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Concatenated codes: review

▶ Let Cin be an [n, k, d] code over F = Fq (the inner code), and let Cout be
an [N,K,D] code over Φ = Fqk (the outer code).

• We focus only on linear codes.

▶ Represent Φ as vectors in F k using a fixed basis of Φ over F

message
in ΦK

K� -

�-k

encode
with Cout

K N−K
codeword in
Cout ⊆ ΦNencode

with Cin

[nN, kK]

codeword in
Ccct ⊆ FnN� -n

Cin

▶ A concatenated code Ccct is constructed by replacing each Fk-symbol in
Cout by its mapping to Fn according to Cin.
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Properties and variants

▶ Ccct has parameters [nN, kK,≥ dD] over F

▶ Cout is typically taken to be a GRS code.

▶ Variants:

• Use a different inner code
C(j)
in , j = 1, 2, . . . , N

for each coordinate of Cout.

• Product code: given C1 : [n1, k1]
and C2 : [n2, k2], a codeword in
the product code C1 × C2 is shown
in the figure.

More on this later.
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Review: Some notation and properties

• Volume of Hamming sphere of radius t in Fn,
F = GF (q).

Vq(n, t) =
t∑

i=0

(
n

i

)
(q − 1)i .

• Symmetric q-ary entropy function
Hq : [0, 1]→ [0, 1]

Hq(x) = −x logq x−(1−x) logq(1−x)+x logq(q−1) .

• Bounds on Vq(n, t)

1√
8t(1− (t/n))

·qnHq(t/n) ≤ Vq(n, t) ≤ qnHq(t/n) .

Hq(x), q = 5

x
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Asymptotically good codes (in the min. distance sense)

We seek a sequence of linear codes {Ci : [ni, ki, di]}∞i=1, with

ni
i→∞−−−→ ∞, such that
• with Ri = ki/ni, lim inf

i→∞
Ri > 0 rate bounded away from zero,

• with δi = di/ni, lim inf
i→∞

δi > 0 relative distance bounded away

from zero,
• Ci can be constructed in time polynomial in ni,
• Ci can be encoded and decoded in time polynomial in ni.

XXXXXXXz t
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Construction of good concatenated codes (i)

▶ Consider a finite field F = GF (q), its extension Φ = GF (qk), and an
element β ∈ Φ. The map

x 7→ β · x ,
acting on elements of Φ, is a linear transformation over F .

▶ Given a basis Ω = (ω1 ω2 . . . ωk) of Φ over F , this map is represented by
a k × k matrix M(β), such that if y = βx, x ∈ Φ, then

y = M(β) · x ,
where x and y are (column) vector representations of x and y,
respectively, with respect to the basis Ω, i.e., x = Ω · x and y = Ω · y.

▶ Consider the code C(β) generated by

Gβ =
[
Ik×k

∣∣ M(β)T
]
.

C(β) is an [n = 2k, k, d] code over F .
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The Wozencraft code ensemble

Definition

The Wozencraft [2k, k] code ensemble over F is the set

WF (2k, k) = { C(β) : β ∈ Φ }

▶ All nonzero codewords in C(β) are of the form [a |b] with b/a = β (a̸=0).

▶ The definition of Wozencraft codes is extended to cover lengths n,
k < n ≤ 2k by defining the [n, k] code Cβ,n as

Cβ,n = { (c1 c2 . . . cn) : (c1 c2 . . . , cn, . . . c2k) ∈ C(β) } , k < n ≤ 2k .

Definition

The Wozencraft [n, k] code ensemble over F is the set

WF (n, k)={Cβ,n : β ∈ Φ } .
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Properties of Wozencraft codes (i)

Lemma

Every nonzero word c ∈ Fn belongs to at most q2k−n codes in WF (n, k).

Proof.

For n = 2k, a nonzero word c = [a |b] can belong only to C(β) for
β = b/a (a ̸= 0), or none if a = 0. When 2k > n, c can be completed in
q2k−n ways into a word of length 2k. Each such completion belongs to
at most one code C(β). Hence, there are at most q2k−n values β such
that c ∈ Cβ,n.
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Properties of Wozencraft codes (ii)

▶ What can we say about minimum distance of Wozencraft codes? For
example, C(0) contains the word (1 0 . . . 0 0 0 . . . 0) (bad). However,

Proposition

The number of codes in WF (n, k) with minimum distance less than a
given integer d is at most q2k−n(Vq(n, d− 1)− 1).

