
 33

 AKG JOURNAL OF TECHNOLOGY, vol.1, no.1

Evolution of Middleware Technology and Its Widespread Applications

 Shweta Roy

 Department of Computer Science, Ajay Kumar Garg Engineering College, P.O. Adhyatmic Nagar, Ghaziabad
 sguddr@gmail.com

--- ---------------------------------

Abstract-- Service-oriented architectures are poised to transform

the industrial scene by enabling more flexible and agile IT

infrastructures. The key change agent in this transformation is

middleware. Middleware optimises the cost and delivery of IT

services.

This article explains how Middleware software evolved to

become a technological "glue" between software components to

provide support and simplify complex, distributed applications.

Keywords: Middleware, Service-Oriented Architectures,

Simulation Technology, Object Request Broker

I. INTRODUCTION

Today, industries need to transform their client/server

infrastructures into services-oriented setups to stay

competitive. Focus of IT has shifted from a technology-centric

approach to a flexibility-driven approach measured in time-to-

delivery and ability to change.

Though it is universally accepted that service-oriented

architectures implementations lead to quantifiable benefits,

yet in practice, their adoption has been sluggish.

The strategy to remedy this situation is via middleware.

In the computer industry, middleware is a general term for any

programming that serves to "glue together" or mediate

between two separate and often already existing programs.

In essence, Middleware is a computer software that

interconnects software components or applications. This

software consists of a set of enabling services that allow

multiple processes running on one or more machines to

interact across a network. Middleware is especially integral to

modern information technology based on XML, SOAP, Web

services, and service-oriented architecture.

A common application of middleware is to allow programs

written for access to a particular database to access other

databases. Typically, middleware programs provide

messaging services so that different applications can

communicate.

 The systematic tying together of disparate applications, often

through the use of middleware, is known as enterprise

application integration.

Figure 1: Typical Middleware setup

This technology evolved to provide for interoperability [1] in

support of coherent distributed architectures, which are used

most often to support and simplify complex, distributed

applications. It includes web servers, application servers, and

similar tools that support application development and

delivery.

II. BACKGROUND

How did middleware evolve from necessary evil—

proprietary plumbing that glued disparate systems together—

to one of the most strategic areas of IT and business today?

Because businesses, institutions, and technologies change

continually, the software systems that serve them must be able

to accommodate such changes.

Following a merger, the addition of a service, or the expansion

of available services, a business can ill afford to recreate its

information systems. It is at this most critical point that it

needs to integrate new components or to scale existing ones as

efficiently as possible.

The easiest way to integrate heterogeneous components is not

to recreate them as homogeneous elements but to provide a

http://en.wikipedia.org/wiki/Distributed_application
http://en.wikipedia.org/wiki/Object_Request_Broker
http://en.wikipedia.org/wiki/Software
http://en.wikipedia.org/wiki/Software_component
http://en.wikipedia.org/wiki/XML
http://en.wikipedia.org/wiki/SOAP
http://en.wikipedia.org/wiki/Web_service
http://en.wikipedia.org/wiki/Web_service
http://en.wikipedia.org/wiki/Service-oriented_architecture
http://searchsqlserver.techtarget.com/sDefinition/0,,sid87_gci211895,00.html
http://whatis.techtarget.com/definition/0,,sid9_gci212554,00.html
http://en.wikipedia.org/wiki/Interoperability
http://en.wikipedia.org/wiki/Distributed_application
http://en.wikipedia.org/wiki/Distributed_application
http://en.wikipedia.org/wiki/Web_server
http://en.wikipedia.org/wiki/Application_server

 34

AKGEC JOURNAL OF TECHNOLOGY, vol.1, no.1

layer that allows them to communicate despite their

differences.

This layer, called middleware, allows software components

(applications, enterprise java beans, servlets, and other

components) that have been developed independently and that

run on different networked platforms to interact with one

another. It is when this interaction is possible that the network

can become the computer.

Service-oriented architectures get many of their core services

directly from middleware, including critical security

functionality, deployment and management capabilities. One

also finds business intelligence, content and collaboration

tools, as well as portal capabilities that allow connections to

customers and partners enabled at the middleware level.

The convergence of these critical business services at the

middleware layer is reflective of the mid-tier’s strategic

position within the enterprise. The broad range of capabilities

offered by today’s middleware products enables industry to:

 Support and accelerate business expansion

 Deliver greater insight into business issues and

drivers

 Reduce exposure to risk and support governance

initiatives.

