Resolución del examen de cálculo 1 24/7/2015

Ejercicios de M.O.

Soluciones M.O.

Ejercicio de Función inversa

Opción correcta: $\frac{2\sqrt{e}}{3}$.

Justificación. Es fácil ver que la preimagen de 0 por F es x=1, y por el teorema de la función inversa, $(F^{-1})'(0)=\frac{1}{F'(1)}$. Ahora, usando la regla de la cadena se puede ver que $F'(x)=\frac{1}{2}f(x^3)3x^2$, donde $f(x)=e^{\frac{-x^2}{2}}$. Por lo tanto, $F'(1)=\frac{3}{2}f(1)=\frac{3}{2\sqrt{e}}$, y en definitiva $(F^{-1})'(0)=\frac{2\sqrt{e}}{3}$.

Ejercicio de integrales impropias

Opción correcta: Sólo la afirmación (III) es correcta.

Justificación. Notar que todas las funciones son no negativas pues: $0 \le (f(x))^2 \le f(x) \le g(x)$.

- (I) FALSA: El criterio de equivalentes nos dice que $\int_1^\infty (f(x))^2 dx$ y $\int_1^\infty \frac{1}{x^3} dx$ son de la misma clase. Esta última es convergente, por lo que $\int_1^\infty (f(x))^2 dx$ converge.
- (II) FALSA: g(x) es continua y [0,1] es cerrado. Por lo tanto $\int_0^1 g(x)dx$ está bien definida y no es una integral impropia.
- (III) VERDADERA: Si g es monótona decreciente y $\sum_{1}^{\infty} g(n)$ converge, por el criterio integral de series, se tiene que $\int_{1}^{\infty} g(x)dx$ converge. Luego, como $0 \le f(x) \le g(x)$, por comparación se concluye que $\int_{1}^{\infty} f(x)dx$ converge.
- (IV) FALSA: Si f(x) > 0, dividiendo se tiene: $f(x) \le 1 \le \frac{g(x)}{f(x)}$. Como $\int_1^\infty 1 dx$ diverge, por comparación se concluye que $\int_1^\infty \frac{g(x)}{f(x)} dx$ diverge.

Ejercicio de series

Opción correcta: (I) diverge, (III) converge y (II) converge a $\frac{1}{2}$.

Justificación. Luego de hacer denominador común vemos que la serie (I) diverge por comparación con la serie $\Sigma \frac{1}{n}$. Para la serie (II) tenemos que

$$\sum_{n=1}^{+\infty} 3\left(\frac{1}{2}\right)^{2n+1} = \frac{3}{2} \sum_{n=1}^{+\infty} \left(\frac{1}{2}\right)^{2n} = \frac{3}{2} \sum_{n=1}^{+\infty} \left(\frac{1}{4}\right)^n = \frac{3}{2} \frac{1}{4} \left(\frac{1}{1 - \frac{1}{4}}\right) = \frac{1}{2}$$

Para la serie (III) basta ver que es alternada, $|a_n| = \frac{1}{\sqrt{n}}$ es monótona decreciente y $\lim_{\infty} |a_n| = \lim_{\infty} \frac{1}{\sqrt{n}} = 0$ y por tanto converge.

Ejercicio del axioma de completitud

Opción correcta: El conjunto A está acotado, y por lo tanto tiene supremo.

Justificación. Como la subsucesión de los naturales pares crece hacia π y la de los impares crece hacia $-\pi$, tenemos que A es un subconjunto no vacío de \mathbb{R} acotado superiormente por π e inferiormente por $-\pi - 1$. Por lo tanto A tiene supremo (e ínfimo).

Ejercicio de continuidad y derivabilidad

Opción correcta: (I) y (II) son falsas, (III) y (IV) son verdaderas..

Justificación. (I) FALSO: Basta tomar como contraejemplo la función f(x) = x con dominio real. f(x) es derivable en el cero, y |f(x)| no lo es.

(II) FALSO: Basta tomar como contraejemplo la función
$$f(x) = \begin{cases} 1, & \text{si } x > 0; \\ -1, & \text{si } x \leq 0. \end{cases}$$
.

La misma es discontinua en el cero pero |f(x)| es continua en cero.

