Cálculo I

Diciembre de 2016

Solución del examen

Ejercicios: Verdadero/Falso (Total: 10 puntos)

Ejercicio 1 Sean f y g funciones reales continuas en [a,b], derivables en (a,b), y tales que $f(a) \neq f(b)$ y $g(a) \neq g(b)$. Entonces, existe $c \in (a,b)$ tal que $\frac{f'(c)}{f(b) - f(a)} = \frac{g'(c)}{g(b) - g(a)}$.

Solución: Verdadero Véase el teorema de Cauchy en el curso.

Ejercicio 2 Sea $(a_n)_{n\in\mathbb{N}}$ una sucesión monótona creciente tal que $a_n \leq 0$ para todo $n \in \mathbb{N}$. Entonces la sucesión $(a_n)_{n\in\mathbb{N}}$ converge a algún límite finito.

Solución: Verdadero Como $a_n \leq 0$, la sucesión monótona creciente $(a_n)_{n \in \mathbb{N}}$ está acotada superiormente por 0, luego tiene límite finito $L \leq 0$.

Ejercicio 3 Sea $f: \mathbb{R} \to \mathbb{R}$ una función derivable tal que $f'(x_0) = 0$ para algún $x_0 \in \mathbb{R}$. Entonces la función f presenta un máximo relativo o un mínimo relativo en $x = x_0$.

Solución: Falso Contraejemplo: la función $f(x) = x^3$ cumple f'(0) = 0, pero no tiene extremo relativo en 0.

Ejercicio 4 Si $f: \mathbb{R} \to \mathbb{R}$ es continua y derivable en \mathbb{R} , entonces f es uniformemente continua en \mathbb{R} .

Solución: Falso Contraejemplo: la función $f(x) = x^2$ es continua y derivable en \mathbb{R} , pero no es uniformemente continua.

Ejercicio 5 Sea $f:[a,b]\to\mathbb{R}$ una función seccionalmente continua y $\mu=\frac{1}{b-a}\int_a^b f(t)\,dt$. Entonces, existe $c\in[a,b]$ tal que $f(c)=\mu$.

Solución: Falso Contraejemplo: la función $f:[0,1] \to \mathbb{R}$ definida por

$$f(x) = \begin{cases} -1 & \text{si } 0 \le x \le \frac{1}{2} \\ +1 & \text{si } \frac{1}{2} < x \le 1 \end{cases}$$

es seccionalmente continua en [0,1], y tiene valor medio $\mu=0$, aunque no exista ningún punto $x \in [0,1]$ tal que f(x)=0. (La propiedad del valor medio sólo se cumple cuando la función f es continua.)

1

Ejercicios: Múltiple opción (Total: 40 puntos)

Ejercicio 1 Sea A el conjunto de números complejos definido por $A = \{z \in \mathbb{C} : z^2 - 2\bar{z} + 1 = 0\}.$

Solución Antes de comenzar, se observa que la ecuación $z^2 - 2\bar{z} + 1 = 0$ no es una ecuación polinomial en \mathbb{C} , en razón de la presencia del conjugado \bar{z} . Así, no se puede resolverla directamente en \mathbb{C} , y se necesita descomponer el número $z \in \mathbb{C}$ en sus partes real e imaginaria.

Escribiendo z = a + ib (con $a, b \in \mathbb{R}$), tenemos que:

$$\begin{split} z^2 - 2\bar{z} + 1 &= 0 &\Leftrightarrow (a+ib)^2 - 2(a-ib) + 1 = 0 \\ &\Leftrightarrow (a^2 - b^2 - 2a + 1) + (2ab + 2b)i = 0 \\ &\Leftrightarrow a^2 - b^2 - 2a + 1 = 0 \text{ y } 2ab + 2b = 2b(a+1) = 0 \end{split}$$

Así se trata de resolver (en \mathbb{R}) el sistema: $\begin{cases} a^2-b^2-2a+1=0\\ 2b(a+1)=0 \end{cases}$ Como 2b(a+1)=0 (segunda ecuación) si y sólo si b=0 o a=-1, se distinguen dos casos:

• Caso donde b = 0. En este caso, la primera ecuación nos da:

$$a^{2} - b^{2} - 2a + 1 = 0 \Leftrightarrow a^{2} - 2a + 1 = 0 \Leftrightarrow (a - 1)^{2} = 0 \Leftrightarrow a = 1$$

Así se deduce que a = 1, lo que nos da la solución $(1,0) \in A$.

