6. Low Density Parity-Check Codes

Gadiel Seroussi

November 6, 2024

176 / 229

Low Density Parity-Check (LDPC) Codes

® A sequence of binary matrices {H, x,, }n>r>1, is said to be of fow
density if the number of 1's in each row and column remains
bounded as r,n — co. Formally, wt (H,x,) /n < ¢ for some
constant ¢ and all n.

® M,y used as parity-check matrices (PCMs) of linear codes. For
“good” codes we will have r =~ (1 — R)n for some fixed R € (0, 1).

177 /229

Low Density Parity-Check (LDPC) Codes

® A sequence of binary matrices {H, x,, }n>r>1, is said to be of fow
density if the number of 1's in each row and column remains
bounded as r,n — co. Formally, wt (H,x,) /n < ¢ for some
constant ¢ and all n.

® M,y used as parity-check matrices (PCMs) of linear codes. For

“good” codes we will have r =~ (1 — R)n for some fixed R € (0, 1).

1962 IRE TRANSACTIONS ON INFORMATION THEORY 21

Low-Density Parity-Check Codes*

R. G. GALLAGER}

Summary—A low-density parity-check code is a code specified
by a parity-check matrix with the following properties: each column
contains a small fixed number j > 3 of I's and each row contains
a small fixed number & > j of I’s. The typical minimum distance of
these codes increases linearly with block length for a fixed rate and
fixed j. When used with maximum likelihood decoding on a suffi-
clently quiet binary-input symmetric channel, the typical prob-
ability of decoding error decreases exponentially with block length
for a fixed rate and fixed j.

A simple but nonoptimum decoding scheme operating directly

from the channel a posteriori probabilities is described. Both the

i ity and the data-handling capacity in bits per
second of this decoder increase approximately linearly with block
length.

For j > 3 and a sufficiently low rate, the probability of error using
this decoder on a binary symmetric channel is shown to decrease
at least exponentially with a root of the block length. Some experi-
mental results show that the actual probability of decoding error is
‘much smaller than this theoretical bound.

177 /229

—~
(@
O
(©)]
i
~—
S
0
=
(]
2]
c
()
2]
T
()
e10)
a0
“©
O

Family of codes G(n, j, k), 7 < k, with parity-check matrix H:

r X n with j 1's per column, k 1's per row (n = km, r = jm, m > 1).

k

R

~ 3

<

g

CO0OH |000O~ [cooO~
COCO |OCO+HD ([CO=OO
COO0OH | OO—HOO |HOOOO
Co0OoH |[OomOoO0 |[Ccoo-D
OO0 |[oooo- |lomooO
COoOHO oo -O |[cooo-
CoOoHO |[co-OO oo
OCCO—O | HOQOO [OCO~OO
OOHO0 |OOCO- [HOOOO
CO-OQ [OCOOD |OHOOO
COrHO0 |OHOOO (OO0 O~
COHOO |HOooOoO ([coomD
OHOCO |o00O~ [co-oO
O-OO0 OO0 |O-Oo0O
COHOOD OO0 | HoooD
O-OOO | OO0 oo~
—~O00O o000 oo~
—HOOOO [COmOO |[0Oo~OO
—HOOOO [O-HOOD (OO0
0000 |mo000 |[Hoo0D

20,7 =3,k = 4.

Example of a low-density code matrix; N

® last j — 1 blocks are random permutations of columns of first:

not systematic.

® Rows of H not necessarily linearly independent = redundancy < r.

® Rate R >

178 /229

LDPC codes are good

Theorem (Gallager codes approach BSC capacity)

Given a BSC of parameter p, and a rate R < 1 — Hy(p), there exists an
integer t(p, R) such that ML decoding of a random Gallager code of rate
R with LDPC columns of weight t achieves vanishing error probability
with probability 1.

179 /229

LDPC codes are good

Theorem (Gallager codes approach BSC capacity)

Given a BSC of parameter p, and a rate R < 1 — Hy(p), there exists an
integer t(p, R) such that ML decoding of a random Gallager code of rate
R with LDPC columns of weight t achieves vanishing error probability
with probability 1.

Theorem (Gallager codes have good distance properties)

Given § < % and R such that R < 1 — Hy(9), there exists an integer t
such that for sufficiently large n there exist Gallager codes of LDPC
column weight t and parameters [n, > R,> nd] (GV bound).

179 /229

A bit of history

Partial history, with some major milestones

Gallager [1962, Ph.D. Thesis and paper]
Russian school: Zyablov, Pinsker, Margulis [1971, 1976, 1982]
Tanner [1981] reinvention, graph approach, extensions.

Berrou et al. [1993] Turbo Codes, iterative decoding, approach
capacity
Richardson, Urbanke [1998] Irregular LDPC codes and iterative
threshold

Mac Kay [1999], reinvention, analysis, and extensions
Luby et al., [1997-] LT codes, Tornado codes, new analysis
Shokrollahi [2000] Raptor codes

and much research since then and ongoing ...

LDPC codes have become ubiquitous in many modern applications: 5G,
magnetic and SSD storage, etc.

180 / 229

Graph representation of parity check matrix

INFORMATION CHECK
DIGITS DIGITS

——t—— —A—
Xy Xy T3 Ty Ts Te Ty

1 1 0 1 0 O 25 =2 D@D x5
1 1 0 1 0 1 0 e—— zs=21 T3 @ 24
1 0 1 1 0 0 1 = I T3 Ty

| n
|

Two representations as a bipartite graph

Xy
X X,
X, + X, + X3 + X5 (= 0)
X %
X X+ X, + X, + X, (= 0) % Xp+ X, + X =X
3
X5

=0
XGO/ X1+X3+X4+X7() %4 X1+XZ+X4:XS
¥ Xy + Xy + X, = X
Good for decoding Good for encoding

181 /229

Graph representation of parity check matrix

INFORMATION CHECK
DIGITS DIGITS

——t—— —A—
Xy Xy T3 Ty Ts Te Ty

1 1 0 1 0 O 25 =2 D@D x5
1 1 0 1 0 1 0] ¢—— zs=21 T2 (D) 24
1 01 1 0 0 1] T =1 @D @ T
|
variable Two representations as a bipartite graph

X
X;
X, + X, + Xy = Xg
X3
X, X, + X + X, = Xg

X+ Xy + X, =X,

Good for decoding

Good for encoding

‘These are known as Tanner graphs

181 /229

Graph representation of LDPC matrix

Example: Variable Check

nodes nodes
r0 01 000010100100 0-H
000100101000O1TO0O0O0
0100101001000O0CO0OO0
00010100001001O0O0

001000001 000OO0OO0OT1TT1 12
H— 1000010011 0000O00O0
—l00O0O100O010O0ODO0O1TO0OO0OT1IO
010001000001 0O0O0T1
1000001 0000OO0OO01TO0T1
001010000001 01O00O0
01000000OO0OO0O1TO0O1TO0OT1IO
L1000100100100O0O0O04

Binary code with n = 16, r = 12.
Each column has weight 3, each row
has weight 4.

