

W H I T E P A P E R

Understanding
the ESB

 What it is, why it matters, and how to choose one

PolarLake | Understanding the ESB

2 o f 2 0 | XML & Web Services based incremental integration

Contents

Introduction 3

The Need to Integrate 3

Approaches to Integration 4

1. EAI and ‘Integration Latency’ 4
2. Home grown frameworks and the ‘Accidental Architecture’ 5

Extending The Application Server – A New Alternative? 6
The Third Way – Incremental Integration 6

‘SOA’ and the Enterprise Service Bus 7

How to Choose an Enterprise Service Bus 10

Basic Bus Services 10
Basic Connectivity 12
Support for Highly Distributed Environments 13
Manageability 13
Robustness, Fault Avoidance and Tolerance 14

Fault Avoidance 15
Fault Tolerance 15

Scalability and Performance 16
Security 17
Breadth Of Connectivity 17
Development / Deployment Toolset 18

PolarLake | What it is, why it matters, and how to choose one

www.polarlake.com | 3 of 20

I n t r o d u c t i o n

The Enterprise Service Bus (ESB) is no longer a new technology with ‘potential’; it is already

delivering return on investment and providing the foundations for the integration architectures of

the future. Perhaps because of the ESB’s obvious benefits, it already enjoys multiple definitions

– so many, in fact, that potential adopters need to approach the technology with caution if they

are not to be sold old technology in new clothing.

To this end, this whitepaper attempts to outline the capabilities required in an ESB in order to

handle the most complex integration challenges in an open, scalable and flexible manner.

T h e N e e d t o I n t e g r a t e

Since the business implications of information technology were first understood, getting diverse

systems to ‘talk’ to each other has been seen as a key obstacle in the way of delivering genuine

efficiencies through the use of technology. The scale of investment in getting past this obstacle

is reflected in Gartner research estimating that 35 percent of IT activity in a typical enterprise is

dedicated to application integration – a figure that includes development, maintenance and

operational cost.

Unfortunately, and despite this awareness, in many cases IT solutions have developed in a way

that ensures their isolation from other systems, and erects barriers that can be costly and time-

consuming to break down.

At the same time the industry has witnessed, and been disappointed by, any number of

‘middleware’ technologies that “remove all integration difficulties”. At this point CIOs and

architects are entitled to roll their eyes at whatever the latest market hype is focused upon. But

despite this justified cynicism, there remains the understanding that something must be done.

At the most basic level, there remains a need to integrate.

In order to deliver compelling solutions to customers, or improve operational efficiency, sooner

or later an organization is faced with an integration challenge. At some point, information in

System A must be able to interact with, feed into, or migrate to System B. Considering the

issues facing organizations today, it becomes apparent that the correct integration strategy will

separate tomorrow’s winners and losers.

PolarLake | Understanding the ESB

4 o f 2 0 | XML & Web Services based incremental integration

As an example, consider service provision in the public sector. The two key drivers in this area

are:

� The creation of ‘joined up government’ whereby multiple agencies and departments are

able to work together towards common targets and share information in real-time to

improve results.

� The provision of eGovernment services to Citizens, changing the nature of interaction with

Government and delivering a single ‘one stop shop’ for access to multiple services, both in

the public and private sector.

Both of these initiatives require some form of integration solution in order to connect and deliver

previously isolated information and business logic to citizens, departments, agencies and third

parties.

Similarly, in financial services, organizations are under pressure to meet regulatory requirements

(which typically involve the aggregation and delivery of data from multiple sources), whilst

simultaneously maintaining competitive advantage by improving efficiencies and offering new

services to customers. Both these challenges depend on the effective delivery of integration

solutions.

A p p r o a c h e s t o I n t e g r a t i o n

Until now, most organizations have had two choices when it came to an integration strategy –

adopting one of the ‘Enterprise Application Integration’ products on the market, or attempting to

build their own integration framework, often based on J2EE Application Server products. While

either can be successful in certain circumstances, each approach suffers from a (different)

significant flaw that makes it inappropriate for solving general integration problems.

