
2. Product Codes

Gadiel Seroussi

October 21, 2022

38 / 117

2 Product Codes
Product codes
Checks on checks
Code interleaving
Burst correction with product codes
A decoding strategy for bursts
How about random errors?
Probabilistic decoding
Why is this scheme inefficient?
Reference
A coding scheme that eliminates “redundant” redundancy
Using the syndrome array to locate error patterns
How to get the needed redundancy in the syndrome array
Review: Useful properties of GRS codes
Imposing a redundancy check on the syndrome array
Imposing redundancy checks on the syndrome array
How to get the needed redundancy in the syndrome array
Decoding
Encoding

39 / 117

Encoding
Progressive redundancy
Progressive redundancy
Redundancy summary
Handling random errors
Handling random errors

40 / 117

Product codes

Given C1 : [n1, k1] and C2 : [n2, k2], a codeword in the product code
C1 × C2 is shown in the figure (with r1 = n1 − k1, r2 = n2 − k2).

41 / 117

Product codes

Given C1 : [n1, k1] and C2 : [n2, k2], a codeword in the product code
C1 × C2 is shown in the figure (with r1 = n1 − k1, r2 = n2 − k2).

41 / 117

Product codes

Given C1 : [n1, k1] and C2 : [n2, k2], a codeword in the product code
C1 × C2 is shown in the figure (with r1 = n1 − k1, r2 = n2 − k2).

41 / 117

Checks on checks

columns

��	
• Assume product code matrix is

C ≜ {cst}n2−1,n1−1
s=0, t=0 = [c0, c1, . . . , cn1−1].

• Assume we encode columns first, and
let the (systematic) generator matrix of C1
be [Ik1×k1 |Ak1×(n1−k1)]. When encoding rows,
a typical element in the redundancy columns is

cs,t =

k1−1∑
h=0

cs,hAh,t−k1 , 0 ≤ s < n2, k1 ≤ t < n1 ,

Therefore,

ct =

k1−1∑
h=0

Ah,t−k1ch .

• Redundancy columns are linear combinations of codewords in C2 ⇒ they
too are codewords in C2.

• “Checks on checks” satisfy both the C1 and C2 constraints.

• They are uniquely determined by the “checks on columns” region
and also by the “checks on rows” region =⇒ they are the same
regardless of whether columns or rows are encoded first.

42 / 117

Checks on checks

columns

��	
• Assume product code matrix is

C ≜ {cst}n2−1,n1−1
s=0, t=0 = [c0, c1, . . . , cn1−1].

• Assume we encode columns first, and
let the (systematic) generator matrix of C1
be [Ik1×k1 |Ak1×(n1−k1)]. When encoding rows,
a typical element in the redundancy columns is

cs,t =

k1−1∑
h=0

cs,hAh,t−k1 , 0 ≤ s < n2, k1 ≤ t < n1 ,

Therefore,

ct =

k1−1∑
h=0

Ah,t−k1ch .

• Redundancy columns are linear combinations of codewords in C2 ⇒ they
too are codewords in C2.

• “Checks on checks” satisfy both the C1 and C2 constraints.

• They are uniquely determined by the “checks on columns” region
and also by the “checks on rows” region =⇒ they are the same
regardless of whether columns or rows are encoded first.

42 / 117

Checks on checks

columns

��	
• Assume product code matrix is

C ≜ {cst}n2−1,n1−1
s=0, t=0 = [c0, c1, . . . , cn1−1].

• Assume we encode columns first, and
let the (systematic) generator matrix of C1
be [Ik1×k1 |Ak1×(n1−k1)]. When encoding rows,
a typical element in the redundancy columns is

cs,t =

k1−1∑
h=0

cs,hAh,t−k1 , 0 ≤ s < n2, k1 ≤ t < n1 ,

Therefore,

ct =

k1−1∑
h=0

Ah,t−k1ch .

• Redundancy columns are linear combinations of codewords in C2 ⇒ they
too are codewords in C2.

