6. Low Density Parity-Check Codes

Gadiel Seroussi

November 6, 2024

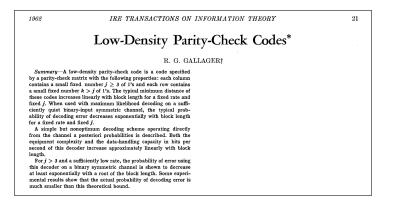
Low Density Parity-Check (LDPC) Codes

- A sequence of binary matrices $\{H_{r \times n}\}_{n \ge r \ge 1}$, is said to be of *low density* if the number of 1's in each row and column remains bounded as $r, n \to \infty$. Formally, wt $(H_{r \times n})/n \le c$ for some constant c and all n.
- $H_{r \times n}$ used as parity-check matrices (PCMs) of linear codes. For "good" codes we will have $r \approx (1 R)n$ for some fixed $R \in (0, 1)$.

Low Density Parity-Check (LDPC) Codes

A sequence of binary matrices {H_{r×n}}_{n≥r≥1}, is said to be of *low density* if the number of 1's in each row and column remains bounded as r, n → ∞. Formally, wt (H_{r×n}) /n ≤ c for some constant c and all n.

• $H_{r \times n}$ used as parity-check matrices (PCMs) of linear codes. For "good" codes we will have $r \approx (1 - R)n$ for some fixed $R \in (0, 1)$.



Gallager's ensemble (1962)

Family of codes $\mathcal{G}(n, j, k)$, $j \leq k$, with parity-check matrix H: $r \times n$ with j 1's per column, k 1's per row $(n = km, r = jm, m \geq 1)$.

Example of a low-density code matrix; N = 20, j = 3, k = 4.

- Last j 1 blocks are random permutations of columns of first: not systematic.
- Rows of *H* not necessarily linearly independent \implies redundancy $\leq r$.

• Rate
$$R \ge \frac{n-r}{n} = 1 - \frac{j}{k}$$
.

Theorem (Gallager codes approach BSC capacity)

Given a BSC of parameter p, and a rate $R < 1 - H_2(p)$, there exists an integer t(p, R) such that ML decoding of a random Gallager code of rate R with LDPC columns of weight t achieves vanishing error probability with probability 1.

Theorem (Gallager codes approach BSC capacity)

Given a BSC of parameter p, and a rate $R < 1 - H_2(p)$, there exists an integer t(p, R) such that ML decoding of a random Gallager code of rate R with LDPC columns of weight t achieves vanishing error probability with probability 1.

Theorem (Gallager codes have good distance properties)

Given $\delta < \frac{1}{2}$ and R such that $R < 1 - H_2(\delta)$, there exists an integer t such that for sufficiently large n there exist Gallager codes of LDPC column weight t and parameters $[n, \geq R, \geq n\delta]$ (GV bound).

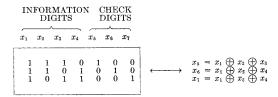
A bit of history

Partial history, with some major milestones

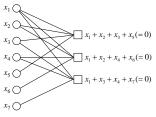
- Gallager [1962, Ph.D. Thesis and paper]
- Russian school: Zyablov, Pinsker, Margulis [1971, 1976, 1982]
- Tanner [1981] reinvention, graph approach, extensions.
- Berrou et al. [1993] Turbo Codes, iterative decoding, approach capacity
- Richardson, Urbanke [1998] Irregular LDPC codes and iterative threshold
- Mac Kay [1999], reinvention, analysis, and extensions
- Luby et al., [1997–] LT codes, Tornado codes, new analysis
- Shokrollahi [2000] Raptor codes
- and much research since then and ongoing ...

LDPC codes have become ubiquitous in many modern applications: 5G, magnetic and SSD storage, etc.

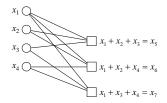
Graph representation of parity check matrix



Two representations as a *bipartite graph*

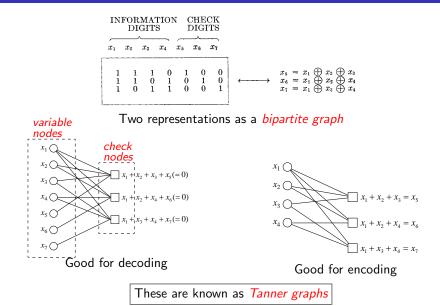


Good for decoding



Good for encoding

Graph representation of parity check matrix



Graph representation of LDPC matrix

Example:

ŀ

Binary code with n = 16, r = 12. Each column has weight 3, each row has weight 4.

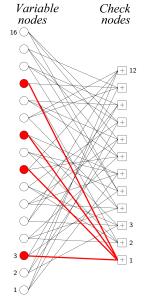
Graph representation of LDPC matrix

Example:

1

Binary code with n = 16, r = 12. Each column has weight 3, each row has weight 4.

Edges corresponding to the first check row.



Regular and irregular graphs

► Regular graph: All nodes on the left have the same degree (*left-regular*) and all nodes on the right have the same degree (*right-regular*). Example: Gallager G(n, j, k) codes.

Regular and irregular graphs

- ► Regular graph: All nodes on the left have the same degree (*left-regular*) and all nodes on the right have the same degree (*right-regular*). Example: Gallager G(n, j, k) codes.
- In general, *irregular* graphs give better performance than regular ones. Some of the best LDPC codes are based on choosing the *distribution of degrees* of the nodes in a clever way. Example: MacKay (1999). Random matrix with columns of fixed weight t ≥ 3 (*right-regular*) and row weight close to uniform within a certain tolerance.

Regular and irregular graphs

- Regular graph: All nodes on the left have the same degree (*left-regular*) and all nodes on the right have the same degree (*right-regular*).
 Example: Gallager G(n, j, k) codes.
- In general, *irregular* graphs give better performance than regular ones. Some of the best LDPC codes are based on choosing the *distribution of degrees* of the nodes in a clever way. Example: MacKay (1999). Random matrix with columns of fixed weight t ≥ 3 (*right-regular*) and row weight close to uniform within a certain tolerance.
- ► Assume d_v is the average degree of variable nodes, and d_c is the average degree of check nodes. Then

$$nd_v = rd_c \Longrightarrow R \ge 1 - \frac{r}{n} = 1 - \frac{d_v}{d_c}$$

Iterative Decoding: Bit Flipping (Hard Decision for BSC)

The *bit flipping* scheme is the first of two *iterative algorithms* in Gallager's original paper.

Given: an LDPC matrix H, a limit K on the number of iterations, a *threshold function* T(k, j), $0 \le k < K$, $1 \le j \le n$.

- Input: received word $\mathbf{y} = [y_1, y_2, \dots, y_n]$,
- **Output:** estimated sent codeword $\hat{\mathbf{c}} = [\hat{c}_1, \hat{c}_2, \dots, \hat{c}_n].$
 - **1** Initialization: set $\hat{\mathbf{c}} = \mathbf{y}$, iteration counter k = 0.
 - **2** Compute check digits $\mathbf{s} = [s_1, s_2, \dots, s_r] = \hat{\mathbf{c}} H^T$.
 - **3** If $\mathbf{s} = \mathbf{0}$, return $\hat{\mathbf{c}}$ and STOP.
 - G For each code coordinate j, let B_j be the number of unsatisfied checks ĉ_j participates in.
 - **5** For each code coordinate j, if $B_j \ge T(k, j)$, flip \hat{c}_j
 - Set k = k + 1. If k < K, go to Step 2. Else, return FAIL.