Proof.

There are Vq(n, d− 1)− 1 nonzero words of weight less than d in Fn. By
the Lemma, each such word belongs to at most q2k−n codes in WF (n, k).
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Justesen codes

▶ Let k and n be positive integers such that k < n ≤ 2k, and write, for
convenience, Φ = {β1, β2, . . . , βqk}.

▶ Let Ej denote an encoder for Cβj ,n, and dj its minimum distance.

▶ Let Cout be a [N,K,D] extended GRS code with N = qk, K = ⌈RN⌉
for some given R ∈ (0, 1], and D = N −K + 1 > (1−R)N .

Definition

The Justesen code CJ is defined as follows

CJ =
{ (

E1(z1) | E2(z2) | . . . | EN (zN )
)

: (z1 z2 . . . zN ) ∈ Cout
}
.

▶ Like a concatenated code, but with a different inner code in each
coordinate.

▶ As with concatenated codes, the parameters are [nN, kK]. How about
the minimum distance DJ? It will not be of the form dD, because there
is no fixed d for the inner codes.
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The minimum distance of the Justesen code

▶ A codeword cmin ∈ CJ of minimum weight has at least D nonzero
sub-blocks Ej(zj).

▶ By the previous proposition, for every positive integer d, we have

DJ = wt(cmin) > d ·
(
D − q2k−nVq(n, d− 1)

)
. (♦)

▶ Example: q = 2, n = 2k. Let θ ∈ (0, 1) be such that nθ is an integer
and H2(θ) =

1
2 − ϵ, with ϵ ∈ (0, 1

2 ). Choose d = nθ + 1. Then, we have

DJ > d
(
D − Vq(n, d− 1)

)
> nθ

(
N(1−R)− 2nH(θ)

)
= nθ

(
N(1−R)− 22k(

1
2−ϵ)

)
= nθ

(
N(1−R)− 2k−nϵ

)
= nNθ

(
1−R− o(1)

)
. (recall N = 2k)

Therefore, CJ has rate RJ = 1
2R > 0 and relative

distance δJ = DJ

nN = θ(1−R)− o(1) > 0.

XXXXXXzWe’ve got constructive,
asymptotically good codes!
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Justesen code: general case asymptotics

DJ = wt(cmin) > d ·
(
D − q2k−nVq(n, d− 1)

)
. (♦)

▶ To study the asymptotic trade-off RJ vs. δJ in the general case, write
r = k/n, and let θ be a real number (function) satisfying

θ = H−1
q (1− r − ϵ(n)) ,

where

lim
n→∞

ϵ(n) = 0 and lim
n→∞

n ϵ(n) = ∞ (e.g., ϵ(n) = logn/n).

▶ Selecting d = ⌈θn⌉ in (♦), and recalling that Vq(n, t) ≤ qnHq(t/n) and
N = qk = qrn, we obtain

DJ > θn ·
(
(1−R)N − q(2r−1)n · qnHq(θ)

)
= θnN

(
(1−R)− qn(r−1+Hq(θ))

)
= θnN

(
(1−R)− qnϵ(n)

)
=⇒ δJ =

DJ

nN
> θ (1−R− o(1)) .

▶ For the rate RJ of CJ, we have

RJ ≥ rR =
(
1− Hq(θ)− ϵ(n))R = (1− Hq(θ)− o(1)

)
R .
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Rate-minimum distance trade-off for the Justesen code

δJ > θ (1−R− o(1)), RJ ≥ (1− Hq(θ)− o(1)
)
R .

We can maximize the rate over θ, for a given δJ (setting R ≈ 1− δ
θ
).

Notice, however, that the rates of the Wozencraft codes must be in the interval
[ 1
2
, 1), so we must have θ ≤ H−1

q ( 1
2
). [q=2 : θ ≤ θ0 ≈ 0.1100]

• We obtain the lower bound RJ ≥ R̄J(δ, q)− o(1)

R̄J(δ, q) = max
θ∈[δ,H−1

q ( 1
2
)]

(
1− Hq(θ)

)(
1− δ

θ

)
(note that for δ = H−1

q ( 1
2
) we get RJ(δ, q) = 0).