• “Checks on checks” satisfy both the C1 and C2 constraints.

• They are uniquely determined by the “checks on columns” region
and also by the “checks on rows” region =⇒ they are the same
regardless of whether columns or rows are encoded first.

42 / 117

Code interleaving

• Special case of a product code with k1 = n1 (no redundancy on
rows).

• Useful for correcting burst errors (bursts run in the row direction).

• Can correct any burst of length ≤ n1τ = n1⌊(d2 − 1)/2⌋ using
straightforward error correction of columns with C2

43 / 117

Code interleaving

• Special case of a product code with k1 = n1 (no redundancy on
rows).

• Useful for correcting burst errors (bursts run in the row direction).

• Can correct any burst of length ≤ n1τ = n1⌊(d2 − 1)/2⌋ using
straightforward error correction of columns with C2

43 / 117

Code interleaving

• Special case of a product code with k1 = n1 (no redundancy on
rows).

• Useful for correcting burst errors (bursts run in the row direction).

• Can correct any burst of length ≤ n1τ = n1⌊(d2 − 1)/2⌋ using
straightforward error correction of columns with C2

43 / 117

Burst correction with product codes

• Ch: [nh, kh = nh − rh], Cv: [nv, kv = nv − rv]

• Product code Ch × Cv:

• Overall redundancy R = rhnv + rvnh − rhrv.

• Ch and Cv assumed to be MDS codes (e.g. GRS).

• Data sent through a bursty channel row by row.

44 / 117

A decoding strategy for bursts

• Use Ch to detect corrupted rows, mark as erased.

• Use Cv to correct errors and erasures, using the location information
provided by Ch.

• Choose
• rh so that Prob(Ch misses a corrupted row) (∝ q−rh) is “small

enough.”
• rv so that Prob(more than rv corrupted rows) is “small enough.”

45 / 117

How about random errors?

• Use part of the redundancy of Ch to attempt correction. In the
figure, the marked column may be uncorrectble by Cv alone.

• Residual redundancy in Ch should be sufficient to correct bursts.

• An iterative, GMD-like procedure can be used.

• Can be useful in distributed storage where rows are local and
columns are global (distributed). Random errors are handled locally.

• We will focus on burst-only correction for now, will get back to
random errors at the end.

46 / 117

How about random errors?

• Use part of the redundancy of Ch to attempt correction. In the
figure, the marked column may be uncorrectble by Cv alone.

• Residual redundancy in Ch should be sufficient to correct bursts.

• An iterative, GMD-like procedure can be used.

• Can be useful in distributed storage where rows are local and
columns are global (distributed). Random errors are handled locally.

• We will focus on burst-only correction for now, will get back to
random errors at the end.

46 / 117

How about random errors?

• Use part of the redundancy of Ch to attempt correction. In the
figure, the marked column may be uncorrectble by Cv alone.

• Residual redundancy in Ch should be sufficient to correct bursts.

• An iterative, GMD-like procedure can be used.

• Can be useful in distributed storage where rows are local and
columns are global (distributed). Random errors are handled locally.

• We will focus on burst-only correction for now, will get back to
random errors at the end.

46 / 117

How about random errors?

• Use part of the redundancy of Ch to attempt correction. In the
figure, the marked column may be uncorrectble by Cv alone.

• Residual redundancy in Ch should be sufficient to correct bursts.

• An iterative, GMD-like procedure can be used.

• Can be useful in distributed storage where rows are local and
columns are global (distributed). Random errors are handled locally.

• We will focus on burst-only correction for now, will get back to
random errors at the end.

46 / 117

Probabilistic decoding

• Assumption: Received data in burst region is uniformly distributed
over GF (q).

• Decoding does not guarantee correction of all error patterns affecting
rv rows or less. For that, redundancy ≥ 2nhrv would be required.

• Instead, we allow a small probability (∝ q−rh) of missing a pattern
of ≤ rv rows.

47 / 117

Why is this scheme inefficient?