Example threshold function: $T(k, j) = \max_{j'} B_{j'}$ at iteration k.

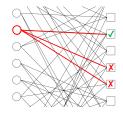
Iterative Decoding: Bit Flipping (Hard Decision for BSC)

The *bit flipping* scheme is the first of two *iterative algorithms* in Gallager's original paper.

Given: an LDPC matrix H, a limit K on the number of iterations, a *threshold function* T(k, j), $0 \le k < K$, $1 \le j \le n$.

- Input: received word $\mathbf{y} = [y_1, y_2, \dots, y_n]$,
- **Output:** estimated sent codeword $\hat{\mathbf{c}} = [\hat{c}_1, \hat{c}_2, \dots, \hat{c}_n].$
 - **1** Initialization: set $\hat{\mathbf{c}} = \mathbf{y}$, iteration counter k = 0.
 - **2** Compute check digits $\mathbf{s} = [s_1, s_2, \dots, s_r] = \hat{\mathbf{c}} H^T$.
 - **3** If $\mathbf{s} = \mathbf{0}$, return $\hat{\mathbf{c}}$ and STOP.
 - G For each code coordinate j, let B_j be the number of unsatisfied checks ĉ_j participates in.
 - **5** For each code coordinate j, if $B_j \ge T(k, j)$, flip \hat{c}_j
 - **6** Set k = k + 1. If k < K, go to Step 2. Else, return FAIL.

Example threshold function: $T(k, j) = \max_{j'} B_{j'}$ at iteration k.



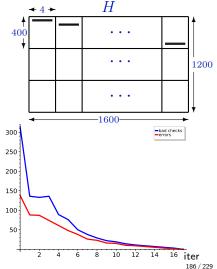
Bit flipping iteration decoding-toy example

▶ Bit flipping iteration example

Bit Flipping-example with Gallager code

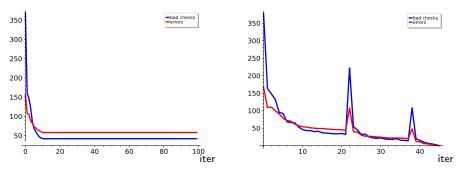
Example: *H* is a low-density matrix in $\mathcal{G}(1600, 3, 4)$, with n = 1600, r = 1200. Using $T(k, j) = \max_{j'} B_{j'}$. Decoding a pattern of 138 binary errors.

iter	bad checks	errors	T(k, j)	flips
0	314	138	3	78
1	136	88	3	1
	133	87	2	95
2 3	136	74	3	23
4	89	61	2	47
5	76	48	3	10
6 7	50	38	2	24
7	38	26	3	3
8	29	23	2	9
9	22	16	3	1
10	19	15	2 3	5
11	14	10		1
12	11	9	2	2
13	9	7	2	2
14	7	5	2	2
15	5	3	2	2
16	3	1	3	1
17	0	0	0	0



Bit Flipping-example with Gallager code

Example: Same *H* as before.



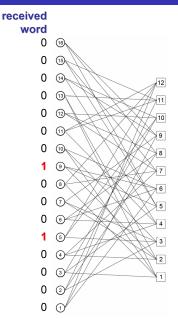
Decoding a pattern of 156 errors (fail).

Decoding a pattern of 167 errors (ok).

Iterative Decoding: Message Passing (Hard Decision)

The message passing point of view

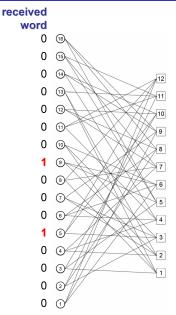
- Decoding algorithm based on rounds of message passing between nodes
- Variable nodes pass messages to check nodes
- Check nodes pass messages to variable nodes
- Each message is a binary symbol
- Initially, variable nodes store the received symbols



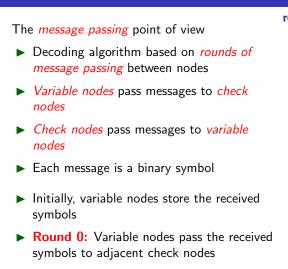
Iterative Decoding: Message Passing (Hard Decision)

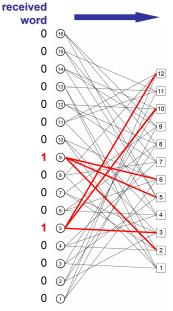
The message passing point of view

- Decoding algorithm based on rounds of message passing between nodes
- Variable nodes pass messages to check nodes
- Check nodes pass messages to variable nodes
- Each message is a binary symbol
- Initially, variable nodes store the received symbols
- Round 0: Variable nodes pass the received symbols to adjacent check nodes



Iterative Decoding: Message Passing (Hard Decision)





Message passing—regular round

Regular round, first half:

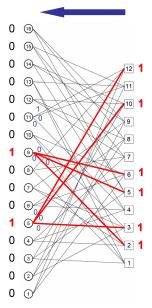
Check nodes to variable nodes

Every check node sends a message to each of its adjacent variable nodes. If the variable nodes adjacent to check node c_i are v_1, v_2, \ldots, v_ℓ , then the message sent from c_i to v_j is

$$\mu_{i,j} = \sum_{k \in \{1,2,\dots,\ell\} \setminus \{j\}} m_{k,i} \mod 2$$

where $m_{k,i}$ is the message sent in the previous round from v_k to c_i .

 c_i is telling v_j : "According to my other neighbors, this is the bit value you should have in order to satisfy the check."



Message passing—regular round

Regular round, second half:

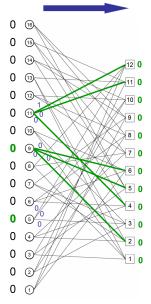
Variable nodes to check nodes (Variant 1)

Every variable node sends a message to each of its adjacent check nodes. If the check nodes adjacent to variable node v_j are c_1, c_2, \ldots, c_d , then the message sent from v_j to c_i is

$$m_{ji} = \begin{cases} b & \text{if } \mu_{1,j} = \mu_{2,j} = \dots + \mu_{i-1,j} = \mu_{i+1,j} \dots + \mu_{d,j} = b \\ y_j & \text{otherwise} \ , \ 1 \le j \le n \ . \end{cases}$$

where $\mu_{s,j}$ is the message sent in the previous round from c_s to v_j .

Either "my *other* neighbors agree this should be my value" or "not enough evidence to change my belief."



Message passing—regular round

Regular round, second half:

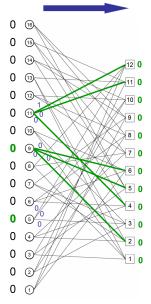
Variable nodes to check nodes (Variant 2)

Instead of requiring

 $\mu_{1,j} = \mu_{2,j} = \dots + \mu_{i-1,j} = \mu_{i+1,j} \dots + \mu_{t,j} = b$ (all neighbors except possibly c_i sent the same information), a threshold τ (that can vary at each round) is used such that the message sent is b if at least τ neighbors sent the same information. Variant 1 corresponds to $\tau = d - 1$ (d = node degree).