(III) VERDADERO: Si la función es continua en (0,1) entonces también lo será en $[\frac{1}{2},\frac{3}{4}]$, luego la función se encuentra en las hipótesis del Teorema de Weierstrass. De esto puede afirmarse que la función tendrá máximo y mínimo absolutos en el intervalo cerrado $[\frac{1}{2},\frac{3}{4}]$.

(IV) VERDADERO: Aplicamos el teorema de Lagrange en el intervalo [0, 1].

versión 1 Considere la sucesión $a_n = (-1)^n \pi - \frac{1}{n}...$

1	2	3	4	5
A	В	E	E	В

versión 2

Se consideran las siguientes afirmaciones sobre funciones reales ...

1	2	3	4	5
_	D		C	A
A	В	C	C	A

versión 3

Se consideran las siguientes series...

1	2	3	4	5
A	A	В	С	ightharpoonup

versión 4

Se consideran dos funciones f(x) y g(x) tales que...

1	2	3	4	5
D	Δ	E	D	Δ

Desarrollo

Ejercicio 1. (1) Ver teórico, definición 73, pág 34.

- (2) Ver teórico, teorema 1, pág 36.
- (3) Veamos que $0 < a_n < 1$ por inducción.

Paso base:

Como $a_1 = \frac{1}{2}$ se tiene que $0 < a_1 < 1$

Paso inductivo:

Supongamos que $0 < a_n < 1$ y probaremos que $0 < a_{n+1} < 1$.

Como $a_n > 0$ entonces $a_{n+1} = \frac{2a_n}{1+a_n^2} > 0$

Por otro lado

$$a_{n+1} = \frac{2a_n}{1+a_n^2} < 1 \iff 2a_n < 1 + a_n^2 \iff 0 < 1 - 2a_n + a_n^2 = (a_n - 1)^2$$

y la última desigualdad es cierta ya que $a_n < 1$.

Veamos que $a_{n+1} \ge a_n$

$$a_{n+1} = \frac{2a_n}{1 + a_n^2} > a_n \iff 2a_n \ge a_n(1 + a_n^2)$$

Como $a_n > 0$

$$2a_n \ge a_n(1+a_n^2) \Longleftrightarrow 2 \ge 1+a_n^2$$

Y la última desigualdad se da porque $a_n < 1$

Concluimos asi que a_n es monótona creciente. Como a_n es monótona y acotada

entonces tiene límite.

Notemos $L = \lim_{n\to\infty} a_n$. Sean b_n , c_n las sucesiones definidas por $b_n = 1 + a_n^2$, $c_n = 2a_n$ tenemos asi que

$$\lim_{n \to \infty} b_n = 1 + L^2$$

,

$$\lim_{n \to \infty} c_n = 2L$$

y por último

$$\lim_{n \to \infty} \frac{b_n}{c_n} = \frac{2L}{1 + L^2}$$

Como $\frac{b_n}{c_n} = a_{n+1}$ se concluye que $L = \frac{2L}{1+L^2}$

Sabemos que L > 0 pues $a_n \ge a_1 = \frac{1}{2}$, luego

$$L = \frac{2L}{1+L^2} \Longleftrightarrow 1 = \frac{2}{1+L^2} \Longleftrightarrow 1+L^2 = 2 \Longleftrightarrow L = \pm 1$$

De nuevo como L > 0 se tiene que L = 1.

Ejercicio 2. (1) Ver teórico, proposición 243 y corolario 244, pág 100.

(2) $\int_0^{\frac{\pi}{2}} e^{2x} \cos(x) dx = e^{2x} \sin(x) \Big|_0^{\frac{\pi}{2}} - \int_0^{\frac{\pi}{2}} 2e^{2x} \sin(x) dx$ $= e^{2x} \sin(x) \Big|_0^{\frac{\pi}{2}} - \left(2e^{2x} (-\cos(x)) \Big|_0^{\frac{\pi}{2}} - \int_0^{\frac{\pi}{2}} 4e^{2x} (-\cos(x)) dx \right)$ $= e^{2x} \sin(x) \Big|_0^{\frac{\pi}{2}} + 2e^{2x} \cos(x) \Big|_0^{\frac{\pi}{2}} - 4 \int_0^{\frac{\pi}{2}} e^{2x} \cos(x) dx$

De donde, despejando el término integrado:

$$\int_0^{\frac{\pi}{2}} e^{2x} \cos(x) dx = \frac{e^{2x} \sin(x) \Big|_0^{\frac{\pi}{2}} + 2e^{2x} \cos(x) \Big|_0^{\frac{\pi}{2}}}{5} = \frac{e^{\pi} - 2}{5}$$

Ejercicio 3. (1) Ver teórico, definición 164, pág 64.

