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Low Density Parity-Check (LDPC) Codes

• A sequence of binary matrices {Hr×n}n≥r≥1, is said to be of low
density if the number of 1’s in each row and column remains
bounded as r, n → ∞. Formally, wt (Hr×n) /n ≤ c for some
constant c and all n.

• Hr×n used as parity-check matrices (PCMs) of linear codes. For
“good” codes we will have r ≈ (1−R)n for some fixed R ∈ (0, 1).
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Gallager’s ensemble (1962)

Family of codes G(n, j, k), j ≤ k, with parity-check matrix H:
r × n with j 1’s per column, k 1’s per row (n = km, r = jm, m ≥ 1).

• Last j − 1 blocks are random permutations of columns of first:
not systematic.

• Rows of H not necessarily linearly independent =⇒ redundancy ≤ r.

• Rate R ≥ n−r
n = 1− j

k .
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LDPC codes are good

Theorem (Gallager codes approach BSC capacity)

Given a BSC of parameter p, and a rate R < 1− H2(p), there exists an
integer t(p,R) such that ML decoding of a random Gallager code of rate
R with LDPC columns of weight t achieves vanishing error probability
with probability 1.

Theorem (Gallager codes have good distance properties)

Given δ < 1
2 and R such that R < 1− H2(δ), there exists an integer t

such that for sufficiently large n there exist Gallager codes of LDPC
column weight t and parameters [n,≥ R,≥ nδ] (GV bound).
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A bit of history

Partial history, with some major milestones

• Gallager [1962, Ph.D. Thesis and paper]

• Russian school: Zyablov, Pinsker, Margulis [1971, 1976, 1982]

• Tanner [1981] reinvention, graph approach, extensions.

• Berrou et al. [1993] Turbo Codes, iterative decoding, approach
capacity

• Richardson, Urbanke [1998] Irregular LDPC codes and iterative
threshold

• Mac Kay [1999], reinvention, analysis, and extensions

• Luby et al., [1997–] LT codes, Tornado codes, new analysis

• Shokrollahi [2000] Raptor codes

• and much research since then and ongoing ...

LDPC codes have become ubiquitous in many modern applications: 5G,
magnetic and SSD storage, etc.
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Graph representation of parity check matrix

Two representations as a bipartite graph

x1

x2

x3

x4

x5

x6

x7

)0(5321 =+++ xxxx

)0(6421 =+++ xxxx

)0(7431 =+++ xxxx

Good for decoding

x1

x2

x3

x4

5321 xxxx =++

6421 xxxx =++

7431 xxxx =++

Good for encoding

These are known as Tanner graphs

variable
nodes

check
nodes
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Graph representation of LDPC matrix

Example:

H =



0 0 1 0 0 0 0 1 0 1 0 0 1 0 0 0
0 0 0 1 0 0 1 0 1 0 0 0 1 0 0 0
0 1 0 0 1 0 1 0 0 1 0 0 0 0 0 0
0 0 0 1 0 1 0 0 0 0 1 0 0 1 0 0
0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 1
1 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0
0 0 0 1 0 0 0 1 0 0 0 1 0 0 1 0
0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 1
1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 1
0 0 1 0 1 0 0 0 0 0 0 1 0 1 0 0
0 1 0 0 0 0 0 0 0 0 1 0 1 0 1 0
1 0 0 0 1 0 0 1 0 0 1 0 0 0 0 0


Binary code with n = 16, r = 12.
Each column has weight 3, each row
has weight 4.

1

2

3

16

1

2

3

12
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Graph representation of LDPC matrix

Example:

H =



0 0 1 0 0 0 0 1 0 1 0 0 1 0 0 0
0 0 0 1 0 0 1 0 1 0 0 0 1 0 0 0
0 1 0 0 1 0 1 0 0 1 0 0 0 0 0 0
0 0 0 1 0 1 0 0 0 0 1 0 0 1 0 0
0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 1
1 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0
0 0 0 1 0 0 0 1 0 0 0 1 0 0 1 0
0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 1
1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 1
0 0 1 0 1 0 0 0 0 0 0 1 0 1 0 0
0 1 0 0 0 0 0 0 0 0 1 0 1 0 1 0
1 0 0 0 1 0 0 1 0 0 1 0 0 0 0 0


Binary code with n = 16, r = 12.
Each column has weight 3, each row
has weight 4.

Edges corresponding to the first
check row.

1

2

3

16

1

2

3

12
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Regular and irregular graphs

▶ Regular graph: All nodes on the left have the same
degree (left-regular) and all nodes on the right
have the same degree (right-regular).
Example: Gallager G(n, j, k) codes.

▶ In general, irregular graphs give better performance
than regular ones. Some of the best LDPC codes
are based on choosing the distribution of degrees of
the nodes in a clever way.
Example: MacKay (1999). Random matrix with
columns of fixed weight t ≥ 3 (right-regular) and
row weight close to uniform within a certain
tolerance.

▶ Assume dv is the average degree of variable nodes,
and dc is the average degree of check nodes. Then

ndv = rdc =⇒ R ≥ 1− r

n
= 1− dv

dc
.
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Iterative Decoding: Bit Flipping (Hard Decision for BSC)

The bit flipping scheme is the first of two iterative algorithms in
Gallager’s original paper.

Given: an LDPC matrix H, a limit K on the number of iterations, a
threshold function T (k, j), 0 ≤ k < K, 1 ≤ j ≤ n.

• Input: received word y = [y1, y2, . . . , yn],

• Output: estimated sent codeword ĉ = [ĉ1, ĉ2, . . . , ĉn].

1 Initialization: set ĉ = y, iteration counter k = 0.

2 Compute check digits s = [s1, s2, . . . , sr] = ĉHT .
3 If s = 0, return ĉ and STOP.
4 For each code coordinate j, let Bj be the number

of unsatisfied checks ĉj participates in.
5 For each code coordinate j, if Bj ≥ T (k, j), flip ĉj
6 Set k = k + 1. If k < K, go to Step 2.

Else, return FAIL.

