCi	Clock Pulse width (low)	110	DC	65	DC	55	DC	40	DC	20	DC	nS	
4	TfC	Clock Fall time		30		20		10		10		10	nS	
5	TrC	Clock Rise time		30		20		10		10		10	nS	
6	TdCr(A)	Address vaild from Clock Rise		110		90		80	_	65		57	nS	[2]
7	TdA(MREQf)	Address valid to /MREQ Fall	65*		35*		20*		5*		-15*	•	nS	[-]
8	TdCf(MREQf)	Clock Fall to /MREQ Fall delay		85		70		60		55		40	nS	
9	TdCr(MREQr)	Clock Rise to /MREQ Rise delay		85		70		60		55		40	nS	
10	TwMREQh	/MREQ pulse width (High)	110°		65*		45**		30*		10*		nS	[3]
11	TwMREQI	/MREQ pulse width (low)	220*		132°		100*		75*		25*		nS	[3]
12	TdCf(MEROr)	Clock Fall to /MREQ Rise delay		85		70		60		55		40	nS	1-1
13	TdCf(RDf)	Clock Fall to /RD Fall delay		95		80		70		65		40	nS	
14	TdCr(RDr)	Clock Rise to /RD Rise delay		85		70		60		55		40	nS	
15	TsD(Cr)	Data setup time to Clock Rise	35		30		30		25		12		nS	
	ThD(RDr)	Data hold time after /RD Rise	0		0		0		0		0		nS	
	TsWAIT(Cf)	WAIT setup time to Clock Fall	70		60		50		20		7.5		пS	
	ThWAIT(Cf)	WAIT hold time after Clock Fall	10		10		10		10		10		nS	
19	TdCr(M1f)	Clock Rise to /M1 Fall delay		100		80	•	70		65		45	nS	
20	TdCr(M1r)	Clock Rise to /M1 Rise delay		100		80		70		65		45	nS	
21	TdCr(RFSHf)	Clock Rise to /RFSH Fall delay		130		110		95		80		60	nS .	
22	TdCr(RFSHr)	Clock Rise to /RFSH Rise delay		120		100		85		80		60	nS	
	TdCf(RDr)	Clock Fall to IRD Rise delay		85		70		60		55		40	nS	
		Clock Rise to /RD Fall delay		85		70		60		55		40	nS	
25	TsD(Cf)	Data setup to Clock Fall during												

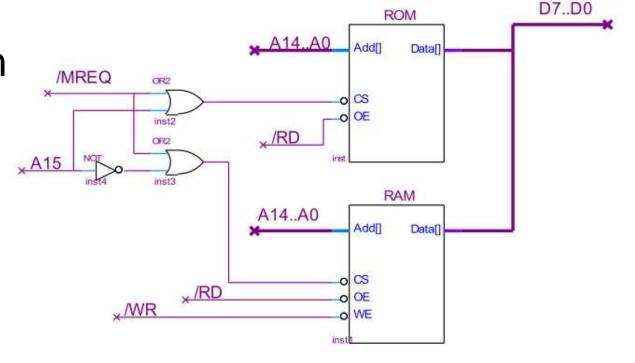
- Requerimientos y retardos de memorias y otros chips
 - En las respectivas hojas de datos


- Es importante comprender qué es un requerimiento y que no.
- Los requerimientos están relacionados con las <u>entradas</u> al chip y pueden ser:
 - Tiempos de setup
 - Tiempos de hold
 - Ancho de pulso
- No son requerimientos aquellos relacionados con salidas del chip, que en general son:
 - Retardos
 - Ancho de pulso


- Es una lectura. ¿Qué requerimientos impone el Z80?
 - t_{15} : Data setup time to Clock Rise \rightarrow TsD(Cr)
 - t_{16} : Data hold time after RD Rise \rightarrow ThD(RDr)

10 - 6

- ¿Qué retardos da el Z80? (solo algunos)
 - t₆: Address valid from Clock Rise → TdCr(A)
 - t₈: Clock Fall to /MREQ Fall delay → TdCf(MREQf)
 - t₁₃: Clock Fall to /RD Fall delay → TdCf(RDf)

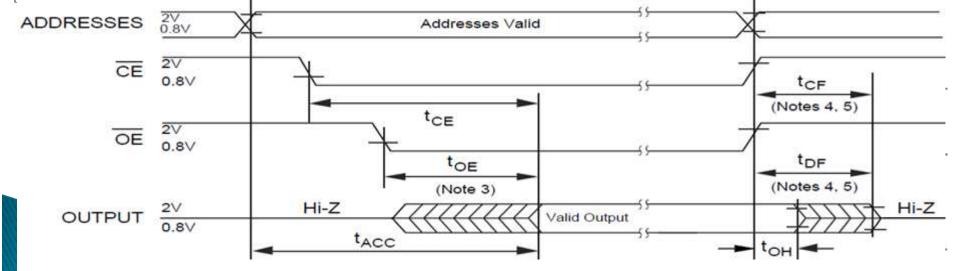


AC CHARACTERISTICS[†] (Z84C00/CMOS Z80 CPU)