R̄J (δJ = 0.02)

θ

Example

For q = 2 we find, numerically, δ0(2) ≈ 0.0439, R̄J(δ0(2), 2) ≈ 0.3005 .

• When δ > δ0(q), the maximum is obtained at θ = H−1
q ( 1

2
), and the bound

becomes R̄J(δ, q) =
1
2

(
1− δ

H−1
q (

1
2
)

)
, a straight line.
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Justesen codes—Asymptotics
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Justesen codes—Asymptotics

� -

How about δ ≥ H−1q (1
2
)?
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Gilbert-Varshamov revisited

Theorem (Asymptotic Gilbert-Varshamov bound)

Let F = GF (q) and n and nr be positive integers with r ∈ [0, 1]. There exist a
linear [n, nr,≥ δn] code CGV over F with

δ = H−1
q (1− r) .

The code CGV is constructed by building a parity-check matrix
H = [h1 h2 . . .hi . . .] column by column, according to the following rule:

Choose hi+1 among columns that are not linear combinations of ⌈δn⌉ − 2
columns from {h1 h2 . . .hi}.

The number of the linear combinations to check is
O(Vq(n− 1, ⌈δn⌉ − 2)) = qn(Hq(δ)−o(1)) =⇒ construction of H takes time
exponential in n for each fixed δ.

Exponential in n is polynomial in qrn.
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Construction of good concatenated codes (ii)

▶ We use CGV as the inner code Cin, concatenated with an [N = qrn,K,D]
extended primitive GRS code over Φ = GF (qrn) as Cout. Here, K = RN and
D > (1−R)N for some real R ∈ (0, 1).

• The parameters of Ccct are given by

ncct = nN = nqn(1−Hq(δ)),

kcct = (1− Hq(δ))R · nN,

dcct ≥ δ(1−R) · nN .

• The length of Ccct can be
arbitrarily large.

• The rate and relative minimum
distance satisfy

Rcct = (1− Hq(δ))R ,

δcct ≥ δ(1−R) .

▶ Given a designed relative minimum distance δcct ∈ (0, 1− q−1), we can
maximize Rcct over δ and R, subject to δ(1−R) ≤ δcct. This yields

Zyablov bound

Rcct ≥ RZ(δcct, q) = max
δ∈[δcct,1−(1/q)]

(
1− Hq(δ)

)(
1− δcct

δ

)
.
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The Zyablov bound

Rcct ≥ RZ(δcct, q) = max
δ∈[δcct,1−(1/q)]

(
1− Hq(δ)

)(
1− δcct

δ

)
.

Zyablov and Justesen bounds for q = 2

The bounds coincide for δ ≤ δ0

Zyablov bound for q = 2 • The Zyablov bound is inferior to
the GV bound.

• However, a generator matrix for a
code Ccct achieving the bound can
be constructed in time polynomial
in ncct.

• A parity check matrix for
CGV can be constructed in
time
O (Vq(n− 1, ⌈δn⌉ − 2)) =
O(ncct

(1/r)−1), where
r = 1− Hq(δ).

• A matrix for the GRS code is
also easily built.
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Decoding of concatenated codes

Minimum distance is dD. Can we decode up to ⌊(dD − 1)/2⌋ errors?

▶ Suppose that a codeword

c = (c1 | c2 | . . . | cN ) ∈ Ccct

was transmitted through a noisy channel, and

y = (y1 |y2 | . . . |yN ) ∈ FnN

was received, where yj ∈ Fn, j = 1, 2, . . . , N , and assume
d(y, c) < dD/2 (as words in FnN ).

▶ Suppose also that we have a nearest codeword decoder Din for Cin.
▶ Let

ĉj = Din(yj) , and ẑj = E−1
in (ĉj) , j = 1, 2, . . . , N .
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Decoding of concatenated codes (ii)

▶ The following decoding strategy is parametrized by µ ∈ {1, 2, . . . , ⌈d/2⌉}.

• Compute x = x(µ) = (x1 x2 . . . xN ) ∈ (Φ ∪ {?} )N , with

xj =

{
ẑj if d(yj , ĉj) < µ

? (erasure) otherwise
(††)

• Use an errors+erasures decoder Dout for Cout on x, obtaining a decoded
word ĉ ∈ Cout, or a fail indicator.