Another variant

Variable node takes majority vote, accepts value if there is a winner, or keeps its value otherwise.

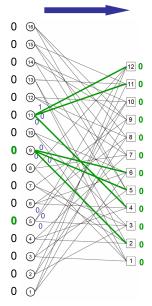


Message passing-regular round

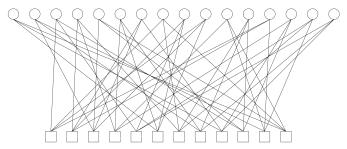
Stopping condition:

All check equations are satisfied

- Subtle point:
 - Even though all checks are satisfied, there might not be a consensus on what the variable values should be.
 - This is because v_j may be telling different c_i's different things. So, v_j may be getting different advice from different c_i's.
 - With *n* large enough, this will be rare, and in any case a majority decision may be taken, and checked.



Code C is [16, 4, 4].



variable nodes

j	:	cl	hecl	cs
0	:	[5,	8,	11]
1	:	[2,	7,	10]
2	:	[0,	4,	9]
3	:	[1,	з,	6]
4	:	[2,	9,	11]
5	:	[3,	5,	7]
6	:	[1,	2,	8]
7	:	[0,	6,	11]
8	:	[1,	4,	5]
9	:	[0,	2,	5]
10	:	[3,	10	, 11]
11	:	[6,	7,	9]
12	:	[0,	1,	10]
13	:	[3,	8,	9]
14	:	[4,	6,	10]
15	:	[4,	7,	8]

i	:	va	aria	ables
0	:	[2,	7,	9, 12]
1	:	[3,	6,	8, 12]
2	:	[1,	4,	6, 9]
3	:	[3,	5,	10, 13]
4	:	[2,	8,	14, 15]
5	:	[0,	5,	8, 9]
6	:	[3,	7,	11, 14]
7	:	[1,	5,	11, 15]
8	:	[0,	6,	13, 15]
9	:	[2,	4,	11, 13]
10	:	[1,	10	, 12, 14]
11	:	[0,	4,	7, 10]

variable nodes

У	j	:	cl	hecl	cs
0	0	:	[5,	8,	11]
0	1	:	[2,	7,	10]
0	2	:	[0,	4,	9]
0	3	:	[1,	з,	6]
1	4	:	[2,	9,	11]
0	5	:	[3,	5,	7]
0	6	:	[1,	2,	8]
0	7	:	[0,	6,	11]
1	8	:	[1,	4,	5]
0	9	:	[0,	2,	5]
0	10	:	[3,	10	, 11]
0	11	:	[6,	7,	9]
0	12	:	[0,	1,	10]
0	13	:	[3,	8,	9]
0	14	:	[4,	6,	10]
0	15	:	[4,	7,	8]

	i	:	variables
0	0	:	[2, 7, 9, 12]
0	1	:	[3, 6, 8, 12]
0	2	:	[1, 4, 6, 9]
0	3	:	[3, 5, 10, 13]
0	4	:	[2, 8, 14, 15]
0	5	:	[0, 5, 8, 9]
0	6	:	[3, 7, 11, 14]
0	7	:	[1, 5, 11, 15]
0	8	:	[0, 6, 13, 15]
0	9	:	[2, 4, 11, 13]
0	10	:	[1, 10, 12, 14]
0	11	:	[0, 4, 7, 10]

Round 0

variable nodes

У	j	:	cl	necl	ks
0	0	:	[5,	8,	11]
0	1	:	[2,	7,	10]
0	2	:	[0,	4,	9]
0	3	:	[1,	з,	6]
1	4	:	[2,	9,	11]
0	5	:	[3,	5,	7]
0	6	:	[1,	2,	8]
0	7	:	[0,	6,	11]
1	8	:	[1,	4,	5]
0	9	:	[0,	2,	5]
0	10	:	[3,	10	, 11]
0	11	:	[6,	7,	9]
0	12	:	[0,	1,	10]
0	13	:	[3,	8,	9]
0	14	:	[4,	6,	10]
0	15	:	[4,	7,	8]

	i	:	variables	5
0	0	:	[2, 7, 9, 1	2]
1	1	:	[3, 6, 8, 1	.2]
1	2	:	[1, 4, 6, 9)]
0	3	:	[3, 5, 10,	13]
1	4	:	[2, <mark>8</mark> , 14,	15]
1	5	:	[0, 5, 8, 9)]
0	6	:	[3, 7, 11,	14]
0	7	:	[1, 5, 11,	15]
0	8	:	[0, 6, 13,	15]
1	9	:	[2, <mark>4</mark> , 11,	13]
0	10	:	[1, 10, 12,	14]
1	11	:	[0, 4, 7, 1	.0]

Round 1a

variable nodes

У	j	:	cl	hecl	cs
0	0	:	[5,	8,	11]
0	1	:	[<mark>2</mark> ,	7,	10]
0	2	:	[0,	4,	9]
0	3	:	[1,	З,	6]
1	4	:	[2,	9,	11]
0	5	:	[3,	5,	7]
0	6	:	[1,	2,	8]
0	7	:	[0,	6,	11]
1	8	:	[1,	4,	5]
0	9	:	[0,	2,	5]
0	10	:	[3,	10	, 11]
0	11	:	[6,	7,	9]
0	12	:	[0,	1,	10]
0	13	:	[3,	8,	9]
0	14	:	[4,	6,	10]
0	15	:	[4,	7,	8]

	i	:	variables		
0	0	:	[2, 7, 9, 12]		
1	1	:	[3, 6, <mark>8</mark> , 12]		
1	2	:	[1, <mark>4</mark> , 6, 9]		
0	3	:	[3, 5, 10, 13]		
1	4	:	[2, <mark>8</mark> , 14, 15]		
1	5	:	[0, 5, <mark>8</mark> , 9]		
0	6	:	[3, 7, 11, 14]		
0	7	:	[1, 5, 11, 15]		
0	8	:	[0, 6, 13, 15]		
1	9	:	[2, <mark>4</mark> , 11, 13]		
0	10	:	[1, 10, 12, 14]		
1	11	:	[0, <mark>4</mark> , 7, 10]		