182 /229

Graph representation of LDPC matrix

Example: Variable Check

nodes nodes
001 0000101001000l
0001001010001 O0O0O0
0100101001000O0CO0OO0
00010100001001O0O0

001000001 000OO0OO0OT1TT1 12
H— 1000010011 0000O00O0
—l00O0O100O010O0ODO0O1TO0OO0OT1IO
010001000001 0O0O0T1
1000001 0000OO0OO01TO0T1
001010000001 01O00O0
01000000OO0OO0O1TO0O1TO0OT1IO
L1000100100100O0O0O04

Binary code with n = 16, r = 12.
Each column has weight 3, each row
has weight 4.

Edges corresponding to the first
check row.

182 /229

Regular and irregular graphs

Variable Check
nodes nodes

» Regular graph: All nodes on the left have the same
degree (left-regular) and all nodes on the right
have the same degree (right-regular).

Example: Gallager G(n, j, k) codes.

183 /229

Regular and irregular graphs

Variable Check
nodes nodes

» Regular graph: All nodes on the left have the same
degree (left-regular) and all nodes on the right
have the same degree (right-regular).

Example: Gallager G(n, j, k) codes.

» In general, irregular graphs give better performance
than regular ones. Some of the best LDPC codes
are based on choosing the distribution of degrees of
the nodes in a clever way.

Example: MacKay (1999). Random matrix with
columns of fixed weight ¢ > 3 (right-regular) and
row weight close to uniform within a certain
tolerance.

183 / 229

Regular and irregular graphs

Variable Check
nodes nodes

» Regular graph: All nodes on the left have the same
degree (left-regular) and all nodes on the right
have the same degree (right-regular).

Example: Gallager G(n, j, k) codes.

» In general, irregular graphs give better performance
than regular ones. Some of the best LDPC codes
are based on choosing the distribution of degrees of
the nodes in a clever way.

Example: MacKay (1999). Random matrix with
columns of fixed weight ¢ > 3 (right-regular) and
row weight close to uniform within a certain
tolerance.

» Assume d, is the average degree of variable nodes,
and d. is the average degree of check nodes. Then
d

ndy =rd, —> R>1— - =1- 2
n d,

183 / 229

lterative Decoding: Bit Flipping (Hard Decision for BSC)

The bit flipping scheme is the first of two iterative algorithms in
Gallager's original paper.

Given: an LDPC matrix H, a limit K on the number of iterations, a
threshold function T(k,j), 0 <k < K,1<j<n.
® Input: received word y = [y1,¥2, ..., Ynls
® Output: estimated sent codeword & = [¢1,Ca, ..., ¢Cp).
@ Initialization: set ¢ =y, iteration counter k = 0.
® Compute check digits s = [s1,52,...,5,] = ¢H”.
® If s =0, return ¢ and STOP.
@ For each code coordinate j, let B; be the number
of unsatisfied checks ¢; participates in.
@ For each code coordinate j, if B; > T'(k,7), flip &;
@ Setk=k+1. If k< K, go to Step 2.
Else, return FAIL.

Example threshold function: T'(k, j) = max;, Bjs at iteration k.

184 / 229

lterative Decoding: Bit Flipping (Hard Decision for BSC)

The bit flipping scheme is the first of two iterative algorithms in
Gallager's original paper.

Given: an LDPC matrix H, a limit K on the number of iterations, a
threshold function T(k,j), 0 <k < K,1<j<n.

® Input: received word y = [y1,¥2, ..., Ynls

® Output: estimated sent codeword & = [¢1,Ca, ..., ¢Cp).
@ Initialization: set ¢ =y, iteration counter k = 0.
® Compute check digits s = [s1,52,...,5,] = ¢H”.

® If s =0, return ¢ and STOP.
@ For each code coordinate j, let B; be the number
of unsatisfied checks ¢; participates in.
@ For each code coordinate j, if B; > T'(k,7), flip é;
@ Setk=k+ 1. If k< K, go to Step 2.
Else, return FAIL.

Example threshold function: T'(k, j) = max;, Bjs at iteration k.

184 / 229

Bit flipping iteration decoding—toy example

» Bit flipping iteration example

185 /229

Bit Flipping—example with Gallager code

Example: H is a low-density matrix in G(1600, 3,4), with
n = 1600, r = 1200. Using T'(k, j) = max; Bj.

Decoding a pattern of 138 binary errors. i H
H=—]—
bad 400
iter | checks | errors | T'(k,j) flips } —
0 314 138 3 78
1 136 88 3 1 e 1200
2 133 87 2 95
3 136 74 3 23
4 89 61 2 47 e
5 76 48 3 10
6 50 38 2 24 = —
7 38 26 3 3 1600
8 29 23 2 9 300 mar
9 22 16 3 1
10 19 15 2 5 250
11 14 10 3 1 200
12 11 9 2 2
13 9 7 2 2 150
14 7 5 2 2
15 5 3 2 2 100
16 3 1 3 1
17 0 0 0 0 50

2 4 6 8 10 12 14 16 jter
186 /229

Bit Flipping—example with Gallager code

Example: Same H as before.

350 Seee 350
300 300
250 250
200 200
150 150
100 100

50

50
0 20 40 60 80 100 10 20 30 40
iter iter

Decoding a pattern of 156 errors (fail). Decoding a pattern of 167 errors (ok).

