
A SURVEY of MIDDLEWARE

 Toni A. Bishop Ramesh K. Karne
 Computer & Information Science Dept Computer & Information Science Dept
 Towson University Towson University
 Towson, Maryland 21252, USA Towson, Maryland 21252, USA
 tbishop@towson.edu rkarne@towson.edu

Abstract Classification is not new in this middleware area.
Many authors have suggests classifying by various
communication techniques, protocols (session versus
sessionless), the programming interface, [5], specific
categories included database-oriented, virtual system,
middle-tier, gateways, and Web-enabled [25],
communication with programming execution and
number of participants [32], or ten specific categories
[21]. While these classifications cover many aspects of
middleware, we will describe a different approach.

 The term middleware has been used to describe
many different types of software products. Middleware
is essentially supplementary software that connects two
or more software together. Since there is wide variety
of software included under this big umbrella called
middleware, categories need to be assigned to further
describe and delineate each of these types. The current
literature has provided several ways to classify these
packages. These classifications seem to be conflicting
and do not cover all the types of middleware available
today. Difficulties in classifying middleware are
further exasperated by the fact that some middleware
can perform more than one service. We will show in
this paper, a taxonomy based on the way each
middleware either assists an application or helps with
the integration of multiple software into a system.

2 TAXONOMY OF MIDDLEWARE

 In this proposed taxonomy of middleware, there are
two major categories: integration type and application
type. We further describe each of these subcategories
in detail in the following subsections. Figure 1 displays
this proposed taxonomy.

KEY WORDS: Middleware and classification.

1 INTRODUCTION

 The word “Middleware” has been used to describe a
wide variety of software products. This can cause a
problem in understanding exactly what are middleware.
In the literature, there are many different middleware
definitions. They range from a software layer between
the operating system (and/or the network) and
application [3] to “glue” between two applications [36].
It has also been described as an important integration
tool [7] or enables modular connection to distributed
software [2]. A possible definition for middleware is
“Middleware is the software that assists an application
to interact or communicate with other applications,
networks, hardware, and/or operating systems. This
software assists programmers by relieving them of
complex connections needed in a distributed system. It
provides tools for improving quality of service (QoS),
security, message passing, directory services, file
services, etc. that can be invisible to the user.” This
definition describes most of the middleware products
available today.

 Figure 1: Categories of Middleware

2.1 Integration Category

 The integration type includes those middleware that
have a specific way of being integrated into its
heterogeneous system environment. Each of these
middleware has different communication protocols or
ways of operating between the other software. We will
discuss each of these integration type middleware as
follows.

2.1.1 Procedure Oriented Middleware

 Procedure-oriented Middleware uses a synchronous
communication (like a telephone). The characteristic of
the procedure-oriented middleware is the use of client
stubs and server skeletons. The client stub converts the
parameters of a procedure into a message (known as
marshalling) and sending this message to the server (or
host). The server skeleton converts the message back
into the parameters and sends the procedure call to the
server application where it is processed. Once the
procedure has been performed the reverse process
occurs. The client stub also checks for errors, sends the
results to the calling software, and then suspends the
thread [3] [13].

 The advantages of this middleware are that it uses
standard types of name services, remotes processes, can
return a response even with network problems [25],
supports exceptions [13], and can manage multiple
types of data formats and heterogeneous system-level
services. The disadvantages include not being scaleable
because it contains no replication mechanism, not being
reflective (in that it cannot return data to another
program) [13] and is a very rigid process in that it is
tightly couple to the procedure. [16]

2.1.2 Object Oriented Middleware

 The Object-oriented (OO) Middleware supports
distributed object requests. The communication
between objects (client object and server object) can be
synchronous, deferred synchronous, and asynchronous
using threading policies. Object middleware supports
multiple transactions by grouping similar requests from
several client objects into a transaction [13]. The OO
middleware operates with the client object first making
a logical method call to remote object. A local ORB
proxy (also known as a stub) marshals the data and
transmits it across to the Broker. The Broker acts as a
middleman that may contact a number of data sources,
obtains their reference IDs, collecting data, and
sometimes reorganizing data [1]. The server object
receives the message from the Broker and the remote
proxy (also known as the skeleton) unmarshals the data.
The data are submitted to a remote servant object where
a particular process is performed. The returned of
results is performed in reverse from above [23].