The parameter µ is a threshold that Din utilizes to determine whether to
attempt correction of a corrupted codeword or declare it erased.

▶ Let ρµ and τµ denote, respectively, the number of erasures in x(µ) and of
non-erased locations j where xj ̸= E−1

in (cj).
Dout will reconstruct the original codeword c ∈ Cout if

2τµ + ρµ < D . (∗)

We will prove that there exists µ ∈ {1, 2, . . . , ⌈d/2⌉} such that (∗) holds
whenever the total number of errors is T ≤ ⌊(dD − 1)/2⌋.
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Decoding of concatenated codes (iii)

▶ Define, for µ ∈ {1, 2, . . . , ⌈d/2⌉},

χj(µ) =


0 if ĉj = cj and d(yj , ĉj) < µ

1 if ĉj ̸= cj and d(yj , ĉj) < µ

1
2 if d(yj , ĉj) ≥ µ

.

A “decoding
penalty” for the
jth block given
the threshold µ.

▶ It is readily verified that

2τµ + ρµ = 2

N∑
j=1

χj(µ) .

▶ Define the probability measure on µ

Pµ (µ = x) =

{
2/d if x ∈ {1, 2, . . . , ⌊d/2⌋}
1/d if d is odd and x = ⌈d/2⌉ .
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Decoding of concatenated codes (iv)

Lemma

For every j ∈ {1, 2, . . . , N},
Eµ {χj(µ)} ≤ d(yj , cj)

d
.
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Decoding of concatenated codes (iv)

χj(µ)=


0 ĉj=cj , d(yj , ĉj)<µ
1 ĉj ̸=cj , d(yj , ĉj)<µ
1
2

d(yj , ĉj)≥µ
,

Pµ(x) =

{
2/d 1≤x≤⌊d/2⌋
1/d d odd, x=⌈d/2⌉ ,

1 ≤ µ ≤ ⌈d/2⌉.

Proof.

Case 1: ĉj = cj or wj ≜ d(yj , ĉj) ≥ d/2. Here, χj(µ) takes either the value 0
(when µ > wj) or

1
2
(when µ ≤ wj), never the value 1. We have

Eµ {χj(µ)} = 1
2
Pµ {µ ≤ wj} ≤

wj

d

def
=

d(yj , ĉj)

d

MLD

≤ d(yj , cj)

d
.

Case 2: ĉj ̸= cj and wj < d/2. Here, χj(µ) takes the value 1 (when µ > wj),
or 1

2
(when µ ≤ wj), never the value 0. We have

Eµ {χj(µ)} = 1
2
Pµ {µ ≤ wj}+ Pµ {µ > wj} = 1− 1

2

wj<
d
2
⇒ all= 2

d︷ ︸︸ ︷
Pµ {µ ≤ wj}

= 1− wj

d
=

d− d(yj , ĉj)

d

triangle

≤ d(yj , cj)

d
. ryj r ĉj

r
�

�
@
@

cj

≥ d
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Decoding of concatenated codes (v)

Theorem

There exists µ∈{1, 2, . . . , ⌈d/2⌉} such that 2τµ + ρµ < D.
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Decoding of concatenated codes (v)

Theorem

There exists µ∈{1, 2, . . . , ⌈d/2⌉} such that 2τµ + ρµ < D.

Proof.

Taking expected values of both sides of 2τµ + ρµ = 2
∑N

j=1 χj(µ) we obtain

Eµ {2τµ + ρµ} = 2

N∑
j=1

Eµ {χj(µ)} .

By the Lemma, we have

2
N∑

j=1

Eµ {χj(µ)} ≤
2

d

N∑
j=1

d(yj , cj) =
2 d(y, c)

d
< D .

Combining the last two equations we obtain

Eµ {2τµ + ρµ} < D .

⇒ There must be at least one µ ∈ {1, 2, . . ., ⌈d/2⌉} for which 2τµ+ρµ<D.
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Forney’s Generalized Minimum Distance Decoder (GMD)

Input: received word y = (y1 |y2 | . . . |yN ) ∈ FnN .
Output: codeword c ∈ Ccct or a decoding-failure indicator fail.

1 For j = 1, 2, . . . , N do:
• apply a nearest-codeword decoder for Cin to yj to produce ĉj ∈ Cin,

corresponding to zj = E−1
in (ĉj) ∈ Φ.