187 /229

lterative Decoding: Message Passing (Hard Decision)

The message passing point of view

>

Decoding algorithm based on rounds of
message passing between nodes

Variable nodes pass messages to check
nodes

Check nodes pass messages to variable
nodes

Each message is a binary symbol

Initially, variable nodes store the received
symbols

received
word

O O OO0 - 00O 0O = 0 0O o o o o o

188 /229

lterative Decoding: Message Passing (Hard Decision)

received
The message passing point of view word

» Decoding algorithm based on rounds of
message passing between nodes

» Variable nodes pass messages to check
nodes

» Check nodes pass messages to variable
nodes

» Each message is a binary symbol
» Initially, variable nodes store the received
symbols

» Round 0: Variable nodes pass the received
symbols to adjacent check nodes

O O OO0 - 00O 0O = 0 0O o o o o o

188 /229

lterative Decoding: Message Passing (Hard Decision)

received
The message passing point of view word

» Decoding algorithm based on rounds of
message passing between nodes

» Variable nodes pass messages to check
nodes

» Check nodes pass messages to variable
nodes

» Each message is a binary symbol
» Initially, variable nodes store the received
symbols

» Round 0: Variable nodes pass the received
symbols to adjacent check nodes

O O OO0 - 00O 0O = 0 0O o o o o o

189 /229

Message passing—regular round

Regular round, first half:

Check nodes to variable nodes

Every check node sends a message to each of
its adjacent variable nodes. If the variable
nodes adjacent to check node ¢; are

v1, V2, ...,V then the message sent from c¢; to
vj IS

Wij = Z my,; mod 2
ke{l1,2,....e3\{5}

N ;‘ £
N NLANRIA

7R

where my, ; is the message sent in the previous
round from vy, to c;.

¢; is telling v;: “According to my other
neighbors, this is the bit value you should have
in order to satisfy the check.”

O 0O OO0 -~ 00 0O -~ 00 o0 o o o o

190 / 229

Message passing—regular round

Regular round, second half:

Variable nodes to check nodes (Variant 1)

Every variable node sends a message to each of
its adjacent check nodes. If the check nodes
adjacent to variable node v; are c1,c2,.. ., cq,
then the message sent from v; to ¢; is

b ifpy=pe = i1y =
i = Hit15 - - - fd,;=D

y; otherwise, 1 <j<mn.

where (s, is the message sent in the previous
round from ¢ to v;.

Either “my other neighbors agree this should
be my value” or “not enough evidence to
change my belief.”

O O OO0 © OO0 0O OO0 Oo oo o

191 /229

Message passing—regular round

Regular round, second half:

Variable nodes to check nodes (Variant 2)

Instead of requiring

P15 =H2, 5= P15 = fit1,5 - - - pe,;=b (all
neighbors except possibly ¢; sent the same
information), a threshold 7 (that can vary at
each round) is used such that the message sent
is b if at least 7 neighbors sent the same
information. Variant 1 corresponds to
7=d—1 (d = node degree).

Another variant

Variable node takes majority vote, accepts value
if there is a winner, or keeps its value otherwise.

O O OO0 © OO0 OO OO0 O o o o o

192 /229

Message passing—regular round

Stopping condition:

All check equations are satisfied)

® Subtle point:

® Even though all checks are satisfied,
there might not be a consensus on
what the variable values should be.

® This is because v; may be telling
different ¢;'s different things. So, v;
may be getting different advice from
different ¢;'s.

® With n large enough, this will be
rare, and in any case a majority
decision may be taken, and checked.

O O OO0 © OO0 0O OO0 Oo oo o

103 /229

Q
o
£
©
X
Iy
e10)

=
)
)]
@®
(oX
(V]
o0
®©
]
7]
0]

=

r 1
OO —HOO—=H—HO OO
OO HOHOOOHO
COO—HOODDODOH—OO
—F—HOOOOOOOO—HO
OO0 OCOHHO—HOO
COO—HOOOOOO
HO—AOO—HOOODOOO
OO0 O0OH—"OOOOOO
—HOOO0OOOHOOOO
OO0 O—HOOO
COO—HO—HO O OOO
CO—HOOODOOOO—O
O—HO—HOO—HOOOOO
—HOOO—HOOOO—=HOO
CO—HOOOO—=HOO—HO
COOCOO—HOO—HOO

L 1

Il
T

Code C is [16,4, 4].

104 /229

Message passing—example

variable nodes check nodes

3j checks i variables

0 : [5, 8, 11] 0: [2, 7,9, 12]
1: [2, 7, 10] 1: [3, 6, 8, 12]
2 : [0, 4, 9] 2 : 01, 4, 6, 9]
3 : [1, 3, 6] 3 : [3, 5, 10, 13]
4 : [2, 9, 11] 4 : [2, 8, 14, 15]
5: [3,5, 7] 5: [0, 5, 8, 9]
6 : [1, 2, 8] 6 : [3, 7, 11, 14]
7 : [0, 6, 11] 7 : [1, 5, 11, 15]
8 : [1, 4, 5] 8 : [0, 6, 13, 15]
9 : [0, 2, 5] 9 : [2, 4, 11, 13]
10 : [3, 10, 11] 10 : [1, 10, 12, 14]
11 : [6, 7, 9] 11 : [0, 4, 7, 10]

12 : [0, 1, 10]
13 : [3, 8, 9]
14 : [4, 6, 10]
15 : [4, 7, 8]

195 / 229

Message passing—example

variable nodes check nodes
y j checks i variables
0 0 : [5 8, 11] 0 0:[2,7, 9, 12]
0 1: [2, 7, 10] 0 1: [3, 6, 8, 12]
0 2 : [0, 4, 9] 0 2 : [1, 4, 6, 9]
0 3:[1, 3, 6] 0 3:[3,5, 10, 13]
1 4 : [2,9, 11] 0 4 :[2,8, 14, 15]
0 5:[3,5, 7] 0 5: [0, 5, 8, 9]
0 6 :[1, 2, 8] 0 6 :[3,7, 11, 14]
0 7 : [0, 6, 11] 0 7:1([1, 5, 11, 15]
1 8 : [1, 4, 5] 0 8 : [0, 6 13, 15]
0 9: [0, 2, 5] 0 9 :[2, 4, 11, 13]
0 10 : [3, 10, 11] 0 10 : [1, 10, 12, 14]
0 11 : [6, 7, 9] 0 11 : [0, 4, 7, 10]
0 12 : [0, 1, 10]
0 13 : [3, 8, 9]
0 14 : [4, 6, 10]
0 15 : [4, 7, 8]