 The strengths include a support to load management
and scalability of the server objects and reflective
which were weaknesses to the procedure-oriented
middleware. It also operates on many different data
types, forms and states and is a self-manager of
distributed objects (supports multiple simultaneous
operations using multi-threading) [12][24]. The

disadvantages include pre-linked prior to execution and
the need for wrapper code for some legacy systems [6].

2.1.3 Message Oriented Middleware

This Message Oriented Middleware (MOM) category
can be subdivided into two types – Message
Passing/Queuing and Message Publish/Subscribe. In
the message passing type of this MOM, the application
sends out a message (intended for one or more clients)
using the client MOM. The MOM server picks the
requests off the queue (message broker) in some
predetermined order (either FIFO, based on a priority
scheme, or based on a load-balancing method). The
MOM server acts as a router to the message and does
not usually interact with it [19].

 The publish/subscribe MOM works slightly
differently. This MOM is an event-driven process. If a
client wants to participate, it first joins an information
bus. Then depending on its function as the publisher,
subscriber, or both, it registers an event listener in the
bus. The publisher sends a notice of an event to the bus
(on the MOM server). The MOM server then sends out
an announcement to the registered subscriber(s) that
data is available. When the subscriber requests from a
specific publisher some data, the request is wrapped in
a message and sent to the bus. The bus then sends an
event to the publisher requesting the data [33].

2.1.4 Component Based or Reflective Middleware

 A component is described as a “program that
performs a specific function and is designed in such a
way to easily operate with other components and
applications” [36]. This middleware is a configuration
of components. These components are selected either
at build-time or at run-time. The major contribution of
this middleware is that it has an extensive component
library and component factories, which support
construction on multiple platforms [4]. Since the
variation (i.e. resource availability, new required
protocols, network connectivity) in the distributed
computing environment is increasing yearly, software
like component or reflective middleware will be needed
to provide the ever increasing QoS requirements [22].
The “reflective architectures provide expansion joints
where new behaviors can be imposed.” With these
joints, changes to the operation can be made during
runtime [31].

 The strengths of this middleware are that it is
configurable and re-configurable. Re-configurability
can be accomplished at run-time, which offers a lot of
flexibility to meet the needs of a large number of
applications [4].

2.1.5 Agents

 Agents are considered a middleware that consists of
several components: entities (objects, threads), media
(communication between one agent and another), and
laws (rules on agent’s communication coordination).
Media can be monitors, channels, or more complex
types (e.g. pipelines). Laws identify the interactive
nature of the agents such as its synchronization or type
of naming schemes [8].

 An agent is capable of autonomous actions to meet
its design objectives. This adaptability of the agent
should be generic so that it covers a broad base of
strategies, which range from anytime algorithms, load
balancing strategies, resource adaptability, and resource
unaware applications. [9].

 Dr. Wiederhold’s OnTo-Agents establishes an agent
infrastructure where each part adds information to the
whole system. Several tools establish an exchange of
information. [37].

 The strengths of Agent middleware are that Agents
can perform task on behalf of the user and are adaptable
to cover a broad range of strategies based on the
environment around them. They make decisions as to
the best quality for the purpose and no better [9].
However, the complexities, difficulties in understand
the operations, and the abundance of manpower
required to incorporate them into a system have been
the Agents major weakness.

2.2 Application Categories

 The application classification includes middleware
that fit into specific types of application functions.
These middleware (Data Access, Web-based, Real-
Time, Desktop, and Specialty) work specifically with
an application.