• Caso donde a = -1. En este caso, la primera ecuación nos da:

$$a^{2} - b^{2} - 2a + 1 = 0 \Leftrightarrow 1 - b^{2} + 2 + 1 = 0 \Leftrightarrow 4 - b^{2} = 0 \Leftrightarrow b = \pm 2$$

Así se deduce que b=2 o b=-2, lo que nos da las soluciones $(-1,2),(-1,-2)\in A$.

Al final, tenemos que $A = \{(1,0), (-1,2), (-1,-2)\}$ y la única opción que se aplica es: $\#A = 3 \text{ y } (1,0) \in A$

Ejercicio 2 Sea $(a_n)_{n\in\mathbb{N}}$ una sucesión convergente a algún límite $L\in\mathbb{R}$. Se define el recorrido de la sucesión $(a_n)_{n\in\mathbb{N}}$ por $A=\{a_n:n\in\mathbb{N}\}$. El conjunto A cumple que:

Solución: Como la sucesión $(a_n)_{n\in\mathbb{N}}$ es convergente, está acotada inferiormente y superiormente. Así, su recorrido $A = \{a_n : n \in \mathbb{N}\}$ está acotado, y tenemos que $\inf(A) \leq L \leq \sup(A)$, con $L = \lim a_n$. En general, no se puede decir nada más sobre A, y la única opción que se aplica El conjunto A está acotado y se cumple que $L \leq \sup(A)$ y $L \geq \inf(A)$

Ejercicio 3 Sea $F: \mathbb{R} \to \mathbb{R}$ definida por $F(x) = \int_0^x (e^t - 1) dt$.

 $F(x) = \int_0^x (e^t - 1) dt = \left[e^t - t \right]_{t=0}^{t=x} = e^x - x - 1.$ Solución: Tenemos que:

Como $e^t > 1$ para todo t > 0, se deduce que F(0) = 0 y F(x) > 0 para todo x > 0. Así, la función F(x) sólo toma valores positivos, salvo en el punto 0 donde F(x) = 0. Estudiamos las dos integrales (impropias) propuestas.

• Para todo $a \ge 0$, tenemos que

$$\int_0^a F(x) \, dx \ = \ \left[e^x - \tfrac{1}{2} x^2 - x \right]_{x=0}^{x=a} \ = \ e^a - \tfrac{1}{2} a^2 - a - 1 \ \to \ + \infty \quad \text{ cuando } a \to + \infty$$

lo que implica que la integral impropia $\int_0^{+\infty} F(x) dx$ (primera especie) diverge.

• Para estudiar la integral impropia $\int_0^1 \frac{1}{F(x)} dx$ (segunda especie), se desarrolla la función F al orden 2 en el punto x = 0. Tenemos que:

$$F(x) = \left(1 + x + \frac{1}{2}x^2 + o(x^3)\right) - x - 1 = \frac{1}{2}x^2 + o(x^3)$$
 cuando $x \to 0$

Así tenemos que $F(x) \sim \frac{1}{2}x^2$ (cuando $x \to 0^+$), de tal modo que $\frac{1}{F(x)} \sim \frac{2}{x^2}$. Como se sabe que la integral impropia de segunda especie $\int_0^1 \frac{1}{x^\alpha} \, dx$ diverge para todo $\alpha \ge 1$, se deduce (por equivalencia en el caso $\alpha = 2$) que la integral impropia $\int_0^1 \frac{1}{F(x)} \, dx$ diverge.