• Ch uses rh check symbols for each row to determine whether the
row is corrupted.

• That way, Ch can inform Cv about any combination of up to nv

corrupted rows.

• But Cv can correct only up to rv erasures =⇒ it can only handle up
to rv corrupted rows!

• Information about combinations of rv + 1 or more corrupted rows is
useless for Cv.

• But we are paying for that information ...

48 / 117

Reference

49 / 117

A coding scheme that eliminates “redundant” redundancy

• Forget (for the time being) the check symbols of Ch.
• For each row, compute a syndrome with respect to Ch (as if the row
was a “received word”), forming a syndrome array.

• Comparing the syndromes before and after the channel, each
syndrome changed corresponds to a corrupted row.

• In each column of the syndrome array, the number of “errors” is at
most the number of corrupted rows in the main array.

50 / 117

Using the syndrome array to locate error patterns

• Suppose every column in the syndrome array
is a code block in an ECC (C0) capable of
correcting rv errors.

• Then, we can locate up to rv corrupted rows.

• As before, rh is chosen so that the
misdetection probability of a row (∝ q−rh) is
small enough.

• How do we make the columns of the syndrome array codewords in
the required ECC?
• We need a redundancy of 2rv to correct rv errors in each column

=⇒ we need a total of 2rhrv check symbols in the syndrome array.
• But, with our current assumptions, we have no freedom: the

syndrome array is completely determined by the main array ...

51 / 117

How to get the needed redundancy in the syndrome array

• The columns of the syndrome array are linear combinations of
codewords in Cv ⇒ they are codewords of Cv ⇒ each contains
redundancy rv, for a total of rhrv in the array.

• We need rhrv more.

52 / 117

Review: Useful properties of GRS codes

H =



1 1 . . . 1
α1 α2 . . . αn

α2
1 α2

2 . . . α2
n

...
...

...
...

αr′−1
1 αr′−1

2 . . . αr′−1
n

...
...

...
...

αr−1
1 αr−1

2 . . . αr−1
n


• GRS codes are nested. The code with redundancy r′ contains the
code with redundancy r > r′.

• C0 will be a subcode of Cv, obtained by adding rv parity checks to
the rv already in Cv.

• Systematic parity-check matrix: Hsys = [A | Ir×r]. Here, the last r
coordinates of the code are parity checks. However, any subset of
r = n− k coordinates can be taken as parity check symbols.

• If i is chosen as a parity check location then we can write
ci +

∑
j ̸=i hj,icj = 0.

53 / 117

Imposing a redundancy check on the syndrome array

• For the marked symbol in the syndrome array, from Ch:

s0,rh−1 = c0,nh−1 +

nh−2∑
j=0

h
(h)
rh−1,jc0,j . (∗)

1
=

rh−1
h
(h)
i,j

c0,∗ s0,∗

• Say we want to impose an additional parity check on the syndrome array

s0,rh−1 +

nv−1∑
j=1

h
(0)
0,jsj,rh−1 = 0 . (∗∗)

• Plugging s0,rh−1 from (∗) in (∗∗)

c0,nh−1 +

nh−2∑
j=0

h
(h)
rh−1,jc0,j +

nv−1∑
j=1

h
(0)
0,jsj,rh−1 = 0 .

���)

linear function of
ci,j , i > 0

Equivalent to imposing a parity check on c0,nh−1.

54 / 117

Imposing a redundancy check on the syndrome array

• For the marked symbol in the syndrome array, from Ch:

s0,rh−1 = c0,nh−1 +

nh−2∑
j=0

h
(h)
rh−1,jc0,j . (∗)

• Say we want to impose an additional parity check on the syndrome array

s0,rh−1 +

nv−1∑
j=1

h
(0)
0,jsj,rh−1 = 0 . (∗∗)

• Plugging s0,rh−1 from (∗) in (∗∗)

c0,nh−1 +

nh−2∑
j=0

h
(h)
rh−1,jc0,j +

nv−1∑
j=1

h
(0)
0,jsj,rh−1 = 0 .

