
AIJ special issue on relevanceWrappers for Feature Subset SelectionRon KohaviData Mining and VisualizationSilicon Graphics, Inc.2011 N. Shoreline BlvdMountain View, CA 94043-1389ronnyk@sgi.com George H. JohnComputer Science DepartmentStanford UniversityStanford, CA 94305gjohn@CS.Stanford.EDUhttp://robotics.stanford.edu/~fronnyk,gjohngAugust 14, 1996AbstractIn the feature subset selection problem, a learning algorithm is faced with the problem of selectinga relevant subset of features upon which to focus its attention, while ignoring the rest. To achieve thebest possible performance with a particular learning algorithm on a particular domain, a feature subsetselection method should consider how the algorithm and the training data interact. We explore therelation between optimal feature subset selection and relevance. Our wrapper method searches for anoptimal feature subset tailored to a particular algorithm and a domain. We study the strengths andweaknesses of the wrapper approach and show improvements over the original design. We compare thewrapper approach to induction without feature subset selection and to Relief, a �lter-based approach tofeature subset selection. Signi�cant improvement in accuracy on real problems is achieved for the twofamilies of induction algorithms used: decision trees and Naive-Bayes.



1 IntroductionA universal problem that all intelligent agents must face is where to focus their attention. A problem-solvingagent must decide which aspects of a problem are relevant, an expert-system designer must decide whichfeatures to use in rules, and so forth. Any learning agent must learn from experience, and discriminatingbetween the relevant and irrelevant parts of its experience is a ubiquitous problem.In supervised machine learning, an induction algorithm is typically presented with a set of traininginstances where each instance is described by a vector of feature (or attribute) values, and a class label. Forexample, in medical diagnosis problems the features might include the age, weight, and blood pressure ofa patient, and the class label might indicate whether or not a physician determined that the patient wassu�ering from heart disease. The task of the induction algorithm, or the inducer, is to induce a classi�erthat will be useful in classifying future cases. The classi�er is a mapping from the space of feature values tothe set of class values.In the feature subset selection problem, a learning algorithm is faced with the problem of selecting somesubset of features upon which to focus its attention, while ignoring the rest. In the wrapper approachproposed by John, Kohavi & Peger (1994), the feature subset selection algorithm exists as a wrapperaround the induction algorithm. The feature subset selection algorithm conducts a search for a good subsetusing the induction algorithm itself as part of the function evaluating feature subsets. The idea behind thewrapper approach, shown in Figure 1, is simple: the induction algorithm is considered as a black box. Theinduction algorithm is run on the dataset, usually partitioned into internal training and holdout sets, withdi�erent sets of features removed from the data. The feature subset with the highest estimated value ischosen as the �nal set on which to run the induction algorithm. The resulting classi�er is then evaluated onan independent test set that was not used during the search.Since the typical goal of supervised learning algorithms is to maximize classi�cation accuracy on anunseen test set, we have adopted this as our goal in guiding the feature subset selection. Instead of tryingto maximize accuracy, we might instead have tried to identify which feature were relevant, and use onlythose features during learning. One might think that these two goals were equivalent, but we show severalexamples of problems where they di�er.This paper is organized as follows. In Section 2, we review the feature subset selection problem, investigatethe notion of relevance, de�ne the task of �nding optimal features, and describe the �lter and wrapperapproaches. In Section 3, we investigate the search engine used to search for feature subsets and show thatgreedy search (hill-climbing) is inferior to best-�rst search. In Section 4, we modify the organization of thesearch space to improve the running time. Section 5 contains a global comparison of the best methods found.In Section 6, we discuss one potential problem in the approach, over�tting, and suggest a theoretical modelthat generalizes the problem in Section 7. Related work is given in Section 8, future work is discussed inSection 9, and we conclude with a summary in Section 10.2 Feature Subset SelectionIf variable elimination has not been sorted out after two decades of workassisted by high-speed computing, then perhaps the time has come to moveon to other problems.|R. L. Plackett, discussion in Miller (1984)In this section, we look at the problem of �nding a good feature subset and its relation to the setof relevant features. We show problems with existing de�nitions of relevance, and show how partitioningrelevant features into two families, weak and strong, helps us understand the issue better. We examine twogeneral approaches to feature subset selection: the �lter approach and the wrapper approach, and we theninvestigate each in detail.2.1 The ProblemPractical machine learning algorithms, including top-down induction of decision tree algorithms such asID3 (Quinlan 1986), C4.5 (Quinlan 1993), and CART (Breiman, Friedman, Olshen & Stone 1984), andinstance-based algorithms, such as IBL (Dasarathy 1990, Aha, Kibler & Albert 1991), are known to degrade1
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Figure 1: The wrapper approach to feature subset selection. The induction algorithm is used as a \blackbox" by the subset selection algorithm.in performance (prediction accuracy) when faced with many features that are not necessary for predictingthe desired output. Algorithms such as Naive-Bayes (Langley, Iba & Thompson 1992, Duda & Hart 1973,Good 1965) are robust with respect to irrelevant features (i.e., their performance degrades very slowly asmore irrelevant features are added) but their performance may degrade fast if correlated (even if relevant)features are added.For example, running C4.5 in default mode on the Monk1 problem (Thrun et al. 1991), which hasthree irrelevant features, generates a tree with 15 interior nodes, �ve of which test irrelevant features. Thegenerated tree has an error rate of 24.3%, which is reduced to 11.1% if only the three relevant featuresare given. Aha (1992) noted that \IB3's storage requirement increases exponentially with the number ofirrelevant attributes" (IB3 is a nearest-neighbor algorithm that attempts to save only important prototypes).Performance likewise degrades rapidly with irrelevant features.The problem of feature subset selection is that of �nding a subset of the original features of a dataset, suchthat an induction algorithm that is run on data containing only these features generates a classi�er with thehighest possible accuracy. Note that feature subset selection chooses a set of features from existing features,and does not construct new ones; there is no feature extraction or construction (Kittler 1986, Rendell &Seshu 1990).From a purely classi�cation-theoretical standpoint, the question of which features to use is not of muchinterest. A Bayes rule, or a Bayes classi�er, is a rule that predicts the most probable class for a giveninstance, based on the full distribution D (assumed to be known). The accuracy of the Bayes rule is thehighest possible accuracy, and it is mostly of theoretical interest. The optimal Bayes rule is monotonic, i.e.,adding features cannot decrease accuracy, and hence restricting a Bayes rule to a subset of features is neveradvised.In learning scenarios, however, we are face with two problems: the learning algorithms are not givenaccess to the underlying distribution, and most practical algorithms attempt to �nd a hypothesis by approx-imating NP-hard optimization problems. The �rst problem is closely related to the bias-variance tradeo�(Geman, Bienenstock & Doursat 1992, Kohavi 1995b): one must tradeo� estimation of more parameters(bias reduction) with accurately estimating these parameters (variance reduction). This problem is inde-pendent of the computational power available to the learner. The second problem, that of �nding a \best"hypothesis, is usually intractable and thus poses an added computational burden. For example, decisiontree induction algorithms usually attempt to �nd a small tree that �ts the data well, yet �nding the optimalbinary decision tree is NP-hard (Hya�l & Rivest 1976, Hancock 1989). For neural-networks, the problem iseven harder; the problem of loading a three-node neural network with a training set is NP-hard if the nodescompute linear threshold functions (Judd 1988, Blum & Rivest 1992).Because of the above problems, we de�ne an optimal feature subset with respect to a particular inductionalgorithm, taking into account its heuristics, biases, and tradeo�s. The problem of feature subset selectionis then reduced to the problem of �nding an optimal subset.2