Entonces, la única opción que se aplica es:

Las integrales
$$\int_0^1 \frac{1}{F(x)} dx$$
 y $\int_0^{+\infty} F(x) dx$ divergen.

Ejercicio 4 Sea
$$f: \mathbb{R} \to \mathbb{R}$$
 la función definida por $f(x) = \begin{cases} |\sec(x)| + 1 & \text{si } x < 0 \\ ax + b & \text{si } 0 \le x \le 1 \\ e^{x-1} + c & \text{si } x > 1 \end{cases}$

Los valores a, b y c que hacen que f sea continua y derivable en 0, y continua en 1 son...

Solución: Sean $f_1, f_2, f_3 : \mathbb{R} \to \mathbb{R}$ las funciones definidas por $f_1(x) = |\operatorname{sen}(x)| + 1$ (primer trozo), $f_2(x) = ax + b$ (segundo trozo) y $f_3(x) = e^{x-1} + c$ (tercer trozo).

• Continuidad en el punto x = 0. Tenemos que:

$$\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{-}} f_1(x) = 1 \qquad \text{y} \qquad \lim_{x \to 0^{+}} f(x) = \lim_{x \to 0^{+}} f_2(x) = b$$

Así, para que la función f sea continua en x = 0, se necesita que b = 1.

• Derivabilidad en el punto x = 0. Tenemos que:

$$\lim_{x \to 0^{-}} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0^{-}} \frac{f_1(x) - f_1(0)}{x - 0} = \lim_{x \to 0^{-}} \frac{(-\sin(x) + 1) - 1}{x} = -1$$

$$\lim_{x \to 0^{+}} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0^{+}} \frac{f_2(x) - f_2(0)}{x - 0} = f'_2(0) = a$$

(observando que $|\operatorname{sen}(x)| = -\operatorname{sen}(x)$ cuando $x \in [-\pi, 0]$) Así, para que la función f sea derivable en x = 0, se necesita que a = -1.

• Continuidad en el punto x = 1. Tenemos que:

$$\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{-}} f_2(x) = a + b = 0 \qquad \text{y} \qquad \lim_{x \to 1^{+}} f(x) = \lim_{x \to 1^{+}} f_3(x) = 1 + c$$

Así, para que la función f sea continua en x = 1, se necesita que c = -1.

Al final, la única opción que se aplica es: (a, b, c) = (-1, 1, -1)

Ejercicio 5 La integral $\int_0^{\frac{\pi}{2}} e^{2x} \cos(x) dx$ vale...

Solución: Sea $I = \int_0^{\pi/2} e^{2x} \cos(x) dx$. Tenemos que:

$$I = \int_0^{\pi/2} \underbrace{e^{2x} \cos(x)}_{f} dx = \left[e^{2x} \sin(x) \right]_0^{\pi/2} - \int_0^{\pi/2} 2e^{2x} \sin(x) dx$$

$$= e^{\pi} - 2 \int_0^{\pi/2} \underbrace{e^{2x} \sin(x)}_{f} dx$$

$$= e^{\pi} - 2 \left(\left[e^{2x} (-\cos(x)) \right]_0^{\pi/2} - \int_0^{\pi/2} 2e^{2x} (-\cos(x)) dx \right)$$

$$= e^{\pi} - 2 \left[e^{2x} (-\cos(x)) \right]_0^{\pi/2} - 4 \int_0^{\pi/2} e^{2x} \cos(x) dx$$

$$= e^{\pi} - 2 - 4I$$

Así se deduce que $5I=e^{\pi}-2$, de tal modo que la integral I vale $\boxed{\frac{e^{\pi}-2}{5}}$

Primer ejercicio de desarrollo (Total: 25 puntos)

En este ejercicio, sólo se consideran series reales.

- 1. Definir las nociones de serie convergente y de serie absolutamente convergente.
- 2. Demostrar que toda serie absolutamente convergente es convergente.

Solución: véase las notas del curso.