1. EAI and ‘ Integrat ion Latency ’

EAI vendors viewed integration as a strategic initiative. With the promise of a single product set,

organizations could ‘standardize’ their integration efforts and deliver a cohesive infrastructure

that would potentially integrate the entire enterprise.

However, to be cost-effective this approach requires large-scale projects involving significant

investment in skills and processes and the re-engineering of entire organizations. They rely on

hub-and-spoke architectures that limit scalability and flexibility. First developed in the days

before standard data formats and integration technologies such as XML, JCA and JMS, they

provided their own proprietary data formats and adapters. This made EAI products complex,

heavy and disruptive products to use and deploy.

PolarLake | What it is, why it matters, and how to choose one

www.polarlake.com | 5 of 20

For many, EAI became a Frankenstein’s monster, lumbering out of control through the

organization and delivering ever escalating project sizes and budgets. Even when projects were

completed on time and budget (a rare occurrence - according to Gartner, 50% of such IT

projects come in over budget), they had often taken so long to implement they were no longer

relevant to the business challenges, having been designed to meet these needs when they were

last identified – during ‘requirements gathering’ some time in the dim and distant past. This

effect is sometimes referred to as “integration latency”, and clearly in these circumstances ROI is

hard to come by.

Even aside from these considerations, EAI failed to remove many of the issues that have always

been associated with proprietary technologies; lock-in, reliance on expensive skills (or even the

vendor themselves) to maintain solutions, and an inability to adapt to changing requirements.

2. Home grown frameworks and the

‘Acc identa l Arch i tecture ’

Most organizations correctly view integration as a means to an end, rather than an end in itself.

This view has become more common since the ‘EAI boom’ ended in 2000.

There are good reasons to take such a pragmatic approach to integration. It helps an

organization remain focused on resolving actual business issues rather than the technology or

‘plumbing’ itself. By addressing only the business problem at hand, integration solutions are

tightly focused, and as a consequence project timescales are shorter, costs are lower, and ROI is

usually clear.

Within the scope of each point problem, custom coding can appear to be the best solution: It

leverages existing skills within the organization and requires no additional investment in

software products or skills. Development teams already understand the business and are able

to start addressing the problem quickly. Familiar tools such as J2EE application servers can be

used as the basis of the solution, taking advantage of the wizard-based code generation tools to

reduce the amount of manual coding.

However, as this approach grows across multiple projects or departments, the downside

becomes apparent. New business and regulatory requirements emerge and evolve all of the

time. Each new integration project requires additions to the first point solution. As the

complexity of the solution increases, issues such as manageability and performance begin to

become a problem.

In some cases, integration products are introduced to address these issues, but these in turn

must be integrated with the framework. In the worst case, completely independent solutions

are implemented to solve the problem – increasing complexity still further. The end result of

this process is the ‘accidental architecture’ – a complex spaghetti containing a home grown

integration framework, duplicate technologies and ‘islands of integration’.

PolarLake | Understanding the ESB

6 o f 2 0 | XML & Web Services based incremental integration

This in turn leads to:

� High maintenance costs, due to the large and often complex code base, which also relies

on secondary technologies, and places great demands on the scarcest skills in the

workforce.

� An inability to adapt and evolve solutions without extensive further integration work.

� Typically, extensive use of ‘hand-built’ workarounds that in turn are difficult and costly to

migrate or extend into new environments.

In other words, over time these accidental architectures become both costly and unwieldy.

E x t e n d i n g t h e A p p l i c a t i o n S e r v e r – A N e w A l t e r n a t i v e ?

In recent years Application Server vendors have begun to add integration capabilities to their

products. Using the same development environments currently used to build applications, this

approach, superficially at least, offers the potential for quick and easy integration. Developers

are able to create applications combining components from diverse and remote systems using

the GUI tools they are already familiar with.

