
Doug Lea
SUNY Oswego

Steve Vinoski
IONA Technologies

Werner Vogels
Amazon.com

Asynchronous
Middleware and Services

The theme features in this issue of IC
explore how and why asynchronous
middleware is playing an increas-

ingly important role in distributed and
Web-based systems. Several research and
engineering challenges remain before
this technology can fully make good on
its promises. But before describing them,
let’s step back a bit and discuss some of
the basic ideas behind asynchronous
middleware.

A-Synchronicity
Exactly what does the word asynchronous
mean? The term has come to indicate,
among other things, “without time,” “no
central clock,” “nonblocking,” and “loose-
ly coupled.” Wikipedia defines the term
simply as “the state of not being syn-
chronized.” Given this definition, we
should begin any discussion of asynchro-
nous technologies by first discussing syn-
chronous systems, in two different senses.

The first sense of synchrony involves
systems that require access to a clock to
coordinate actions. Several networking
technologies require communicating par-
ties to be synchronized based on a clock,

for example. Although Asynchronous
Transfer Mode (ATM) networking brought
some of the scalability advantages of
packet-switched networks to the lowest
level of the networking stack, it didn’t
remove the need for synchronization
between the different components, and
thus required the development of addi-
tional signaling protocols. As another
example, all the way up the stack, many
distributed systems algorithms assume
access to a clock to help structure the
interactions between different parties
through synchronization. Distributed sys-
tems theoreticians, however, have designed
algorithms for asynchronous distributed
systems in which time doesn’t exist. Under
these difficult conditions, they’ve designed
algorithms that work under all circum-
stances and place minimal requirements
on execution environments.

The second, and probably more com-
mon, sense of synchrony is applied to pro-
gram flow. A procedure or system call is
considered synchronous if it blocks the
caller until the response is ready, and asyn-
chronous if the caller isn’t blocked and can
separately retrieve the response later.

14 JANUARY • FEBRUARY 2006    Published by the IEEE Computer Society 1089-7801/06/$20.00 © 2006 IEEE IEEE INTERNET COMPUTING

G
ue

st
 E

di
to

rs
’ I

nt
ro

du
ct

io
n



In the developer community, the choice
between using synchronous and asynchronous
programming primitives can often sound like a
religious war, with continual debate about which
strategy allows for building better-performing sys-
tems. We must realize, however, that all computer
systems are, in essence, asynchronous and that the
notion of a synchronous operation is merely a
convenient programming style implemented using
asynchronous primitives and operating-system-
supported threading. The days in which operating
systems didn’t support fine-grained concurrency
control are long behind us, and we can now build
massively concurrent systems when using enter-
prise-class operating systems. Such systems have
fundamental support for asynchronous operations,
as well as for synchronous calls in combination
with threading.

Programming with synchronous operations has
always had a perceived advantage in terms of sim-
plicity. Whereas asynchronous systems often had
to deal with complex state management, their syn-
chronous counterparts could rely on simpler
program flow and control mechanisms for con-
structing applications. This simplicity came with a
cost, however — the investigation of performance
and reliability problems was often overwhelmed
by the complexity of interactions among these
mechanisms. Asynchronous systems, on the other
hand, were frequently constructed as large state
machines using an event-programming style for
triggering state transitions. Combining this
approach with sufficient concurrency to efficient-
ly exploit system resources wasn’t always possi-
ble. Yet, approaches such as Matt Welsh’s staged
event-driven architecture (SEDA), which combines
the best of event-driven programming, concurren-
cy management, and ease of programming, are
now opening up new ways of building systems.

Architectural Styles
The boundaries between asynchronous and syn-
chronous programming styles are rather artificial.
What is it that makes middleware synchronous or
asynchronous? It’s not whether the Remote Proce-
dure Call (RPC) blocks for its return value; that’s
purely a programming abstraction. The best way to
distinguish the two is to look at the preferred way
of building reliable systems: using transactions.