3. Dar un ejemplo de serie convergente que no sea absolutamente convergente. Explicitar los criterios de convergencia/divergencia usados para justificar dicho ejemplo.

Solución: La serie alternada $\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$ es convergente, pero no es absolutamente convergente. (Para la justificación de la convergencia, véase el curso.)

4. Ahora, se supone que $\sum_{n=0}^{\infty} a_n$ y $\sum_{n=0}^{\infty} b_n$ son dos series absolutamente convergentes, y se define $c_n = a_n b_n$ para todo $n \in \mathbb{N}$. ¿Es la serie $\sum_{n=0}^{\infty} c_n$ absolutamente convergente? En caso afirmativo, demostrarlo; en caso negativo, dar un contraejemplo (justificándolo).

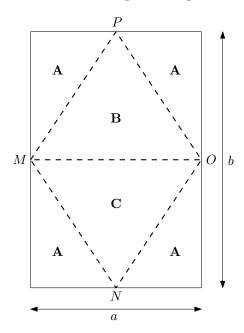
Solución: Por hipótesis, las series $\sum_{n=0}^{\infty} a_n$ y $\sum_{n=0}^{\infty} b_n$ son absolutamente convergentes. En particular, la serie $\sum_{n=0}^{\infty} a_n$ es convergente (por $\mathbf{2}$.), lo que implica que $\lim_{n\to\infty} a_n=0$. Así, la sucesión $(a_n)_{n\in\mathbb{N}}$ está acotada (como toda sucesión convergente), y existe M>0 (finito) tal que $|a_n|\leq M$ para todo $n\in\mathbb{N}$. Ahora, se observa que $|c_n|=|a_n||b_n|\leq M|b_n|$ para todo $n\in\mathbb{N}$, lo que implica que:

$$\sum_{n=0}^{\infty} |c_n| \leq M \sum_{n=0}^{\infty} |b_n| < +\infty.$$

Luego, la serie $\sum_{n=0}^{\infty} c_n$ es absolutamente convergente.

Segundo ejercicio de desarrollo (Total: 25 puntos)

Se desea excavar un estanque rectangular en el cual se criarán 3 variedades de peces \mathbf{A} , \mathbf{B} y \mathbf{C} , con fines alimentarios. El estanque será dividido en 6 regiones como indica la figura: las cuatro regiones triangulares externas para la especie \mathbf{A} , la región triangular interna superior para la especie \mathbf{B} , y la región triangular interna inferior para la especie \mathbf{C} :



(En la figura, se supone que M, N, O y P son puntos medios de los respectivos lados.)

La separación entre las 6 regiones se efectúa mediante tabiques indicados por líneas discontinuas en la figura.

1. Expresar la suma L de las longitudes de los tabiques en función de a y b.

Solución: La longitud de cada uno de los cuatro trozos diagonales del tabique es $\frac{1}{2}\sqrt{a^2+b^2}$ (por el teorema de Pitágoras), y la longitud del trozo horizontal es a. Así tenemos que:

$$L = 4 \times \frac{1}{2} \sqrt{a^2 + b^2} + a = 2\sqrt{a^2 + b^2} + a$$
.

2. Ahora, se supone que L mide 100 metros. Expresar b^2 en función de a. ¿Cuál es el máximo valor posible para a?

Solución: Tenemos que $L = 2\sqrt{a^2 + b^2} + a = 100$.

entonces
$$\sqrt{a^2 + b^2} = \frac{100 - a}{2}$$

entonces
$$a^2 + b^2 = \left(\frac{100 - a}{2}\right)^2$$

entonces
$$b^2 = \left(\frac{100-a}{2}\right)^2 - a^2 = \frac{1}{4}(100+a)(100-3a)$$

Se observa que la expresión anterior para b^2 es positiva si y sólo si 3a < 100, de tal modo que el máximo valor de a es 100/3. (El caso límite a = 100/3 corresponde a la situación degenerada donde b = 0, el tabique siendo formado por 3 trozos horizontales superpuestos.)