De�nition 1Given an inducer I, and a dataset D with features X1; X2; : : : ; Xn, from a distribution D over the labeledinstance space, an optimal feature subset, ~Xopt, is a subset of the features such that the accuracy of theinduced classi�er C = I(D) is maximal.An optimal feature subset need not be unique because it may be possible to achieve the same accuracyusing di�erent sets of features (e.g., when two features are perfectly correlated, one can be replaced by theother).By de�nition, to get the highest possible accuracy, the best subset that a feature subset selection algorithmcan select is an optimal feature subset. The main problem with using this de�nition in learning algorithmsis that the algorithm does not have access to the underlying distribution and must estimate the classi�er'saccuracy from the data.2.2 Relevance of FeaturesOne important question is the relation between optimal features and relevance. In this section, we presentde�nitions of relevance that have been suggested in the literature. We then show a single example wherethe de�nitions give unexpected answers, and we suggest that two degrees of relevance are needed: weak andstrong.Existing De�nitionsAlmuallim& Dietterich (1991, p. 548) de�ne relevance under the assumptions that all features and the labelare Boolean and that there is no noise.De�nition 2A feature Xi is said to be relevant to a concept C if Xi appears in every Boolean formula that represents Cand irrelevant otherwise.Gennari, Langley & Fisher (1989, Section 5.5) allow noise and multi-valued features and de�ne relevance as1De�nition 3Xi is relevant i� there exists some xi and y for which p(Xi = xi) > 0 such thatp(Y = y j Xi = xi) 6= p(Y = y) :Under this de�nition, Xi is relevant if knowing its value can change the estimates for the class label Y , or inother words, if Y is conditionally dependent on Xi. Note that this de�nition fails to capture the relevanceof features in the parity concept where all unlabeled instances are equiprobable, and it may therefore bechanged as follows.Let Si = fX1; : : : ; Xi�1; Xi+1; : : : ; Xmg, the set of all features except Xi. Denote by si a value-assignmentto all features in Si.De�nition 4Xi is relevant i� there exists some xi, y, and si for which p(Xi = xi) > 0 such thatp(Y = y; Si = si j Xi = xi) 6= p(Y = y; Si = si) :Under the following de�nition, Xi is relevant if the probability of the label (given all features) can changewhen we eliminate knowledge about the value of Xi.De�nition 5Xi is relevant i� there exists some xi, y, and si for which p(Xi = xi; Si = si) > 0 such thatp(Y = y j Xi = xi; Si = si) 6= p(Y = y j Si = si) :3