Transactions are one of the most powerful
paradigms in computer programming. Well under-
stood by many programmers, transactions are sim-
ple — they either commit or abort, and if they

commit, they provide rock-hard guarantees on the
actions inside the transaction. They’re so simple to
use that if we could, we’d build all our systems
with them. Unfortunately, transactions come at a
cost that’s hard to ignore: the more resources
involved in the transaction, and the longer it takes
to complete, the higher the chance that it will
block other transactions from getting work done.
This makes transactions unsuitable for building
large-scale operations, especially if they include
many distributed resources.

Synchronous middleware aims to provide
many of transactions’ all-or-none guarantees for
certain classes of applications without some of the
overhead. Some applications don’t require trans-
actional guarantees, however, or can’t be served
by synchronous middleware because of scale and
distribution limitations. Asynchronous middleware
addresses such applications, in which asynchrony
means that we don’t try to achieve transactional-

style synchronization between the participants.
The challenge for middleware based on asyn-

chronous principles is to provide alternatives for
the powerful combination of atomicity, consisten-
cy, isolation, and durability that transactional sys-
tems provide. To build their systems, application
architects need primitives that are as powerful as
transactions, given that large distributed applica-
tions’ requirements are just as complex as those we
can construct with transactions.

Most asynchronous middleware uses the ex-
plicit notion of a message as its fundamental
building block, which often leads to applications
that are structured as series of message exchanges.
These messages carry application state, updates to
state, Web service requests, event notifications, and
so on. Two main categories of middleware use
these explicit asynchronous messaging systems:

• Message queues. Although the term “message-
oriented middleware” is currently more popu-
lar, this technology has its roots in the

IEEE INTERNET COMPUTING www.computer.org/internet/ JANUARY • FEBRUARY 2006 15

Guest Editors’ Introduction

The choice between using
synchronous and asynchronous
programming primitives can 
often sound like a religious war.



message-queuing techniques developed for
mainframe access, which itself was asynchro-
nous in nature. These days, message-oriented
systems don’t necessarily advertise themselves
as queuing systems, but they do provide similar
guarantees. Hosts can send and deliver
messages with various reliability guarantees,
including (transactional) persistence, routing
via several parties, security properties, and so
on. This makes messaging a very versatile basic
primitive with which to build systems.

• Publish–subscribe. Pub–sub adds two impor-
tant concepts to basic messaging: conceptual
naming and infrastructure-independent rout-
ing. How we route and deliver messages no

longer depends on the physical infrastructure
but on concepts such as named channels or
topics, behind which one or more recipients
might be hiding. Systems might conduct addi-
tional message filtering on the basis of message
content. In pub–sub systems, message delivery
depends fully on the actions of the receivers,
which frequently are unknown to the senders.

Event-oriented technologies represent a third
form of asynchronous middleware geared toward
more lightweight sensor-controller-actuator pat-
terns used in areas from factory-floor systems to
enterprise application integration to mobile appli-
cations. In essence, event-based systems are built
out of messaging and publish–subscribe compo-
nents, and are an application of the two areas
described earlier.

Messaging technologies, however, form only a
starting point. They let architects build applica-
tions out of simple but powerful techniques, but
this is hardly sufficient for building real, complex
applications. The true power comes from using
these techniques in higher-level structuring
engines such as business-process execution, long-
running business activities with compensating
actions, or persistent conversations. The basic
technologies have matured, and research has start-
ed addressing the more complex interactions that

are necessary to make large-scale distributed
application architectures successful.

Middleware aficionados realize that, in the end,
it’s not about the technology but about the appli-
cations you need to build with it. Real-world dis-
tributed applications are complex in functionality,
often incorporating many different technologies
that must work together, and having strict require-
ments in terms of performance, reliability, securi-
ty, and efficiency. Given that no single technology
can solve all the requirements, such technologies
must be able to coexist peacefully — for instance,
enabling architects to integrate interfaces to a new
payment system into their applications without too
much pain.