5

El rendimiento de cada especie es proporcional a la superficie del estanque, ya que tiene profundidad constante. Se sabe que el rendimiento por metro cuadrado de la especie $\bf B$ es 3/4 del rendimiento de la especie $\bf A$ y que el de la especie $\bf C$ es 2/3 del de la especie $\bf B$.

3. Expresar el rendimiento r = r(a) del estanque en función de a y de s, donde s es el rendimiento de la especie **A** por metro cuadrado.

Solución: La superficie ocupada por la especie \mathbf{A} es ab/2 (mitad del rectangulo), mientras cada una de las especies \mathbf{B} y \mathbf{C} ocupa una superficie ab/4. Así:

- El rendimiento de la especie **A** es $\frac{1}{2}abs$
- El rendimiento de la especie **B** es $\frac{ab}{4} \times \frac{3}{4}s = \frac{3}{16}abs$
- El rendimiento de la especie **C** es $\frac{ab}{4} \times \frac{2}{3} \times \frac{3}{4}s = \frac{1}{8}abs$

De tal modo que:

$$r(a) = \left(\frac{1}{2} + \frac{3}{16} + \frac{1}{8}\right) abs = \frac{13}{16} abs$$

= $K a \sqrt{(100 + a)(100 - 3a)}$ con $K = \frac{13}{16} s$

4. Demostrar que si r es una función positiva de la variable a, entonces r presenta un máximo en un punto a_0 si y sólo si la función r^2 presenta un máximo en el punto a_0 .

Solución: Escribiendo D el dominio de definición de la función r (con $a_0 \in D$), tenemos que:

la función r tiene máximo en el punto a_0

$$\Leftrightarrow \forall a \in D, \ r(a) \le r(a_0)$$

$$\Leftrightarrow \forall a \in D, \ r^2(a) \le r^2(a_0)$$

$$\Leftrightarrow \text{la función } r^2 \text{ tiene máximo en el punto } a_0$$

$$(\text{pues } r(a) \ge 0)$$

Se observa que en el caso que nos interesa, el dominio de definición de la función de rendimiento es dado por D = [0, 100/3] (o D = (0, 100/3) si se rechazan los dos casos degenerados donde una de las dos dimensiones a y b es nula).

5. Calcular el valor de a que maximiza la función r^2 . Deducir los valores de a y de b que maximizan el rendimiento del estanque.

Solución: Tenemos que

$$r^2(a) = K^2 a^2 (100 + a)(100 - 3a) = K^2 (-3a^4 - 200a^3 + 10000a^2)$$

 $(r^2)'(a) = K^2 (-12a^3 - 600a^2 + 20000a) = K^2 a(-12a^2 - 600a + 20000)$

Así tenemos que $(r^2)'(a)=0$ si y sólo si a=0 o $-12a^2-600a+20000=0$. Calculando las raíces del polinomio $-12a^2-600a+20000$, se obtiene

$$\begin{array}{rcl} \Delta & = & (-600)^2 - 4(-12)(20000) = 1320000 \\ \sqrt{\Delta} & = & \sqrt{1320000} = 200\sqrt{33} \\ a_1 & = & (600 + 200\sqrt{33})/(-24) = & -25 - \frac{25}{3}\sqrt{33} \approx & -72,87 < 0 \\ a_2 & = & (600 - 200\sqrt{33})/24 = & -25 + \frac{25}{3}\sqrt{33} \approx & 22,87 \in D \end{array}$$

Así, el estudio del signo de $(r^2)'$ muestra que la función r^2 es creciente en $[0, a_2]$, decreciente en $[a_2, 100/3]$, y que alcanza su máximo para $a = a_2$. Luego, la función de rendimiento r(a) alcanza su máximo en $a = a_2 = -25 + \frac{25}{3}\sqrt{33} \approx 22,87$. Se deduce fácilmente el valor de $a = a_2 = -25 + \frac{25}{3}\sqrt{33} \approx 22,87$.