Round 1b

variable nodes

У	с	j	:	chec	cks	in	out	
0	0	0	:	[5,	8,	11]	[5, <mark>8</mark> ,	11]
0	0	1	:	[<mark>2</mark> ,	7,	10]	[2, 7,	10]
0	0	2	:	[0,	4,	9]	[<mark>0</mark> , 4,	9]
0	0	3	:	[1,	З,	6]	[1, 3,	6]
1	0	4	:	[2,	9,	11]	[2, 9,	11]
0	0	5	:	[3,	5,	7]	[3, 5,	7]
0	0	6	:	[1,	2,	8]	[1, 2,	8]
0	0	7	:	[0,	6,	11]	[0, 6,	11]
1	0	8	:	[1,	4,	5]	[1, 4,	5]
0	0	9	:	[0,	2,	5]	[<mark>0</mark> , 2,	5]
0	0	10	:	[3,	10	, 11]	[3, 10	, 11]
0	0		:	[6,	7,	9]	[6, 7,	9]
0	0	12	:	[0,	1,	10]	[0, 1,	10]
0	0	13	:	[3,	8,	9]	[3, 8,	9]
0	0	14	:	[4,	6,	10]	[4, 6,	10]
0	0	15	:	[4,	7,	8]	[4, 7,	8]

	i	:	variables			
0	0	:	[2,	7,	9,	12]
0	1	:	[3,	6,	8, 3	12]
0	2	:	[1,	4,	6,	9]
0	3	:	[3,	5,	10,	13]
0	4	:	[2,	8,	14,	15]
0	5	:	[0,	5,	8,	9]
0	6	:	[3,	7,	11,	14]
0	7	:	[1,	5,	11,	15]
0	8	:	[<mark>0</mark> ,	6,	13,	15]
0	9	:	[2,	4,	11,	13]
0	10	:	[1,	10	, 12	, 14]
0	11	:	[0,	4,	7, 3	10]

Round 1b

variable nodes

с	j	:	checks in	out
0	0	:	[<mark>5</mark> , 8, 11]	[5, <mark>8</mark> , 11]
0	1	:	[<mark>2</mark> , 7, 10]	[2, 7, 10]
0	2	:	[0, <mark>4</mark> , <mark>9</mark>]	[<mark>0</mark> , 4, 9]
0	3	:	[<mark>1</mark> , 3, 6]	[1, 3, 6]
0	4	:	[2, 9, 11]	[2, 9, 11]
0	5	:	[3, <mark>5</mark> , 7]	[3, 5, 7]
0	6	:	[<mark>1, 2</mark> , 8]	[1, 2, <mark>8</mark>]
0	7	:	[0, 6, <mark>11</mark>]	[0, 6, 11]
0	8	:	[1, 4, 5]	[1, 4, 5]
0	9	:	[0, <mark>2</mark> , <mark>5</mark>]	[<mark>0</mark> , 2, 5]
0	10	:	[3, 10, <mark>11</mark>]	[3, 10, 11]
0	11	:	[6, 7, <mark>9</mark>]	[6, 7, 9]
0	12	:	[0, <mark>1</mark> , 10]	[0, 1, 10]
0	13	:	[3, 8, <mark>9</mark>]	[3, 8, 9]
0	14	:	[<mark>4</mark> , 6, 10]	[4, 6, 10]
0	15	:	[<mark>4</mark> , 7, 8]	[4, 7, 8]

check nodes

s	i	:	variables				
0	0	:	[2,	7,	9, 1	[2]	
0	1	:	[3,	6,	8, 1	L2]	
0	2	:	[1,	4,	6, 9	9]	
0	3	:	[3,	5,	10,	13]	
0	4	:	[2,	8,	14,	15]	
0	5	:	[0,	5,	8, 9	9]	
0	6	:	[3,	7,	11,	14]	
0	7	:	[1,	5,	11,	15]	
0	8	:	[<mark>0</mark> ,	6,	13,	15]	
0	9	:	[2,	4,	11,	13]	
0	10	:	[1,	10	, 12,	, 14]	
0	11	:	[0,	4,	7, 1	L0]	
1	•						

all checks satisfied: STOP

majority vote

variable nodes

У	j	:	checks				
0	0	:	[5,	8,	11]		
0	1	:	[2,	7,	10]		
0	2	:	[0,	4,	9]		
0	3	:	[1,	з,	6]		
0	4	:	[2,	9,	11]		
0	5	:	[3,	5,	7]		
0	6	:	[1,	2,	8]		
1	7	:	[0,	6,	11]		
0	8	:	[1,	4,	5]		
0	9	:	[0,	2,	5]		
0	10	:	[3,	10	, 11]		
0	11	:	[6,	7,	9]		
0	12	:	[0,	1,	10]		
0	13	:	[3,	8,	9]		
0	14	:	[4,	6,	10]		
1	15	:	[4,	7,	8]		

	i	:	variables			
0	0	:	[2,	7,	9, 12]	
0	1	:	[3,	6,	8, 12]	
0	2	:	[1,	4,	6, 9]	
0	3	:	[3,	5,	10, 13]	
0	4	:	[2,	8,	14, 15]	
0	5	:	[0,	5,	8, 9]	
0	6	:	[3,	7,	11, 14]	
0	7	:	[1,	5,	11, 15]	
0	8	:	[0,	6,	13, 15]	
0	9	:	[2,	4,	11, 13]	
0	10	:	[1,	10	, 12, 14]	
0	11	:	[0,	4,	7, 10]	

Round 0

variable nodes

	j	:		hecl	-
У	-	•			-
0	0	:	[5,	8,	11]
0	1	:	[2,	7,	10]
0	2	:	[0,	4,	9]
0	3	:	[1,	З,	6]
0	4	:	[2,	9,	11]
0	5	:	[3,	5,	7]
0	6	:	[1,	2,	8]
1	7	:	[0,	6,	11]
0	8	:	[1,	4,	5]
0	9	:	[0,	2,	5]
0	10	:	[3,	10	, 11]
0	11	:	[6,	7,	9]
0	12	:	[0,	1,	10]
0	13	:	[3,	8,	9]
0	14	:	[4,	6,	10]
1	15	:	[4,	7,	8]

	i	:	variables			
1	0	:	[2,	7,	9, 12]	
0	1	:	[3,	6,	8, 12]	
0	2	:	[1,	4,	6, 9]	
0	3	:	[3,	5,	10, 13]	
1	4	:	[2,	8,	14, <mark>15</mark>]	
0	5	:	[0,	5,	8, 9]	
1	6	:	[3,	7,	11, 14]	
1	7	:	[1,	5,	11, <mark>15</mark>]	
1	8	:	[0,	6,	13, <mark>15</mark>]	
0	9	:	[2,	4,	11, 13]	
0	10	:	[1,	10,	12, 14]	
1	11	:	[0,	4,	7, 10]	

Round 1a

variable nodes

У	j	:	checks			
0	0	:	[5,	8,	11]	
0	1	:	[2,	7,	10]	
0	2	:	[<mark>0</mark> ,	4,	9]	
0	3	:	[1,	з,	<mark>6</mark>]	
0	4	:	[2,	9,	11]	
0	5	:	[3,	5,	7]	
0	6	:	[1,	2,	8]	
1	7	:	[0,	6,	11]	
0	8	:	[1,	4,	5]	
0	9	:	[<mark>0</mark> ,	2,	5]	
0	10	:	[3,	10	, 11]	
0	11	:	[6,	7,	9]	
0	12	:	[<mark>0</mark> ,	1,	10]	
0	13	:	[3,	8,	9]	
0	14	:	[4,	6,	10]	
1	15	:	[4,	7,	8]	

	i	:	variables			
1	0	:	[2,	7,	9, 12]	
0	1	:	[3,	6,	8, 12]	
0	2	:	[1,	4,	6, 9]	
0	3	:	[3,	5,	10, 13]	
1	4	:	[2,	8,	14, <mark>15</mark>]	
0	5	:	[0,	5,	8, 9]	
1	6	:	[3,	7,	11, 14]	
1	7	:	[1,	5,	11, <mark>15</mark>]	
1	8	:	[0,	6,	13, <mark>15</mark>]	
0	9	:	[2,	4,	11, 13]	
0	10	:	[1,	10,	12, 14]	
1	11	:	[0,	4,	7, 10]	