The reality is somewhat different. These solutions remain, primarily, development tools. Despite

claims to the contrary, they remain code-centric, and code must be written or generated to

perform common integration tasks, and particularly those associated with the mediation

between multiple information models. In effect this means that the maintenance, migration and

evolution of such systems are likely to be costly and involve extensive re-engineering.

To many organizations, simply ‘extending’ their current development effort may be tempting.

But in a fundamental sense this approach is no different to the creation of accidental

architectures. In just the same way, the end result is complex and inter-dependent integration

solutions that are almost impossible to evolve and extend in a cost-effective way.

The Third Way – Incrementa l Integrat ion

Fortunately, recent developments have made a third way possible - the incremental approach to

integration. ‘Incremental integration’ delivers solutions that start small, focusing on specific

business problems (as with the home grown approach), but that over time can be adapted and

extended to cover the entire organization, as promised by EAI. Crucially, even small initial

projects can deliver ROI, whilst the same approach is also ideal for enterprise-wide integration

projects.

In this way organizations can maximize the use of existing assets without affecting the pre-

existing IT infrastructure, improving the likelihood of delivering targeted projects on-time and

under budget, and experiencing genuine ROI in the short term.

PolarLake | What it is, why it matters, and how to choose one

www.polarlake.com | 7 of 20

As mentioned above, the traditional objection to the incremental approach was the resultant

“spaghetti” effect and the inability to develop a cohesive integration vision for the enterprise as

a whole. New technologies have changed that reality. XML can be used as a common means of

exchanging data between applications and databases. JCA, JMS and JDBC make it easier to

plug-in to applications and infrastructure to get at that data. Now it is possible to build

technologies that make incremental integration a viable proposition.

A product capable of delivering this type of incremental integration must be usable on small

business focused projects – but also scale to the largest projects. To do this it must be

� Easy to learn – leveraging commonly available skills.

� Productive – delivering superior productivity over ‘home-grown’ approaches for even the

simpler point solutions, and enjoying a low initial cost of adoption.

� Small-footprint, but scalable – stripped down for use in simpler projects, with additional

capabilities where required for larger projects.

� Distributed – allowing solutions in different business areas to be joined together when

required.

‘ S O A ’ a n d t h e E n t e r p r i s e

S e r v i c e B u s

XML in itself does not meet all of the sometimes-complex challenges associated with integration

in ‘real world’ environments, but it does provide the basis for this integration. If it is accepted

that XML is an alphabet rather than a language, it is clear that genuine integration will require

additional technologies to orchestrate business processes, manage transformations within XML

and validate and route XML-based messages throughout the organization.

These features are at the heart of the Enterprise Service Bus (ESB).

As with any new product category, there is still some confusion around the exact definition of an

ESB. As the industry puts its weight behind the general concept of service-oriented architectures

as the basis of integration, so the arguments begin concerning the specific nature of the ESB

itself. This is the usual pattern with any new type of product.

PolarLake | Understanding the ESB

8 o f 2 0 | XML & Web Services based incremental integration

This debate is currently focused on two issues:

� Whether the ESB is an architecture (and one that does not even have to be standards-

based), or ‘way of doing things’, or a product in itself. Whilst it is in the interest of

established IT vendors without a product offering in this space to present the ESB as an

architecture, the reality is that at present product is required to perform this function. The

industry can expect to see more products defined by vendors as ESBs over the next two

years.

� The nature of the ESB product; specifically whether an ESB is primarily a smarter message

queuing system, which provides simple XML translation, plus routing and messaging

capabilities, or whether it will effectively replace EAI functionality by providing application

adapters and business process modelling and automation.

Our view is that the ESB must provide a distributed, message-oriented architecture, supporting

traditional EAI features such as message routing and transformation, within the context of

integration based upon ‘business services’ and XML messages. It is the technology that adds

‘intelligence’ to the integration infrastructure, and thus enables the creation of applications that

automate business processes and interactions between multiple systems and organizations. As

such the ESB can offer support for the type of ‘incremental integration’ discussed above, and can

be seen as a ‘disruptive’ technology in the marketplace.