Example threshold function: T (k, j) = maxj′ Bj′ at iteration k.
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Bit flipping iteration decoding–toy example

Bit flipping iteration example
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Bit Flipping–example with Gallager code

Example: H is a low-density matrix in G(1600, 3, 4), with
n = 1600, r = 1200. Using T (k, j) = maxj′ Bj′ .
Decoding a pattern of 138 binary errors.

bad
iter checks errors T (k, j) flips
0 314 138 3 78
1 136 88 3 1
2 133 87 2 95
3 136 74 3 23
4 89 61 2 47
5 76 48 3 10
6 50 38 2 24
7 38 26 3 3
8 29 23 2 9
9 22 16 3 1
10 19 15 2 5
11 14 10 3 1
12 11 9 2 2
13 9 7 2 2
14 7 5 2 2
15 5 3 2 2
16 3 1 3 1
17 0 0 0 0

2 4 6 8 10 12 14 16

50

100

150

200

250

300 bad checks
errors

iter

· · ·
· · ·
· · ·

4�-

400
6
?

1600� -

1200

6

?

H
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Bit Flipping–example with Gallager code

Example: Same H as before.

0 20 40 60 80 100

50

100

150

200

250

300

350 bad checks
errors

iter

Decoding a pattern of 156 errors (fail).

10 20 30 40

50

100

150

200

250

300

350
bad checks
errors

iter

Decoding a pattern of 167 errors (ok).
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Iterative Decoding: Message Passing (Hard Decision)

The message passing point of view

▶ Decoding algorithm based on rounds of
message passing between nodes

▶ Variable nodes pass messages to check
nodes

▶ Check nodes pass messages to variable
nodes

▶ Each message is a binary symbol

▶ Initially, variable nodes store the received
symbols

▶ Round 0: Variable nodes pass the received
symbols to adjacent check nodes
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Message passing—regular round

Regular round, first half:

Check nodes to variable nodes

Every check node sends a message to each of
its adjacent variable nodes. If the variable
nodes adjacent to check node ci are
v1, v2, . . . , vℓ, then the message sent from ci to
vj is

µi,j =
∑

k∈{1,2,...,ℓ}\{j}

mk,i mod 2

where mk,i is the message sent in the previous
round from vk to ci.

ci is telling vj : “According to my other
neighbors, this is the bit value you should have
in order to satisfy the check.”
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Message passing—regular round

Regular round, second half:

Variable nodes to check nodes (Variant 1)

Every variable node sends a message to each of
its adjacent check nodes. If the check nodes
adjacent to variable node vj are c1, c2, . . . , cd,
then the message sent from vj to ci is

mji =


b if µ1,j=µ2,j= . . . µi−1,j =

µi+1,j . . . µd,j=b

yj otherwise , 1 ≤ j ≤ n .

where µs,j is the message sent in the previous
round from cs to vj .

Either “my other neighbors agree this should
be my value” or “not enough evidence to
change my belief.”
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Message passing—regular round

Regular round, second half:

Variable nodes to check nodes (Variant 2)

Instead of requiring
µ1,j=µ2,j= . . . µi−1,j = µi+1,j . . . µt,j=b (all
neighbors except possibly ci sent the same
information), a threshold τ (that can vary at
each round) is used such that the message sent
is b if at least τ neighbors sent the same
information. Variant 1 corresponds to
τ = d− 1 (d = node degree).

Another variant

Variable node takes majority vote, accepts value
if there is a winner, or keeps its value otherwise.
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Message passing—regular round

Stopping condition:

All check equations are satisfied

• Subtle point:

• Even though all checks are satisfied,
there might not be a consensus on
what the variable values should be.

• This is because vj may be telling
different ci’s different things. So, vj
may be getting different advice from
different ci’s.

• With n large enough, this will be
rare, and in any case a majority
decision may be taken, and checked.
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Message passing–example

H =



0 0 1 0 0 0 0 1 0 1 0 0 1 0 0 0
0 0 0 1 0 0 1 0 1 0 0 0 1 0 0 0
0 1 0 0 1 0 1 0 0 1 0 0 0 0 0 0
0 0 0 1 0 1 0 0 0 0 1 0 0 1 0 0
0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 1
1 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0
0 0 0 1 0 0 0 1 0 0 0 1 0 0 1 0
0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 1
1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 1
0 0 1 0 1 0 0 0 0 0 0 1 0 1 0 0
0 1 0 0 0 0 0 0 0 0 1 0 1 0 1 0
1 0 0 0 1 0 0 1 0 0 1 0 0 0 0 0


Code C is [16, 4, 4].
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Message passing–example

j :   checks

     0 : [5, 8, 11] 

     1 : [2, 7, 10] 

     2 : [0, 4, 9] 

     3 : [1, 3, 6] 

 4 : [2, 9, 11] 

     5 : [3, 5, 7] 

     6 : [1, 2, 8] 

     7 : [0, 6, 11]

 8 : [1, 4, 5]

     9 : [0, 2, 5] 

    10 : [3, 10, 11] 

    11 : [6, 7, 9] 

    12 : [0, 1, 10] 

    13 : [3, 8, 9] 

    14 : [4, 6, 10] 

    15 : [4, 7, 8]

i :   variables

    0 : [2, 7, 9, 12] 

    1 : [3, 6, 8, 12] 

    2 : [1, 4, 6, 9] 

    3 : [3, 5, 10, 13] 

    4 : [2, 8, 14, 15] 

    5 : [0, 5, 8, 9] 

    6 : [3, 7, 11, 14]

    7 : [1, 5, 11, 15] 

    8 : [0, 6, 13, 15] 

    9 : [2, 4, 11, 13] 

   10 : [1, 10, 12, 14] 

   11 : [0, 4, 7, 10]

variable nodes check nodes
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Message passing–example

y   j :   checks

 0   0 : [5, 8, 11] 

 0   1 : [2, 7, 10] 

 0   2 : [0, 4, 9] 

 0   3 : [1, 3, 6] 

 1   4 : [2, 9, 11] 

 0   5 : [3, 5, 7] 

 0   6 : [1, 2, 8] 

 0   7 : [0, 6, 11]

 1   8 : [1, 4, 5]

 0   9 : [0, 2, 5] 

 0  10 : [3, 10, 11] 

 0  11 : [6, 7, 9] 

 0  12 : [0, 1, 10] 

 0  13 : [3, 8, 9] 