2.2.1 Data Access Middleware

 The Data Access Middleware (DAM) is type of
middleware is characterized by the interaction of the
application with local and/or remote databases (legacy,
relational and non-relational), data warehouses, or other
data source files. This category of middleware includes
transaction processing (TP) monitor, database
gateways, and distributed transaction-processing
middleware. This middleware can assist with special
database requirements such as security (authentication,
confidentiality, and access control), protection, and the
ACID properties [5]. This database middleware can
even perform requested transactions themselves if the
DBMS is unavailable or is unable to handle the
transactions. Since the data may be retained on more

than one database, the middleware (specifically the
transaction processing monitor) tracks the progress of
each transaction and can request rollbacks when one
part of the request fails. The middleware informs the
requesting application of the status of the request and
passes all returned data. Some middleware even
modify the appearance of the returned data in a format
that makes the data easier to use by the application or
the user [15].

 The strengths include communication between
multiple sources and databases transparently,
conversions of application programming language into
the target database(s) acceptable language, and ability
to conversion of response set into a format acceptable
to the requesting application. This middleware has the
ability to query databases directly or communicate with
the DBMS [26].

2.2.2 Desktop Middleware

 The Desktop Middleware can make variations in the
presentation of the data as requested by a user by
tracking and assisting applications, manage any
transport services (e.g. terminal emulation, files
transfer, printing services), and provide backup
protection and other operational background functions
with minimal disruption [21]. Additional desktop
middleware services include graphics management,
sorting, character and string manipulation, records and
files management, directory services, database
information management, thread management, job
scheduling, event notification services, software
installation management, encryption services, and
access control [3].

2.2.3 Web-based Middleware

 Web-based middleware assists the user with
browsing, uses interfaces that scout ahead to find pages
of interest, and discerns user’s changes of interest from
browsing history [28]. It provides authentication
service for a large number of applications [21] and
inter-process communication that is independent from
underlying OS, network protocols, and hardware
platforms [18]. The middleware tightly bound to the
net are called application servers because they improve
the “performance, availability, scalability, security,
information retrieval, and support of collaborative
administration and usage.” Middleware may connect
directly to the application (circumventing HTTP) when
this gains better communication between the server and
client [15]. Some core services provided by web-based
middleware include directory services, e-mail, billing,
large-scale supply management, remote data access (to
include downloads, program access, and browsing), and
remote applications [34].

 One of the web’s main uses is e-Commerce, which
pertains to the communication between two or more
businesses (or patrons and businesses) performed over
the web. This middleware controls access to customer
profile information, allows the operation of business
functions such as purchasing and selling items, and
assists in the trade of financial information between
applications. This business middleware can provide a
modular platform to build the next generation of web
applications [21]. The need for security, QoS, cost-
effective and speedy transactions, and transparency
over diverse environments is essential [7].

 The strengths of e-Commerce middleware include
enabling the fast integration of various computing
systems into a web-based business solution,
communicating between businesses easier, cost-
effective, and more secure, and allowing customer
service representatives to access data from multiple
customer information systems [7].

 Mobile or Wireless middleware is the other main
subdivision of this web middleware. It integrates
distributed applications and servers without
permanently connecting (through wires) to the web. It
provides mobile users secure, wireless access to e-mail,
calendars, contact information, task lists, etc. [14].

 Some key issues of the mobile computing
environment include bandwidth, reliability, delay,
latency, error rate, user interface, processing power,
interoperability, and cost [20]. The bandwidth and
error rates increase exponentially in a wireless
environment. The mobile system has other problems as
well that include battery power fluctuations, network
drops, moving out of signal range, location awareness,
and the cost of communication. When the signal is
transferred from one signal source to another, additional
concerns arise like authentication (ensuring that this is
the same user) [16] and checking for lost packets.

 This wireless connection is accomplished by using a
different set of protocols, tools, and procedures than a
physically attached computer to the network. To see
more on this go to http://www.wapforum.org/ [35].

2.2.4 Real Time Middleware

 Real-time is characterized by the right data being
provided on time otherwise it is no longer the correct
data [29]. The real-time middleware supports time-
sensitive request and scheduling policies. It does this
with services that improve the effectiveness of the user
applications. Real-time middleware can be divided into
the different applications using them (real-time
database application, sensor processing, and
information passing).

 Real-time information passing middleware has
increased dramatically with the introduction of the
Internet, wireless networks, and new “dissemination-
based applications”.

 Strengths of time-dependent middleware are that
they provide a decision process that determines the best
approach for solving time-sensitive procedures [30] and
they can assist the operating system in the allocation of
resources to aid time-sensitive applications to meet
their deadlines [11].