In this Issue
This issue’s articles span the range of recent work
in asynchronous middleware systems. The first two
focus on the description, representation, and
analysis of asynchronous systems. Asynchronous
messages are wonderfully flexible and compos-
able, but at the potential expense of unpre-
dictability. In “Analyzing Conversations of Web
Services,” Tevfik Bultan, Xiang Fu, and Jianwen
Su present a graphical model for representing con-
versations spanning multiple asynchronous mes-
sages among participants. Not only do these
models help make protocols more humanly under-
standable, they also set the stage for powerful ana-
lytic tools that can help answer questions about
how systems will operate. In “Asynchronous Mes-
saging between Web Services Using SSDL,” Savas
Parastatidis, Jim Webber, Simon Woodman, Dean
Kuo, and Paul Greenfield describe the SOAP Ser-
vices Description Language, an XML-based
approach to describing asynchronous protocols
that enables SOAP-based systems to represent and
rely on modular contracts that capture their inter-
action responsibilities.

The next two articles delve into pub–sub systems.
In “Publish–Subscribe for High-Performance Com-
puting,” Greg Eisenhauer, Fabián Bustamante, and
Karsten Schwan show how basic pub–sub designs
can be tuned to provide competitive alternatives to
other approaches to high-performance cluster and
grid computing. And in “Publish–Subscribe Grows
Up: Support for Management, Visibility Control, and
Heterogeneity,” Ludger Fiege, Mariano Cilia, Gero
Mühl, and Alejandro Buchmann present a new
approach to scalability and manageability concerns,
based on scoping constructs that extend those found
in other aspects of computing.

16 JANUARY • FEBRUARY 2006 www.computer.org/internet/ IEEE INTERNET COMPUTING

Asynchronous Middleware and Services

Middleware aficionados realize 
that, in the end, it’s not about 
the technology.



Finally, in “Asynchronous Mediation for Inte-
grating Business and Operational Processes,”
Philippe Lalanda, Luc Bellissard, and Roland Balter
describe the design and implementation of a
framework that allows programmers of asynchro-
nous systems to use analogs of interception tech-
niques often employed in synchronous systems to
add capabilities to existing services.

It’s clear that synchronous systems, especially
those based on RPC abstractions coupled with

popular programming languages such as Java and
C++, have provided the basis for many important
advances made in distributed systems development
and middleware over the past 15 to 20 years. It’s
just as clear that as our applications scale up to the
Internet, World Wide Web, and beyond, the known
limitations in synchronous systems, especially in
coupling and scalability, will increasingly become
liabilities that outweigh synchronous abstractions’
benefits. We might very well be witnessing a sig-
nificant, fundamental shift in how distributed sys-

tems and middleware-based applications are
designed and built, with asynchronous approach-
es becoming a truly basic and fundamental
assumption at the heart of such applications.

Doug Lea is a professor of computer science at the State Uni-

versity of New York, Oswego. He has a BA, an MA, and a

PhD from the University of New Hampshire. Lea has writ-

ten several widely used software utility packages in C, C++,

and Java. Contact him at dl@cs.oswego.edu.

Steve Vinoski is chief engineer for IONA Technologies. He’s

been involved in middleware for more than 17 years.

Vinoski has helped develop middleware standards for the

Object Management Group (OMG) and the World Wide Web

Consortium (W3C). Contact him at vinoski@ieee.org.

Werner Vogels is the director of systems research at Ama-

zon.com. Previously, he was a research scientist at Cornell

University, studying scalability and reliability of mission-

critical enterprise systems. Vogels has a PhD in computer

science from the Vrije Universiteit in Amsterdam. Contact

him at werner@vogels.net.