���)

linear function of
ci,j , i > 0

Equivalent to imposing a parity check on c0,nh−1.

54 / 117

Imposing a redundancy check on the syndrome array

• For the marked symbol in the syndrome array, from Ch:

s0,rh−1 = c0,nh−1 +

nh−2∑
j=0

h
(h)
rh−1,jc0,j . (∗)

• Say we want to impose an additional parity check on the syndrome array

s0,rh−1 +

nv−1∑
j=1

h
(0)
0,jsj,rh−1 = 0 . (∗∗)

• Plugging s0,rh−1 from (∗) in (∗∗)

c0,nh−1 +

nh−2∑
j=0

h
(h)
rh−1,jc0,j +

nv−1∑
j=1

h
(0)
0,jsj,rh−1 = 0 .

���)

linear function of
ci,j , i > 0

Equivalent to imposing a parity check on c0,nh−1.
54 / 117

Imposing redundancy checks on the syndrome array

c0,nh−1 +

nh−2∑
j=0

h
(h)
rh−1,jc0,j +

nv−1∑
j=1

h
(0)
0,jsj,rh−1 = 0 .

• Extends similarly to a full row of the syndrome array (imposing the same
parity check constraint).

Equivalent to imposing parity checks on c0,nh−rh . . . c0,nh−1.

• Extends to several rows of the syndrome array (imposing a different parity
check constraint for each row). The row locations are arbitrary, except for
the last rv rows, which are already taken.

55 / 117

Imposing redundancy checks on the syndrome array

c0,nh−1 +

nh−2∑
j=0

h
(h)
rh−1,jc0,j +

nv−1∑
j=1

h
(0)
0,jsj,rh−1 = 0 .

• Extends similarly to a full row of the syndrome array (imposing the same
parity check constraint).

Equivalent to imposing parity checks on c0,nh−rh . . . c0,nh−1.

• Extends to several rows of the syndrome array (imposing a different parity
check constraint for each row). The row locations are arbitrary, except for
the last rv rows, which are already taken.

55 / 117

How to get the needed redundancy in the syndrome array

• The additional required redundancy rhrv can be placed in the rhrv
shaded entries.

• Total redundancy R′ = rvnh + rhrv (≈ rn), compared with
R = rhnv + rvnh − rhrv (≈ 2rn) in conventional product codes
(r ≪ n).

56 / 117

Decoding

• Upon receipt of a possibly corrupted nh × nv array.
• Use Ch on the rows of the main array to compute the syndrome array.
• Use C0 to locate up to rv errors in each column of the syndrome

array. This gives the locations of the corrupted rows of the main
array. Declare those rows erased.

• Use Cv to correct up to rv erasures in the columns of the main array.

57 / 117

Encoding

• Stage 1:
• Compute Cv checks for the first nh − rh columns.
• Accumulate partial Ch syndromes for the corresponding partial rows.
• Save the last 2rv rows of partial Ch syndromes.

58 / 117

Encoding

• Stage 2:
• Complete Ch syndromes for the first nv − 2rv rows.
• Compute C0 checks for the above Ch syndromes.
• Add the computed C0 checks to the saved partial syndromes from

Stage 1, and store in coded array.

59 / 117

Progressive redundancy

Additional redundancy reduction:

• Decode the columns of the syndrome array one by
one.

• Errors located in the first column can be marked
as erasures in the second column ⇒ second
column needs less redundancy.

• Similarly for the rest of the columns.

Redundancy
in syndrome
array

60 / 117

Progressive redundancy

Components:

• Ch satisfying the MDS supercode property:

6
?
j rows

MDS for all
1 ≤ j ≤ rh

Parity check
matrix of Ch

• A nested family of rh + 1
“vertical” codes

C0 ⊂ C1 ⊂ · · · ⊂ Cj ⊂ · · · ⊂ Crh = Cv .