 0  14 : [4, 6, 10] 

 0  15 : [4, 7, 8]

i :   variables

0   0 : [2, 7, 9, 12] 

0   1 : [3, 6, 8, 12] 

0   2 : [1, 4, 6, 9] 

0   3 : [3, 5, 10, 13] 

0   4 : [2, 8, 14, 15] 

0   5 : [0, 5, 8, 9] 

0   6 : [3, 7, 11, 14]

0   7 : [1, 5, 11, 15] 

0   8 : [0, 6, 13, 15] 

0   9 : [2, 4, 11, 13] 

0  10 : [1, 10, 12, 14] 

0  11 : [0, 4, 7, 10]

variable nodes check nodes
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Message passing–example

y   j :   checks

 0   0 : [5, 8, 11] 

 0   1 : [2, 7, 10] 

 0   2 : [0, 4, 9] 

 0   3 : [1, 3, 6] 

 1   4 : [2, 9, 11] 

 0   5 : [3, 5, 7] 

 0   6 : [1, 2, 8] 

 0   7 : [0, 6, 11]

 1   8 : [1, 4, 5]

 0   9 : [0, 2, 5] 

 0  10 : [3, 10, 11] 

 0  11 : [6, 7, 9] 

 0  12 : [0, 1, 10] 

 0  13 : [3, 8, 9] 

 0  14 : [4, 6, 10] 

 0  15 : [4, 7, 8]

i :   variables

0   0 : [2, 7, 9, 12] 

1   1 : [3, 6, 8, 12] 

1   2 : [1, 4, 6, 9] 

0   3 : [3, 5, 10, 13] 

1   4 : [2, 8, 14, 15] 

1   5 : [0, 5, 8, 9] 

0   6 : [3, 7, 11, 14]

0   7 : [1, 5, 11, 15] 

0   8 : [0, 6, 13, 15] 

1   9 : [2, 4, 11, 13] 

0  10 : [1, 10, 12, 14] 

1  11 : [0, 4, 7, 10]

variable nodes check nodes

Round 0 
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Message passing–example

y   j :   checks

 0   0 : [5, 8, 11] 

 0   1 : [2, 7, 10] 

 0   2 : [0, 4, 9] 

 0   3 : [1, 3, 6] 

 1   4 : [2, 9, 11] 

 0   5 : [3, 5, 7] 

 0   6 : [1, 2, 8] 

 0   7 : [0, 6, 11]

 1   8 : [1, 4, 5]

 0   9 : [0, 2, 5] 

 0  10 : [3, 10, 11] 

 0  11 : [6, 7, 9] 

 0  12 : [0, 1, 10] 

 0  13 : [3, 8, 9] 

 0  14 : [4, 6, 10] 

 0  15 : [4, 7, 8]

i :   variables

0   0 : [2, 7, 9, 12] 

1   1 : [3, 6, 8, 12] 

1   2 : [1, 4, 6, 9] 

0   3 : [3, 5, 10, 13] 

1   4 : [2, 8, 14, 15] 

1   5 : [0, 5, 8, 9] 

0   6 : [3, 7, 11, 14]

0   7 : [1, 5, 11, 15] 

0   8 : [0, 6, 13, 15] 

1   9 : [2, 4, 11, 13] 

0  10 : [1, 10, 12, 14] 

1  11 : [0, 4, 7, 10]

variable nodes check nodes

Round 1a 
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Message passing–example

y  c   j : checks in       out

 0  0   0 : [5, 8, 11]   [5, 8, 11]

 0  0   1 : [2, 7, 10]   [2, 7, 10]

 0  0   2 : [0, 4, 9]    [0, 4, 9]

 0  0   3 : [1, 3, 6]    [1, 3, 6]

 1  0   4 : [2, 9, 11]   [2, 9, 11]

 0  0   5 : [3, 5, 7]    [3, 5, 7]

 0  0   6 : [1, 2, 8]    [1, 2, 8]

 0  0   7 : [0, 6, 11]   [0, 6, 11]

 1  0   8 : [1, 4, 5]    [1, 4, 5]

 0  0   9 : [0, 2, 5]    [0, 2, 5]

 0  0  10 : [3, 10, 11]  [3, 10, 11]

 0  0  11 : [6, 7, 9]    [6, 7, 9]

 0  0  12 : [0, 1, 10]   [0, 1, 10] 

 0  0  13 : [3, 8, 9]    [3, 8, 9]

 0  0  14 : [4, 6, 10]   [4, 6, 10]

 0  0  15 : [4, 7, 8]    [4, 7, 8]

i :   variables

0   0 : [2, 7, 9, 12] 

0   1 : [3, 6, 8, 12] 

0   2 : [1, 4, 6, 9] 

0   3 : [3, 5, 10, 13] 

0   4 : [2, 8, 14, 15] 

0   5 : [0, 5, 8, 9] 

0   6 : [3, 7, 11, 14]

0   7 : [1, 5, 11, 15] 

0   8 : [0, 6, 13, 15] 

0   9 : [2, 4, 11, 13] 

0  10 : [1, 10, 12, 14] 

0  11 : [0, 4, 7, 10]

check nodes

Round 1b 

variable nodes
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Message passing–example

c   j : checks in       out

 0   0 : [5, 8, 11]   [5, 8, 11]

 0   1 : [2, 7, 10]   [2, 7, 10]

 0   2 : [0, 4, 9]    [0, 4, 9]

 0   3 : [1, 3, 6]    [1, 3, 6]

 0   4 : [2, 9, 11]   [2, 9, 11]

 0   5 : [3, 5, 7]    [3, 5, 7]

 0   6 : [1, 2, 8]    [1, 2, 8]

 0   7 : [0, 6, 11]   [0, 6, 11]

 0   8 : [1, 4, 5]    [1, 4, 5]

 0   9 : [0, 2, 5]    [0, 2, 5]

 0  10 : [3, 10, 11]  [3, 10, 11]

 0  11 : [6, 7, 9]    [6, 7, 9]

 0  12 : [0, 1, 10]   [0, 1, 10] 

 0  13 : [3, 8, 9]    [3, 8, 9]

 0  14 : [4, 6, 10]   [4, 6, 10]