The use of the word “service” acts as a reminder that the ESB is often seen as a central (indeed

the central) component of the service-oriented architecture (SOA). Forrester research, for

example, regards the ESB as “a layer of middleware through which a set of core (reusable)

business services are made widely available”. The SOA enables chunks of enterprise functionality

to be presented as ‘services’ to the ESB, which routes, transforms and validates the XML inputs

and outputs from these services. By developing in this way, once the Enterprise Service Bus is in

place, following an initial point-to-point integration project, further projects merely involve

‘socketing’ new services onto this backbone or the re-use of existing services.

PolarLake | What it is, why it matters, and how to choose one

www.polarlake.com | 9 of 20

Figure 1 Overview of ESB Functionality.

The end result is the ability to undertake integration projects that can:

� Focus specifically on high-value business issues and deliver rapid ROI

� Offer a low-cost alternative to traditional EAI models

� Extend across the enterprise as more business operations are offered as services

� Re-use these assets by using a ‘building block’ approach to application development

� Integrate with third parties

� Help avoid reliance on high-cost skills associated with proprietary or custom-built solutions

Accidental architectures and integration latency can be things of the past. Organizations can

deliver either tactical or strategic integration projects in confidence, knowing that whilst each

delivers ROI on its own merits, they can also evolve to become part of a whole that is more than

the sum of its parts.

PolarLake | Understanding the ESB

1 0 o f 2 0 | XML & Web Services based incremental integration

H o w t o C h o o s e a n E n t e r p r i s e

S e r v i c e B u s

Based on the logic above many organizations are now convinced that the ESB provides a key

enabling technology for future business integration. Gartner, for example, has noted that “"A

majority of large enterprises will have an enterprise service bus running by 2005". IDC believe

that "The ESB…will revolutionize IT and enable flexible and scalable distributed computing for

generations to come". Clearly, as a technology it demands serious consideration.

The most complete definition of the ESB has been provided by Steve Craggs, of Saint

Consulting, in the white paper “Best Of Breed ESBs”, a defining document concerning the

nature of the ESB and the features they can be expected to provide in order to solve real-world

integration problems. According to Saint Consulting, and for the purposes of this whitepaper

slightly simplified, these include:

� Basic bus services

� Basic connectivity

� Support for highly distributed environments

� Manageability

� Robustness, Fault avoidance and tolerance

� Scalability and performance

� Security

� Breadth of connectivity

In the remainder of this white paper we look at each feature in turn and suggest what potential

ESB users should expect from their technology.

Basic Bus Serv ices

At its heart the ESB acts as an information bus between the various services available within the

organization. As such, it must support certain functions in order to perform this task. These

include:

� Transformation – the ability to map one data format onto another (usually XML) in order to

ensure inter-operability between the various systems plugged into the ESB.

PolarLake | What it is, why it matters, and how to choose one

www.polarlake.com | 11 of 20

� Routing – whereby the sometimes-complex ‘flow’ of messages from component to

component can be specified.

� Communication – supporting the delivery of messages throughout the organization.

In the case of transformation, mapping between XML formats can be

provided via XSLT, but in order to optimize performance and reduce the

complexity associated with the mapping process, some ESBs may

provide additional mapping functionality. This can improve performance

significantly by reducing the processing overhead associated with

mapping.

Additionally, these enhanced mapping tools allow complex many-to-many

maps to be created without recourse to the script or Java based

extensions required in XSLT.

Although life would be simpler if all mapping took place on a one-to-one

basis, real world integration problems demand that an ESB is also able to

support one-to-many and many-to-one transformations of XML messages

and formats. Those ESBs that are best able to model sophisticated and complex business

processes in this way are most likely to find favor with customers.