196 / 229

Message passing—example

Round 0)

variable nodes check nodes
y j checks i variables
0 0 : [5 8, 11] 0 0:[2,7, 9, 12]
0 1:([2,7, 10] 1 1:[3, 6,8, 12]
0 2 : [0, 4, 9] 1 2: 01, 4, 6, 9]
0 3:[1, 3, 6] 0 3:[3,5, 10, 13]
1 4 : [2,9, 11] 1 4 : [2, 8, 14, 15]
0 5:[3,5, 7] 1 5: [0, 5, 8, 9]
0 6 :[1, 2, 8] 0 6 :[3,7, 11, 14]
0 7 : [0, 6, 11] 0 7:1([1, 5, 11, 15]
1 8 : [1, 4, 5] 0 8 : [0, 6 13, 15]
0 9: [0, 2, 5] 1 9 : [2, 4, 11, 13]
0 10 : [3, 10, 11] 0 10 : [1, 10, 12, 14]
0 11 : [6, 7, 9] 1 11 : [0, 4, 7, 10]
0 12 : [0, 1, 10]
0 13 : [3, 8, 9]
0 14 : [4, 6, 10]
0 15 : [4, 7, 8]

197 /229

Message passing—example

Round la (e

variable nodes check nodes
y j checks i variables
0 0 : [5 8, 11] 0 0:[2,7, 9, 12]
0 1:([2,7, 10] 1 1:[3, 6,8, 12]
0 2: [0, 4, 9] 1 2: 01, 4, 6, 9]
0 3:[1, 3, 6] 0 3:[3,5, 10, 13]
1 4 : [2,9, 11] 1 4 : [2, 8, 14, 15]
0 5:[3,5, 7] 1 5: [0, 5, 8, 9]
0 6 :[1, 2, 8] 0 6 :[3,7, 11, 14]
0 7 : [0, 6, 11] 0 7:1([1, 5, 11, 15]
1 8 : [1, 4, 5] 0 8 : [0, 6 13, 15]
0 9: [0, 2, 5] 1 9 : [2, 4, 11, 13]
0 10 : [3, 10, 11] 0 10 : [1, 10, 12, 14]
0 11 : [6, 7, 9] 1 11 : [0, 4, 7, 10]
0 12 : [0, 1, 10]
0 13 : [3, 8, 9]
0 14 : [4, 6, 10]
0 15 : [4, 7, 8]

198 / 229

Message passing—example

OO0OO0OO0OO0OO0OO0OHOOOHFHOOOOK

0OO0OO0O0O0D0O0O0OO0OO0ODO0OO0OO0OOOODMN

Round 1b)

variable nodes

: checks in
[5, 8, 11]
[2, 7, 10]
[0, 4, 9]
[1, 3, 6]
[2, 9, 11]
[3, 5, 71
[1, 2, 8]
[0, 6, 11]
[1, 4, 5]

¢ [0, 2, 5]

10 : [3, 10, 11]
11 : [6, 7, 9]

12 : [0, 1, 10]
13 : [3, 8, 9]

14 : [4, 6, 10]
15 : [4, 7, 8]

WoNoUldWN K OoOW

out
8, 11]
7, 10]
4, 9]
3, 6]
9, 11]
5, 7]
2, 8]
6, 11]
4, 5]
2, 5]
10, 11]
7, 91
1, 10]
8, 9]
6, 10]
7, 8]

OO0 O0OO0OO0OO0OO0OO0OO0OO0OO

=R

RoOoOwoOoNonUlbdWN KO

check nodes

variables
[2, 7, 9, 12]
[3, 6, 8, 12]
[1, 4, 6, 9]
[3, 5, 10, 13]
[2, 8, 14, 15]
[0, 5, 8, 9]
[3, 7, 11, 14]
[1, 5, 11, 15]
[0, 6, 13, 15]
[2, 4, 11, 13]
[1, 10, 12, 14]
[0, 4, 7, 10]

199 / 229

Message passing—example

Round 1b)

variable nodes check nodes
¢ j : checks in out s i variables
o] o: [5, 8, 11] [5, 8, 11] o] o : [2, 7, 9, 12]
0 1: [2, 7, 10] [2, 7, 10] 0 1: [3, 6, 8, 12]
0 2 : [0, 4, 9] [0, 4, 9] 0 2 : [1, 4, 6, 9]
0| 3: [1, 3, 6] [1, 3, 6] ol 3: 3,5, 10, 13]
o 4 : 12, 9, 11] [2, 9, 11] o| 4 : [2, 8, 14, 15]
0 5 : [3, 5, 7] [3, 5, 7] 0 5: [0, 5, 8, 9]
0 6 : [1, 2, 8] [1, 2, 8] 0 6 : [3, 7, 11, 14]
0 7 : [0, 6, 11] [0, 6, 11] 0 7 : [1, 5, 11, 15]
o 8 : [1, 4, 5] [1, 4, 5] o| 8 : [0, 6, 13, 15]
ol 9 : o, 2, 51 [0, 2, 5] o| 9 : [2, 4, 11, 13]
of10 : 3, 10, 11] [3, 10, 11] 0|10 : [1, 10, 12, 14]
0|11 : [6, 7, 9] [6, 7, 9] 0| 11 : [o, 4, 7, 10]
0|12 : [0, 1, 10] [0, 1, 10] —
0|13 : [3, 8, 9] [3, 8, 9]
0|14 : [4, 6, 10] [4, 6, 10]
0] 15 : [4, 7, 8] 14, 7, 8] a

Il checks satisfied: STOP

|

majority vote

200/ 229

Message passing—example 2

variable nodes check nodes
y j checks i variables
0 0 : [5, 8, 11] 0 0:[2,7, 9, 12]
0 1:([2,7, 10] 0 1:[3, 6, 8, 12]
0 2: [0, 4, 9] 0 2:[1, 4, 6, 9]
0 3:1[1, 3, 6] 0 3:[3,5, 10, 13]
0 4 :[2,9, 11] 0 4 :[2, 8, 14, 15]
0 5:[3,5, 7] 0 5: [0, 5, 8, 9]
0 6 :[1, 2, 8] 0 6 : [3, 7, 11, 14]
1 7 : [0, 6, 11] 0o 7 :[1, 5, 11, 15]
0 8 : [1, 4, 5] 0 8 : [0, 6 13, 15]
0 9: [0, 2, 5] 0 9 :[2, 4, 11, 13]
0 10 : [3, 10, 11] 0 10 : [1, 10, 12, 14]
0 11 : [6, 7, 9] 0 11 : [0, 4, 7, 10]
0 12 : [0, 1, 10]
0 13 : [3, 8, 9]
0 14 : [4, 6, 10]
1 15 : [4, 7, 8]