 0  15 : [4, 7, 8]    [4, 7, 8]

s   i :   variables

0   0 : [2, 7, 9, 12] 

0   1 : [3, 6, 8, 12] 

0   2 : [1, 4, 6, 9] 

0   3 : [3, 5, 10, 13] 

0   4 : [2, 8, 14, 15] 

0   5 : [0, 5, 8, 9] 

0   6 : [3, 7, 11, 14]

0   7 : [1, 5, 11, 15] 

0   8 : [0, 6, 13, 15] 

0   9 : [2, 4, 11, 13] 

0  10 : [1, 10, 12, 14] 

0  11 : [0, 4, 7, 10]

check nodes

Round 1b 

variable nodes

all checks satisfied: STOP

majority vote
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Message passing–example 2

y   j :   checks

 0   0 : [5, 8, 11] 

 0   1 : [2, 7, 10] 

 0   2 : [0, 4, 9] 

 0   3 : [1, 3, 6] 

 0   4 : [2, 9, 11] 

 0   5 : [3, 5, 7] 

 0   6 : [1, 2, 8] 

 1   7 : [0, 6, 11]

 0   8 : [1, 4, 5]

 0   9 : [0, 2, 5] 

 0  10 : [3, 10, 11] 

 0  11 : [6, 7, 9] 

 0  12 : [0, 1, 10] 

 0  13 : [3, 8, 9] 

 0  14 : [4, 6, 10] 

 1  15 : [4, 7, 8]

i :   variables

0   0 : [2, 7, 9, 12] 

0   1 : [3, 6, 8, 12] 

0   2 : [1, 4, 6, 9] 

0   3 : [3, 5, 10, 13] 

0   4 : [2, 8, 14, 15] 

0   5 : [0, 5, 8, 9] 

0   6 : [3, 7, 11, 14]

0   7 : [1, 5, 11, 15] 

0   8 : [0, 6, 13, 15] 

0   9 : [2, 4, 11, 13] 

0  10 : [1, 10, 12, 14] 

0  11 : [0, 4, 7, 10]

variable nodes check nodes
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Message passing–example 2

y   j :   checks

 0   0 : [5, 8, 11] 

 0   1 : [2, 7, 10] 

 0   2 : [0, 4, 9] 

 0   3 : [1, 3, 6] 

 0   4 : [2, 9, 11] 

 0   5 : [3, 5, 7] 

 0   6 : [1, 2, 8] 

 1   7 : [0, 6, 11]

 0   8 : [1, 4, 5]

 0   9 : [0, 2, 5] 

 0  10 : [3, 10, 11] 

 0  11 : [6, 7, 9] 

 0  12 : [0, 1, 10] 

 0  13 : [3, 8, 9] 

 0  14 : [4, 6, 10] 

 1  15 : [4, 7, 8]

i :   variables

1   0 : [2, 7, 9, 12] 

0   1 : [3, 6, 8, 12] 

0   2 : [1, 4, 6, 9] 

0   3 : [3, 5, 10, 13] 

1   4 : [2, 8, 14, 15] 

0   5 : [0, 5, 8, 9] 

1   6 : [3, 7, 11, 14]

1   7 : [1, 5, 11, 15] 

1   8 : [0, 6, 13, 15] 

0   9 : [2, 4, 11, 13] 

0  10 : [1, 10, 12, 14] 

1  11 : [0, 4, 7, 10]

variable nodes check nodes

Round 0 
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Message passing–example 2

y   j :   checks

 0   0 : [5, 8, 11] 

 0   1 : [2, 7, 10] 

 0   2 : [0, 4, 9] 

 0   3 : [1, 3, 6] 

 0   4 : [2, 9, 11] 

 0   5 : [3, 5, 7] 

 0   6 : [1, 2, 8] 

 1   7 : [0, 6, 11]

 0   8 : [1, 4, 5]

 0   9 : [0, 2, 5] 

 0  10 : [3, 10, 11] 

 0  11 : [6, 7, 9] 

 0  12 : [0, 1, 10] 

 0  13 : [3, 8, 9] 

 0  14 : [4, 6, 10] 

 1  15 : [4, 7, 8]

i :   variables

1   0 : [2, 7, 9, 12] 

0   1 : [3, 6, 8, 12] 

0   2 : [1, 4, 6, 9] 

0   3 : [3, 5, 10, 13] 

1   4 : [2, 8, 14, 15] 

0   5 : [0, 5, 8, 9] 

1   6 : [3, 7, 11, 14]

1   7 : [1, 5, 11, 15] 

1   8 : [0, 6, 13, 15] 

0   9 : [2, 4, 11, 13] 

0  10 : [1, 10, 12, 14] 

1  11 : [0, 4, 7, 10]

variable nodes check nodes

Round 1a 

203 / 229



Message passing–example 2

y   j : checks in       out

 0   0 : [5, 8, 11]   [5, 8, 11]

 0   1 : [2, 7, 10]   [2, 7, 10]

 0   2 : [0, 4, 9]    [0, 4, 9]

 0   3 : [1, 3, 6]    [1, 3, 6]

 0   4 : [2, 9, 11]   [2, 9, 11]

 0   5 : [3, 5, 7]    [3, 5, 7]

 0   6 : [1, 2, 8]    [1, 2, 8]

 1   7 : [0, 6, 11]   [0, 6, 11]

 0   8 : [1, 4, 5]    [1, 4, 5]

 0   9 : [0, 2, 5]    [0, 2, 5]

 0  10 : [3, 10, 11]  [3, 10, 11]

 0  11 : [6, 7, 9]    [6, 7, 9]

 0  12 : [0, 1, 10]   [0, 1, 10] 

 0  13 : [3, 8, 9]    [3, 8, 9]

 0  14 : [4, 6, 10]   [4, 6, 10]

 1  15 : [4, 7, 8]    [4, 7, 8]

i :   variables

0   0 : [2, 7, 9, 12] 

0   1 : [3, 6, 8, 12] 

0   2 : [1, 4, 6, 9] 

0   3 : [3, 5, 10, 13] 

0   4 : [2, 8, 14, 15] 

1   5 : [0, 5, 8, 9] 

0   6 : [3, 7, 11, 14]

0   7 : [1, 5, 11, 15] 