De�nition Relevant IrrelevantDe�nition 2 X1 X2; X3; X4; X5De�nition 3 None AllDe�nition 4 All NoneDe�nition 5 X1 X2; X3; X4; X5Table 1: Feature relevance for the Correlated XOR problem under the four de�nitions.The following example shows that all the de�nitions above give unexpected results.Example 1 (Correlated XOR) Let features X1; : : : ; X5 be Boolean. The instance space is such that X2and X3 are negatively correlated with X4 and X5, respectively, i.e., X4 = X2, X5 = X3. There are onlyeight possible instances, and we assume they are equiprobable. The (deterministic) target concept isY = X1 � X2 (� denotes XOR) :Note that the target concept has an equivalent Boolean expression, namely, Y = X1 � X4. The featuresX3 and X5 are irrelevant in the strongest possible sense. X1 is indispensable, and either but not both offX2; X4g can be disposed of. Table 1 shows for each de�nition, which features are relevant, and which arenot.According to De�nition 2, X3 and X5 are clearly irrelevant; both X2 and X4 are irrelevant because eachcan be replaced by the negation of the other. By De�nition 3, all features are irrelevant because for anyoutput value y and feature value x, there are two instances that agree with the values. By De�nition 4, everyfeature is relevant because knowing its value changes the probability of four of the eight possible instancesfrom 1/8 to zero. By De�nition 5, X3 and X5 are clearly irrelevant, and both X2 and X4 are irrelevantbecause they do not add any information to S4 and S2, respectively.Although such simple negative correlations are unlikely to occur, domain constraints create a similare�ect. When a nominal feature such as color is encoded as input to a neural network, it is customary to usea local encoding, where each value is represented by an indicator feature. For example, the local encodingof a four-valued nominal fa; b; c; dg would be f0001; 0010; 0100;1000g. Under such an encoding, any singleindicator feature is redundant and can be determined by the rest. Thus most de�nitions of relevance willdeclare all indicator features to be irrelevant.Strong and Weak RelevanceWe now claim that two degrees of relevance are required: weak and strong. Relevance should be de�ned interms of a Bayes classi�er|the optimal classi�er for a given problem. A feature X is strongly relevantif removal of X alone will result in performance deterioration of an optimal Bayes classi�er. A feature Xis weakly relevant if it is not strongly relevant and there exists a subset of features, S, such that theperformance of a Bayes classi�er on S is worse than the performance on S[fXg. A feature is irrelevant ifit is not strongly or weakly relevant.De�nition 5 repeated below de�nes strong relevance. Strong relevance implies that the feature is indis-pensable in the sense that it cannot be removed without loss of prediction accuracy. Weak relevance impliesthat the feature can sometimes contribute to prediction accuracy.De�nition 5 (Strong relevance)A feature Xi is strongly relevant i� there exists some xi, y, and si for which p(Xi = xi; Si = si) > 0 suchthat p(Y = y j Xi = xi; Si = si) 6= p(Y = y j Si = si) :1The de�nition given is a formalization of their statement: \Features are relevant if their values vary systematically withcategory membership." In general, the de�nitions given here are only applicable to discrete features, but can be extended tocontinuous features by changing p(X = x) to p(X � x). 4



