Universidad de la República Facultad de Ingeniería - IMERL

Cálculo 3 Primer Semestre 2014

Primer parcial – Miércoles 14 de mayo de 2014

Nro de Parcial	Cédula	Apellido y nombre

La siguientes fórmulas pueden ser de utilidad:

- Si $\gamma = \gamma(t)$ es una curva diferenciable en \mathbb{R}^3 , la curvatura k y la torsión τ están dadas por $k = \frac{\|\dot{\gamma} \wedge \ddot{\gamma}\|}{\|\dot{\gamma}\|^3}, \ \tau = \frac{(\dot{\gamma}, \ddot{\gamma}, \ddot{\gamma})}{\|\dot{\gamma} \wedge \ddot{\gamma}\|^2}.$ $\bullet \ \int_0^{2\pi} \cos^2 t \ dt = \pi, \ \int_0^{2\pi} \cos^4 t \ dt = \frac{3}{4}\pi, \ \int_0^{2\pi} \cos^6 t \ dt = \frac{5}{8}\pi.$

(I) Múltiple opción. Total: 25 puntos

Puntajes: 5 puntos si la respuesta es correcta, -1 punto si la respuesta es incorrecta, 0 punto por no contestar.

Indique sus respuestas en los casilleros correspondientes:

Ejercicio 1	Ejercicio 2	Ejercicio 3	Ejercicio 4	Ejercicio 5

Eiercicio 1

Sea C la curva en \mathbb{R}^3 parametrizada por $\alpha(t)=(t,-t^2,1+t^3)$, con $t\in\mathbb{R}$. Entonces:

- A) La curva está parametrizada por longitud de arco.
- B) La torsión en el punto P = (0, 0, 1) es $\tau = -3$.
- C) La curva es plana y su curvatura en el punto P = (0,0,1) es k = 2.
- D) El radio de curvatura en el punto P = (0,0,1) es $\rho = 1/4$.
- E) La curva está contenida en una recta.

Ejercicio 2

Considere las siguientes afirmaciones:

- i) La parametrización de una curva es única.
- ii) La integral de línea de un campo vectorial a lo largo de cualquier curva cerrada es cero.
- iii) Todo campo vectorial conservativo en \mathbb{R}^n es el gradiente de un campo escalar.

Entonces:

- A) Sólo la afirmación i) es verdadera.
- B) Sólo las afirmaciones i) y iii) son verdaderas.
- C) Sólo las afirmaciones ii) y iii) son verdaderas.
- D) Todas las afirmaciones son falsas.
- E) Sólo la afirmación iii) es verdadera.

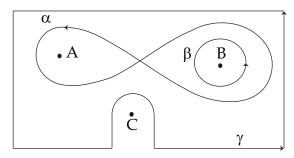
Ejercicio 3

El área encerrada por la curva plana definida por: $x(t) = \cos^3 t$, $y(t) = \sin^3 t$, con $0 \le t \le 2\pi$, es:

- A) $\frac{3}{8}\pi$.
- B) 0.
- C) $\frac{1}{24}\pi$.
- D) 2π .
- E) $\frac{3}{4}\pi$.

Ejercicio 4

Considere un campo vectorial $X: \mathbb{R}^2 \setminus \{A, B, C\} \to \mathbb{R}^2$ irrotacional. Considere además las curvas cerradas α , β y γ como se muestran en la siguiente figura:



Se sabe que $\int_{\alpha} X = 1$ y que $\int_{\beta} X = 3$. Entonces:

- A) $\int_{\gamma} X = -2$.
- B) $\int_{\gamma}^{\cdot} X = 2$.
- C) $\int_{\gamma}^{'} X = 4$.
- D) $\int_{\gamma}^{'} X = 0$.
- E) $\int_{\gamma}^{\cdot} X = 7$.

${\bf Ejercicio}\ {\bf 5}$

Considere el campo vectorial $F: \mathbb{R}^3 \to \mathbb{R}^3$ definido por $F(x,y,z) = (2xy,x^2+z,y)$. Considere además la curva α que va desde (0,0,0) a (1,1,1) y está definida por la intersección de las superficies x-y=0, $z=\frac{x^2+y^2}{2}$. Entonces:

- A) El campo F es conservativo y $\int_{\alpha} F = 2$.
- B) El campo F es conservativo y $\int_{\alpha} F = 0$.
- C) El campo F no es conservativo y $\int_{\alpha} F = 2$.
- D) El campo F no es conservativo y $\int_{\alpha} F = 0$.
- E) El campo F es conservativo y $\int_{\alpha} F = \pi$.