Using these tools within a standards-based SOA environment,

corporations can leverage data in more strategic ways to

deliver accurate, actionable information to business decision-

makers when and where they need it.

It’s not difficult to see why selecting the right middleware

solutions should be among the top priorities of CIOs and other

technology decision makers.

 III. BASIC CONFIGURATION

Middleware sits "in the middle" between application software

working on different operating systems. It is similar to the

middle layer of a three-tier single system architecture, except

that it is stretched across multiple systems or applications.

Examples of Middleware include database systems,

telecommunications software, transaction monitors, and

messaging-and-queuing software [2].

The distinction between operating system and middleware

functionality is, to some extent, arbitrary. While core kernel

functionality can only be provided by the operating system

itself, some functionality previously provided by separately

sold middleware is now integrated in operating systems. A

typical example is the TCP/IP stack for telecommunications,

nowadays included in virtually every operating system.

Figure 2 Middleware resides between the application layer

and the platform layer (the operating system and underlying

network services).

In simulation technology, middleware is generally used in the

context of the high level architecture (HLA) that applies to

many distributed simulations. It is a layer of software that lies

between the application code and the run-time infrastructure.

Middleware generally consists of a library of functions, and

enables a number of applications – simulations or federates in

HLA terminology – to page these functions from the common

library rather than re-create them for each application.

IBM, Red Hat, and Oracle Corporation are major vendors

providing middleware software. Vendors such as SAP,

TIBCO, Mercator Software, Crossflo, Vitria and webMethods

were specifically founded to provide Web-oriented

middleware tools.

Groups such as the Apache Software Foundation and the

ObjectWeb Consortium encourage the development of open

source middleware.

 IV. MIDDLEWARE APPLICATIONS

Middleware services provide a more functional set of

application programming interfaces to allow an application to:

 Locate transparently across the network, thus

http://en.wikipedia.org/wiki/Application_software
http://en.wikipedia.org/wiki/Operating_system
http://en.wikipedia.org/wiki/Multitier_architecture
http://en.wikipedia.org/wiki/Database_systems
http://en.wikipedia.org/wiki/Transaction_Processing_System
http://en.wikipedia.org/wiki/High_level_architecture_(simulation)
http://en.wikipedia.org/w/index.php?title=Run-time_infrastructure_(simulation)&action=edit&redlink=1
http://en.wikipedia.org/wiki/IBM
http://en.wikipedia.org/wiki/Red_Hat
http://en.wikipedia.org/wiki/Oracle_Corporation
http://en.wikipedia.org/wiki/SAP_AG
http://en.wikipedia.org/wiki/TIBCO
http://en.wikipedia.org/w/index.php?title=Mercator_Software&action=edit&redlink=1
http://en.wikipedia.org/w/index.php?title=Crossflo&action=edit&redlink=1
http://en.wikipedia.org/w/index.php?title=Vitria&action=edit&redlink=1
http://en.wikipedia.org/wiki/WebMethods
http://en.wikipedia.org/wiki/World_Wide_Web
http://en.wikipedia.org/wiki/Apache_Software_Foundation
http://en.wikipedia.org/wiki/ObjectWeb
http://en.wikipedia.org/wiki/Open_source
http://en.wikipedia.org/wiki/Open_source
http://en.wikipedia.org/wiki/Application_programming_interface

 35

providing interaction with another service or application.

Figure 3 Middleware in Client-server architecture

 Be independent from network services

 Be reliable and available always when compared to

the operating system and network services.

 V. TYPES OF MIDDLEWARE

Hurwitz's classification system organizes the many types of

middleware that are currently available.. These classifications

based on scalability and recoverability are mentioned below.

Remote procedure call (RPC) is an Inter-process

communication technology that allows a computer program to

cause a subroutine or procedure to execute in another address

space without the programmer explicitly coding the details for

this remote interaction.

Thus, the programmer would write essentially the same code

whether the subroutine is local to the executing program, or

remote. When the software in question is written using object-

oriented principles, RPC may be referred to as remote

invocation or remote method invocation. Client makes calls

to procedures running on remote systems, which can be

asynchronous or synchronous.

 EVOLUTION OF MIDDLEWARE TECHNOLOGY

Message Oriented Middleware—Message-oriented

middleware (MOM) is a client/server infrastructure that

increases the interoperability, portability, and flexibility of an

application by allowing the application to be distributed over

multiple heterogeneous platforms. It reduces complexity of

developing applications that span multiple operating systems

and network protocols by insulating the application developer

from details of various operating system and network

interfaces.