Round 1b

variable nodes

У	j	:	ched	cks	in	<u>c</u>	out	
0	0	:	[5,	8,	11]	[5,	8,	11]
0	1	:	[2,	7,	10]	[2,	7,	10]
0	2	:	[<mark>0</mark> ,	4,	9]	[0,	4,	9]
0	3	:	[1,	з,	6]	[1,	з,	6]
0	4	:	[2,	9,	11]	[2,	9,	11]
0	5	:	[3,	5,	7]	[3,	5,	7]
0	6	:	[1,	2,	8]	[1,	2,	8]
1	7	:	[0,	6,	11]	[0,	6,	11]
0	8	:	[1,	4,	5]	[1,	4,	5]
0	9	:	[<mark>0</mark> ,	2,	5]	[0,	2,	5]
0	10	:	[3,	10,	, 11]	[3,	10	, 11]
0	11	:	[<mark>6</mark> ,	7,	9]	[6,	7,	9]
0	12	:	[<mark>0</mark> ,	1,	10]	[0,	1,	10]
0	13	:	[3,	8,	9]	[3,	8,	9]
0	14	:	[4,	6,	10]	[4,	6,	10]
1	15	:	[4,	7,	8]	[4,	7,	8]

check nodes

	i	:	va	ariables	
0	0	:	[2,	7, 9, 12]	
0	1	:	[3,	6, 8, 12]	
0	2	:	[1,	4, 6, 9]	
0	3	:	[3,	5, 10, 13]	
0	4	:	[2,	8, 14, 15]	
1	5	:	[<mark>0</mark> ,	5, 8, 9]	
0	6	:	[3,	7, 11, 14]	
0	7	:	[1,	5, 11, 15]	
0	8	:	[0,	6, 13, 15]	
0	9	:	[<mark>2</mark> ,	4, 11, 13]	
1	10	:	[1,	10, 12, 14]
0	11	:	[0,	4, 7, 10]	

Round 2a

variable nodes

У	j	:	chec	cks	in	<u>(</u>	out	
0	0	:	[5,	8,	11]	[5,	8,	11]
0	1	:	[2,	7,	10]	[2,	7,	10]
0	2	:	[0,	4,	9]	[0,	4,	9]
0	3	:	[1,	З,	6]	[1,	З,	6]
0	4	:	[2,	9,	11]	[2,	9,	11]
0	5	:	[3,	5,	7]	[3,	5,	7]
0	6	:	[1,	2,	8]	[1,	2,	8]
1	7	:	[0,	6,	11]	[0,	6,	11]
0	8	:	[1,	4,	5]	[1,	4,	5]
0	9	:	[0,	2,	5]	[0,	2,	5]
0	10	:	[3,	10	, 11]	[3,	10,	, 11]
0	11	:	[6,	7,	9]	[6,	7,	9]
0	12	:	[0,	1,	10]	[0,	1,	10]
0	13	:	[3,	8,	9]	[3,	8,	9]
0	14	:	[4,	6,	10]	[4,	6,	10]
1	15	:	[4,	7,	8]	[4,	7,	8]

check nodes

	i	:	va	ariables
0	0	:	[2,	7, 9, 12]
0	1	:	[3,	6, 8, 12]
0	2	:	[1,	4, 6, 9]
0	3	:	[3,	5, 10, 13]
0	4	:	[2,	8, 14, 15]
1	5	:	[<mark>0</mark> ,	5, 8, 9]
0	6	:	[3,	7, 11, 14]
0	7	:	[1,	5, 11, 15]
0	8	:	[0,	6, 13, 15]
0	9	:	[<mark>2</mark> ,	4, <mark>11</mark> , 13]
1	10	:	[1,	10, 12, 14
0	11	:	[0,	4, 7, 10]

Round 2b

variable nodes

У	j	:	che	cks in	out
0	0	:	[5,	8, 11]	[5, 8, 11]
0	1	:	[2,	7, <mark>10</mark>]	[2, 7, 10]
0	2	:	[0,	4, <mark>9</mark>]	[0, 4, 9]
0	3	:	[1,	3, 6]	[1, 3, 6]
0	4	:	[2,	9, 11]	[2, 9, 11]
0	5	:	[3,	5,7]	[3, 5, 7]
0	6	:	[1,	2, 8]	[1, 2, 8]
1	7	:	[0,	6, 11]	[0, 6, 11]
0	8	:	[1,	4, 5]	[1, 4, 5]
0	9	:	[0,	2, <mark>5</mark>]	[0, 2, 5]
0	10	:	[3,	<mark>10</mark> , 11]	[3, 10, 11]
0	11	:	[6,	7, <mark>9</mark>]	[6, 7, 9]
0	12	:	[0,	1, <mark>10</mark>]	[0, 1, 10]
0	13	:	[3,	8, <mark>9</mark>]	[3, 8, 9]
0	14	:	[4,	6, 10]	[4, 6, 10]
1	15	:	[4,	7, 8]	[4, 7, 8]

check nodes

	i	:	variables			
0	0	:	[2,	7,	9, 12]	
0	1	:	[3,	6,	8, 12]	
0	2	:	[1,	4,	6, 9]	
0	3	:	[3,	5,	10, 13]	
0	4	:	[2,	8,	14, 15]	
0	5	:	[0,	5,	8, 9]	
0	6	:	[3,	7,	11, 14]	
0	7	:	[1,	5,	11, 15]	
0	8	:	[0,	6,	13, 15]	
0	9	:	[2,	4,	11, 13]	
0	10	:	[1,	10	, 12, 14]	
0	11	:	[0,	4,	7, 10]	

Round 2b

variable nodes

с	j	:	che	cks in	out
0	0	:	[5,	8, 11]	[5, 8, 11]
0	1	:	[2,	7, <mark>10</mark>]	[2, 7, 10]
0	2	:	[0,	4, <mark>9</mark>]	[0, 4, 9]
0	3	:	[1,	3, 6]	[1, 3, 6]
0	4	:	[2,	9, 11]	[2, 9, 11]
0	5	:	[3,	5,7]	[3, 5, 7]
0	6	:	[1,	2, 8]	[1, 2, 8]
0	7	:	[0,	6, 11]	[0, 6, 11]
0	8	:	[1,	4, 5]	[1, 4, 5]
0	9	:	[0,	2, 5]	[0, 2, 5]
0	10	:	[3,	<mark>10</mark> , 11]	[3, 10, 11]
0	11	:	[6,	7, <mark>9</mark>]	[6, 7, 9]
0	12	:	[0,	1, <mark>10</mark>]	[0, 1, 10]
0	13	:	[3,	8, <mark>9</mark>]	[3, 8, 9]
0	14	:	[4,	6, 10]	[4, 6, 10]
0	15	:	[4,	7, 8]	[4, 7, 8]
•					

check nodes

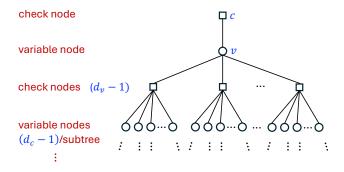
_	i	:	variables			
0	0	:	[2,	7,	9, 3	12]
0	1	:	[3,	6,	8, 3	12]
0	2	:	[1,	4,	6, 9	9]
0	3	:	[3,	5,	10,	13]
0	4	:	[2,	8,	14,	15]
0	5	:	[0,	5,	8, 9	9]
0	6	:	[3,	7,	11,	14]
0	7	:	[1,	5,	11,	15]
0	8	:	[0,	6,	13,	15]
0	9	:	[2,	4,	11,	13]
0	10	:	[1,	10	, 12	, 14]
0	11	:	[0,	4,	7, 3	10]

all checks satisfied: STOP

unanimity

Why (when) does iterative decoding work? [Gallager'62]

Local neighborhood "tree" of an edge (v, c).