0   8 : [0, 6, 13, 15] 

0   9 : [2, 4, 11, 13] 

1  10 : [1, 10, 12, 14] 

0  11 : [0, 4, 7, 10]

check nodes

Round 1b 

variable nodes
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Message passing–example 2

y   j : checks in       out

 0   0 : [5, 8, 11]   [5, 8, 11]

 0   1 : [2, 7, 10]   [2, 7, 10]

 0   2 : [0, 4, 9]    [0, 4, 9]

 0   3 : [1, 3, 6]    [1, 3, 6]

 0   4 : [2, 9, 11]   [2, 9, 11]

 0   5 : [3, 5, 7]    [3, 5, 7]

 0   6 : [1, 2, 8]    [1, 2, 8]

 1   7 : [0, 6, 11]   [0, 6, 11]

 0   8 : [1, 4, 5]    [1, 4, 5]

 0   9 : [0, 2, 5]    [0, 2, 5]

 0  10 : [3, 10, 11]  [3, 10, 11]

 0  11 : [6, 7, 9]    [6, 7, 9]

 0  12 : [0, 1, 10]   [0, 1, 10] 

 0  13 : [3, 8, 9]    [3, 8, 9]

 0  14 : [4, 6, 10]   [4, 6, 10]

 1  15 : [4, 7, 8]    [4, 7, 8]

i :   variables

0   0 : [2, 7, 9, 12] 

0   1 : [3, 6, 8, 12] 

0   2 : [1, 4, 6, 9] 

0   3 : [3, 5, 10, 13] 

0   4 : [2, 8, 14, 15] 

1   5 : [0, 5, 8, 9] 

0   6 : [3, 7, 11, 14]

0   7 : [1, 5, 11, 15] 

0   8 : [0, 6, 13, 15] 

0   9 : [2, 4, 11, 13] 

1  10 : [1, 10, 12, 14] 

0  11 : [0, 4, 7, 10]

check nodes

Round 2a 

variable nodes
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Message passing–example 2

y   j : checks in       out

 0   0 : [5, 8, 11]   [5, 8, 11]

 0   1 : [2, 7, 10]   [2, 7, 10]

 0   2 : [0, 4, 9]    [0, 4, 9]

 0   3 : [1, 3, 6]    [1, 3, 6]

 0   4 : [2, 9, 11]   [2, 9, 11]

 0   5 : [3, 5, 7]    [3, 5, 7]

 0   6 : [1, 2, 8]    [1, 2, 8]

 1   7 : [0, 6, 11]   [0, 6, 11]

 0   8 : [1, 4, 5]    [1, 4, 5]

 0   9 : [0, 2, 5]    [0, 2, 5]

 0  10 : [3, 10, 11]  [3, 10, 11]

 0  11 : [6, 7, 9]    [6, 7, 9]

 0  12 : [0, 1, 10]   [0, 1, 10] 

 0  13 : [3, 8, 9]    [3, 8, 9]

 0  14 : [4, 6, 10]   [4, 6, 10]

 1  15 : [4, 7, 8]    [4, 7, 8]

i :   variables

0   0 : [2, 7, 9, 12] 

0   1 : [3, 6, 8, 12] 

0   2 : [1, 4, 6, 9] 

0   3 : [3, 5, 10, 13] 

0   4 : [2, 8, 14, 15] 

0   5 : [0, 5, 8, 9] 

0   6 : [3, 7, 11, 14]

0   7 : [1, 5, 11, 15] 

0   8 : [0, 6, 13, 15] 

0   9 : [2, 4, 11, 13] 

0  10 : [1, 10, 12, 14] 

0  11 : [0, 4, 7, 10]

check nodes

Round 2b 

variable nodes
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Message passing–example 2

c   j : checks in       out

 0   0 : [5, 8, 11]   [5, 8, 11]

 0   1 : [2, 7, 10]   [2, 7, 10]

 0   2 : [0, 4, 9]    [0, 4, 9]

 0   3 : [1, 3, 6]    [1, 3, 6]

 0   4 : [2, 9, 11]   [2, 9, 11]

 0   5 : [3, 5, 7]    [3, 5, 7]

 0   6 : [1, 2, 8]    [1, 2, 8]

 0   7 : [0, 6, 11]   [0, 6, 11]

 0   8 : [1, 4, 5]    [1, 4, 5]

 0   9 : [0, 2, 5]    [0, 2, 5]

 0  10 : [3, 10, 11]  [3, 10, 11]

 0  11 : [6, 7, 9]    [6, 7, 9]

 0  12 : [0, 1, 10]   [0, 1, 10] 

 0  13 : [3, 8, 9]    [3, 8, 9]

 0  14 : [4, 6, 10]   [4, 6, 10]

 0  15 : [4, 7, 8]    [4, 7, 8]

i :   variables

0   0 : [2, 7, 9, 12] 

0   1 : [3, 6, 8, 12] 

0   2 : [1, 4, 6, 9] 

0   3 : [3, 5, 10, 13] 

0   4 : [2, 8, 14, 15] 

0   5 : [0, 5, 8, 9] 

0   6 : [3, 7, 11, 14]

0   7 : [1, 5, 11, 15] 

0   8 : [0, 6, 13, 15] 

0   9 : [2, 4, 11, 13] 

0  10 : [1, 10, 12, 14] 

0  11 : [0, 4, 7, 10]

check nodes

Round 2b 

variable nodes

unanimity

all checks satisfied: STOP
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Why (when) does iterative decoding work? [Gallager’62]

Local neighborhood “tree” of an edge (v, c).

... ... ...

...

𝑐

𝑣

variable nodes
𝑑! − 1 /subtree

check nodes    (𝑑" − 1)

variable node

check node

...

⋮ ⋮ ⋮ ⋮
⋮

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

▶ Assume a BSC with P (bit error) = p.

▶ Let pi be the probability of a message mvc being wrong at iteration i,
with p0 = p.

▶ We derive an expression for pi+1.
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Why (when) does iterative decoding work?

• Consider a neighbor c′ of v, c′ ̸=c. Check
node c′ sends the correct value to v if an
even number of neighbors of c′ (excluding
v) sent c′ the wrong value. So,

P (µc′v good) =
∑
ℓ even

0≤ℓ<dc

(
dc−1

ℓ

)
pℓi(1− pi)

dc−1−ℓ

=
1 + (1− 2pi)

dc−1

2
.