APIs that extend across diverse platforms and networks are

typically provided by the MOM. MOM is software that

resides in both portions of client/server architecture and

typically supports asynchronous calls between the client and

server applications. Message queues provide temporary

storage when the destination program is busy or not

connected.

MOM reduces the involvement of application developers with

the complexity of the master-slave nature of the client/server

mechanism.

MOM comprises a category of inter-application

communication software that generally relies on asynchronous

message-passing, as opposed to a request-response metaphor.

Most message-oriented middleware depend on a message

queue system, but there are some implementations that rely on

broadcast or multicast messaging systems.

Messages sent to the client are collected and stored until they

are acted upon, while the client continues with other

processing.

Object Request Broker — In distributed computing, an object

request broker (ORB) is a piece of middleware software that

allows programmers to make program calls from one

computer to another via a network. ORBs promote

interoperability of distributed object systems because they

enable users to build systems by piecing together objects from

different vendors that communicate with each other via the

ORB.

ORB's handle the transformation of in-process data structures

to and from the byte sequence, which is transmitted over the

network. This is called marshalling or serialization.

Some ORB's, such as CORBA-compliant systems, use an

Interface Description Language (IDL) to describe the data

which is to be transmitted on remote calls.

In addition to marshalling data, ORB's often expose many

more features, such as distributed transactions, directory

services or real-time scheduling.

http://en.wikipedia.org/wiki/Inter-process_communication
http://en.wikipedia.org/wiki/Inter-process_communication
http://en.wikipedia.org/wiki/Computer_program
http://en.wikipedia.org/wiki/Subroutine
http://en.wikipedia.org/wiki/Address_space
http://en.wikipedia.org/wiki/Address_space
http://en.wikipedia.org/wiki/Object-oriented
http://en.wikipedia.org/wiki/Object-oriented
http://en.wikipedia.org/wiki/Asynchronous
http://en.wikipedia.org/wiki/Synchronous
http://en.wikipedia.org/wiki/Message_Oriented_Middleware
http://en.wikipedia.org/wiki/Application_software
http://en.wikipedia.org/wiki/Communication_software
http://en.wikipedia.org/wiki/Asynchronous
http://en.wikipedia.org/wiki/Message_passing
http://en.wikipedia.org/wiki/Request-response
http://en.wikipedia.org/wiki/Middleware
http://en.wikipedia.org/wiki/Message_queue
http://en.wikipedia.org/wiki/Message_queue
http://en.wikipedia.org/wiki/Broadcasting_(networks)
http://en.wikipedia.org/wiki/Multicast
http://en.wikipedia.org/wiki/Object_Request_Broker
http://en.wikipedia.org/wiki/Distributed_computing
http://en.wikipedia.org/wiki/Middleware
http://en.wikipedia.org/wiki/Marshalling_(computer_science)
http://en.wikipedia.org/wiki/Serialization
http://en.wikipedia.org/wiki/CORBA
http://en.wikipedia.org/wiki/IDL
http://en.wikipedia.org/wiki/Distributed_transactions
http://en.wikipedia.org/wiki/Directory_services
http://en.wikipedia.org/wiki/Directory_services

 36

AKGEC JOURNAL OF TECHNOLOGY, vol.1, no.1

In object-oriented languages, the ORB takes the form of an

object with methods enabling connection to the objects being

served. After an object connects to the ORB, the methods of

that object become accessible for remote invocations.

The ORB requires some means of obtaining the network

address of the object that has now become remote. The typical

ORB also has many other methods.

VI. IMPLEMENTATION OF ORBS

Implementation of ORBs is possible via different ways as

under.

 CORBA - the Common Object Request Broker

Architecture.

 Ice - the Internet Communications Engine

 .NET Remoting - object remoting library within

Microsoft's .NET Framework

 Windows Communication Foundation

 ORBexpress - real-time ORBs by Objective Interface

Systems

 Orbix - An Enterprise-level CORBA ORB from

IONA Technologies

 DCOM - the Distributed Component Object Model

from Microsoft

 RMI - the Remote Method Invocation Protocol from

Sun Microsystems

 RPC - Remote Procedure Call

 SimpleORB - a small, non-CORBA ORB

 ORBit - an open-source CORBA ORB used as

middleware for GNOME

 OmniORB - a CORBA-compliant ORB released

under the GPL

 opalORB - a CORBA implementation completely

written in Perl.