Figure 2 Data Model Mapping in PolarLake Integration Suite

XSLT

Whi ls t XSLT is

usefu l for

s imple/non- t ime

cr i t ica l

t ransformat ions,

more advanced

mapping

capabi l i t ies are

a lso requi red.

PolarLake | Understanding the ESB

1 2 o f 2 0 | XML & Web Services based incremental integration

As mentioned above, ‘routing’ is used to define the flow of messages. However, in many projects

this flow must be dynamically altered based on the content of the message, or the results of a

previous step in the process. An ESB must provide this ability if it is to be of any use in

addressing complex integration challenges.

The communications function of an ESB is a more subtle

case. Clearly there must be support for asynchronous

messaging, publish and subscribe, store and forward and

similar messaging models. However, for many organizations

these functions will already be contained within existing

messaging products (WebSphere MQ, for example), and it is

reasonable to ask whether these functions should be

replicated by the ESB, inevitably adding cost and complexity

to the finished solution.

Furthermore, analysts such as Gartner have recently identified this as the key problem in

migrating to an ESB architecture: the need to integrate across multiple ESBs – in the Gartner

sense of a smart messaging layer rather than the fully functional Integration Suite that we refer

to as an ESB.

This mandates the selection of a ‘universal’ ESB that can integrate with the messaging solution

of choice, providing intelligence on top of that solution rather than replicating its functionality.

This is likely to be the most cost-effective and flexible solution. Solutions that include bridges

between built-in messaging layers and other messaging systems cannot be considered

‘universal’ as they still require a new messaging layer to be deployed and often provide limited

functionality over the third party system.

Basic Connect iv i ty

Any integration system that does not recognize and accommodate the multiple systems and

applications that make up the existing IT infrastructure is almost certain to fail. ‘Connectivity’ in

this context simply means the ability to add components to the ‘bus’ itself. The object is to

support the integration of the diverse applications and environments that make up an IT

landscape, and in doing so support seamless communication across the enterprise.

More specifically, an ESB should be capable of integrating

‘web services’ developed within any commonly used

application server environment. Although this should

theoretically be a simple task, slight variance in the way in

which services have been implemented can mean it is more

complex than might be imagined. ESB ‘functionality’ that

has been added onto existing application development

environments should be approached with caution, and

Messaging Protocols

ESBs must be ab le to

nat ive ly support mul t ip le

messaging protocols - as

wel l as In te rnet pro tocols

such as HTTP.

Mini-Hubs

Check that the re are no

min i -hubs (de l i ver ing

common services such as

i t inerary management o r

t ransformat ion) .

PolarLake | What it is, why it matters, and how to choose one

www.polarlake.com | 13 of 20

customers must determine that ESBs of this type will enable integration of services regardless of

implementation details.

Support for H ighly Distr ibuted

Env ironments

In order to support integration across widely distributed

deployments, the ESB itself must be a genuinely

distributed system when deployed. Specifically, there

must be no requirement to route all messages through

a central hub in order to apply routing and

transformation rules to them. To do this would have

severe performance implications for even small

deployments.

This can be seen as a central requirement for the ESB. It marks a significant move away from

traditional ‘hub and spoke’ approaches to integration and enables solutions to be implemented in

a truly incremental fashion and gradually connected across the enterprise. One trend is to

provide micro-hubs to which key services such as transformation are delegated. If these are not

distributed, this will cause new bottlenecks as multiple calls to a service will introduce latency.

In order to support this type of deployment, customers should look for light footprint ESB

implementations that provide maximum flexibility in deployment and can thus support multiple

nodes without difficulty. As a further benefit, light footprint ESBs are also likely to have lower

adoption costs than more traditional implementations, helping to deliver productivity and ROI on

initial projects.

Manageabi l i ty

The likely distributed nature of the ESB has obvious implications when it comes to management

of deployed systems. Whilst the product is distributed, support is best provided from a single

point of control, from which system definitions can be maintained, adapted and then distributed

across the full ESB deployment.