201 /229

Message passing—example 2

Round 0)

variable nodes check nodes
y j checks i variables
0 0 : [5, 8, 11] 1 0: [2, 7,9, 12]
0 1:([2,7, 10] 0 1:[3, 6, 8, 12]
0 2: [0, 4, 9] 0 2:[1, 4, 6, 9]
0 3:1[1, 3, 6] 0 3:[3,5, 10, 13]
0 4 :[2,9, 11] 1 4 : [2, 8, 14, 15]
0 5:[3,5, 7] 0 5: [0, 5, 8, 9]
0 6 :[1, 2, 8] 1 6 : [3, 7, 11, 14]
1 7 : [0, 6, 11] 1 7 :[1, 5, 11, 15]
0 8 : [1, 4, 5] 1 8 : [0, 6, 13, 15]
0 9: [0, 2, 5] 0 9 :[2, 4, 11, 13]
0 10 : [3, 10, 11] 0 10 : [1, 10, 12, 14]
0 11 : [6, 7, 9] 1 11 : [0, 4, 7, 10]
0 12 : [0, 1, 10]
0 13 : [3, 8, 9]
0 14 : [4, 6, 10]
1 15 : [4, 7, 8]

202 /229

Message passing—example 2

Round la (s

variable nodes check nodes
y j checks i variables
0 0 : [5, 8, 11] 1 0: [2, 7,9, 12]
0 1:([2, 7, 10] 0 1:[3, 6, 8, 12]
0 2: [0, 4, 9] 0 2:[1, 4, 6, 9]
0 3:[1, 3, 6] 0 3:[3,5, 10, 13]
0 4 :[2,9, 11] 1 4 : [2, 8, 14, 15]
0 5:[3,5, 7] 0 5: [0, 5, 8, 9]
0 6 : [1, 2, 8] 1 6 : [3, 7, 11, 14]
1 7 : [0, 6, 11] 1 7 :[1, 5, 11, 15]
0 8 : [1, 4, 5] 1 8 : [0, 6, 13, 15]
0 9: [0, 2, 5] 0 9 :[2, 4, 11, 13]
0 10 : [3, 10, 11] 0 10 : [1, 10, 12, 14]
0 11 : [6, 7, 9] 1 11 : [0, 4, 7, 10]
0 12 : [0, 1, 10]
0 13 : [3, 8, 9]
0 14 : [4, 6, 10]
1 15 : [4, 7, 8]

203 /229

Message passing—example 2

Round 1b)

variable nodes check nodes
y j : checks in out i variables
0 0 : [5, 8, 11] [5, 8, 11] 0 0 :[2, 7, 9, 12]
0 1:[2, 7,101 [2, 7, 10] 0 1:[3, 6,8, 12]
0 2 : [0, 4, 9] [0, 4, 9] 0 2:[1, 4, 6, 9]
0 3:[1, 3, 6] [1, 3, 6] 0 3:[3,5, 10, 13]
0 4 :[2,9, 11] [2, 9, 11] 0 4 :[2, 8, 14, 15]
0 5 : [3, 5, 7] [3, 5, 7] 1 5: [0, 5, 8, 9]
0 6 : [1, 2, 8] [1, 2, 8] 0 6 : [3, 7, 11, 14]
1 7 : [0, 6, 11] [0, 6, 11] 0o 7 :[1, 5, 11, 15]
0 8 : [1, 4, 5] [1, 4, 5] 0 8 : [0, 6, 13, 15]
0 9: [0, 2, 5] [0, 2, 5] 0 9: [2, 4, 11, 13]
0 10 : [3, 10, 11] [3, 10, 11] 1 10 : [1, 10, 12, 14]
0 11 : [6, 7, 9] [6, 7, 9] 0o 11 : [0, 4, 7, 10]
0 12 : [0, 1, 10] [0, 1, 10]
0 13 : [3, 8, 9] [3, 8, 9]
0 14 : [4, 6, 10] [4, 6, 10]
1 15 : [4, 7, 8] (4, 7, 8]

204 /229

Message passing—example 2

Round 2a (s

variable nodes check nodes
y J : checks in out i variables
0 0 : [5, 8, 11] [5, 8, 11] 0 0:[2,7, 9, 12]
0 1:([2,7, 10] [2, 7, 10] 0 1:[3, 6, 8, 12]
0 2: [0, 4, 9] [0, 4, 9] 0 2:[1, 4, 6, 9]
0 3:1[1, 3, 6] [1, 3, 6] 0 3:[3,5, 10, 13]
0 4 :[2,9, 11] [2, 9, 11] 0 4 :[2, 8, 14, 15]
0 5:[3,5, 7] [3, 5, 71 1 5: 00,5, 8, 9]
0 6 :[1, 2, 8] [1, 2, 8] 0 6 : [3, 7, 11, 14]
1 7 : [0, 6, 11] [0, 6, 11] 0o 7 :[1, 5, 11, 15]
0 8 : [1, 4, 5] [1, 4, 5] 0 8 : [0, 6 13, 15]
0 9 : [0, 2, 5] [0, 2, 5] 0 9:[2, 4, 11, 13]
0 10 : [3, 10, 11] [3, 10, 11] 1 10 : [1, 10, 12, 14]
0 11 : [6, 7, 9] [6, 7, 91 0 11 : [0, 4, 7, 10]
0 12 : [0, 1, 10] [0, 1, 10]
0 13 : [3, 8, 9] [3, 8, 9]
0 14 : [4, 6, 10] [4, 6, 10]
1 15 : [4, 7, 8] (4, 7, 8]