De�nition 6 (Weak relevance)A feature Xi is weakly relevant i� it is not strongly relevant, and there exists a subset of features S0i of Sifor which there exists some xi, y, and s0i with p(Xi = xi; S0i = s0i) > 0 such thatp(Y = y j Xi = xi; S0i = s0i) 6= p(Y = y j S0i = s0i) :A feature is relevant if it is either weakly relevant or strongly relevant; otherwise, it is irrelevant.In Example 1, feature X1 is strongly relevant; features X2 and X4 are weakly relevant; and X3 and X5are irrelevant.2.3 Relevance and Optimality of FeaturesA Bayes classi�er must use all strongly relevant features (the core), and possibly some weakly relevantfeatures. Classi�ers induced from data, however, are likely to be suboptimal, as they have no access to theunderlying distribution; furthermore, they may be using restricted hypothesis spaces that cannot utilize allfeatures (see example below). Practical induction algorithms that generate classi�ers may bene�t from theomission of features, including strongly relevant features. Relevance of a feature does not imply that it is inthe optimal feature subset and, somewhat surprisingly, irrelevance does not imply that it should not be inthe optimal feature subset (Example 3).Example 2 (Relevance does not imply optimality) Let the universe of possible instances be f0; 1g3,that is, three Boolean features, sayX1; X2; X3. Let the distribution over the universe be uniform, and assumethe target concept is f(X1; X2; X3) = (X1 ^ X2) _ X3. Under any reasonable de�nition of relevance, allfeatures are relevant to this target function.If the hypothesis space is the space of monomials, i.e., conjunctions of literals, the only optimal featuresubset is fX3g. The accuracy of the monomial X3 is 87:5%, the highest accuracy achievable within thishypothesis space. Adding another feature will decrease the accuracy.The example above shows that relevance (even strong relevance) does not imply that a feature is in anoptimal feature subset. Another example is given in Section 3.2, where hiding features from ID3 improvesperformance even when we know they are strongly relevant for an arti�cial target concept (Monk3). Anotherquestion is whether an irrelevant feature can ever be in an optimal feature subset. The following exampleshows that this may be true.Example 3 (Optimality does not imply relevance) Assume there exists a feature that always takesthe value one. Under all the de�nitions of relevance described above, this feature is irrelevant. Now considera limited Perceptron classi�er (Rosenblatt 1958, Minsky & Papert 1988) that has an associated weight witheach feature and then classi�es instances based upon whether the linear combination is greater than zero(the threshold is �xed at zero). (Contrast this with a regular Perceptron that classi�es instances dependingon whether the linear combination is greater than some threshold, not necessarily zero.) Given this extrafeature that is always set to one, the limited Perceptron is equivalent in representation power to the regularPerceptron. However, removal of irrelevant features would remove that crucial feature.In Section 4, we show an interesting problem with using any �lter approach with Naive-Bayes. One of thearti�cial datasets (m-of-n-3-7-10) represents a symmetric target function, implying that all features shouldbe ranked equally by any �ltering method. However, Naive-Bayes improves if a single feature (any one ofthem) is removed.We believe that cases such as those depicted in Example 3 are rare in practice and that irrelevant featuresshould generally be removed. However, it is important to realize that relevance according to these de�nitionsdoes not imply membership in the optimal feature subset, and that irrelevance does not imply that a featurecannot be in the optimal feature subset. 5
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InductionFigure 2: The feature �lter approach, in which the features are �ltered independently of the inductionalgorithm.2.4 The Filter ApproachThere are a number of di�erent approaches to subset selection. In this section, we review existing approachesin machine learning. We refer the reader to Section 8 for related work in Statistics and pattern recognition.The reviewed methods for feature subset selection follow the �lter approach and attempt to assess the meritsof features from the data, ignoring the induction algorithm.The �lter approach, shown in Figure 2, selects features using a preprocessing step. The main disadvantageof the �lter approach is that it totally ignores the e�ects of the selected feature subset on the performanceof the induction algorithm. We now review some existing algorithms that fall into the �lter approach.The FOCUS AlgorithmThe FOCUS algorithm (Almuallim & Dietterich 1991, Almuallim & Dietterich 1994), originally de�ned fornoise-free Boolean domains, exhaustively examines all subsets of features, selecting the minimal subset offeatures that is su�cient to determine the label value for all instances in the training set. This preferencefor a small set of features is referred to as the MIN-FEATURES bias.This bias has severe implications when applied blindly without regard for the resulting induced concept.For example, in a medical diagnosis task, a set of features describing a patient might include the patient'ssocial security number (SSN). (We assume that features other than SSN are su�cient to determine thecorrect diagnosis.) When FOCUS searches for the minimum set of features, it will pick the SSN as the onlyfeature needed to uniquely determine the label2. Given only the SSN, any induction algorithm is expectedto generalize very poorly.The Relief AlgorithmThe Relief algorithm (Kira & Rendell 1992a, Kira & Rendell 1992b, Kononenko 1994) assigns a \relevance"weight to each feature, which is meant to denote the relevance of the feature to the target concept. Reliefis a randomized algorithm. It samples instances randomly from the training set and updates the relevancevalues based on the di�erence between the selected instance and the two nearest instances of the same andopposite class (the \near-hit" and \near-miss"). The Relief algorithm attempts to �nd all weakly relevantfeatures:Relief does not help with redundant features. If most of the given features are relevant to theconcept, it would select most of them even though only a fraction are necessary for conceptdescription (Kira & Rendell 1992a, page 133).In real domains, many features have high correlations with the label, and thus many are (weakly) relevant,and will not be removed by Relief. In the simple parity example used in (Kira & Rendell 1992a, Kira& Rendell 1992b), there were only strongly relevant and irrelevant features, so Relief found the stronglyrelevant features most of the time. While nearest-neighbors are not hurt much by weakly relevant features,Naive-Bayes is a�ected (e.g., if a feature is replicated it will a�ect the posterior twice). The Relief algorithmwas motivated by nearest-neighbors and it is good speci�cally for similar types of induction algorithms.In preliminary experiments, we found signi�cant variance in the relevance rankings given by Relief.Since Relief randomly samples instances and their neighbors from the training set, the answers it gives areunreliable without a very high number of samples, on the order of two to three times the number of cases in2This is true even if SSN is encoded in 30 binary features as long as more than 30 other binary features are required todetermine the diagnosis. Speci�cally, two real-valued attributes, each one with 16 bits of precision, will be inferior under thisscheme. 6
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Table 2: Summary of datasets. Datasets above the horizontal line are \real" and those below are arti�cial.CV indicates ten-fold cross-validation.no. Dataset Features no. Train Test baselineall nominal cont classes size size accuracy1 breast cancer 10 0 10 2 699 CV 65.522 cleve 13 7 6 2 303 CV 54.463 crx 15 9 6 2 690 CV 55.514 DNA 180 180 0 3 2000 1186 51.915 horse-colic 22 15 7 2 368 CV 63.046 Pima 8 0 8 2 768 CV 65.107 sick-euthyroid 25 18 7 2 2108 1055 90.748 soybean-large 35 35 0 19 683 CV 13.479 corral 6 6 0 2 32 128 56.2510 m-of-n-3-7-10 10 10 0 2 300 1024 77.3411 Monk1 6 6 0 2 124 432 50.0012 Monk2-local 17 17 0 2 169 432 67.1313 Monk2 6 6 0 2 169 432 67.1314 Monk3 6 6 0 2 122 432 52.78above. The primary criteria were size (real datasets must have more than 300 instances), di�culty (theaccuracy should not be too high after seeing only a small number of instances), age (old datasets at theUC Irvine repository, such as Chess, hypothyroid, and vote, were not considered because of their possibleinuence on the development of algorithms). A detailed description of the datasets and these considerationsis given in (Kohavi 1995c). Small datasets were tested using ten-fold cross-validation; arti�cial datasets andlarge datasets were split into train and test sets (the arti�cial datasets have a well de�ned training set, asdoes the DNA dataset form StatLog). The baseline accuracy is the accuracy (on the whole dataset) whenpredicting the majority class.AlgorithmsWe use two induction algorithms as a basis for comparisons. These are the C4.5 induction algorithms andthe Naive-Bayes induction algorithm. Both are well known in the machine learning community and representtwo completely di�erent approaches to learning, hence we hope that our results are of a general nature andwill generalize to other induction algorithms. Decision trees have been well documented in Quinlan (1993),Breiman et al. (1984), Fayyad (1991), Buntine (1992), and Moret (1982); hence we will not describe themin detail. The Naive-Bayes algorithm is explained below. The speci�c details are not essential for the restof the paper.TheC4.5 algorithm(Quinlan 1993) is a descendent of ID3 (Quinlan 1986), which builds decision trees top-down and prunes them. The tree is constructed by �nding the best single-feature test to conduct at the rootnode of the tree. After the test is chosen, the instances are split according to the test, and the subproblemsare solved recursively. C4.5 uses gain ratio, a variant of mutual information, as the feature selection measure;other measures have been proposed, such as the Gini index (Breiman et al. 1984), C-separators (Fayyad &Irani 1992), distance-based measures (De M�antaras 1991), and Relief (Kononenko 1995). C4.5 prunes byusing the upper bound of a con�dence interval on the resubstitution error as the error estimate; since nodeswith fewer instances have a wider con�dence interval, they are removed if the di�erence in error betweenthem and their parents is not signi�cant.We reserve the term ID3 to a run of C4.5 that does not execute the pruning step and builds the fulltree (i.e., nodes are split unless they are pure or it is impossible to further split the node due to conictinginstances). The ID3 induction algorithm we used is really C4.5 with the parameters -m1 -c100 that causea full tree to be grown and only prune if there is absolutely no increase in the resubstitution error rate. Arelatively unknown post processing step in C4.5 replaces a node by one of its children if the accuracy of the11



