Segundo parcial - 5 de diciembre de 2014

N^o de parcial	Cédula	Apellido y nombre	Salón

Múltiple opción (Total: 40 puntos)

En cada pregunta hay una sola opción correcta.

Respuesta correcta: 8 puntos Respuesta incorrecta: -2 puntos No responde: 0 punto

Respuestas de múltiple opción

1	2	3	4	5

Ejercicio 1.

Sea $f(x) = (x-1)^3 + e^{-2x} - x$, $\forall x \in \mathbb{R}$, tal que

$$\lim_{x \to 0} \frac{f(x) + ax^2 + bx^3}{x^4} = \frac{2}{3}$$

Entonces, f presenta en x = 0 un

- (A) máximo relativo y a = 1 y $b = \frac{1}{3}$
- (B) máximo relativo y a = 1 y b = 0
- (C) mínimo relativo y a = 1 y $b = \frac{1}{3}$
- (D) mínimo relativo y a = -1 y $b = \frac{1}{3}$
- (E) punto de inflexión y a = 1 y $b = \frac{1}{3}$

Ejercicio 2.

Sea $f: \mathbb{R}^+ \to \mathbb{R}$ continua tal que, $\forall x \in \mathbb{R}^+$,

$$\int_{0}^{e^{x}} f(t) dt = x^{4} + \lambda$$

Entonces:

(A)
$$\lambda = -1$$
 y $f(e) = 4e$

(B)
$$\lambda = -1 \text{ y } f(e) = \frac{4e^3 - 1}{e}$$

(C)
$$\lambda = -1$$
 y $f(e) = \frac{4}{e}$

(D)
$$\lambda = 1 \text{ y } f(e) = \frac{4}{e}$$

(E)
$$\lambda = 0 \text{ y } f(e) = \frac{4}{9}$$

Ejercicio 3.

Si $f : \mathbb{R} \setminus \{-1\} \to \mathbb{R}$ dada por $f(t) = \frac{2t-3}{(t^2+4)(t+1)}$

(I)
$$\int_0^{+\infty} f(t) dt$$
 y (II) $\int_{-\infty}^{+\infty} f(t) dt$

Entonces:

- (A) Solo (I) converge y converge a $\frac{\pi}{4}$
- (B) Solo (I) converge y converge a $\frac{\pi}{4} \log 2$
- (C) Las dos convergen
- (D) Ninguna converge
- (E) Solo (I) converge y converge a $\frac{\pi}{4} \frac{1}{2}$

Ejercicio 4.

Sean $f(x) = x - x^2$ y g(x) = ax. Un valor de $a \in \mathbb{R}$ para el cual el área de la región comprendida entre los gráficos de f y g vale $\frac{9}{2}$ es:

- (A) -2 (B) $\frac{1}{6}$ (C) 0 (D) -1

- (E) $\frac{1}{2}$

Ejercicio 5.

El valor de la integral definida,

$$\int_0^{\frac{\pi}{4}} \cos(2x) \sqrt{4 - \sin(2x)} \, dx$$

es:

(A)
$$\frac{1}{2}$$
 (B) $\frac{8}{3}$ (C) $3\sqrt{3}$ (D) $\frac{1}{2} - \sqrt{3}$ (E) $\frac{8}{3} - \sqrt{3}$

Desarrollo (Total: 20 puntos).

PARA USO DOCENTE

a	bi)	bii)	biii	TOTAL

Ejercicio 1.

- a) Sea $f:[a,b]\to\mathbb{R}$ una función continua y $F:[a,b]\to\mathbb{R}$ la función definida por $F(x)=\int_a^x f(t)\,dt$. Probar que F es derivable en (a,b) y que $F'(x)=f(x),\,\forall\,x\in(a,b)$.
- b) Sea $f:(0,+\infty)\to\mathbb{R}$ tal que $f(t)=\frac{\log t}{t^2}$. Se define $G:\mathbb{R}\to\mathbb{R}$ por $G(x)=\int_1^{e^x}f(t)\,dt$.
 - i) Probar que G es derivable en $\mathbb R$ y hallar su derivada. (Justificar su respuesta).
 - ii) Estudiar la monotonía de G en \mathbb{R} . (Justificar su respuesta).
 - iii) Calcular $\lim_{x\to +\infty} G(x)$.