 Multimedia middleware is a major part of the real
time category and can reliably handles a variety of data
types. These types include speech, images (pictures,
GPS outputs, etc.), natural language processors
(translators and teleprompters), music, and video. The
data need to be collected, integrated, and then delivered
to the user in a time sensitive manner [27]. Multimedia
systems can integrate a mixture of logical and physical
devices. Physical devices may include video editors,
cameras, speakers, and processing devices (data
encoder/decoders or media synthesizers) [10]. One
important time-sensitive multimedia middleware assists
in the distributed video-on-demand services. These
services require a process to open new connections,
ensure payment for services to the provider, and most
importantly, ensure the quality of service (QoS)
delivered to the customer.

2.2.5 Specialty Middleware

 As with most cases of categorization, there are
several types of middleware that provide for specific
needs that do not fit into the above categories. There
were several middleware that fell into this category on
the Internet2.edu website. These include Multi-Campus
System and Medical middleware [17]. Additional; very
specific types of middleware may be assigned to this
category [2].

3 CONCLUSION

 As stated before the word middleware has been used
to encompass many different types of software
therefore it is hard to determine exactly what is being
referenced. The taxonomy proposed by other authors
were discussed and shown to be inadequate in including
so many types. A new classification scheme was
presented in which middleware are divided into two
major grouping (Integration and Applications). These
two major classifications were then subdivided into
categories based on the mode of operation or the
support given to applications. We believe that this
taxonomy provides better structure for middleware and
provide a basis for future expansion of classifications.

4 REFERENCES

[1] M. Altinel et al, “DBIS-Toolkit: Adaptive
Middleware for Large Scale Data Delivery,” Proc.
SIGMOD ’99, vol. 28, issue 2, May 1999.
[2] M. Astley, D. Sturman, et al, “Customizable
Middleware for Modular Distributed Software,”
Comm. ACM, vol. 44, issue 5, May 2001.
[3] P. Bernstein, “Middleware”, Comm. ACM, vol. 39,
issue 2, Feb 1996.
[4] G. Blair, et al, “The Role of Software Architecture
in Constraining Adaptation in Component-based
Middleware Platforms,” IFIP/ACM International
Conference on Distributed Systems Platforms, Apr.
2000.
[5] C. Britton, IT Architectures and Middleware -
Strategies for Building Large, Integrated Systems,
Addison-Wesley Publishing, ISBN 0201709074, 2001.
[6] A. Campbell, G. Coulson, and M. Kounavis,
“Managing Complexity: Middleware Explained,” IT
Pro, Sep/Oct 1999.
[7] J. Charles, “Middleware Moves to the Forefront,”
Computer, May 1999, pg. 18
[8] P. Ciancarini, “Coordination Models and Languages
as Software Integrators,” ACM Computing Surveys
(CSUR), vol. 28, issue 2, Jun 1996.
[9] Y. Ding, et al, “RAJA,” Proc. 5th International
Conference on Autonomous Agents, May 2001.
[10] D. Duke and I. Herman, “A Standard for
Multimedia Middleware,” ACM Multimedia’98, Aug
1998.
[11] H. Duran and G. Blair, “A Resource Management
Framework for Adaptive Middleware,” Proc. 3rd IEEE
International Symposium on Object-Oriented Real-
Time Distributed Computing, Mar 2000.
[12] W. Emmerich, “Distributed Objects,” Proc. 1999
Software Engineering, May 1999.
[13] W. Emmerich, “Software Engineering and
Middleware: A Roadmap,” ACM Proc. on the Future of
Software Engineering, May 2000.
[14] Fenestrae Mobile Data Server,
http://yahoo.bitpipe.com/data/detail?id=
1004968144_500&type=RES&x=1335401392.
[15] P. Fraternali, “Tools and Approaches for
Developing Data-Intensive Web Applications: A
Survey,” Computing Survey, vol. 31, issue 3, Sep 1999.
[16] K. Geihs, “Middleware Challenges Ahead,”
Computer, vol. 34, issue 6, Jun 2001.
[17] Internet2, http://middleware.internet2.edu/.
[18] IT Pro, http://www.itprodownloads.com/.
[19] D. Jung, K. Paek, and T. Kim, “Design of Mobile
MOM: Message Oriented Middleware Service for
Mobile Computing,” IEEE International Workshop on
Parallel Processing, Sep 1999.
[20] L. Kleinrock, “Breaking Loose,” Communications
of the ACM, Sep 2001.

