Universidad de la República Facultad de Ingeniería - IMERL

Cálculo 3 Primer Semestre 2014

Examen – Lunes 21 de julio de 2014

Nro de Examen	Cédula	Apellido y nombre

- La duración del examen es 3 horas y media.
- El puntaje mínimo para aprobar es 50 puntos.

Notación: En el parcial se usa la siguiente notación:

- Rotor de un campo vectorial: $\nabla \times F$
- ullet Producto escalar de dos vectores: v.w
- Integral de línea de un campo vectorial: $\int_C F$

(I) Múltiple opción. Total: 40 puntos

Puntajes: 10 puntos si la respuesta es correcta, -2 puntos si la respuesta es incorrecta, 0 punto por no contestar.

Indique sus respuestas en los casilleros correspondientes:

Ejercicio 1	Ejercicio 2	Ejercicio 3	Ejercicio 4

Ejercicio 1

Sea $F: \mathbb{R}^3 \to \mathbb{R}^3$ el campo vectorial definido por F(x,y,z) = (x+y-2z)(0,2,-2) y γ la curva definida por la intersección de las superficies x+y+z=0 y $x^2+y^2+z^2=1$. Entonces $|\oint_{\gamma} F|$ es:

- A) $\pi\sqrt{12}$.
- B) 12π .
- C) 6.
- D) 6π .
- E) -12π .

Ejercicio 2

Sea $\alpha: I \to \mathbb{R}^3$ una curva regular de clase C^3 . Considere las siguientes afirmaciones:

- i) $\alpha'(t). \alpha''(t) = 0$ para todo $t \in I$.
- ii) La curvatura de α cumple $k(t) \geq 0$ para todo $t \in I$.
- iii) La torsión de α cumple $\tau(t) \geq 0$ para todo $t \in I$.

Entonces:

- A) Todas las afirmaciones son verdaderas.
- B) Sólo las afirmaciones i) y ii) son verdaderas.
- C) Sólo la afirmación ii) es verdadera.
- D) Sólo las afirmaciones i) y iii) son verdaderas.
- E) Sólo la afirmación i) es verdadera.

Ejercicio 3

Considere la siguiente 2-forma en \mathbb{R}^3 :

$$\omega = (2xydx + 3ye^zdy + 2ydz) \wedge (x^3e^zdx - x^2e^zdz).$$

Entonces:

- A) $d\omega = (9x^2ye^{2z} 6xye^{2z})dx \wedge dy \wedge dz$.
- B) $d\omega = 9x^2ye^{2z}dx \wedge dy 6xye^{2z}dy \wedge dz$.
- C) $d\omega = 0$.
- D) $d\omega = xe^z(4x^2 6x^2ye^z 6ye^z)dx \wedge dy \wedge dz$.
- E) $d\omega = (-4x^3e^z + 3x^2ye^{2z})dx \wedge dy \wedge dz$.

Ejercicio 4

Considere el conjunto $D=\{(u,v)\in\mathbb{R}^2:\ u^2+v^2\leq 1,\ u\geq 0,\ v\geq 0\}$ y la superficie $S=\varphi(D)$ parametrizada por la función $\varphi:D\to\mathbb{R}^3$ definida por $\varphi(u,v)=(u+v,u-v,uv)$. El área de S es:

- A) $\pi(\sqrt{6}-4/3)$.
- B) $\frac{\pi}{4}(\sqrt{6})$.
- C) $\frac{\pi}{2}(\sqrt{6}-4/3)$.
- D) $\frac{\pi}{4}(\sqrt{3}+1/3)$.
- E) $\frac{\pi}{4}(\sqrt{3}-1/3)$.

(II) Desarrollo. Total: 60 puntos

Problema 1 (12 puntos)

Sea $\Omega \subset \mathbb{R}^3$, abierto y conexo.

- a) (8 puntos) Considere una función escalar $\Phi: \Omega \to \mathbb{R}$ de clase C^1 y una curva $C \subset \Omega$ con punto inicial A y punto final B. Pruebe que $\int_C \nabla \Phi = \Phi(B) \Phi(A)$.
- b) (4 puntos) Considere un campo vectorial continuo $F: \Omega \to \mathbb{R}^3$. Pruebe que si F es un campo de gradientes en Ω entonces $\oint_C F = 0$ para toda curva cerrada $C \subset \Omega$.