This type of middleware makes it possible for applications to

send objects and request services in an object-oriented system.

SQL-oriented Data Access: This is a middleware between

applications and database servers.

Embedded Middleware denotes communication services and

integration interface software/firmware that operate between

embedded applications and the system software. In literature

additional classifications of Middleware are found. These

include:

Transaction processing monitors —These provide tools and

an environment to develop A Transaction Processing System

or Transaction Processing Monitor that monitors transaction

programs (a special kind of program).

The essence of a transaction program is that it manages data

that must be left in a consistent state e.g. if an electronic

payment is made, the amount must be either both withdrawn

from one account and added to the other, or none at all. In

case of a failure preventing transaction completion, the

partially executed transaction must be 'rolled back' by the

TPS.

While this type of integrity must be provided also for batch

transaction processing, it is particularly important for online

processing: if for example, an airline seat reservation system

is accessed by multiple operators, after an empty seat inquiry,

the seat reservation data must be locked until the reservation is

made, otherwise another user may get the impression a seat is

still free while it is actually being booked at the time. Without

proper transaction monitoring, double bookings may occur.

Other transaction monitor functions include deadlock

detection and resolution (deadlocks may be inevitable in

certain cases of cross-dependence on data), and transaction

logging (in 'journals') for 'forward recovery' in case of massive

failures.

Transaction Processing is not limited to application programs.

For example, the 'journaled file system' provided with IBM’s

AIX Unix operating system employs similar techniques to

maintain file system integrity, including a journal.

Application servers — This Middleware software is installed

on a computer to facilitate the serving function. An

application server, in an n-tier architecture, is a server that

hosts an API to expose business logic and business processes

for use by third-party applications. The term refers to:

1. The services that are made available by the server

2. The computer hardware on which the services are

deployed

3. The software framework used to host the services

such as JBoss application server or Oracle

Application Server

4.

Enterprise Service Bus — This is an abstraction layer on top

of an Enterprise Messaging System. In computing, an

enterprise service bus (ESB) refers to a software architecture

construct. This construct is typically implemented by

technologies found in a category of middleware infrastructure

products, usually based on recognized standards, which

provide fundamental services for complex architectures via an

event-driven and standards-based messaging engine (the bus).

An ESB generally provides an abstraction layer on top of an

implementation of an enterprise messaging system, which

allows integration architects to exploit the value of messaging

without writing code

http://en.wikipedia.org/wiki/CORBA
http://en.wikipedia.org/wiki/Internet_Communications_Engine
http://en.wikipedia.org/wiki/.NET_Remoting
http://en.wikipedia.org/wiki/.NET_Framework
http://en.wikipedia.org/wiki/Windows_Communication_Foundation
http://en.wikipedia.org/w/index.php?title=ORBexpress&action=edit&redlink=1
http://en.wikipedia.org/wiki/Objective_Interface_Systems
http://en.wikipedia.org/wiki/Objective_Interface_Systems
http://en.wikipedia.org/wiki/Orbix
http://en.wikipedia.org/wiki/IONA_Technologies
http://en.wikipedia.org/wiki/Distributed_Component_Object_Model
http://en.wikipedia.org/wiki/Microsoft
http://en.wikipedia.org/wiki/Java_remote_method_invocation
http://en.wikipedia.org/wiki/Sun_Microsystems
http://en.wikipedia.org/wiki/Remote_procedure_call
http://en.wikipedia.org/w/index.php?title=SimpleORB&action=edit&redlink=1
http://en.wikipedia.org/wiki/ORBit
http://en.wikipedia.org/wiki/GNOME
http://omniorb.sourceforge.net/
http://en.wikipedia.org/wiki/GPL
http://opalorb.sourceforge.net/
http://en.wikipedia.org/wiki/Category:SQL_data_access
http://en.wikipedia.org/w/index.php?title=Embedded_Middleware&action=edit&redlink=1
http://en.wikipedia.org/wiki/Transaction_Processing_System
http://en.wikipedia.org/wiki/Rollback
http://en.wikipedia.org/wiki/Batch_processing
http://en.wikipedia.org/wiki/Batch_processing
http://en.wikipedia.org/wiki/Deadlock
http://en.wikipedia.org/wiki/Application_server
http://en.wikipedia.org/wiki/Multitier_architecture
http://en.wikipedia.org/wiki/Server
http://en.wikipedia.org/wiki/Application_programming_interface
http://en.wikipedia.org/wiki/Business_logic
http://en.wikipedia.org/wiki/Business_processes
http://en.wikipedia.org/wiki/Business_software
http://en.wikipedia.org/wiki/Service_(systems_architecture)
http://en.wikipedia.org/wiki/Computer_hardware
http://en.wikipedia.org/wiki/Software_framework
http://en.wikipedia.org/wiki/JBoss_application_server
http://en.wikipedia.org/wiki/Oracle_Application_Server
http://en.wikipedia.org/wiki/Oracle_Application_Server
http://en.wikipedia.org/wiki/Enterprise_Service_Bus
http://en.wikipedia.org/wiki/Computing
http://en.wikipedia.org/wiki/Software_architecture
http://en.wikipedia.org/wiki/Middleware
http://en.wikipedia.org/wiki/Infrastructure
http://en.wikipedia.org/wiki/Enterprise_messaging_system