205 /229

Message passing—example 2

Round 2b)

variable nodes check nodes
y J : checks in out i variables
0 0 : [5, 8, 11] [5, 8, 11] 0 0:[2,7, 9, 12]
0 1:([2,7, 10] [2, 7, 10] 0 1:[3, 6, 8, 12]
0 2: [0, 4, 9] [0, 4, 9] 0 2:[1, 4, 6, 9]
0 3:1[1, 3, 6] [1, 3, 6] 0 3:[3,5, 10, 13]
0 4 :[2,9, 11] [2, 9, 11] 0 4 :[2, 8, 14, 15]
0 5:[3,5, 7] [3, 5, 71 0 5: [0, 5, 8, 9]
0 6 :[1, 2, 8] [1, 2, 8] 0 6 : [3, 7, 11, 14]
1 7 : [0, 6, 11] [0, 6, 11] 0o 7 :[1, 5, 11, 15]
0 8 : [1, 4, 5] [1, 4, 5] 0 8 : [0, 6 13, 15]
0 9 : [0, 2, 5] [0, 2, 5] 0 9 :[2, 4, 11, 13]
0 10 : [3, 10, 11] [3, 10, 11] 0 10 : [1, 10, 12, 14]
0 11 : [6, 7, 9] [6, 7, 91 0 11 : [0, 4, 7, 10]
0 12 : [0, 1, 10] [0, 1, 10]
0 13 : [3, 8, 9] [3, 8, 9]
0 14 : [4, 6, 10] [4, 6, 10]
1 15 : [4, 7, 8] (4, 7, 8]

206 /229

Message passing—example 2

Round 2b)

variable nodes check nodes
c j : checks in out — i variables
[0] o : [5, 8, 11] [5, 8, 11] ol o: 12, 7, 9, 12]
0| 1:[2, 7, 10] [2, 7, 10] ol 1:[3, 6, 8, 12]
0| 2 : [0, 4, 9] [0, 4, 9] 0| 2:[1, 4, 6, 9]
o| 3:[1, 3, 6] [1, 3, 6] o| 3:[3,5, 10, 13]
0| 4 :[2, 9, 11] [2, 9, 11] o| 4 : [2, 8, 14, 15]
0| 5:[3, 5, 7] [3, 5, 71 0| 5: [0, 5, 8, 9]
o| 6 : [1, 2, 8] [1, 2, 8] o| 6 : [3, 7, 11, 14]
o| 7 : [0, 6, 11] [0, 6, 11] o| 7 : 11, 5, 11, 15]
0| 8 : [1, 4, 5] [1, 4, 5] o| 8 : [0, 6, 13, 15]
0| 9 : [0, 2, 5] [0, 2, 5] ol 9 : [2, 4, 11, 13]
0|10 : [3, 10, 11] [3, 10, 11] 0| 10 : [1, 10, 12, 14]
0|11 : [6, 7, 9] [6, 7, 91 o 11 : [o, 4, 7, 10]
0|12 : [0, 1, 10] [0, 1, 10] —
0|13 : [3, 8, 9] [3, 8, 9]
0|14 : [4, 6, 10] [4, 6, 10]
(0] 15 = [4, 7, 8] (4, 7, 8l all checks satisfied: STOP

|

unanimity
207 /229

Why (when) does iterative decoding work? [Gallager'62]

Local neighborhood *“tree” of an edge (v, c).

check node

variable node

checknodes (d, —1)

variable nodes
(d. — 1)/subtree

» Assume a BSC with P(bit error) = p.

» Let p; be the probability of a message m,. being wrong at iteration i,
with pg = p.

» We derive an expression for p; 1.

208 /229

Why (when) does iterative decoding work?

check node

e Consider a neighbor ¢’ of v, ¢/#c. Check
node ¢’ sends the correct value to v if an variable node
even number of neighbors of ¢ (excluding
v) sent ¢’ the wrong value. So,

check nodes (d, —1)

— —1— variable nodes
P()UJC”U gOOd) = Z(dcg l)pf(l _pi)dc e (d. — 1)/subtree

£ even
0<t<dc

I)

= 5 .

® Hence, the probability that v was (initially) received in error, and sent
incorrectly in round i+1 is

Po <1 - {H(l—;p)‘“r1> |

® Similarly, the probability that v was received correctly, but sent incorrectly
in round i+1 is

(1—po) {1—(1—221%')%_1}‘1”‘1 ‘

200 /229

Why (when) does iterative decoding work?

check node

® We get the following recursion

variable node

check nodes (d, —1)

[1+(1 2pi)dc_l:|dv_1
Pit1 =po—po [

1—(1—-2 i de—1 do—l variable nodes
+ (1 - pO) {%} . (d; — 1)/subtree

® |f po is such that p;+1 < p;, then the bit error probability strictly decreases
at each iteration. In fact, a more detailed analysis of the recursion proves

that there exists a threshold p§ such that p; = 0 for all po < pj.

® But there are strong conditional independence assumptions in this
calculation!

® These assumptions hold if the neighborhood is indeed a tree over the
number of iterations run.

® We need bipartite graphs of large girth (girth: length of smallest loop in
the graph). For that, we need large n.

210/229

Why (when) does iterative decoding work?

Example: d. =11, d, = T: p;41 vs p; for pg = 0.05.

0.05 1 DPi
0.04 1 Pi+1
0.03 1
0.02 1
0.01 1

0.01 0.02 0.03 0.04 0.05 D;

(We have pg ~ 0.0556 in this case.)

211/229

Why (when) does iterative decoding work?

Example: d. =11, d, = T: p;41 vs p; for pg = 0.05.

0.05 4 pl
0.04 1 Pit+1
0.03 1
0.02 4
y % P1 Po
0.b3 0.04 0.05
Di

(We have pf ~ 0.0556 in this case.)

211 /229

Why (when) does iterative decoding work?

Example: d. =11, d, =T7: p; vs ¢ for pg = 0.05.

0.05

0.04 4

0.03 4

0.02 4

0.014

212 /229

Iterative Decoding for BSC—Soft Decision

» In soft decision decoding, the received data is given in the form of a
vector of probabilities (p1 ps ... pn) such that p; = P(z; = 1|y;).

» The goal of the iterative decoder is to improve these estimates so that
eventually we can get an estimate Z; of x; with
P(&; = x; |y1,Y2,--.,yn) approaching one (density evolution).

