Segundo parcial - 5 de diciembre de 2014

N ^o de parcial	Cédula	Apellido y nombre	Salón

Múltiple opción (Total: 40 puntos)

En cada pregunta hay una sola opción correcta.

Respuesta correcta: 8 puntos Respuesta incorrecta: -2 puntos No responde: 0 punto

Respuestas de múltiple opción

1	2	3	4	5

Ejercicio 1.

Sean $f(x) = x - x^2$ y g(x) = ax. Un valor de $a \in \mathbb{R}$ Si $f: \mathbb{R} \setminus \{-1\} \to \mathbb{R}$ dada por $f(t) = \frac{2t - 3}{(t^2 + 4)(t + 1)}$ para el cual el área de la región comprendida entre sean los gráficos de f y g vale $\frac{9}{2}$ es:

(A)
$$\frac{1}{6}$$
 (B) 0 (C) $\frac{1}{2}$ (D) -2

$$(E) -1$$

Ejercicio 4.

(I)
$$\int_0^{+\infty} f(t) dt$$
 y (II) $\int_{-\infty}^{+\infty} f(t) dt$

Ejercicio 2.

Sea $f: \mathbb{R}^+ \to \mathbb{R}$ continua tal que, $\forall x \in \mathbb{R}^+$,

$$\int_{a}^{e^x} f(t) \, dt = x^4 + \lambda$$

Entonces:

(A)
$$\lambda = -1 \text{ y } f(e) = \frac{4e^3 - 1}{e}$$

(B)
$$\lambda = -1 \text{ y } f(e) = \frac{4}{e}$$

(C)
$$\lambda = 0 \text{ y } f(e) = \frac{4}{e}$$

(D)
$$\lambda = -1 \text{ y } f(e) = 4e$$

(E)
$$\lambda = 1 \text{ y } f(e) = \frac{4}{6}$$

Ejercicio 3.

El valor de la integral definida,

$$\int_0^{\frac{\pi}{4}} \cos(2x) \sqrt{4 - \sin(2x)} \, dx$$

es:

(A)
$$\frac{8}{3}$$
 (B) $3\sqrt{3}$ (C) $\frac{8}{3} - \sqrt{3}$ (D) $\frac{1}{2}$ (E) $\frac{1}{2} - \sqrt{3}$

Entonces:

- (A) Solo (I) converge y converge a $\frac{\pi}{4} \log 2$
- (B) Las dos convergen
- (C) Solo (I) converge y converge a $\frac{\pi}{4} \frac{1}{2}$
- (D) Solo (I) converge y converge a $\frac{\pi}{4}$
- (E) Ninguna converge

Ejercicio 5.

Sea
$$f(x) = (x-1)^3 + e^{-2x} - x$$
, $\forall x \in \mathbb{R}$, tal que

$$\lim_{x \to 0} \frac{f(x) + ax^2 + bx^3}{x^4} = \frac{2}{3}$$

Entonces, f presenta en x = 0 un

- (A) máximo relativo y a = 1 y b = 0
- (B) mínimo relativo y a = 1 y $b = \frac{1}{3}$
- (C) punto de inflexión y a=1 y $b=\frac{1}{3}$
- (D) máximo relativo y a = 1 y $b = \frac{1}{3}$
- (E) mínimo relativo y a = -1 y $b = \frac{1}{3}$