IEEE INTERNET COMPUTING www.computer.org/internet/ JANUARY • FEBRUARY 2006 17

Guest Editors’ Introduction

CISCO SYSTEMS, INC. is accepting
resumes for the following positions: CALI-
FORNIA: Irvine: Channel Program
Manager (to formulate marketing plans,
establish mutual goals and strategies to
increase the revenue for company product
line) (Ref #: IC1). Los Angeles: Consulting
Systems Engineer (to provide architecture
consulting, technical and sales support for
major account opportunities) (Ref#: IC2).
Milpitas: Software Engineers (Ref#: IC3),
Software/QA Engineers (Ref#: IC4), and CA
Project Manager (to drive and implement
web-based software applications to auto-
mate company transactions) (Ref#: IC5).
Mountain View: Technical Marketing
Engineer (Ref#: IC6), Test Engineer (Ref#:
IC7). Petaluma: Hardware Engineer (Ref#:
IC8), Software Engineer (Ref#: IC9).

Pleasanton: Systems Engineer (Ref#: IC10).
San Francisco: Systems Engineer (Ref#:
IC11). San Jose: Business Development
Managers (Ref#: IC12), Customer Support
Engineers (Ref#: IC13), Finance Business
Analysts (Ref#: IC14), Hardware Engineers
(Ref#:IC15), IT Engineers (Ref#: IC16), IT
Project Manager (Ref#: IC17), Manufacturer
Quality Engineer (Ref#: IC18), Marketing
Programs Managers (Ref#: IC19),
Manufacturing System Administrator (Ref#:
IC20), Finance Manager (Ref#: IC21),
Manufacturing Manager (Ref#: IC22),
Software Development Manager (Ref#:
IC23), Network Consulting Engineers (Ref#:
IC24), Software Engineers (Ref#: IC25),
Software/QA Engineers (Ref#: IC26),
Technical Leads (Ref#: IC27), Technical
Marketing Engineer (Ref#: IC28), Test
Engineers (Ref#: IC29), EMC Compliance
Engineer (to design, test complex high-
speed products to meet EMC and Telecom
requirements) (Ref#: IC30), IMC Demand
General Manager (to manage the effective
delivery of internet marketing services) (Ref#:
IC31), New Product Introduction Engineers
(to introduce specific products with high
content of electronics circuitry into produc-
tion) (Ref#: IC32), Program Manager (to
manage daily operation of program within
the Sales Support Program Organization)
(Ref#: IC33). MASSACHUSETTS:

Boxborough: Software Engineers (Ref#:
IC34). Franklin: Software Engineer (Ref#:
IC35). NEW JERSEY: Edison: Network
Consulting Engineer (Ref#: IC36). VIR-
GINIA: Herndon: Corporate Development
Consulting Engineer (Ref#: IC37). FLORIDA:
Miami: Credit/Collection Analyst (Ref#:
IC38). NEW YORK: New York: Sales
Business Development Managers (Ref#:
IC39). NORTH CAROLINA: Research
Triangle Park: Customer Support Engineers
(Ref#: IC40), Network Consulting Engineers
(Ref#; IC41), Quality Systems Engineer (Ref#:
IC42), Software Engineers (Ref#: IC43),
Software/QA Engineers (Ref#: IC44),
Technical Lead (Ref#: IC45), Tech Project
Systems Engineer (to plan, develop and
implement custom test plans for
enterprise/service providers and customers)
(Ref#: IC46), Tech Project Systems Specialist
(to develop and administer sales training
program) (Ref#: IC47). TEXAS:
Richardson: Customer Support Engineers
(Ref#: IC48), Network Consulting Engineer
(Ref#:IC49), Software Engineers (Ref#: IC50),
Test Engineer (Ref#: IC51). Please send
resumes with reference number to Cisco
Systems, Inc., 170 W. Tasman Drive, San
Jose, CA 95134, MS: SJC 5/1/4. No phone
calls please. Must be legally authorized to
work in the U.S. without sponsorship. EOE.
www.cisco.com.

Classified Advertising

SUBMISSION DETAILS: Rates are
$110.00 per column inch ($125 mini-
mum). Eight lines per column inch and
average five typeset words per line.
Send copy at least one month prior to
publication date to: Marian Anderson,
Classified Advertising, IEEE Internet
Computing Magazine, 10662 Los
Vaqueros Circle, PO Box 3014, Los
Alamitos, CA 90720-1314; (714) 821-
8380; Email: manderson@computer.org.