When the system is running, it is obviously important to monitor the state and behavior of the

system, and to this end some form of ESB management must be provided that is able to monitor

and identify potential problems before they become critical issues. Crucially, in B2B or inter-

departmental deployments this information must of necessity be available across these

boundaries. In order to provide this information to corporate management frameworks, the ESB

must be capable of collecting comprehensive system statistics, of both a technical and business

nature, and providing notifications relating to these to third-party management applications that

can assist in Business Process Monitoring.

Distributed Management

ESBs should p rovide both

d is t r ibuted moni tor ing and

management and p lug- in

capabi l i t ies to exis t ing

system management too ls .

PolarLake | Understanding the ESB

1 4 o f 2 0 | XML & Web Services based incremental integration

Figure 3 Exception Handling in PolarLake Integration Suite

When problems are identified, it is also necessary to support any actions taken to resolve these,

and enable (from a single point of control) the operational activities that might be used to do

this. These include starting and stopping specific processes, re-routing operations, and also

problem determination functions such as application tracing and message editing. These tools

enable the ESB to take a proactive role in ensuring systems do not break down.

Robustness, Faul t Avo idance and

To lerance

Give the pervasive nature of the ESB, and its position at the heart of so many operations and

business processes, the need for a truly robust solution is a given.

This ‘robustness’ manifests itself in two ways:

� Fault avoidance – by which the ESB aims to prevent problems occurring.

� Fault tolerance – by which problems, when they do occur, have little impact on levels of

service.

Non-standard Extensions

Vendor def ined extens ions to s tandards, such as envelopes

def in ing ‘ i t inera r ies ’ , increase chance of fau l ts as wel l as

vendor lock- in .

PolarLake | What it is, why it matters, and how to choose one

www.polarlake.com | 15 of 20

F a u l t Av o i d a n c e

One obvious way to reduce the occurrence of problems is to ensure that the ESB software itself

is mature and extensively tested. Of course this may be difficult to measure in practice, although

the history of the product and the organization behind it may offer some insight. Products that

are deployed on a large scale within mission-critical environments may be assumed to be robust

in nature. In many cases this can be checked with reference to their customers thereby getting

real insight into product quality – useful in a field in which style often over-rides substance.

The adoption and support for industry standards (XML, JMS, Web Services, JDBC) can also assist

in fault avoidance. As these standards have themselves been tested and proven they can give

some confidence in those products that support them. On that basis customers may be advised

to avoid those ESB implementations that rely on proprietary extensions to these common

standards – such as vendor-defined envelopes which include product specific routing or control

information - for reasons of product quality, never mind the more familiar difficulties that are

associated with proprietary technology.

Lastly, ease-of-use can be a factor in fault avoidance. For obvious and well-documented reasons

it is desirable that the developers who create a solution are also those that maintain it going

forward, or at least have some hand in this function. In order to make this possible, the chosen

ESB should be as easy-to-use as possible, requiring little training before existing teams can use

it to create new applications.

F a u l t To l e r a n c e

Of course problems do occasionally occur, which is when ‘fault tolerance’ becomes an issue. How

the ESB responds in this instance will have a significant impact on to what extent these

problems impact on running systems and consequently affect the business.

Fault tolerance can be provided in a number of ways. An ESB should support:

� Intelligent routing – ensuring that information is routed around problem areas in the

network and thus the target can still be reached and the business process unaffected.

� Exception handling – generating fully configurable exception architectures that are able to

catch exceptions, generate compensating transactions, or deliver exception reports.

 Exception Handling

Except ion handl ing is key to fau l t to le rance – the Hurwi tz

Group est imates that 80% of t ime spent bu i ld ing bus iness

processes is spent in except ion handl ing.