Variable node density evolution - (36-LDPC, Eb/Mo =2 Check nods density svolution - (3 E}-LDPC. EbiNo = 2

016

0.14

0.12

01

008

density

0.08

004

» Density evolution calculations are very difficult in general, but explicit
recursions can be set up for some interesting cases under some
independence assumptions.

213 /229

Belief propagation

» The tool used to iteratively improve the symbol probability estimates is
belief propagation. This has several closely related interpretations,
names, and representations, e.g. sum-products algorithm, Bayesian
networks, generalized ditributive law, etc.

» We work with log-likelihood ratios

b = log ——— 1
Mo =18 B =1 0,)

In our problem, the z;'s play the role of the v;'s, and the initial estimates
0; are the received symbols ;. J

» Messages passed through the graph effect log-likelihood updates.

214 /229

Belief propagation

» The message passed from a message node v to a check node ¢ is the
probability that v has a certain value given the observed value of that
message node, and all the values communicated to v in the prior round
from check nodes incident to v other than c.

» The message passed from c to v is the probability that v has a certain
value given all the messages passed to c in the previous round from
message nodes other than v.

215 /229

Likelihood updates

From variables to checks

m® My =0,
v,c — -1
Mo + D ercou (e} m((:’,v), >0.

V

From checks to variables

mv',c
e 1+]] tanh(m'? /2)
A v’ €Ve\{v} v/ ,c
mﬁ% = log 0)
1 =1, ev.\ o) tanh(m,/ /2)

216 /229

When does iterative decoding work?

» As in the hard decision case, the soft decision belief propagation iteration
relies on the conditional independence of the messages passed in the
process of updating the variable nodes.

» Same large girth requirements for the code graph.

» Let S(e, d) denote the local neighborhood to depth d of edge e. Let L
denote any fixed number of rounds of the iterative decoding.

Key observation

In a random bipartite graph, for any given L, S(e,2L) is cycle-free with
probability — 1 as n — oo.

» Even for finite n, if the number of iterations is not too large (as is the
case in practice), the independence assumption holds with high
probability.

» There exist construction techniques that produce graphs of large girth.

217 /229

LDPC codes for the binary erasure channel (BEC)

» The BEC is a good model for packet losses in networks P A
» A class of LDPC codes, developed in the early 2000s »)
and often referred to as fountain codes (incl. Tornado, P 4
LT, and Raptor codes), targets the BEC and has many 1 —

interesting features

® Codes are rateless: a potentially endless stream of encoded symbols
is sent by the sender. The receiver collects enough of them until it
can decode (then may ask sender to stop).

® In multicast situations, different receivers may read different lengths
of the encoded stream.

® The codes can be encoded and decoded in very low complexity
(linear or almost linear in the length of the encoded block).

® The codes are random; they are generated on the fly by the sender,
and also by the receiver based on common randomness.

® The best codes in the class approach the capacity of the BEC even if
the channel parameter is unknown.

218 /229

LT codes (Luby 2002)—Encoding example

T] TP T3 T4 Ts T T7 Ty

[Example: A. Shokrollahi]

219 /229

LT codes (Luby 2002)—Encoding example

T1 TP T3 T4 XTx T T7 Ty

(z1) @]

Distribution D
on Fg

[Example: A. Shokrollahi]

219 /229

LT codes (Luby 2002)—Encoding example

T1 T T3 T4 s Tg T7 Tg

(z1) @)
(v2,24) @)

Distribution D
on Fg

[Example: A. Shokrollahi]

219 /229

LT codes (Luby 2002)—Encoding example

L1 XTp T3 T4 Ty Tg L7 Ly

(z1) @)
(z2,74) |B]

—~
el
8
)
53
o
8
~

Distribution D
on Fg

[Example: A. Shokrollahi]

219 /229

LT codes (Luby 2002)—Encoding example

L1 X T3 T4 Ty g L7 Ly

66
¢

(z1) @)
(z2,74) |B]
(z3) @]

(z2,5,76) |B]

Distribution D
on Fg

[Example: A. Shokrollahi]

219 /229

LT codes (Luby 2002)—Encoding example

L1 T2 I3 T4 Iy Tg 7 Iy

Distribution D
on Fg

[Example: A. Shokrollahi]

219 /229

LT codes (Luby 2002)—Encoding example

L1 T2 T3 T4 Iy Tg 7 Iy

Distribution D
on Fg

[Example: A. Shokrollahi]

219 /229

LT codes (Luby 2002)—Encoding example

L1 T2 T3 T4 Iy Tg 7 Iy

Distribution D
on Fg

[Example: A. Shokrollahi]

219 /229

LT codes (Luby 2002)—Encoding example

L1 T2 I3 T4 Iy g 7 Iy

Distribution D
on Fg

[Example: A. Shokrollahi]

219 /229

LT codes (Luby 2002)—Encoding example

L1 T2 T3 T4 Iy Tg 7 Iy

Distribution D
on Fg

[Example: A. Shokrollahi]

219 /229

LT codes (Luby 2002)—Encoding example

L1 T2 I3 T4 Iy g L7 Iy

Distribution D
on Fg

[Example: A. Shokrollahi]

219 /229

LT codes (Luby 2002)—Encoding example

L1 T2 I3 T4 Iy g L7 Iy

Distribution D
on Fg

[Example: A. Shokrollahi]

219 /229

LT codes— Decoding example

non-erased symbols

® Find codeword node ¢ of (reduced) degree 1

@® Assign value of ¢ to the variable node v connected to it

© Subtract the value of v from all the codeword nodes connected to it
® Remove all edges incident on v

@ If there are message symbols that have not been decoded, go to
Step 1

[Example: A. Shokrollahi]

220 /229

LT codes— Decoding example

released
codeword

@ Find codeword node ¢ of reduced degree 1 (released)

@® Assign value of ¢ to the variable node v connected to it

© Subtract the value of v from all the codeword nodes connected to it
® Remove all edges incident on v

@ If there are message symbols that have not been decoded, go to
Step 1

[Example: A. Shokrollahi]

221 /229

LT codes— Decoding example

@ Find codeword node ¢ of reduced degree 1 (released)

@® Assign value of ¢ to the variable node v connected to it

© Subtract the value of v from all the codeword nodes connected to it
® Remove all edges incident on v