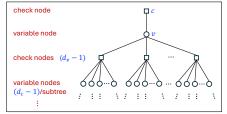


• Assume a BSC with P(bit error) = p.

- ▶ Let p_i be the probability of a message m_{vc} being wrong at iteration i, with p₀ = p.
- We derive an expression for p_{i+1} .

 Consider a neighbor c' of v, c'≠c. Check node c' sends the correct value to v if an even number of neighbors of c' (excluding v) sent c' the wrong value. So,

$$\begin{split} P(\mu_{c'v} \operatorname{good}) &= \sum_{\substack{\ell \text{ even} \\ 0 \leq \ell < d_c}} \binom{d_c - 1}{\ell} p_i^\ell (1 - p_i)^{d_c - 1 - \ell} \\ &= \frac{1 + (1 - 2p_i)^{d_c - 1}}{2} \,. \end{split}$$



 Hence, the probability that v was (initially) received in error, and sent incorrectly in round i+1 is

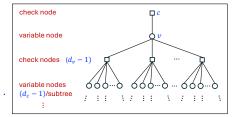
$$p_0\left(1 - \left[\frac{1 + (1 - 2p_i)^{d_c - 1}}{2}\right]^{d_v - 1}\right)$$

• Similarly, the probability that v was received correctly, but sent *incorrectly* in round i+1 is

$$(1-p_0) \left[\frac{1-(1-2p_i)^{d_c-1}}{2} \right]^{d_v-1}$$

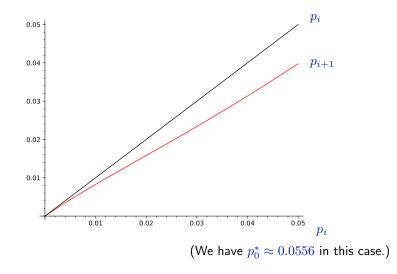
We get the following recursion

$$p_{i+1} = p_0 - p_0 \left[\frac{1 + (1 - 2p_i)^{d_c - 1}}{2} \right]^{d_v - 1} + (1 - p_0) \left[\frac{1 - (1 - 2p_i)^{d_c - 1}}{2} \right]^{d_v - 1}$$

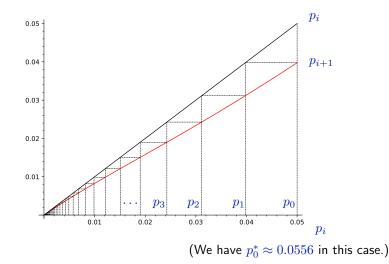


- If p₀ is such that p_{i+1} < p_i, then the bit error probability strictly decreases at each iteration. In fact, a more detailed analysis of the recursion proves that there exists a threshold p₀^{*} such that p_i ⁱ→ 0 for all p₀ < p₀^{*}.
- But there are strong conditional independence assumptions in this calculation!
- These assumptions hold if the neighborhood *is indeed a tree* over the number of iterations run.
- We need bipartite graphs of *large girth* (*girth*: length of smallest loop in the graph). For that, we need *large n*.

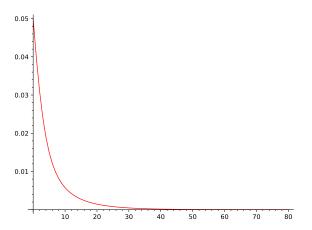
Example: $d_c = 11, d_v = 7$: p_{i+1} vs p_i for $p_0 = 0.05$.



Example: $d_c = 11, d_v = 7$: p_{i+1} vs p_i for $p_0 = 0.05$.



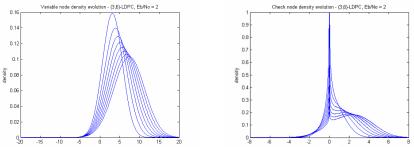
Example: $d_c = 11, d_v = 7$: p_i vs *i* for $p_0 = 0.05$.



Iterative Decoding for the BSC—Soft Decision

- ► In soft decision decoding, the received data is given in the form of a vector of probabilities (p₁ p₂ ... p_n) such that p_i = P(x_i = 1 | y_i).
- ▶ The goal of the iterative decoder is to improve these estimates so that eventually we can get an estimate \hat{x}_i of x_i with

 $P(\hat{x}_i = x_i | y_1, y_2, \dots, y_n)$ approaching one (*density evolution*).



Density evolution calculations are very difficult in general, but explicit recursions can be set up for some interesting cases under some independence assumptions.

Belief propagation

- The tool used to iteratively improve the symbol probability estimates is belief propagation. This has several closely related interpretations, names, and representations, e.g. sum-products algorithm, Bayesian networks, generalized ditributive law, etc.
- We work with log-likelihood ratios

$$m_{v_i} = \log \frac{P(v_i = 0 \mid \hat{v}_i)}{P(v_i = 1 \mid \hat{v}_i)}.$$

In our problem, the x_i 's play the role of the v_i 's, and the initial estimates \hat{v}_i are the received symbols y_i .

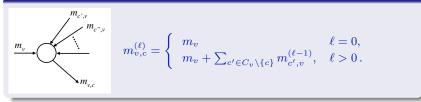
Messages passed through the graph effect log-likelihood updates.

Belief propagation

- ► The message passed from a message node v to a check node c is the probability that v has a certain value given the observed value of that message node, and all the values communicated to v in the prior round from check nodes incident to v other than c.
- ► The message passed from c to v is the probability that v has a certain value given all the messages passed to c in the previous round from message nodes other than v.

Likelihood updates

From variables to checks



From checks to variables

- ► As in the hard decision case, the soft decision belief propagation iteration relies on the conditional independence of the messages passed in the process of updating the variable nodes.
- ► Same *large girth* requirements for the code graph.
- ► Let S(e, d) denote the local neighborhood to depth d of edge e. Let L denote any fixed number of rounds of the iterative decoding.

Key observation

In a random bipartite graph, for any given L, S(e, 2L) is cycle-free with probability $\rightarrow 1$ as $n \rightarrow \infty$.