... ... ...

...

𝑐

𝑣

variable nodes
𝑑! − 1 /subtree

check nodes    (𝑑" − 1)

variable node

check node

...

⋮ ⋮ ⋮ ⋮
⋮

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

• Hence, the probability that v was (initially) received in error, and sent
incorrectly in round i+1 is

p0

(
1−

[
1 + (1− 2pi)

dc−1

2

]dv−1
)
.

• Similarly, the probability that v was received correctly, but sent incorrectly
in round i+1 is

(1− p0)

[
1− (1− 2pi)

dc−1

2

]dv−1

.
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Why (when) does iterative decoding work?

• We get the following recursion

pi+1 = p0 − p0

[
1 + (1− 2pi)

dc−1

2

]dv−1

+ (1− p0)

[
1− (1− 2pi)

dc−1

2

]dv−1

.
... ... ...

...

𝑐

𝑣

variable nodes
𝑑! − 1 /subtree

check nodes    (𝑑" − 1)

variable node

check node

...

⋮ ⋮ ⋮ ⋮
⋮

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

• If p0 is such that pi+1 < pi, then the bit error probability strictly decreases
at each iteration. In fact, a more detailed analysis of the recursion proves

that there exists a threshold p∗0 such that pi
i→ 0 for all p0 < p∗0.

• But there are strong conditional independence assumptions in this
calculation!

• These assumptions hold if the neighborhood is indeed a tree over the
number of iterations run.

• We need bipartite graphs of large girth (girth: length of smallest loop in
the graph). For that, we need large n.
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Why (when) does iterative decoding work?

Example: dc = 11, dv = 7: pi+1 vs pi for p0 = 0.05.

0.01 0.02 0.03 0.04 0.05

0.01

0.02

0.03

0.04

0.05

pi

pi

pi+1

(We have p∗0 ≈ 0.0556 in this case.)
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Why (when) does iterative decoding work?

Example: dc = 11, dv = 7: pi+1 vs pi for p0 = 0.05.

0.01 0.02 0.03 0.04 0.05

0.01

0.02

0.03

0.04

0.05

p0p1p2p3· · ·
pi

pi

pi+1

(We have p∗0 ≈ 0.0556 in this case.)
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Why (when) does iterative decoding work?

Example: dc = 11, dv = 7: pi vs i for p0 = 0.05.

10 20 30 40 50 60 70 80

0.01

0.02

0.03

0.04

0.05
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Iterative Decoding for the BSC—Soft Decision

▶ In soft decision decoding, the received data is given in the form of a
vector of probabilities (p1 p2 . . . pn) such that pi = P (xi = 1 | yi).

▶ The goal of the iterative decoder is to improve these estimates so that
eventually we can get an estimate x̂i of xi with
P (x̂i = xi | y1, y2, . . . , yn) approaching one (density evolution).

▶ Density evolution calculations are very difficult in general, but explicit
recursions can be set up for some interesting cases under some
independence assumptions.
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Belief propagation

▶ The tool used to iteratively improve the symbol probability estimates is
belief propagation. This has several closely related interpretations,
names, and representations, e.g. sum-products algorithm, Bayesian
networks, generalized ditributive law, etc.

▶ We work with log-likelihood ratios

mvi = log
P (vi = 0 | v̂i)
P (vi = 1 | v̂i)

.

In our problem, the xi’s play the role of the vi’s, and the initial estimates
v̂i are the received symbols yi.

▶ Messages passed through the graph effect log-likelihood updates.
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Belief propagation

▶ The message passed from a message node v to a check node c is the
probability that v has a certain value given the observed value of that
message node, and all the values communicated to v in the prior round
from check nodes incident to v other than c.

▶ The message passed from c to v is the probability that v has a certain
value given all the messages passed to c in the previous round from
message nodes other than v.
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Likelihood updates

From variables to checks

mv

mc’,v
mc”,v

mv,c

mv’,c
mv”,c

mc,v

m
(ℓ)
v,c =

{
mv ℓ = 0,

mv +
∑

c′∈Cv\{c} m
(ℓ−1)

c′,v , ℓ > 0 .

From checks to variables

mv

mc’,v
mc”,v

mv,c

mv’,c
mv”,c

mc,v

m(ℓ)
c,v = log

1 +
∏

v′∈Vc\{v} tanh(m
(ℓ)

v′,c/2)

1−
∏

v′∈Vc\{v} tanh(m
(ℓ)

v′,c/2)
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When does iterative decoding work?

▶ As in the hard decision case, the soft decision belief propagation iteration
relies on the conditional independence of the messages passed in the
process of updating the variable nodes.

▶ Same large girth requirements for the code graph.

▶ Let S(e, d) denote the local neighborhood to depth d of edge e. Let L
denote any fixed number of rounds of the iterative decoding.

Key observation

In a random bipartite graph, for any given L, S(e, 2L) is cycle-free with
probability → 1 as n → ∞.

▶ Even for finite n, if the number of iterations is not too large (as is the
case in practice), the independence assumption holds with high
probability.

▶ There exist construction techniques that produce graphs of large girth.
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LDPC codes for the binary erasure channel (BEC)

▶ The BEC is a good model for packet losses in networks

▶ A class of LDPC codes, developed in the early 2000s
and often referred to as fountain codes (incl. Tornado,
LT, and Raptor codes), targets the BEC and has many
interesting features

1.5. Levels of error handling 15

the return value of D; otherwise, y is in the space between spheres and the
return value is “e”.)

Suppose that c is the transmitted codeword and y is the received word
and d(y, c) ≤ σ+ τ . Decoding will fail if y is contained in a sphere of radius
τ that is centered at a codeword c′ 6= c. However, this would mean that

d ≤ d(c, c′) ≤ d(y, c) + d(y, c′) ≤ (τ + σ) + τ ≤ d−1 ,

which is a contradiction.

1.5.3 Erasure correction

An erasure is a concealment of an entry in a codeword; as such, an erasure
can be viewed as an error event whose location is known (while the correct
entry at that location still needs to be recovered).