@ If there are message symbols that have not been decoded, go to
Step 1

[Example: A. Shokrollahi]

222 /229

LT codes— Decoding example

@ Find codeword node ¢ of reduced degree 1 (released)

@® Assign value of ¢ to the variable node v connected to it

© Subtract the value of v from all the codeword nodes connected to it
® Remove all edges incident on v

@ If there are message symbols that have not been decoded, go to
Step 1

[Example: A. Shokrollahi]

222 /229

LT codes— Decoding example

@ Find codeword node ¢ of reduced degree 1 (released)

@® Assign value of ¢ to the variable node v connected to it

© Subtract the value of v from all the codeword nodes connected to it
® Remove all edges incident on v

@ If there are message symbols that have not been decoded, go to
Step 1

[Example: A. Shokrollahi]

222 /229

LT codes— Decoding example

@ Find codeword node ¢ of reduced degree 1 (released)

@® Assign value of ¢ to the variable node v connected to it

© Subtract the value of v from all the codeword nodes connected to it
® Remove all edges incident on v

@ If there are message symbols that have not been decoded, go to
Step 1

[Example: A. Shokrollahi]

222 /229

LT codes— Decoding example

.

@ Find codeword node ¢ of reduced degree 1 (released)

@® Assign value of ¢ to the variable node v connected to it

© Subtract the value of v from all the codeword nodes connected to it
® Remove all edges incident on v

@ If there are message symbols that have not been decoded, go to
Step 1

[Example: A. Shokrollahi]

222 /229

LT codes— Decoding example

@ Find codeword node ¢ of reduced degree 1 (released)

@® Assign value of ¢ to the variable node v connected to it

© Subtract the value of v from all the codeword nodes connected to it
® Remove all edges incident on v

@ If there are message symbols that have not been decoded, go to
Step 1

[Example: A. Shokrollahi]

222 /229

LT codes— Decoding example

@ Find codeword node ¢ of reduced degree 1 (released)

@® Assign value of ¢ to the variable node v connected to it

© Subtract the value of v from all the codeword nodes connected to it
® Remove all edges incident on v

@ If there are message symbols that have not been decoded, go to
Step 1

[Example: A. Shokrollahi]

222 /229

LT codes— Decoding example

[| | | (.

@ Find codeword node ¢ of reduced degree 1 (released)

@® Assign value of ¢ to the variable node v connected to it

© Subtract the value of v from all the codeword nodes connected to it
® Remove all edges incident on v

@ If there are message symbols that have not been decoded, go to
Step 1

[Example: A. Shokrollahi]

222 /229

LT codes— Decoding example

[| | | (.

@ Find codeword node ¢ of reduced degree 1 (released)

@® Assign value of ¢ to the variable node v connected to it

© Subtract the value of v from all the codeword nodes connected to it
® Remove all edges incident on v

@ If there are message symbols that have not been decoded, go to
Step 1

[Example: A. Shokrollahi]

222 /229

LT codes—goals

non-erased
symbols

* k(1+¢)
Given k message symbols encoded with an LT code, we want

® To be able to recover the message from (1 + €)k non-erased code
symbols, for a vanishingly small €, with very high probability.

® To do so with linear (or close to linear) complexity.

223 /229

2]
Q
oD
c
w
(q°]
<
I
n
[}
o
o}
O
_I
—l

Bad things that may happen:

——— n=k(l+e

® An uncovered input symbol: an input symbol that was not hit by

any of the linear combinations drawn with distribution D.

® No codeword node is released—decoding is stuck.

224 /229

LT Codes—degree distribution

® The distribution of check equation weights is crucial for correct
decoding, for both of the challenges listed.
® LT codes draw check equations according to a distribution D on F¥
® A distribution {2, |1 < w < k} on the Hamming weights
® Uniform distribution for a given weight
® Probability of a coefficient vector v € Fi¥:

Qo

@7

® The parameters of the code are (k, Q(z)),

Probp(v) = w = wt(v)

Qz) =z + Qox? + -+ Qpa”

225 /229

Average weight (degree) of a code symbol

k
Z ",y = Prob(wt = w)

w=1

g

226 /229

©
Q0
S
>
0
5
©
o}
O
(4]
Y
o
—
)
()
el
20
()
=
~—
4
iy
oD
(<
=
()
o0
(]
—
(%
>
<

w)

Qz) =Y Qua®, Q= Prob(wt

=k(l+e)

1

226 / 229

Average weight (degree) of a code symbol

n=k(l+e)

Prob(fail) > Prob(message symbol not covered)

_ <Z o (())) _ (Z 2. (1- ;:))" (- Ty

want i clnk
— ke 1+e¢

o W (+e)

Q

= Q'(1)

Y

average degree must be at least logarithmic

226 / 229

LT—Ensuring enough symbols are released (w.h.p.)

We are interested in the probability that an output symbol of initial degree w is
released at step ¢ 4+ 1, when the ¢ 4 1st input symbol is recovered.

This is the probability that the symbol has exactly one neighbor among the

k — 1 — 1 input symbols that are not yet recovered, and that not all the
remaining w — 1 neighbors are among the ¢ already recovered. It can be shown
that under the assumptions on the distribution D,

P(output symbol “released” at step i+1 | deg is w) =

() 07)

P(output symbol “released” at step i+1) =

(1 - ”];1) (O (G +1)/k) — @ (6/R)) -

227 /229

LT—Ensuring enough symbols are released (w.h.p.)

P(output symbol “released” at step i+1) =

41
(1 - ’Z) (Y (i + 1)/k) — Q' (i/k)) .
For n symbols, number released ~

n Z+ 1 "y want
—(1- Q > 1
(-5 oram

with n ~ k:

Qz) = O + Z Z(ij soliton distribution

i>2

228 /229

LT—Ensuring enough symbols are released (w.h.p.)

“Soliton” distribution
i=1,

==

1 .

With the soliton distribution, the expected number of output nodes released at
each step is exactly one. This makes it a poor choice in practice, as even a
minimal deviation from the expected behavior will get the process stuck. More
robust solutions have been developed.

0.4
03

0.3

0.2
0.2
0.1
0.1
3

0 5 10 15 20 25 30 5 [5 10 15 20 25 30 35

Soliton k = 32 Robust soliton
k=32,M =28,6=10"*

229 /229