PolarLake | Understanding the ESB

1 6 o f 2 0 | XML & Web Services based incremental integration

� Redundancy – a common concept, and as important here as elsewhere in the IT

infrastructure. ESBs should provide clustering at critical nodes and ideally mirror services

in use in case of failure.

� Recovery – when transactions fail, some form of roll-back is required to ensure that they

fail on an ‘atomic’ basis – that is, they are either all or nothing, as in the classic example

of the money transfer. In order to do this, the ESB must support some from of transaction

management or compensatory transactions in the event of such a failure.

Scalab i l i ty and Performance

As a key element of the IT infrastructure and a platform upon which multiple solutions will be

based, the scalability and performance of an ESB are of critical importance. After the initial

adoption of an ESB it is common to ‘discover’ new requirements and candidates for integration

solutions, usually due to the initial success of the first integration projects. Thus adoption can

accelerate rapidly across the organization. The ESB that may be initially chosen for a small

project must be equally capable of supporting this increased workload.

A number of features and technologies can assist in this area and should be considered when

selecting an ESB:

� Support for asynchronous messaging and multi-threading, thus enabling business

processes to occur in parallel and consequently with greater efficiency.

� Intelligent load-balancing capabilities to deal with spikes in demand and unusually large

document or data volumes within the system.

� Ability to deliver performance benefits through optimized path selection and intelligent

mapping capabilities – such as breaking up and recombining documents in order to focus

only on those areas requiring transformation.

� Prioritization of services, based on either document type or content-based rules, in order

to support business-critical processes when processing resources are limited.

� Support for transparent resource addition – the ability to add new components or modify

existing set-ups without disruption to business operations.

High-performance Processing

Poor per formance in the process ing of XML is the major

obstac le to widespread adopt ion. Any viab le ESB must be

ab le to de l i ver h igh per formance in th is area.

PolarLake | What it is, why it matters, and how to choose one

www.polarlake.com | 17 of 20

Secur i ty

Clearly any solution that spans multiple departments and organizations must implement or

support security measures that protect the integrity of the information and business processes

within the system. The issue of security is a central concern in the IT industry. There are a

number of solutions in the marketplace which any ESB should be able to use for the purposes of,

for example, user authentication – ensuring that only those with relevant privileges can access

the information within the solution, and indeed control the deployment of the ESB itself through

system management tools.

There is a further requirement - to address legitimate concerns around the possibility of

malicious outsiders either reading information as it passes through the ESB or even altering this

information in transit. In order to guard against this ESBs must clearly support some form of

encryption technology. They must also be able to specify exactly which components and

processes require this functionality as encryption ‘across the board’ can have significant

performance implications. Integrity can also be guaranteed by supporting checksum algorithms

that detect any unspecified changes in information routed between components – possibly due

to malicious influence.

Breadth of Connect iv i ty

Connectivity is the name of the game for the ESB and as discussed above a basic ability to

connect multiple systems is a requirement for any serious product in this area. But it is also

worth considering a number of areas in which there may be some difference between leading

ESB implementations. Remember that system requirements change on a rapid basis (hence

‘integration latency’) and that an ESB should be able to connect as many technologies as

possible, even if at present they may not be an issue.

Further connectivity issues include those relating to:

� Database integration – both in terms of data and stored procedures. The ability to call

stored procedures in particular may be important, as many existing business processes

may make use of them.

� Enterprise applications, such as SAP, Siebel, PeopleSoft, Oracle, IMS, JD Edwards etc.

� Enterprise data standards, such as binary data, common text formats, Excel, OAG BOD,

SQL, ANSI X12 EDI, UN/EDIFACT EDI, FIX and HIPAA.

� Legacy systems. Although it would be nice to live in a world without existing or ‘legacy’

systems requiring support, this is unlikely to be the case any time soon. As such, it is

imperative that an ESB solution can integrate with existing data and business logic stored

within, for example, mainframe environments.

PolarLake | Understanding the ESB

1 8 o f 2 0 | XML & Web Services based incremental integration

� EAI implementations, which may have been used by the organization in the past and are

likely to automate significant numbers of business processes within ‘islands of integration’.