Example 1.10 The diagram in Figure 1.8 represents the memoryless
binary erasure channel where the input alphabet is {0, 1} and the output
alphabet is {0, 1, ?}, with “?” standing for an erasure. An input symbol is
erased with probability p, independently of past or future input symbols.

1

0

1

?

0

-
1− p

-1− p

*
p

j
p

Figure 1.8. Binary erasure channel.

Similarly, we define the memoryless q-ary erasure channel with erasure
probability p as a triple (F,Φ,Prob), where F is an input alphabet of size
q and Φ is the output alphabet F ∪ {?} (of size q+1). The conditional
probability distribution Prob satisfies for every two words, x = x1x2 . . . xm ∈
Fm and y = y1y2 . . . ym ∈ Φm, of the same length m, the independence
condition

Prob{y received | x transmitted }

=
m∏

j=1

Prob{ yj received | xj transmitted } ,

• Codes are rateless: a potentially endless stream of encoded symbols
is sent by the sender. The receiver collects enough of them until it
can decode (then may ask sender to stop).

• In multicast situations, different receivers may read different lengths
of the encoded stream.

• The codes can be encoded and decoded in very low complexity
(linear or almost linear in the length of the encoded block).

• The codes are random; they are generated on the fly by the sender,
and also by the receiver based on common randomness.

• The best codes in the class approach the capacity of the BEC even if
the channel parameter is unknown.
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LT codes (Luby 2002)—Encoding example

Distribution   
on     

Fountain Codes

Distribution   
on     
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[Example: A. Shokrollahi]
219 / 229



LT codes (Luby 2002)—Encoding example

Distribution   
on     

Fountain Codes

Distribution   
on     

Fountain Codes

Distribution   
on     

Fountain Codes

Distribution   
on     

Fountain Codes

Distribution   
on     

Fountain Codes

Distribution   
on     

Fountain Codes

Distribution   
on     

Fountain Codes

Distribution   
on     

Fountain Codes

Distribution   
on     

Fountain Codes

Distribution   
on     

Fountain Codes

Distribution   
on     

Fountain Codes

Distribution   
on     

Fountain Codes

...

[Example: A. Shokrollahi]
219 / 229



LT codes (Luby 2002)—Encoding example

Distribution   
on     

Fountain Codes

Distribution   
on     

Fountain Codes

Distribution   
on     

Fountain Codes

Distribution   
on     

Fountain Codes

Distribution   
on     

Fountain Codes

Distribution   
on     

Fountain Codes

Distribution   
on     

Fountain Codes

Distribution   
on     

Fountain Codes

Distribution   
on     

Fountain Codes

Distribution   
on     

Fountain Codes

Distribution   
on     

Fountain Codes

Distribution   
on     

Fountain Codes

...

[Example: A. Shokrollahi]
219 / 229



LT codes (Luby 2002)—Encoding example

Distribution   
on     

Fountain Codes

Distribution   
on     

Fountain Codes

Distribution   
on     

Fountain Codes

Distribution   
on     

Fountain Codes

Distribution   
on     

Fountain Codes

Distribution   
on     

Fountain Codes

Distribution   
on     

Fountain Codes

Distribution   
on     

Fountain Codes

Distribution   
on     

Fountain Codes

Distribution   
on     

Fountain Codes

Distribution   
on     

Fountain Codes

Distribution   
on     

Fountain Codes

...

[Example: A. Shokrollahi]
219 / 229



LT codes (Luby 2002)—Encoding example

Distribution   
on     

Fountain Codes

Distribution   
on     

Fountain Codes

Distribution   
on     

Fountain Codes

Distribution   
on     

Fountain Codes

Distribution   
on     

Fountain Codes

Distribution   
on     

Fountain Codes

Distribution   
on     

Fountain Codes

Distribution   
on     

Fountain Codes

Distribution   
on     

Fountain Codes

Distribution   
on     

Fountain Codes

Distribution   
on     

Fountain Codes

Distribution   
on     

Fountain Codes

...

[Example: A. Shokrollahi]
219 / 229



LT codes (Luby 2002)—Encoding example

Distribution   
on     

Fountain Codes

Distribution   
on     

Fountain Codes

Distribution   
on     

Fountain Codes

Distribution   
on     

Fountain Codes

Distribution   
on     

Fountain Codes

Distribution   
on     

Fountain Codes

Distribution   
on     

Fountain Codes

Distribution   
on     

Fountain Codes

Distribution   
on     

Fountain Codes

Distribution   
on     

Fountain Codes

Distribution   
on     

Fountain Codes

Distribution   
on     

Fountain Codes

...

[Example: A. Shokrollahi]
219 / 229



LT codes (Luby 2002)—Encoding example

Distribution   
on     

Fountain Codes

Distribution   
on     

Fountain Codes

Distribution   
on     

Fountain Codes

Distribution   
on     

Fountain Codes

Distribution   
on     

Fountain Codes

Distribution   
on     

Fountain Codes

Distribution   
on     

Fountain Codes

Distribution   
on     

Fountain Codes

Distribution   
on     

Fountain Codes

Distribution   
on     

Fountain Codes

Distribution   
on     

Fountain Codes

Distribution   
on     

Fountain Codes

...

[Example: A. Shokrollahi]
219 / 229



LT codes (Luby 2002)—Encoding example

Distribution   
on     

Fountain Codes

Distribution   
on     

Fountain Codes

Distribution   
on     

Fountain Codes

Distribution   
on     

Fountain Codes

Distribution   
on     

Fountain Codes

Distribution   
on     

Fountain Codes

Distribution   
on     

Fountain Codes

Distribution   
on     

Fountain Codes

Distribution   
on     

Fountain Codes

Distribution   
on     

Fountain Codes

Distribution   
on     

Fountain Codes

Distribution   
on     

Fountain Codes

...

[Example: A. Shokrollahi]
219 / 229



LT codes (Luby 2002)—Encoding example

Distribution   
on     

Fountain Codes

Distribution   
on     

Fountain Codes

Distribution   
on     

Fountain Codes

Distribution   
on     

Fountain Codes

Distribution   
on     

Fountain Codes

Distribution   
on     

Fountain Codes

Distribution   
on     

Fountain Codes

Distribution   
on     

Fountain Codes

Distribution   
on     

Fountain Codes

Distribution   
on     

Fountain Codes

Distribution   
on     

Fountain Codes

Distribution   
on     

Fountain Codes

...