child is considered better (Quinlan 1993, page 39). In one case (the corral database described below), thishad a signi�cant impact on the resulting tree: although the root split was incorrect, it was replaced by oneof the children.TheNaive-Bayesian classi�er (Langley et al. 1992, Duda & Hart 1973, Good 1965, Anderson & Matessa1992, Taylor, Michie & Spiegalhalter 1994) uses Bayes rule to compute the probability of each class giventhe instance, assuming the features are conditionally independent given the label. Formally,p(Y = y j ~X = ~x) by Bayes rule= p( ~X = ~x j Y = y) � p(Y = y)=p(~x) p(~x) is same for all labelvalues./ p(X1 = x1; : : : ; Xn = xn j Y = y) � p(Y = y) by independence= nYi=1 p(Xi = xi j Y = y) � p(Y = y)The version of Naive-Bayes we use in our experiments was implemented inMLC++(Kohavi, Sommer�eld &Dougherty 1996). The probabilities for nominal features are estimated from data using maximum likelihoodestimation. Continuous features are discretized using a minimum-description length procedure describedin Dougherty, Kohavi & Sahami (1995), and were thereafter treated as multi-valued nominals. Unknownvalues in a test instance (an instance that needs to be labeled) are ignored, i.e., they do not participate in theproduct. In case of zero occurrences for a label value and a feature value, we use the :5=m as the probability,where m is the number of instances. Other approaches are possible, such as using Laplace's law of successionor using a beta prior (Good 1965, Cestnik 1990). In these approaches, the probability for n successes afterN trials is estimated at (n + a)=(N + a + b), where a and b are the parameters of the beta function. Themost common choice is to set a and b to one, and estimating the probability as (n + 1)=(N + 2), which isLaplace's law of succession.ResultsWhen comparing a pair of algorithms, we will present accuracy results for each algorithm on each dataset.It is critical to understand that our accuracy results are based on a ten-fold cross-validation, but that thiscross-validation is an independent outer loop of cross-validation, not the same as the inner, repeated �ve-fold cross-validation that is a part of the feature subset selection algorithms. Previously, researchers havereported accuracy results from the inner cross-validation loop; such results are optimistically biased and area subtle means of training on the test set.Our reported accuracies are the mean of the ten accuracies from ten-fold cross-validation. We alsoshow the standard deviation of the mean. To determine whether the di�erence between two algorithms issigni�cant or not, we report the p-values, which indicate the probability that one algorithm is better than theother, where the variance of the test is the average variance of the two algorithms and a normal distributionis assumed. A more powerful method would have been to conduct a paired t-test for each instance tested,or for each fold, but the overall picture would not change much.Whenever we compare two or more algorithms,A1 and A2, we give the table of accuracies, and show twobar graphs. One bar graph shows the absolute di�erence, A2 �A1, in accuracies and the second bar graphshows the mean accuracy di�erence divided by the standard deviation, i.e., (A2 � A1)=std-dev. When thelength of the bars on the standard-deviation chart are higher than two, the results are signi�cant at the 95%con�dence level. Comparisons will generally be made such that A2 is the algorithm proposed just prior tothe comparison (the \new" algorithm) and A1 is either a standard algorithm, such as C4.5, or the previousproposed algorithm. When the bar is above zero A2, the proposed algorithm, outperforms A1, which we arecomparing with.When we report CPU time results, these are in units of CPU seconds (or minutes or hours) on a SunSparc 10 for a single train-test sequence.3.2 A Hill-climbing Search EngineThe simplest search technique is hill-climbing, also called greedy search or steepest ascent. Table 3 describesthe algorithm, which expands the current node and moves to the child with the highest accuracy, terminating12