2 For µ = 1, 2, . . . , ⌈d/2⌉ do:
(a) let x(µ) = (x1 x2 . . . xN ) (Φ ∪ {?})N be as defined in (††),

and let ρµ ← |{j : xj = ?}| // number of erasures in x(µ)

(b) apply an error-erasure decoder for Cout to recover ρµ erasures and
correct up to τµ = ⌊ 1

2
(D−1−ρµ)⌋ errors in x, producing either a

codeword
(z1 z2 . . . zN ) ∈ Cout , or fail ;

(c) if decoding is successful in Step b then do:

(i) let c← (Ein(z1) Ein(z2) . . . Ein(zN ));

(ii) if d(y, c) < dD/2 then output c and exit.

3 If no codeword c was produced in Step c then return fail.
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GMD complexity

▶ Step 1: Brute-force search for closest codeword takes
O(n|Φ|) = O(nqk). When N ≈ qk (e.g. primitive RS codes), this is
O(nN) per block yj , or overall O(nN2).

▶ Step 2: Assuming a GRS code is used, Step 2b has complexity
O(ND) = O(N2). Overall for Step 2: O(dN2) = O(nN2).
=⇒ overall complexity is O(nN2).

▶ Improvements:

• Step 1 can be done with a syndrome look-up table of size O(nqn−k)
in time O(nN).

• Further speed-up is possible by noticing that since µ < d/2, only
(d− 1)/2 decoding is required for Cin. Cin can be chosen as a code
with an efficient decoding algorithm (e.g., Hamming, Golay, BCH,
alternant).

• Step 2 for GRS codes can be accelerated to (n3N log2 N log logN).
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Concatenated codes that attain channel capacity

▶ We will show that it is possible to approach the capacity of the q-ary
symmetric channel (QSC) with linear concatenated codes that

• can be constructed, deterministically, in polynomial time
• can be encoded and decoded in polynomial time
• achieve an exponentially decaying probability of decoding error
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Channel capacity—a (very brief) review: Converse theorem

Theorem (Shannon Converse Coding Theorem for the q-ary symmetric
channel)

Let C be an (n, qnR) code over F where n and nR are integers such that
Cq(p) < R ≤ 1, and let D : Fn → C ∪ {’E’} be a decoder for C over a
q-ary symmetric channel with cross-over probability p. Then the decoding
error probability Perr of D satisfies

Perr ≥ 1− q−n(Dq(θq(R)∥p)−o(1)) ,

where
θq(R) = H−1

q (1−R) .

▶ Dq(θ|p) ≜ θ logq(
θ
p ) + (1− θ) logq(

1−θ
1−p ) is the (information) divergence

or Kullback-Liebler distance of θ with respect to p (positive if θ ̸= p).

▶ Notice that θq(R) = C−1
q (R).

▶ The theorem says that communication is impossible at rates above the
channel capacity.
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Channel capacity—a (very brief) review: Coding theorem

Theorem (Shannon Coding Theorem for linear codes over the q-ary
symmetric channel)

Let n and nR be integers such that R < 1− Hq(p) and let Perr(C)
denote the average of Perr(C), under MLD, over all linear [n, nR] codes C
over F . Then,

Perr(C) < 2q−nEq(p,R) ,

where
Eq(p,R) = 1− Hq(θ

∗
q (p,R))−R

and
θ∗q (p,R) =

logq(1−p) + 1−R

logq(1−p)− logq(p/(q−1))
.

Corollary

For every ρ ∈ (0, 1], all but a fraction at most ρ of the linear [n, nR]
codes C over F satisfy

Perr(C) < (1/ρ) · 2q−nEq(p,R) .
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The construction

▶ We construct a linear concatenated code Ccct.
▶ Choose, as inner code Cin, an [n, nr] code C over F = GF (q), with

r < 1− Hq(p)

and such that the decoding error probability satisfies

Perr(C) < 4q−nEq(p,r)

where Eq(p, r) is the exponent in Shannon’s Coding Theorem for linear
codes (we sacrifice some error probability to allow for computations with
reduced precision—linear in n).