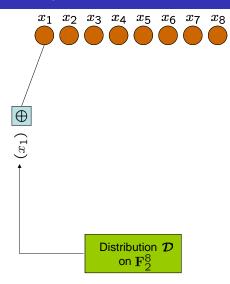
- Even for finite n, if the number of iterations is not too large (as is the case in practice), the independence assumption holds with high probability.
- ► There exist construction techniques that produce graphs of large girth.

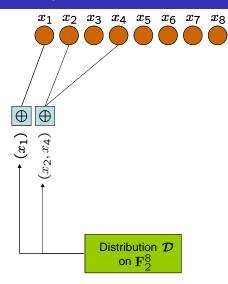
LDPC codes for the binary erasure channel (BEC)

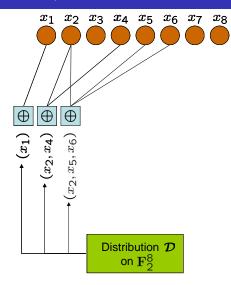
- ▶ The BEC is a good model for packet losses in networks
- A class of LDPC codes, developed in the early 2000s and often referred to as *fountain codes* (incl. Tornado, LT, and Raptor codes), targets the BEC and has many interesting features

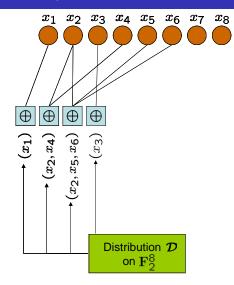
- Codes are *rateless*: a potentially endless stream of encoded symbols is sent by the sender. The receiver collects enough of them until it can decode (then may ask sender to stop).
- In *multicast* situations, different receivers may read different lengths of the encoded stream.
- The codes can be encoded and decoded in very low complexity (linear or almost linear in the length of the encoded block).
- The codes are *random*; they are generated *on the fly* by the sender, and also by the receiver based on common randomness.
- The best codes in the class approach the capacity of the BEC even if the channel parameter is unknown.

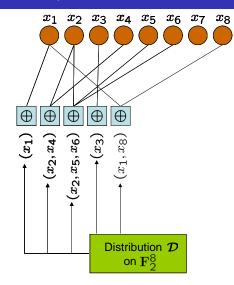
Distribution ${\cal D}$ on ${f F}_2^8$

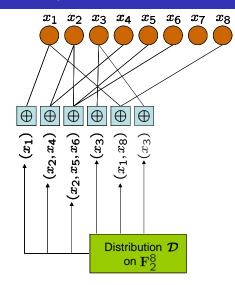


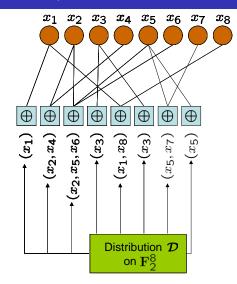


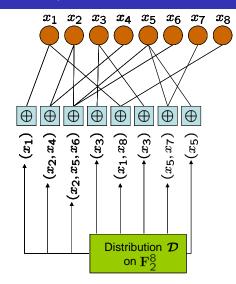


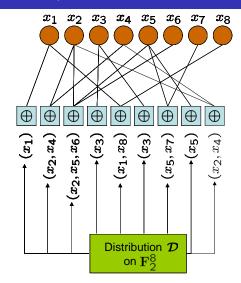


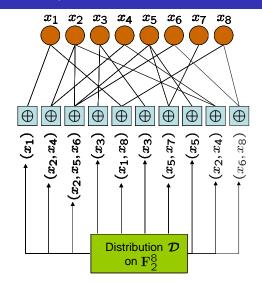


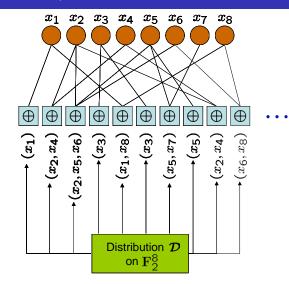


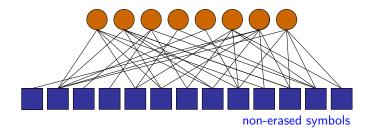




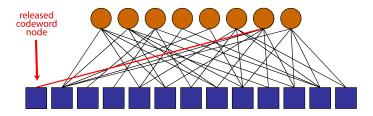






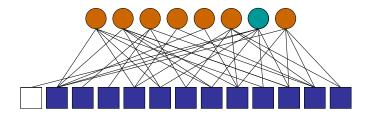


- **1** Find codeword node c of (reduced) degree 1
- 2 Assign value of c to the variable node v connected to it
- $\ensuremath{\mathfrak{S}}$ Subtract the value of v from all the codeword nodes connected to it
- 4 Remove all edges incident on v
- If there are message symbols that have not been decoded, go to Step 1

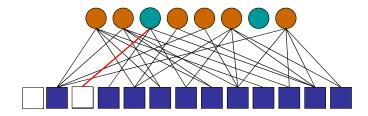


1 Find codeword node c of reduced degree 1 (released)

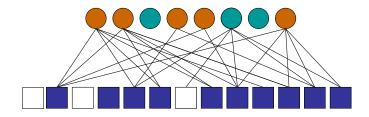
- 2 Assign value of c to the variable node v connected to it
- $\ensuremath{\mathfrak{S}}$ Subtract the value of v from all the codeword nodes connected to it
- **4** Remove all edges incident on v
- If there are message symbols that have not been decoded, go to Step 1



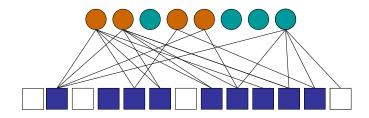
- **1** Find codeword node c of reduced degree 1 (*released*)
- 2 Assign value of c to the variable node v connected to it
- $\ensuremath{\mathfrak{S}}$ Subtract the value of v from all the codeword nodes connected to it
- 4 Remove all edges incident on v
- If there are message symbols that have not been decoded, go to Step 1



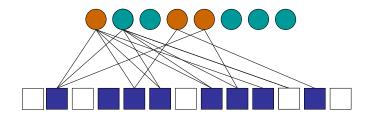
- **1** Find codeword node c of reduced degree 1 (*released*)
- 2 Assign value of c to the variable node v connected to it
- $\ensuremath{\mathfrak{S}}$ Subtract the value of v from all the codeword nodes connected to it
- 4 Remove all edges incident on v
- If there are message symbols that have not been decoded, go to Step 1



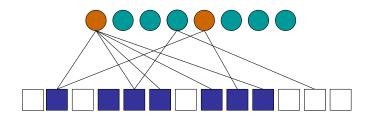
- **1** Find codeword node c of reduced degree 1 (*released*)
- 2 Assign value of c to the variable node v connected to it
- $\ensuremath{\mathfrak{S}}$ Subtract the value of v from all the codeword nodes connected to it
- **4** Remove all edges incident on v
- If there are message symbols that have not been decoded, go to Step 1



- **1** Find codeword node c of reduced degree 1 (*released*)
- 2 Assign value of c to the variable node v connected to it
- $\ensuremath{\mathfrak{S}}$ Subtract the value of v from all the codeword nodes connected to it
- 4 Remove all edges incident on v
- If there are message symbols that have not been decoded, go to Step 1