 37

Contrary to the more classical enterprise application

integration (EAI) approach of a monolithic stack in a hub and

spoke architecture, the foundation of an enterprise service bus

is built of base functions broken up into their constituent parts,

with distributed deployment where needed, working in

harmony as necessary.

An ESB does not implement a service-oriented architecture

(SOA) but provides the features with which one may be

implemented. Though it is a common belief, an ESB is not

necessarily web-services based. An ESB should be standards-

based and flexible, supporting many transport mediums.

Based on EAI rather than SOA patterns, it tries to remove the

coupling between the service called and the transport medium.

VI. WEB SERVICE

A Web Service is defined as "a software system designed to

support interoperable machine-to-machine interaction over a

network. It has an interface described in a machine-process-

able format (specifically WSDL, Web Service Description

Language). Other systems interact with the Web service in a

manner prescribed by its description using SOAP-(Simple

Object Access Protocol)
[3]

 messages, typically conveyed

using HTTP with an XML serialization in conjunction with

other Web-related standards."

Web services are frequently just Internet Application

Programming Interfaces (API) that can be accessed over a

network, such as the Internet, and executed on a remote

system hosting the requested services. Web Services are

registered at UDDI (Universal Description Discovery &

Integration).Other approaches with nearly the same

functionality as web services are Object Management Group's

(OMG) Common Object Request Broker Architecture

(CORBA), Microsoft's Distributed Component Object Model

(DCOM) or Sun Microsystems's Java/Remote Method

Invocation (RMI).

Figure 4. A typical Web-service implementation.

 EVOLUTION OF MIDDLEWARE TECHNOLOGY

VII. DISTRIBUTED COMPUTING

Middleware is implemented in Distributed computing which

deals with hardware and software systems containing more

than one processing element or storage element, concurrent

processes, or multiple programs, running under a loosely or

tightly controlled regime.

In distributed computing, a program is split into parts that run

simultaneously on multiple computers communicating over a

network. Distributed computing is a form of parallel

computing, but parallel computing is most commonly used to

describe program parts running simultaneously on multiple

processors in the same computer.

Both types of processing require dividing a program into parts

that can run simultaneously, but distributed programs often

deal with heterogeneous environments, network links of

varying latencies, and unpredictable failures in the network or

the computers.

If not planned properly, a distributed system can decrease the

overall reliability of computations if the unavailability of a

node can cause disruption of the other nodes. Leslie Lamport

famously quipped that: "A distributed system is one in which

the failure of a computer you didn't even know existed can

render your own computer unusable."

Troubleshooting and diagnosing problems in a distributed

system can also become more difficult, because the analysis

may require connecting to remote nodes or inspecting

communication between nodes.

VIII. EXAMPLES

Berkeley Open Infrastructure for Network Computing

(BOINC), became useful as a platform for several distributed

applications in areas as diverse as mathematics, medicine,

molecular biology, climatology, and astrophysics.

A variety of distributed computing projects have grown up in

recent years. Many are run on a volunteer basis, and involve

users donating their unused computational power to work on

interesting computational problems.