In order to bring these together, the ESB must support integration with existing EAI

solutions as effectively as possible.

� Previous ‘standards’, such as COM and CORBA, within which previous integration solutions

may have been integrated, and from which information and logic may be required to

support the integrated organization of the future.

Figure 4 Database Integration in PolarLake Integration Suite

Development / Deployment Too lset

The quality and usability of the toolset provided by an ESB vendor is absolutely vital in terms of

reducing the cost of implementation. Whilst more conventional EAI solutions required scarce

skills to implement, ESB solutions can deliver significantly increased developer productivity by

enabling existing staff, familiar with commonly used standards, to develop and deploy solutions

themselves with minimum training. In turn this leads to a significant saving in terms of

development and maintenance costs – but this relies on providing easy-to-use interfaces and

toolkits that assist in getting started and developing with the product.

Lower Costs

The more an ESB can reduce the number of l i nes of code

requi red the lower the cost o f development and maintenance.

PolarLake | What it is, why it matters, and how to choose one

www.polarlake.com | 19 of 20

Clearly development and deployment tools must cover the basic requirements around

configuration, connectivity, incremental deployment and life-cycle management, but they must

also do this in a way that is as easy-to-use and efficient as possible. This may include support

for GUI tools enabling drag-and-drop configuration of business processes and transformations,

for example. The more an ESB can reduce the number of lines of code required the lower the

cost of development and maintenance.

Figure 5 Development Environment in PolarLake Integration Suite

The more such a simple development environment can accommodate multiple technologies and

enable a single user to create and manage complex integration solutions, the more efficient they

will be in development and the more likely will be their extensive adoption.

PolarLake | Understanding the ESB

2 0 o f 2 0 | XML & Web Services based incremental integration

PolarLake provides a complete suite of products for implementing integration solutions based on

the Enterprise Service Bus. Our full-strength, productive solutions deliver code-free

orchestration and mediation of software services, enabling integration solutions to be extended

and re-used without extensive re-engineering. The result: real return on investment.

PolarLake has a proven track record in delivering the benefits of incremental integration with a

technology that leverages existing IT investments in standards, skills and systems to reduce

both initial investment and total cost of ownership. Deployed customers include leading

corporations in financial services such as JP Morgan Chase, Pioneer Investments (Ireland), Man

Financial Ltd (UK), and Nissay Dowa (Japan), in Government, such as CJIT (Criminal Justice IT,

UK), and in telecommunications such as Midwest Wireless (USA) and KDDI (Japan).

PolarLake's solutions are provided by partners such as Hitachi Systems and Services and Sun

Microsystems. PolarLake is a private company, headquartered in Dublin, Ireland, with offices in

London, New York and Tokyo.

Leveraging its unique Dynamic XML Runtime™ technology and XML Circuits™ application

assembly framework, PolarLake's products allow customers to deliver integration solutions at a

fraction of the normal time and cost.

CONTACT DETAILS

PolarLake Ireland (HQ)
Block F1
East Point Business Park
Dublin 3
Ireland

PolarLake Japan
13 F Ebisu Business Tower
1-19-19 Ebisu
Shibuya-ku
Tokyo, Japan

PolarLake USA
1001 Avenue of the Americas,
Suite 1121
New York, NY 10018
USA

PolarLake UK
No. 78 Cannon Street
London
EC4N 6NQ
UK

T: +353 (1) 449-1010

T: +81-3-4360-3965

T: +1 (212) 813 2965

T: +44 (0) 20 7618-6426

F: +353 (1) 449-1011

F: +81-90-1421-6486

F: +1 (212) 790 9072

F: +44 (0) 20 7618-8001

E: info@polarlake.com

E: japan@polarlake.com

E: usa@polarlake.com

E: uk@polarlake.com

 w w w . p o l a r l a k e . c o m

