EXAMEN CALCULO III

Número de parcial	Cédula	Apellido y nombre	Salón

RESPUESTAS						
1	2	3	4	5		

Múltiple opción (Total: 50 puntos)

En cada pregunta hay sólo una opción correcta.

Respuesta correcta: 10 puntos, respuesta incorrecta: -2 puntos, no respuesta: 0 punto.

Ejercicio 1

Se considera las curva $\gamma(t)=(t,t,2t^2)$, y el punto P=(1,1,2).

- (A) γ está parametrizada por longitud de arco, la torsión es nula y la curvatura es constante en todo punto.
- (B) γ no está paramerizada por longitud de arco, la torsión es nula (la curva está contenida el plano x-y=0) y la curvatura en P es $\frac{2}{27}$.
- (C) γ no está parametrizada por longitud de arco, tiene torsión nula en todo punto y la curvatura en P es $\frac{4}{3}$.
- (D) γ no está parametrizada por longitud de arco, tiene torsión no nula en todo punto, y el vector binormal en P es $b = \frac{1}{\sqrt{2}}(1, -1, 0)$.
- (E) γ no está parametrizada por longitud de arco tiene torsión nula en todo punto (la curva está contenida el plano x-y=0), y el vector normal en P es $n=\frac{1}{3\sqrt{2}}(1,1,4)$.

Ejercicio 2

La circulación del campo $F(x,y,z)=(3z,-xy,xz^2)$ a lo largo de la curva $\left\{\begin{array}{l} 3z=x^2+y^2\\ z=1 \end{array}\right.$ orientada en sentido antihorario es:

(A)
$$\pi$$
 (B) -2π (C) 0 (D) -3π (E) $\sqrt{\pi}$

Ejercicio3

Sea \vec{F} el campo vectorial conservativo en \mathbb{R}^3 dado por

$$\vec{F}(x, y, z) = (2xyz + u(y, z), x^2z + 2xy, x^2y + 2xz),$$

donde $u: \mathbb{R}^2 \to \mathbb{R}$ es una función de clase C^{∞} tal que u(0,0)=1. Sea $\gamma: [0,1] \to \mathbb{R}^3$ la curva parametrizada dada por $\gamma(t)=(t-2t^3,1-t+t^2,1+2t-t^3)$. La circulación de \vec{F} a lo largo de γ vale:

(D)
$$-2$$

$$(E) -4$$

Ejercicio 4

Se considera la superficie $S = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 = 2, z \ge 0\}$ y el punto $p = (0, 0, \sqrt{2})$. Sea A el área de S y T_pS el plano tangente a S por el punto p. Entonces:

(A)
$$A = 4\pi \text{ y } T_p S = \{(x, y, z) \in \mathbb{R}^3 : \langle (x, y, z), (0, 0, 1) \rangle = 0\}.$$

(B)
$$A = 4\pi \text{ y } T_p S = \{(0, 0, \sqrt{2}) + \mu(1, 0, 0) + \lambda(0, 1, 0), \lambda, \mu \in \mathbb{R}\}.$$

(C)
$$A = 8\pi \text{ y } T_p S = p + \{\mu v + \lambda w, \lambda, \mu \in \mathbb{R}, v, w \in \mathbb{R}^2\}.$$

(D)
$$A = 8\pi \text{ y } T_p S = \{(x, y, z) \in \mathbb{R}^3 : \langle (x, y, z), (0, 0, 1) \rangle = 0\}.$$

(E)
$$A = 4\pi \text{ y } T_p S = \{(0, 0, \sqrt{2}) + \mu(1, 0, 0) + \lambda(0, 1, 0), \lambda = \sqrt{2}, \mu = \sqrt{2}\}.$$

Ejercicio 5

Sea η la forma

$$\eta = z^2(3xdx + ydz) \wedge (y^2dy - 3zdx).$$

Entonces $d\eta =$

(A)
$$d\eta = -2ydy + 3dz$$

(B)
$$d\eta = -3z^3 dx dy + 6xy^2 z dy dz$$

(C)
$$d\eta = (-3z^3 + 6xy^2z)dxdydz$$

(D)
$$d\eta = (z^3 - 2xy^3z)dxdydz$$

(E)
$$d\eta = (-z^3 - 6x^2yz)dxdydz$$

Universidad de la República Facultad de Ingeniería-IMERL

EXAMEN: CALCULO III

Número de parcial	Cédula	Apellido y nombre	Salón

Ejercicio de desarrollo (Total: 50 puntos)

Ejercicio 1

Consideremos el campo vectorial $\vec{F}(x,y,z) = (-e^y, -ze^{z^2}, 2xy^2)$ y la superficie S dada por

$$S = \{(x, y, z): x^2 + y^2 + \frac{z^2}{4} = 1, z \le 0\},\$$

orientada con la normal \vec{n} tal que $\vec{n}(0,0,-2) = (0,0,-1)$.

- 1. Hallar un potencial vectorial \vec{G} de \vec{F} que se anule en (0,0,0) y que tenga tercera coordenada nula.
- 2. Calcular $\iint_S \vec{F} \cdot \vec{n} \, ds$ usando el teorema de Stokes.
- 3. Calcular $\iint_S \vec{F} \cdot \vec{n} \, ds$ usando el teorema de Gauss.

Ejercicio 2

- 1. Sea F un campo de vectores diferenciable en \mathbb{R}^3 y $\mathcal{C} \subset \mathbb{R}^3$ una curva cerrada cualquiera. Probar que F es de gradientes si y solo si $\int_{\mathcal{C}} F = 0$.
- 2. Sean F y G dos campos, deducir que si existe H tal que $F = G + \nabla H$ entonces $\int_{\mathcal{C}} F = \int_{\mathcal{C}} G$, $\forall \mathcal{C}$ cerrada.
- 3. Sea $F(x,y)=(x^3+2y,y^2+4x)$, utilizar la parte anterior, descomponiendo F en la forma $F=\nabla H+G$ de modo que G quede con una componente nula, y usar lo anterior para calcular $\int_{\mathcal{C}} F$ siendo \mathcal{C} el triángulo de vértices (-1,0); (0,2); (2,0) recorrido en sentido antihorario.