(II) Desarrollo. Total: 15 puntos

Todo resultado teórico que utilice en la resolución de los problemas debe estar adecuadamente justificado.

Problema 1 (9 puntos)

Considere una carga eléctrica q colocada en el punto $p_1 = (-2,0)$ y otra carga eléctrica de signo opuesto -q colocada en el punto $p_2 = (2,0)$. Sea $E : \mathbb{R}^2 \setminus \{p_1, p_2\} \to \mathbb{R}^2$ el campo eléctrico total debido a esas dos cargas, esto es:

$$E(x,y) = \frac{q}{[(x+2)^2 + y^2]^{\frac{3}{2}}}(x+2,y) - \frac{q}{[(x-2)^2 + y^2]^{\frac{3}{2}}}(x-2,y).$$

- a) Calcule $\int_{\alpha} E$ cuando α es el segmento de recta horizontal que va del punto A=(-1,0) al punto B=(1,0).
- b) Calcule $\int_{\beta} E$ cuando β es el segmento de recta vertical que va del punto A=(0,-2) al punto B=(0,2).
- c) Calcule $\int_{\gamma} E$ cuando γ es la circunferencia de radio 1 con centro en (2,0) recorrida en sentido antihorario.

Problema 2 (6 puntos)

Sea $\Omega \subset \mathbb{R}^2$ un conjunto abierto y $F: \Omega \to \mathbb{R}^2$ un campo vectorial de clase $C^1(\Omega)$.

- a) Pruebe que si F es un campo de gradientes entonces es irrotacional.
- b) Dé un ejemplo de un campo irrotacional que no es de gradientes. Especifique qué condiciones sobre Ω y F garantizan que un campo irrotacional sea de gradientes en Ω .

SOLUCIÓN

(I) Múltiple opción

Ejercicio 1	Ejercicio 2	Ejercicio 3	Ejercicio 4	Ejercicio 5
В	E	A	E	A

(II) Desarrollo

Problema 1

Hay dos maneras igualmente válidas de resolver cada una de las partes del problema:

Opción 1: Calcular explícitamente las integrales de línea.

Opción 2: Observar que el campo eléctrico es un campo gradiente con potencial escalar

$$\Phi(x,y) = -\frac{q}{\sqrt{(x+2)^2 + y^2}} + \frac{q}{\sqrt{(x-2)^2 + y^2}}.$$

De manera que:

- a) $\int_{\alpha} E = \Phi(1,0) \Phi(-1,0) = \frac{4}{3}q$. b) $\int_{\beta} E = \Phi(0,2) \Phi(0,-2) = 0$ (observar que el campo E es ortogonal al segmento de recta vertical en cada punto de la trayectoria).
- c) $\int_{\gamma} E = 0$, pues γ es una curva cerrada.

Problema 2

a) Denotamos F(x,y)=(P(x,y),Q(x,y)). Por hipótesis: $F(x,y)=\nabla\Phi(x,y)$, donde Φ es un

Así que, para cada $(x,y) \in \Omega$: $P(x,y) = \frac{\partial \Phi}{\partial x}(x,y)$, $Q(x,y) = \frac{\partial \Phi}{\partial y}(x,y)$. Tomando derivadas y usando que el orden de las derivadas parciales puede cambiarse (por ser Φ de clase $C^2(\Omega)$):

$$\frac{\partial Q}{\partial x}(x,y) = \frac{\partial^2 \Phi}{\partial x \partial y}(x,y) = \frac{\partial^2 \Phi}{\partial y \partial x}(x,y) = \frac{\partial P}{\partial y}(x,y),$$

Por lo tanto $\nabla \times F(x,y) = \frac{\partial Q}{\partial x}(x,y) - \frac{\partial P}{\partial y}(x,y) = 0.$

b) El campo vectorial

$$F(x,y) = \left(\frac{-y}{x^2 + y^2}, \frac{x}{x^2 + y^2}\right),$$

definido sobre $\Omega = \mathbb{R}^2 \setminus \{(0,0)\}$, es irrotacional pero no es de gradientes en Ω , pues la integral sobre una curva cerrada alrededor del origen no es cero (es fácil verificar que $\int_{\alpha} F = 2\pi$, si α es una circunferencia centrada en el origen recorrida en sentido antihorario).

Condiciones que garantizan que un campo irrotacional es de gradientes en Ω :

- Ω es simplemente conexo (no tiene agujeros).
- \bullet Ω tiene agujeros y la integral de F sobre cualquier curva cerrada alrededor de un agujero es cero (alcanza con verificar para una única curva cerrada alrededor de cada agujero).