 V_{cc} =5.0V ± 10%, unless otherwise specified

			Z84C0004				Z84C0008		Z84C0010		Z84C0020[1]		Unit	Note
No	Symbol	Parameter	Min	Max	Min	Max	Min	Max		Max		Max		
1	TcC	Clock Cycle time	250°	DC	162*	DC	125*	DC	100*	DC	50°	DC	nS	
2	TwCh	Clock Pulse width (high)	110	DC	65	DC	55	DC	40	DC	20	DC	nS	
3	TwCl	Clock Pulse width (low)	110	DC	65	DC	55	DC	40	DC	20	DC	nS	
4	TfC	Clock Fall time		30		20		10		10		10	nS	
5	TrC	Clock Rise time		30		20		10		10		10	nS	
6	TdCr(A)	Address vaild from Clock Rise		110		90		80		65		57/	пS	[2]
7	TdA(MREQf)	Address valid to /MREQ Fall	65*		35*		20°		5 *		-15*		nS	
8	TdCf(MREQf)	Clock Fall to MREQ Fall delay		85		70		60		55		40	nS	
9	TdCr(MREQr)	Clock Rise to /MREQ Rise delay		85		70		60		55		40	nS	
10	TwMREQh	/MREQ pulse width (High)	110*		65 °		45**		30°		10*		nS	[3]
11	TwMREQI	/MREQ pulse width (low)	220*		132*		100°		75°		25*		nS	[3]
12	TdCf(MERQr)	Clock Fall to /MREQ Rise delay		85		70		60		55		40	nS	
13	TdCf(RDf)	Clock Fall to /RD Fall delay		95		80		70		65		40	nS	
14	TdCr(RDr)	Clock Rise to /RD Rise delay		85		70		60		55		40	nŝ	
15	TsD(Cr)	Data setup time to Clock Rise	35		30		30		25		12		nS	

Sistema con
32K ROM y
32K RAM


- Retardo decodificación t_{deco}
 - t_{deco1} : desde /MREQ a $CS_{ROM\ y\ RAM}$
 - t_{deco2}: desde direcciones a CS_{ROM}
 - t_{deco3}: desde direcciones a CS_{RAM}

- → retardo OR
- → retardos OR
- → retardos NOT + OR

Hoja de datos de la Memoria ROM

AC Electrical Characteristics Over Operating Range with V_{PP} = V_{CC}

Symbol	Parameter	90		120		150		200		Units
		Min	Max	Min	Max	Min	Max	Min	Max	
t _{ACC}	Address to Output Delay		90		120		150		200	ns
t _{CE}	CE to Output Delay		90		120		150		200	ns
t _{OE}	OE to Output Delay		50		50		50		50	ns
t _{CF} (Note 2)	CE High to Output Float		30		30		45		55	ns
t _{DF} (Note 2)	OE High to Output Float		35		35		45		55	ns
t _{OH} (Note 2)	Output Hold from Addresses, CE or OE, Whichever Occurred First	0		0		0		0		ns

Tiempo Setup

- El tiempo de setup efectivo debe ser mayor o igual que t₁₅ requerido
- (1) Tiempo de acceso desde direcciones

$$T1 + T2 + nTw - t6_{max} - tacc_{max} \ge t15$$

(2) Tiempo desde /OE a datos válidos

$$T1_{Low} + T2 + nTw - t13_{max} - toe_{max} \ge t15$$

- (3) Tiempo desde CE a datos válidos
 - por MREQ

$$T1_{Low} + T2 + nTw - t8_{max} - tdeco1_{max} - tce_{max} \ge t15$$

por direcciones

$$T1 + T2 + nTw - t6_{max} - tdeco2_{max} - tce_{max} \ge t15$$

Se debe hallar "n" tal que se cumplan todas las inecuaciones.

Tiempo hold

- El tiempo de hold efectivo debe ser mayor o igual que t₁₆ requerido
- Si datos dejan de estar válidos por:
- (1) Cambio en direcciones

$$t6_{min} + Toh_{min} - t14_{max} \ge t16$$

• (2) Cambio en RD

$$Toh_{min} \ge t16$$

- (3) Cambio en CS
 - por MREQ:

$$t9_{min} + tdecol_{min} + Toh_{min} - t14_{max} \ge t16$$

por direcciones

$$t6_{min} + tdeco2_{min} + Toh_{min} - t14_{max} \ge t16$$

Parámetros deben cumplir ecuaciones, no se arregla insertando Tw.