Problema 2 (18 puntos)

Considere el cubo $\Omega = [0,1]^3 \subset \mathbb{R}^3$ y la superficie $S = \partial \Omega$. Sea $F : \mathbb{R}^3 \to \mathbb{R}^3$ el campo vectorial definido por $F(x,y,z) = (x^2 + ze^{-y^2}, y^2 + xe^{-z^2}, z^2 + ye^{-x^2})$.

- a) (10 puntos) Calcule el flujo del campo F a través de la superficie S.
- b) (8 puntos) Calcule el flujo del campo $\nabla \times F$ a través de la superficie S.

Problema 3 (30 puntos)

Sean S_1 y S_2 dos superficies orientadas con bordes tales que $\partial S_1 = \partial S_2 = C$, y tales que las orientaciones de S_1 y S_2 inducen la misma orientación en C. Sea $F : \mathbb{R}^3 \to \mathbb{R}^3$ un campo de rotores (esto es, $F = \nabla \times A$ para un campo vectorial A).

- a) (8 puntos) Pruebe que el flujo de F a través de S_1 es igual al flujo de F a través de S_2 .
- b) (10 puntos) Pruebe que el campo $F:\mathbb{R}^3 \to \mathbb{R}^3$ definido por

$$F(x,y,z) = (e^{x+y} - xe^{y+z}, e^{y+z} - e^{x+y}, 2)$$

es un campo de rotores.

c) (12 puntos) Considere ahora la superficie S definida por la ecuación $z = e^{-(x^2+y^2)}$, con $z \ge 1/e$, orientada con la normal hacia arriba. Calcule el flujo del campo F a través de S, donde F es el campo definido en la parte anterior.

SOLUCIÓN

(I) Múltiple opción

Ejercicio 1	Ejercicio 2	Ejercicio 3	Ejercicio 4
A	С	D	C

(II) Desarrollo

Problema 1

a) Parametrizando la curva C con $r(t)=(x(t),y(t),z(t)),\,t\in[a,b],$ se tiene:

$$\int_{C} \nabla \Phi = \int_{a}^{b} \nabla \Phi(r(t)) \cdot r'(t) dt = \int_{a}^{b} \left[\frac{\partial \Phi}{\partial x} x'(t) + \frac{\partial \Phi}{\partial y} y'(t) + \frac{\partial \Phi}{\partial z} z'(t) \right] dt$$
$$= \int_{a}^{b} \frac{d\Phi}{dt} (r(t)) dt = \Phi(r(b)) - \Phi(r(a)) = \Phi(B) - \Phi(A).$$

b) $F = \nabla \Phi$. De manera que considerando una curva cerrada C (con punto inicial y final A = B) y utilizando el resultado anterior:

$$\oint_C F = \oint_C \nabla \Phi = \Phi(B) - \Phi(A) = 0.$$

Problema 2

a) La divergencia del campo F es: $\nabla \cdot F(x,y,z) = 2x + 2y + 2z$. Usando el Teorema de Gauss:

$$\int_{S} F. \, dS = \int_{\Omega} \nabla. \, F \, dv = \int_{0}^{1} dx \int_{0}^{1} dy \int_{0}^{1} dz (2x + 2y + 2z) = 3.$$

b) S es una superficie cerrada. Como consecuencia del Teorema de Stokes resulta:

$$\int_{S} \nabla \times F. \, dS = 0.$$

Problema 3

a) Utilizando dos veces el teorema de Stokes se tiene:

$$\int_{S_1} F. dS = \int_{S_1} \nabla \times A. dS = \oint_C A = \int_{S_2} \nabla \times A. dS = \int_{S_2} F. dS.$$

b) En el Teórico se probó que si un campo F, definido sobre un paralelepípedo $\Omega \subset \mathbb{R}^3$ de lados paralelos a los ejes, cumple $\nabla . F = 0$ entonces es un campo de rotores. El mismo argumento puede extenderse al caso $\Omega = \mathbb{R}^3$. De manera que basta con verificar que $\nabla . F = 0$:

$$\nabla \cdot F(x, y, z) = (e^{x+y} - e^{y+z}) + (e^{y+z} - e^{x+y}) = 0.$$

Otra manera de probar que F es un campo de rotores consiste en hallar explícitamente un potencial vector A.

c) Usando la parte a) calculamos la integral no sobre la superficie original S sino sobre el disco $D=\{(x,y,z)\in\mathbb{R}^3\ :\ x^2+y^2\leq 1,\ z=1/e\},\ \text{con normal}\ n=(0,0,1).$ Se tiene:

$$\int_{S} F. \, dS = \int_{D} F. \, dS = 2A(D) = 2\pi.$$