[Example: A. Shokrollahi]
219 / 229



LT codes (Luby 2002)—Encoding example

Distribution   
on     

Fountain Codes

Distribution   
on     

Fountain Codes

Distribution   
on     

Fountain Codes

Distribution   
on     

Fountain Codes

Distribution   
on     

Fountain Codes

Distribution   
on     

Fountain Codes

Distribution   
on     

Fountain Codes

Distribution   
on     

Fountain Codes

Distribution   
on     

Fountain Codes

Distribution   
on     

Fountain Codes

Distribution   
on     

Fountain Codes

Distribution   
on     

Fountain Codes

...

[Example: A. Shokrollahi]
219 / 229



LT codes (Luby 2002)—Encoding example

Distribution   
on     

Fountain Codes

Distribution   
on     

Fountain Codes

Distribution   
on     

Fountain Codes

Distribution   
on     

Fountain Codes

Distribution   
on     

Fountain Codes

Distribution   
on     

Fountain Codes

Distribution   
on     

Fountain Codes

Distribution   
on     

Fountain Codes

Distribution   
on     

Fountain Codes

Distribution   
on     

Fountain Codes

Distribution   
on     

Fountain Codes

Distribution   
on     

Fountain Codes

...

[Example: A. Shokrollahi]
219 / 229



LT codes (Luby 2002)—Encoding example

Distribution   
on     

Fountain Codes

Distribution   
on     

Fountain Codes

Distribution   
on     

Fountain Codes

Distribution   
on     

Fountain Codes

Distribution   
on     

Fountain Codes

Distribution   
on     

Fountain Codes

Distribution   
on     

Fountain Codes

Distribution   
on     

Fountain Codes

Distribution   
on     

Fountain Codes

Distribution   
on     

Fountain Codes

Distribution   
on     

Fountain Codes

Distribution   
on     

Fountain Codes

...

[Example: A. Shokrollahi]
219 / 229



LT codes— Decoding example

Decoding

non-erased symbols

1 Find codeword node c of (reduced) degree 1

2 Assign value of c to the variable node v connected to it

3 Subtract the value of v from all the codeword nodes connected to it

4 Remove all edges incident on v

5 If there are message symbols that have not been decoded, go to
Step 1

[Example: A. Shokrollahi]
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LT codes— Decoding example

1 Find codeword node c of reduced degree 1 (released)

2 Assign value of c to the variable node v connected to it

3 Subtract the value of v from all the codeword nodes connected to it

4 Remove all edges incident on v

5 If there are message symbols that have not been decoded, go to
Step 1

[Example: A. Shokrollahi]
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LT codes—goals

non-erased
symbols

Given k message symbols encoded with an LT code, we want

• To be able to recover the message from (1 + ϵ)k non-erased code
symbols, for a vanishingly small ϵ, with very high probability.

• To do so with linear (or close to linear) complexity.
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LT codes—challenges

Bad things that may happen:

• An uncovered input symbol: an input symbol that was not hit by
any of the linear combinations drawn with distribution D.

Decoding

• No codeword node is released—decoding is stuck.
224 / 229



LT Codes–degree distribution

• The distribution of check equation weights is crucial for correct
decoding, for both of the challenges listed.

• LT codes draw check equations according to a distribution D on F k
2

• A distribution {Ωw | 1 ≤ w ≤ k} on the Hamming weights
• Uniform distribution for a given weight
• Probability of a coefficient vector v ∈ F k

2 :

ProbD(v) =
Ωw(
k
w

) , w = wt(v)

• The parameters of the code are (k,Ω(x)),

Ω(x) = Ω1x+Ω2x
2 + · · ·+Ωkx

k
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Average weight (degree) of a code symbol

Ω(x) =
k∑

w=1

Ωwx
w, Ωw = Prob(wt = w)

E[w] =

k∑
w=1

wΩw = Ω′(1)

Prob(fail) ≥ Prob(message symbol not covered)

=

(
k∑

w=1

Ωw

(
k−1
w

)(
k
w

) )n

=

(
k∑

w=1

Ωw

(
1− w

k

))n

=

(
1− Ω′(1)

k

)k(1+ϵ)

≈ e−Ω′(1)(1+ϵ)
want

≤ 1

kc
⇒ Ω′(1) ≥ c ln k

1 + ϵ

average degree must be at least logarithmic
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LT—Ensuring enough symbols are released (w.h.p.)

We are interested in the probability that an output symbol of initial degree w is
released at step i+ 1, when the i+ 1st input symbol is recovered.

This is the probability that the symbol has exactly one neighbor among the
k − i− 1 input symbols that are not yet recovered, and that not all the
remaining w − 1 neighbors are among the i already recovered. It can be shown
that under the assumptions on the distribution D,

P (output symbol “released” at step i+1 | deg is w) =

w

(
1− i+ 1

k

)((
i+ 1

k

)w−1

−
(
i

k

)w−1
)

.

P (output symbol “released” at step i+1) =(
1− i+ 1

k

)(
Ω′((i+ 1)/k)− Ω′(i/k)

)
.
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LT—Ensuring enough symbols are released (w.h.p.)

P (output symbol “released” at step i+1) =(
1− i+ 1

k

)(
Ω′((i+ 1)/k)− Ω′(i/k)

)
.

For n symbols, number released ≈

n

k

(
1− i+ 1

k

)
Ω′′(i/k)

want

≥ 1

with n ≈ k:

Ω(x) = Ω1 +
∑
i≥2

xi

i(i− 1)
soliton distribution
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LT—Ensuring enough symbols are released (w.h.p.)

“Soliton” distribution

Ωi =


1
k

i = 1 ,

1
i(i−1)

2 ≤ i ≤ k .

With the soliton distribution, the expected number of output nodes released at
each step is exactly one. This makes it a poor choice in practice, as even a
minimal deviation from the expected behavior will get the process stuck. More
robust solutions have been developed.

Soliton k = 32 Robust soliton
k = 32,M = 28, δ = 10−4
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