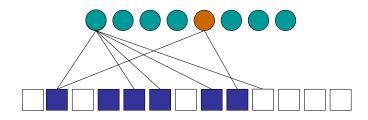


- **1** Find codeword node c of reduced degree 1 (*released*)
- 2 Assign value of c to the variable node v connected to it
- $\ensuremath{\mathfrak{S}}$ Subtract the value of v from all the codeword nodes connected to it
- **4** Remove all edges incident on v
- If there are message symbols that have not been decoded, go to Step 1



- **1** Find codeword node c of reduced degree 1 (*released*)
- 2 Assign value of c to the variable node v connected to it
- $\ensuremath{\mathfrak{S}}$ Subtract the value of v from all the codeword nodes connected to it
- 4 Remove all edges incident on v
- If there are message symbols that have not been decoded, go to Step 1

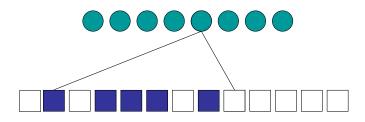
LT codes— Decoding example



- **1** Find codeword node c of reduced degree 1 (*released*)
- 2 Assign value of c to the variable node v connected to it
- $\ensuremath{\mathfrak{S}}$ Subtract the value of v from all the codeword nodes connected to it
- 4 Remove all edges incident on v
- If there are message symbols that have not been decoded, go to Step 1

[Example: A. Shokrollahi]

LT codes— Decoding example



- **1** Find codeword node c of reduced degree 1 (*released*)
- 2 Assign value of c to the variable node v connected to it
- $\ensuremath{\mathfrak{S}}$ Subtract the value of v from all the codeword nodes connected to it
- 4 Remove all edges incident on v
- If there are message symbols that have not been decoded, go to Step 1

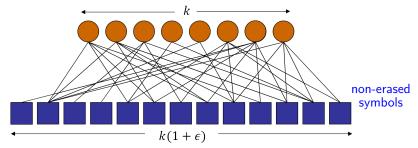
[Example: A. Shokrollahi]

LT codes— Decoding example

- **1** Find codeword node c of reduced degree 1 (*released*)
- 2 Assign value of c to the variable node v connected to it
- $\ensuremath{\mathfrak{S}}$ Subtract the value of v from all the codeword nodes connected to it
- 4 Remove all edges incident on v
- If there are message symbols that have not been decoded, go to Step 1

[Example: A. Shokrollahi]

LT codes—goals

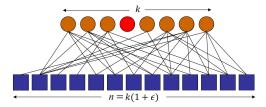


Given k message symbols encoded with an LT code, we want

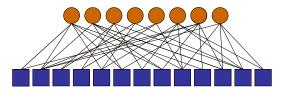
- To be able to recover the message from $(1 + \epsilon)k$ non-erased code symbols, for a vanishingly small ϵ , with very high probability.
- To do so with linear (or close to linear) complexity.

LT codes—challenges

Bad things that may happen:



• An *uncovered* input symbol: an input symbol that was not hit by any of the linear combinations drawn with distribution \mathcal{D} .



• No codeword node is released—decoding is stuck.

LT Codes-degree distribution

- The distribution of check equation weights is crucial for correct decoding, for both of the challenges listed.
- LT codes draw check equations according to a distribution $\mathcal D$ on F_2^k
 - A distribution $\{\Omega_w \, | \, 1 \leq w \leq k\}$ on the Hamming weights
 - Uniform distribution for a given weight
 - Probability of a coefficient vector v ∈ F₂^k:

$$\mathsf{Prob}_{\mathcal{D}}(v) = \frac{\Omega_w}{\binom{k}{w}}, \quad w = \mathsf{wt}(v)$$

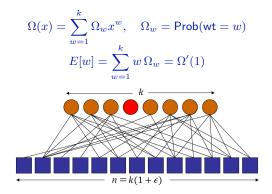
• The parameters of the code are $(k, \Omega(x))$,

$$\Omega(x) = \Omega_1 x + \Omega_2 x^2 + \dots + \Omega_k x^k$$

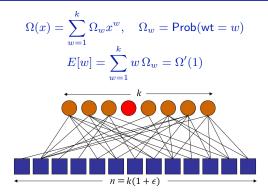
Average weight (degree) of a code symbol

$$\begin{split} \Omega(x) &= \sum_{w=1}^{k} \Omega_w x^w, \quad \Omega_w = \mathsf{Prob}(\mathsf{wt} = w) \\ &E[w] = \sum_{w=1}^{k} w \, \Omega_w = \Omega'(1) \end{split}$$

Average weight (degree) of a code symbol



Average weight (degree) of a code symbol



 $Prob(fail) \ge Prob(message symbol not covered)$

$$= \left(\sum_{w=1}^{k} \Omega_{w} \frac{\binom{k-1}{w}}{\binom{k}{w}}\right)^{n} = \left(\sum_{w=1}^{k} \Omega_{w} \left(1 - \frac{w}{k}\right)\right)^{n} = \left(1 - \frac{\Omega'(1)}{k}\right)^{k(1+\epsilon)}$$
$$\approx e^{-\Omega'(1)(1+\epsilon)} \stackrel{\text{want}}{\leq} \frac{1}{k^{c}} \Rightarrow \Omega'(1) \geq \frac{c \ln k}{1+\epsilon}$$

average degree must be at least logarithmic

LT—Ensuring enough symbols are released (w.h.p.)

We are interested in the probability that an output symbol of initial degree w is released at step i + 1, when the i + 1st input symbol is recovered.

This is the probability that the symbol has *exactly* one neighbor among the k - i - 1 input symbols that are not yet recovered, and that not all the remaining w - 1 neighbors are among the *i* already recovered. It can be shown that under the assumptions on the distribution \mathcal{D} ,

P(output symbol "released" at step $i+1 \mid \deg$ is w) =

$$w\left(1-\frac{i+1}{k}\right)\left(\left(\frac{i+1}{k}\right)^{w-1}-\left(\frac{i}{k}\right)^{w-1}\right).$$

P(output symbol "released" at step i+1) =

$$\left(1-\frac{i+1}{k}\right)\left(\Omega'((i+1)/k)-\Omega'(i/k)\right)$$
.

LT—Ensuring enough symbols are released (w.h.p.)

P(output symbol "released" at step i+1) =

$$\left(1-rac{i+1}{k}
ight)\left(\Omega'((i+1)/k)-\Omega'(i/k)
ight)\,.$$

For n symbols, number released \approx

$$\frac{n}{k}\left(1-\frac{i+1}{k}\right)\Omega^{\prime\prime}(i/k) \stackrel{\rm want}{\geq} 1$$

with $n \approx k$:

$$\Omega(x) = \Omega_1 + \sum_{i \ge 2} rac{x^i}{i(i-1)}$$
 soliton distribution

LT—Ensuring enough symbols are released (w.h.p.)

"Soliton" distribution

$$\Omega_i = \begin{cases} \frac{1}{k} & i = 1, \\\\ \frac{1}{i(i-1)} & 2 \le i \le k. \end{cases}$$

With the soliton distribution, the *expected* number of output nodes released at each step is *exactly* one. This makes it a poor choice in practice, as even a minimal deviation from the expected behavior will get the process stuck. More robust solutions have been developed.

