
Dear Dr. Use Case: Is the Clock an Actor?

by Anthony Crain
 Software Engineering Specialist

Rational Software

Dear Dr. Use Case,

I have a question about using a
nonhuman trigger as the Primary
Actor of a use case. For example, I
have seen System Clock used as a
Primary Actor. Is this really the best
way to model a use case that is
triggered by time?

Signed,
Wondering about Nonhuman Actors

Dear Wondering,

This is an excellent question, and one that I have been asked many times
before. When I first started modeling use cases, I tried showing the clock
as a primary actor to initiate use cases that are triggered automatically.
Since then, though, my experience has shown me a better way.

Let me illustrate by borrowing an example use case called Run Payroll from
our Rational University course Object Oriented Analysis and Design with the
UML (OOAD). Here's the brief description given in the courseware: "This
use case describes how the payroll will be run automatically every Friday
and the last working day of the month." Originally, this use case had
System Clock as its Primary Actor (a.k.a. the actor that wanted to run the
payroll). See Figure 1.

jprince
http://www.therationaledge.com/content/jun_02/t_drUseCase_ac.jsp

jprince
Copyright Rational Software 2002

Figure 1: System Clock as the Primary Actor in the Run Payroll Use Case

The first thing that bothered me about this was that System Clock was the
Primary Actor. In truth, the system clock is actually a design decision and
not really an actor. Fundamentally, it is just one way of capturing time, so
it's more accurate to think of the Primary Actor as Time rather than System
Clock (see Figure 2).

Figure 2: Time as the Primary Actor in the Run Payroll Use Case

Primary Actors Have System-Related Goals

It's also important to understand that a Primary Actor has goals relating to
the system we are trying to build. If a student has a goal of "register for
courses" or "view report card," for example, and our system supports these
goals, then we can transform these goals into use cases, with the student
as the Primary Actor (see Figure 3)..

Figure 3: Transforming Goals into Use Cases

When I see an actor whose <<communicates>> association (the only kind

allowed on a use-case model diagram) points at a use case, I interpret that
to mean that the use case is that actor's goal.

So suppose that Time is really the Primary Actor for Run Payroll. Then we
can assume that Time has the goal of running payroll. Does that ring true?
Well, let's look at it another way for a moment. One could say that Time
has many other goals: Wither the young, erode continents, heal all
wounds, and so on. But since these goals do not intersect with what our
system provides, none of them would translate into a use case for our
system. Run Payroll, however, is a goal Time has that intersects with our
system, so therefore it is a legitimate use case (see Figure 4).

Figure 4: Determining What Goals Intersect with the System

Should we accept this logic? If we do, then suddenly, any nonhuman
trigger can be the Primary Actor for a use case: Humidity, Dew Point,
Temperature, Light, and more! At first, this concept seemed so powerful to
me that I felt it just couldn't be wrong.

A Problem for Black Box Use Cases

One thing about it plagued me, however. The technique I use for writing
use-case scenarios and flows is to discuss only the visible behavior of a
system. This is called a black-box use case. But to what (or whom) is that
behavior visible? To any actor that touches the use case. So for Run
Payroll, if Time starts the use case, then that's it for the visible behavior!
By extension, whenever an event triggers a use case, then, by definition,
the use-case specification will be trivial. When I realized this, I stopped
using triggers as the Primary Actors for my use cases.

In some instances, however, a use case has one or more Secondary (or
Supporting as they say in Hollywood) Actors, in which case it might have
some meat to it.

Another approach is to create white-box use cases that model internal

behavior. But I find that this makes use cases very hard for the customer,
black-box functional tester, technical writer, user interface designer, and so
on, to understand. Instead, I model the internal behavior as rules in a
separate artifact that I call a Rules Dictionary. Also, white-box use cases
are likely to incorporate too much design; black-box use cases with a
supporting rule set tend to be better focused on requirements.

A Human Alternative

So what is the best alternative? In our example, who really has the goal of
running payroll? Well, if we look back at the use-case model diagram in the
OOAD course, we see that there is a Payroll Administrator, a person or
team responsible for ensuring that employees are paid. Remember: A
system automates a business process, and in this case, we are automating
the business process of the Payroll Administrator. Aha! So then it is the
Payroll Administrator who has the goal of running payroll.

Now, the question is: Why did the analyst use Time as the Primary Actor,
instead of the Payroll Administrator? Mainly, to avoid implying that the
Payroll Administrator must manually start the payroll processing. But keep
in mind that, if we use the Payroll Administrator as the Primary Actor, then
we can capture all the system features that surround the running of
payroll. This includes features that allow the Payroll Administrator to set
the timetables for running payroll and to handle discrepancies, manual
intervention, and holidays. And since much of this would be visible
behavior, it would fit nicely into the use case.

Handling the Time Dependency

Using the Payroll Administrator as the Primary Actor also gives us two ways
to handle the time dependency in the use case:

1. Set Time as a Secondary Actor. Some people choose to portray
time as a Secondary Actor (see Figure 5). This shows that time is a
factor in accomplishing the use case. A nice side effect is that if you
follow the Boundary, Entity, Control pattern for analysis suggested in
OOAD and in the Rational Unified Process®, the analysis model will
then contain a <<boundary>> class to time. This method is best if it
is important to show which use cases have a time dependency.

Figure 5: Payroll Administrator as the Primary Actor in the Run Payroll Use
Case

2. Create a Mechanism to Capture Time. A second method is to
create a mechanism to capture time. With this method, there is
nothing in the use-case model diagram to indicate which use cases

are time triggered (see Figure 6), but we can still determine that by
examining the Use-Case View of Architecture. This also puts finding
a solution to the problem squarely in the Architect's court.

Figure 6: Abstracting Time and Placing the Problem in the Architect's Court

Your Choice

So, in short, my personal answer to the question, "Can the system clock be
the Primary Actor of a use case?" is "no." However, there is nothing in the
Unified Modeling Language (UML) that says it can't; and if you typically
write white-box use cases, then maybe your guidelines will point to "yes."
My advice is to ask yourself: Who truly wants the functionality? Then
designate that person as the Primary Actor, and leave design intricacies
such as capturing time in the application to the Architect and his or her
mechanisms.

Usefully yours,
Dr. Use Case

For more information on the products or services discussed in this
article, please click here and follow the instructions provided.
Thank you!

Copyright Rational Software 2002 | Privacy/Legal Information