- (2) Ver teórico, teorema 19, pág 65.
- (3) Consideremos $f(x) = Ln(x) e^x x(\frac{x^2}{2} 1) + 5$ en el intervalo [1, 2]. Observemos en primer lugar que f es continua en [1, 2] al ser suma y producto de funciones continuas. Luego $f(1) = -e + \frac{1}{2} + 5 > 0$ ya que e < 3 y $f(2) = Ln(2) e^2 2 + 5 < -e^2 + 4 < 0$ ya que Ln(2) < 1 y $e^2 > 4$ por lo que podemos utilizar el teorema de Bolzano que afirma que f tendrá una raíz en (1, 2).
- (4) Para probar que la solución anterior es única veamos que f es estrictamente decreciente en [1,2] observando que f'(x) < 0 en dicho intervalo:

$$f'(x) = \frac{1}{x} - e^x - 3\frac{x^2}{2} + 1 \le -e^x - \frac{3}{2}x^2 + 2 \le -e + 2 - \frac{3}{2}x^2 < 0$$

en el intervalo [1, 2].

Ejercicio 4. (1) Si $x \neq 0$ f es claramente continua al tratarse de suma y composición de funciones continuas. Veamos que f es continua en x = 0. Para esto calculamos,

$$\lim_{h \to 0} h^3 \sin(\frac{1}{h}) = 0 = f(0)$$

ya que se trata de algo acotado por algo que tiende a cero.

(2) Si $x \neq 0$ f es derivable al tratarse de suma y composición de funciones derivables y su derivada es: $f'(x) = 3x^2 \sin(\frac{1}{x}) + x^3 \cos(\frac{1}{x})(\frac{-1}{x^2})$. Para obtener la derivada en x = 0 calculamos el siguiente límite:

$$\lim_{h \to 0} \frac{f(h) - f(0)}{h - 0} = \lim_{h \to 0} \frac{f(h)}{h} = h^2 \sin(\frac{1}{h}) = 0.$$

(3) Argumentando en forma similar a las partes anteriores, para $x \neq 0$, f'(x) es una función continua. Para ver la continuidad de f' en x = 0 calculamos:

$$\lim_{h \to 0} f'(h) = \lim_{h \to 0} 3h^2 \sin(\frac{1}{h}) - h \cos(\frac{1}{h}) = 0.$$

(4) Para demostrar que $\lim_{x\to 0} \cos(\frac{1}{x})$ no existe basta tomar dos sucesiones a_n y b_n que tiendan a cero pero que $\lim_{n\to +\infty} \cos(\frac{1}{a_n}) \neq \lim_{n\to +\infty} \cos(\frac{1}{b_n})$. Tomando las sucesiones de la sugerencia tenemos que

$$\lim_{n \to +\infty} \cos\left(\frac{1}{\frac{1}{2n\pi}}\right) = \lim_{n \to +\infty} \cos(2n\pi) = 1$$

У

$$\lim_{n\to +\infty}\cos(\frac{1}{\frac{1}{(2n+1)\pi}})=\lim_{n\to +\infty}\cos(2(n+1)\pi)=-1.$$

(5) Si calculamos $\lim_{x\to 0} \frac{f'(x)-f'(0)}{x-0} = \lim_{x\to 0} \frac{3x^2\sin(\frac{1}{x})-x\cos(\frac{1}{x})}{x} = \lim_{x\to 0} 3x\sin(\frac{1}{x})-\cos(\frac{1}{x})$. el primer límite da cero pero el segundo no existe por la parte anterior y así concluimos que f' no es derivable en cero.