Examples of such projects include the Stanford University

Chemistry Department Folding@home project, which is

focused on simulations of protein folding to find disease cures

and to understand biophysical systems; World Community

Grid, an effort to create the world's largest public computing

grid to tackle scientific research projects that benefit

humanity, run and funded by IBM; SETI@home, which is

focused on analyzing radio-telescope data to find evidence of

intelligent signals from space, hosted by the Space Sciences

Laboratory at the University of California, Berkeley;

http://en.wikipedia.org/wiki/Enterprise_application_integration
http://en.wikipedia.org/wiki/Enterprise_application_integration
http://en.wikipedia.org/wiki/Hub_and_spoke
http://en.wikipedia.org/wiki/Hub_and_spoke
http://en.wikipedia.org/wiki/Service-oriented_architecture
http://en.wikipedia.org/wiki/Web_service
http://en.wikipedia.org/wiki/Interoperability
http://en.wikipedia.org/wiki/Machine_to_Machine
http://en.wikipedia.org/wiki/Computer_network
http://en.wikipedia.org/wiki/Web_Services_Description_Language
http://en.wikipedia.org/wiki/Internet
http://en.wikipedia.org/wiki/Application_Programming_Interface
http://en.wikipedia.org/wiki/Application_Programming_Interface
http://en.wikipedia.org/wiki/Internet
http://en.wikipedia.org/wiki/Object_Management_Group
http://en.wikipedia.org/wiki/CORBA
http://en.wikipedia.org/wiki/Microsoft
http://en.wikipedia.org/wiki/DCOM
http://en.wikipedia.org/wiki/Sun_Microsystems
http://en.wikipedia.org/wiki/Java_remote_method_invocation
http://en.wikipedia.org/wiki/Hardware
http://en.wikipedia.org/wiki/Software
http://en.wikipedia.org/wiki/Systems
http://en.wikipedia.org/wiki/Computer_data_storage
http://en.wikipedia.org/wiki/Concurrent_computing
http://en.wikipedia.org/wiki/Regime
http://en.wikipedia.org/wiki/Parallel_computing
http://en.wikipedia.org/wiki/Parallel_computing
http://en.wikipedia.org/wiki/Reliability_engineering
http://en.wikipedia.org/wiki/Leslie_Lamport
http://en.wikipedia.org/wiki/Troubleshoot
http://en.wikipedia.org/wiki/Berkeley_Open_Infrastructure_for_Network_Computing
http://en.wikipedia.org/wiki/Stanford_University
http://en.wikipedia.org/wiki/Chemistry
http://en.wikipedia.org/wiki/Folding@home
http://en.wikipedia.org/wiki/Protein_folding
http://en.wikipedia.org/wiki/World_Community_Grid
http://en.wikipedia.org/wiki/World_Community_Grid
http://en.wikipedia.org/wiki/IBM
http://en.wikipedia.org/wiki/SETI@home
http://en.wikipedia.org/wiki/Space_Sciences_Laboratory
http://en.wikipedia.org/wiki/Space_Sciences_Laboratory
http://en.wikipedia.org/wiki/University_of_California,_Berkeley

 38

AKGEC JOURNAL OF TECHNOLOGY, vol.1, no.1

LHC@home, which is used to help design and tune the Large

Hadron Collider, hosted by CERN in Geneva.

VIII. REFERENCES
[1]. U. S. Corporation. White Paper: SIP and SOAP.

http://www.sipforum.org/whitepapers/ USC-SIPSOAP-WP2.pdf.

[2]. R.E. Schantz and D.C. Schmidt, “Middleware for Distributed
Systems: Evolving the Common Structure for Network-centric

Applications,” Encyclopedia of Software Eng., Wiley & Sons,

New York, 2001; also available at http://www.cs.wustl.edu/
~schmidt/PDF/middleware-chapter.pdf.

[3]. F. Curbera et. al., “Unraveling the Web Services Web: An
Introduction to SOAP, WSDL, and UDDI,” IEEE Internet

Computing, vol. 6, no. 2, March/April 2002, pp. 86-93.

Shweta Roy obtained B.Sc Engg in

Computer Science and Engineering from

Magadh University, Gaya in 2001.

Since last four years, she is teaching at Ajay

Kumar Garg Engineering College where, she

is Assistant Professor in the Department of

Computer Sciences. Concurrently, Ms Roy is

doing MTech from the UP Technical

University in the area of Middleware Web

Services.

She has abiding passion for teaching and has

taught a number of courses namely Computer

Networks, Compiler Design, Software

Engineering, Automata Theory, Java

Programming and C Programming Concepts.

http://en.wikipedia.org/wiki/LHC@home
http://en.wikipedia.org/wiki/Large_Hadron_Collider
http://en.wikipedia.org/wiki/Large_Hadron_Collider
http://en.wikipedia.org/wiki/CERN
http://en.wikipedia.org/wiki/Geneva
http://www.sipforum.org/whitepapers/