• Redundancies of the Cj :
• rj = rv + ⌈rh/j⌉ − 1 but

not greater than 2rv.
• designed to minimize

redundancy for a given
miscorrection probability.

Total redundancy:
R′′ ≤ rvnh+rh(ln rv+O(1))+rv .

61 / 117

Redundancy summary

Scheme Redundancy
Conventional rvnh + rhnv − rhrv
Constant redundancy rvnh + rhrv
Progressive redundancy rvnh + rh(ln rv +O(1)) + rv

• Example: for a so-called “cut-off row-error channel,” with
Prob(10− row burst) = 10−3, targeting Prob(array error) = 10−17.
Parameters: nh = 96, nv = 128, rv = 10.

Scheme Redundancy
Conventional 1786 (rh = 7)
Constant redundancy 1030 (rh = 7)
Progressive redundancy 986 (rh = 8)

62 / 117

Handling random errors

• Add explicit redundancy for Ch
• handles combined burst and random errors.

63 / 117

Handling random errors

• Assumption: In addition to burst errors, we handle at most s
random errors in an array, with at most t in each row.

• Strategy:
• Increase the redundancy of Ch by 2t.
• Increase the redundancy of C0 by 2s.
• Correct rv + s errors with C0, and t errors per corrupted row with Ch.

• The increased redundancy of C0 may result in increased decoder
hardware complexity. Possible trade-offs of complexity vs.
redundancy are:
• Reduce the parameters nh and nv, to decrease the values of s, t,

and rv.
• Handle random errors with “explicit” redundancy in Ch, as in

conventional product codes.

64 / 117

	Concatentated Codes
	Concatenated codes: review
	Properties and variants
	Review: Some notation and properties
	Asymptotically good codes (in the min. distance sense)
	Construction of good concatenated codes (i)
	The Wozencraft code ensemble
	Properties of Wozencraft codes (i)
	Justesen codes
	The minimum distance of the Justesen code
	Justesen code: general case asymptotics
	Rate-minimum distance trade-off for the Justesen code
	Justesen codes—Asymptotics
	Gilbert-Varshamov revisited
	Construction of good concatenated codes (ii)
	The Zyablov bound
	Decoding of concatenated codes
	Forney's Generalized Minimum Distance Decoder (GMD)
	GMD complexity
	Concatenated codes that attain channel capacity
	Channel capacity—a (very brief) review: Converse theorem
	Channel capacity—a (very brief) review: Coding theorem
	The construction
	Bounding error probability and rate
	Summary

	Product Codes
	Product codes
	Checks on checks
	Code interleaving
	Burst correction with product codes
	A decoding strategy for bursts
	How about random errors?
	Probabilistic decoding
	Why is this scheme inefficient?
	Reference
	A coding scheme that eliminates ``redundant'' redundancy
	Using the syndrome array to locate error patterns
	How to get the needed redundancy in the syndrome array
	Review: Useful properties of GRS codes
	Imposing a redundancy check on the syndrome array
	Imposing redundancy checks on the syndrome array
	How to get the needed redundancy in the syndrome array
	Decoding
	Encoding
	Encoding
	Progressive redundancy
	Progressive redundancy
	Redundancy summary
	Handling random errors
	Handling random errors

	Polar Codes
	Discrete binary-input channels
	Symmetric binary-input channels
	A guessing game
	Extremal channels
	A thought experiment
	Just a thought experiment?
	References
	A basic transform
	Decomposition into bit channels
	First bit channel
	Second bit channel
	Double down on the construction
	Back to the N=4 case
	Case N=8
	Binary erasure channels
	Polarization
	Polarization: more examples
	So, where are the codes?
	Comparison with our thought experiment?
	Polar encoder
	Channel ordering on the BEC
	Encoding example: N = 8,K=4 on BEC(0.5)
	Successive cancellation decoding (SCD)
	Performance of SCD
	SCD issues
	A reflection on polar codes and Shannon's paradise
	Polar codes: development