[21] KnowledgeStorm,
http://www.knowledgestorm.com/, headquartered in
Atlanta, GA.
[22] F. Kon, et al, “The Case for Reflective
Middleware,” Comm. of the ACM, vol. 45, no. 6, Jun
2002.
[23] Y. Krishnamurthy, et al, “Integration of QoS-
Enabled Distributed Object Computing Middleware for
Developing Next-Generation Distributed Applications,”
ACM SIGPLAN Notices, vol. 36, issue 8, Aug 2001.
[24] S. Lewandowski, “Framework for Component-
Based Client\Server Computing,” ACM Computing
Survey (SCUR), vol. 30, issue 1, Mar 1998.
[25] D. Linthicum, “Next Generation Middleware,”
DBMS, Sep 1997,
http://www.dbmsmag.com/9709d14.html.
[26] D. Linthicum, “Database-Oriented Middleware,”
DM Review, Nov 1999,
http://www.dmreview.com/editorial/dmreview/print_act
ion.cmf?EdID=1560.
[27] K. Mills, “Introduction to the Electronic
Symposium on Computer-Supported Cooperative
Work,” ACM Computing Surveys (CSUR), vol. 31,
issue 2, Jun 1999.
[28] MIT Media Lab: Software Agents: Projects, May
2001, http://agents.media.mit.edu/projects/.
[29] D. Schmidt, “Middleware for Real-Time and
Embedded Systems,” Comm. of the ACM, vol. 45, no.
6, Jun 2002.
[30] G. Slivinskas, C. Jensen, and R. Snodgrass,
“Adaptable Query Optimization and Evaluation in
Temporal Middleware,” Proc. International Conference
on Management of Data on Management of Data, May
2001, vol. 30, issue 2, May 2001.
[31] C. Thompson, et al., “Intermediary Architecture:
Interposing Middleware Object Services between Web
Client and Server,” ACM Computing Surveys (CSUR),
June 1999.
[32] J. Thompson, “Avoiding a Middleware Muddle,”
IEEE Software, Nov/Dec 1997.
[33] N. Uramoto, and H. Maruyama, “InfoBus
Repeater: A Secure and Distributed Publish/Subscribe
Middleware,” 1999 IEEE International Workshops on
Parallel Processing, Sep 1999.
[34] A. Umar, et al, “A Knowledge-based Decision
Support Workbench fro Advanced E-commerce,”
IEEE, 2000.
[35] WAP Forum, http://www.wapforum.org/.
[36] Webopedia Website, http://www.webopedia.com/.
[37] G. Wiederhold, et al., “OntoAgents – a Project in
the DARPA DAML Program,” http://www-
db.stanford.edu/Ontoagents.

http://yahoo.bitpipe.com/data/detail?id=1004968144_500&type=RES&x=1335401392
http://middleware.internet2.edu/
http://www.itprodownloads.com/
http://www.knowledgestorm.com/
http://www.dbmsmag.com/9709d14.html
http://www.dmreview.com/editorial/dmreview/print_action.cmf?EdID=1560
http://www.dmreview.com/editorial/dmreview/print_action.cmf?EdID=1560
http://agents.media.mit.edu/projects/
http://www.wapforum.org/
http://www.webopedia.com/
http://www-db.stanford.edu/Ontoagents
http://www-db.stanford.edu/Ontoagents

	Abstract
	KEY WORDS: Middleware and classification.
	1INTRODUCTION
	2TAXONOMY OF MIDDLEWARE
	2.1 Integration Category
	2.1.2Object Oriented Middleware
	2.1.3Message Oriented Middleware
	2.1.5 Agents

	3CONCLUSION
	4REFERENCES