▶ Let N0(n, r, q) denote an upper bound on the number of operations over
F required to construct C.
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The construction (ii)

▶ Use, as outer code, a linear concatenated code Cout of length N over
Φ = GF (qrn), where N ≥ max{N0, q

rn}. Furthermore, let Cout attain
Zyablov’s bound, and assume its minimum distances satisfies
Dout ≥ ⌈δN⌉ for some real parameter δ ∈ [0, 1] (we will determine a
relation between r and δ later on).

▶ Given δ, the rate R of Cout is lower-bounded by

R ≥ RZ(δ, q
rn)

(the choice of δ will be such that R is close to 1).

▶ We will skip the analysis of the encoding complexity, and go directly to
decoding (more interesting). The gory details are in Roth (2005).

▶ Let
y = (y1 |y2 | . . . |yN ) ∈ FnN

be the received word, where each yj ∈ Fn.
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The construction (iii)

Decoder for Ccct

1 Apply a nearest-codeword decoder for Cin = C to each sub-block yj

to produce a codeword ĉj of C.

2 Apply a GMD decoder for Cout to correct up to ⌈δN/2⌉ errors in the
word

(E−1(ĉ1) | E−1(ĉ2) | . . . | E−1(ĉN )) ∈ ΦN

(note that ⌈δN/2⌉ − 1 = ⌊(⌈δN⌉ − 1)/2⌋, and recall that
Dout ≥ ⌈δN⌉).

▶ As before, the decoding operation can be done in time O((nN)2)
(actually less).
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Bounding error probability and rate

▶ Error probability: Decoding will fail only if τ = ⌈δN/2⌉ or more of the
sub-blocks yj are decoded incorrectly by a nearest-codeword decoder for C. For
each sub-block, this probability is P = Perr(C). Hence, recalling that the
channel is memoryless, we can write

Perr(Ccct) ≤
N∑

i=τ

(
N
i

)
P i(1−P )N−i

≤
N∑

i=τ

(
N
i

)
P i ≤ P τ

N∑
i=τ

(
N
i

)
≤ 2N · P τ ≤ 2N · PNδ/2 < 4Nq−NnEq(p,r)δ/2

≤ q−nN(Eq(p,r)δ/2−o(1)) . (∗)

P < 4q−nEq(p,r)

�
�

�
�+
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Bounding error probability and rate (ii)

▶ Rate: It can be shown that

RZ(δ, q
rn) = (1−

√
δ)2 − o(1)/r ,

and, therefore,

Rcct ≥ rR ≥ r · (1−
√
δ)2 − o(1) . (∗∗)

▶ Error (from previous slide):

Perr(Ccct) ≤ q−nN(Eq(p,r)δ/2−o(1)) . (∗)

▶ Given a designed rate R < 1− Hq(p), we select the rate r of Cin so that
R ≤ r ≤ 1− Hq(p) and set δ to

δ = (1−
√
R/r)2 .

Therefore, from (∗∗), we have Rcct ≥ R− o(1), while the error exponent
in (∗) satisfies

−
logq Perr(Ccct)

nN
≥ 1

2Eq(p, r)(1−
√
R/r)2 − o(1) .
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Bounding error probability and rate (iii)

▶ By maximizing over r we obtain

−
logq Perr(Ccct)

nN
≥ E∗

q (p,R)− o(1) ,

where
E∗

q (p,R) = max
R≤r≤1−Hq(p)

1
2Eq(p, r)(1−

√
R/r)2 .

In particular, E∗
q (p,R) > 0 whenever R < 1− Hq(p).
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Summary

Theorem

Let F = GF(q) and fix a crossover probability p ∈ [0, 1−(1/q)) of a QSC. For
every R < 1− Hq(p) there exists an infinite sequence of linear concatenated
codes C1, C2, · · · , Ci, · · · over F such that the following holds.

(i) Each code Ci is a linear [ni, ki] code over F and the values ni and ki can
be computed from R, q, and i in time complexity that is polynomially
large in the length of the bit representations of R, q, i, and ni.

(ii) The code rates ki/ni satisfy

lim inf
i→∞

ki
ni
≥ R .

(iii) A generator matrix of Ci can be constructed in time O(n2
i ), and can be

used to encode also in time O(n2
i ).

(iv) There is a decoder for Ci whose time complexity is O(n2
i ) and its

decoding error probability Perr(Ci) satisfies

− lim inf
i→∞

1

ni
logq Perr(Ci) ≥ E∗

q (p,R) > 0 .
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