Table 3: A hill-climbing search algorithm1. Let v  initial state.2. Expand v: apply all operators to v, giving v's children.3. Apply the evaluation function f to each child w of v.4. Let v0 = the child w with highest evaluation f(w).5. If f(v0) > f(v) then v  v0; goto 2.6. Return v.when no child improves over the current node.Table 4 and Figures 7 and 8 show a comparison of ID3 and Naive-Bayes, both with and without featuresubset selection. Table 5 and Figure 9 and 10 show the average number of features used for each algorithm(averaged over the ten folds when relevant). The following observations can be made:� For the real datasets and ID3, this simple version of feature subset selection provides a regularizationmechanism, which reduces the variance of the algorithm (Geman et al. 1992, Kohavi & Wolpert 1996).By hiding features from ID3, a smaller tree is grown. This type of regularization is di�erent thanpruning, which is another regularization method, because it is global: a feature is either present orabsent, where as pruning is a local operation. As shown in Table 5 and Figures 9 and 10, the numberof features selected is small compared to the original set and compared to those selected by ID3. ForID3, the average accuracy increases from 84.53% to 86.67%, which is a 13.8% relative reduction in theerror rate. The accuracy uniformly improves for all real datasets.� For the arti�cial datasets and ID3, the story is di�erent. All the arti�cial datasets, except Monk3involve high-order interactions. In the corral dataset, after the correlated feature is chosen, no singleaddition of a feature will lead to an improvement, so the hill-climbing process stops too early; similarscenarios happen with the other arti�cial datasets, where adding a single feature at a time does nothelp. In some cases, such asm-of-n-3-7-10, Monk2-local, and Monk2, zero features were chosen, causingthe prediction to be the majority class independent of the attribute values.The concept for Monk3 is (jacket-color = green and holding = sword) or(jacket-color 6= blue and body-shape 6= octagon)and the training set contains 5% mislabelled instances. The feature subset selection algorithm quickly�nds body-shape and jacket-color, which together yield the second conjunction in the above expression,which has accuracy 97.2%. With more features, a larger tree is built which is inferior. This is anotherexample of the optimal feature subset being di�erent than the subset of relevant features.� For the real datasets and Naive-Bayes, the average accuracy is about same, but very few features areused.� For the arti�cial datasets and Naive-Bayes, the average accuracy degrades because of corral andm-of-n-3-7-10 (the relative error increases by 6.7%). Both of these require a better search than hillclimbing can provide. An interesting observation is the fact that the performance on the Monk2 andMonk2-local datasets improves simply by hiding all features, forcing Naive-Bayes to predict the major-ity class. The independence assumption is so inappropriate for this dataset that it is better to predictthe majority class.� For the DNA dataset, both algorithms selected only 11 features out of 180. While the selected setdi�ered, nine features were the same, indicating that these nine are crucial for both types of inducers.13



Table 4: A comparison of ID3 and Naive-Bayes with a feature subset selection wrapper. The \-FSS" su�xindicates an algorithm is run with feature subset selection. The �rst p-val column indicates the probabilitythat feature subset selection (FSS) improves ID3 and the second column indicates the probability that FSSimproves Naive-Bayes.Dataset ID3 ID3-FSS p-val Naive-Bayes NB-FSS p-val1 breast cancer 94.57� 0.9 94.71� 0.5 0.58 97.00� 0.5 96.57� 0.6 0.222 cleve 72.35� 2.3 78.24� 2.0 1.00 82.88� 2.3 79.56� 3.9 0.153 crx 81.16� 1.4 85.65� 1.6 1.00 87.10� 0.8 85.36� 1.6 0.084 DNA 90.64� 0.9 94.27� 0.7 1.00 93.34� 0.7 94.52� 0.7 0.965 horse-colic 81.52� 2.0 83.15� 1.1 0.84 79.86� 2.5 83.15� 2.0 0.936 Pima 68.73� 2.5 69.52� 2.2 0.63 75.90� 1.8 74.34� 2.0 0.217 sick-euthyroid 96.68� 0.6 97.06� 0.5 0.76 95.64� 0.6 97.35� 0.5 1.008 soybean-large 90.62� 0.9 90.77� 1.1 0.56 91.80� 1.2 92.38� 1.1 0.699 corral 100.00� 0.0 75.00� 3.8 0.00 90.62� 2.6 75.00� 3.8 0.0010 m-of-n-3-7-10 91.60� 0.9 77.34� 1.3 0.00 86.43� 1.1 77.34� 1.3 0.0011 Monk1 82.41� 1.8 75.00� 2.1 0.00 71.30� 2.2 75.00� 2.1 0.9612 Monk2-local 82.41� 1.8 67.13� 2.3 0.00 60.65� 2.3 67.13� 2.3 1.0013 Monk2 69.68� 2.2 67.13� 2.3 0.13 61.57� 2.3 67.13� 2.3 0.9914 Monk3 90.28� 1.4 97.22� 0.8 1.00 97.22� 0.8 97.22� 0.8 0.50Average real: 84.53 86.67 87.94 87.90Average artif. 86.06 76.47 77.96 76.47
1 2 3 4 5 6 7 8 9 10 11 12 13 14

Dataset #

ID3-HC-FSS minus ID3 (abs acc)

-25

-20

-15

-10

-5

5

Acc

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Dataset #

ID3-HC-FSS minus ID3 (s.d.)

-12.5

-10

-7.5

-5

-2.5

2.5

5

s.d.

Figure 7: ID3: Absolute di�erence (FSS minus ID3) in accuracy (left) and in std-devs (right).
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Figure 8: Naive-Bayes: Absolute di�erence in accuracy (left) and in std-devs (right).14
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Figure 9: ID3: Number of features in original dataset (left), used by ID3 (middle), and selected by hill-climbing feature subset selection (right). The DNA has 180 features (not shown).
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Figure 10: Naive-Bayes: Number of features in original dataset (left) and selected by hill-climbing featuresubset selection (right).
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Table 5: The number of features in the dataset, the number used by ID3 (since it does some feature subsetselection), the number selected by feature subset selection (FSS) for ID3, and the number selected by FSSfor Naive-Bayes. Numbers without a decimal point are for single runs, number with a decimal point areaverages for the ten-fold cross-validation.Dataset Number of FeaturesOriginal Dataset ID3 ID3-FSS NB-FSS1 breast cancer 10 9.1 2.9 4.32 cleve 13 11.4 2.6 3.13 crx 15 13.6 2.9 1.64 DNA 180 72 11 115 horse-colic 22 17.4 2.8 4.36 Pima 8 8.0 1.0 3.87 sick-euthyroid 25 14 4 38 soybean-large 35 25.8 12.7 12.69 corral 6 4 1 110 m-of-n-3-7-10 10 10 0 011 Monk1 6 6 1 112 Monk2-local 17 14 0 013 Monk2 6 6 0 014 Monk3 6 6 2 2The results, especially on the arti�cial datasets where we know what the relevant features are, indicatethat the feature subset selection is getting stuck at local maxima too often. The next section deals withimproving the search engine.3.3 A best-�rst Search EngineBest-�rst search (Russell & Norvig 1995, Ginsberg 1993) is a more robust method than hill-climbing. Theidea is to select the most promising node we have generated so far that has not already been expanded.Table 6 describes the algorithm, which varies slightly from the standard version because there is no explicitgoal condition in our problem. Best-�rst search usually terminates upon reaching the goal. Our problem isan optimization problem, so the search can be stopped at any point and the best solution found so far can bereturned (theoretically improving over time), thus making it an anytime algorithm (Boddy & Dean 1989).In practice, we must stop the run at some stage, and we use what we call a stale search: if we have notfound an improved node in the last k expansions, we terminate the search. An improved node is de�nedas a node with an accuracy estimation at least � higher than the best one found so far. In the followingexperiments, k was set to �ve and epsilon was 0.1%.While best-�rst search is a more general search technique, it is not obvious that it is better for featuresubset selection. Because of the bias-variance tradeo� (Geman et al. 1992, Kohavi & Wolpert 1996), it ispossible that a more general search will increase the variance and thus reduce the accuracy. Quinlan (1995)and Murthy & Salzberg (1995) showed examples where increasing the search e�ort degraded the overallperformance.Table 7 and Figures 11 and 12 show a comparison of ID3 and Naive-Bayes, both with hill-climbing featuresubset selection and best-�rst search feature subset selection. Table 8 shows the average number of featuresused for each algorithm (averaged over the ten folds when relevant). The following observations can be made:� For the real datasets and both algorithms (ID3 and Naive-Bayes), there is almost no di�erence betweenhill climbing and best-�rst search. Best-�rst search usually �nds a larger feature subset, but theaccuracies are approximately the same. The only statistically signi�cant di�erence is for Naive-Bayesand soybean, where there was a signi�cant improvement with a p-value of 0.95.� For the arti�cial datasets, there is a very large improvement for ID3. Performance drastically improveson three datasets (corral, Monk1, Monk2-local), remains the same on two (m-of-n-3-7-10, Monk3),16



Table 6: The best-�rst search algorithm1. Put the initial state on the OPEN list,CLOSED list  ;, BEST  initial state.2. Let v = argmaxw2OPEN f(w) (get the state from OPEN with maximal f(w)).3. Remove v from OPEN, add v to CLOSED.4. If f(v) � � > f(BEST), then BEST v.5. Expand v: apply all operators to v, giving v's children.6. For each child not in the CLOSED or OPEN list, evaluate and add to the OPEN list.7. If BEST changed in the last k expansions, goto 2.8. Return BEST.Table 7: A comparison of a hill-climbing search and a best-�rst search. The �rst p-val column indicates theprobability that best-�rst search feature subset selection (BFS-FSS) improves hill-climbing feature subsetselection (HC-FSS) for ID3 and the second column is analogous but for Naive-Bayes.Dataset ID3 p-val Naive-Bayes p-valHC-FSS BFS-FSS HC-FSS BFS-FSS1 breast cancer 94.71� 0.5 94.57� 0.7 0.41 96.57� 0.6 96.00� 0.6 0.172 cleve 78.24� 2.0 79.52� 2.3 0.73 79.56� 3.9 80.23� 3.9 0.573 crx 85.65� 1.6 85.22� 1.6 0.39 85.36� 1.6 86.23� 1.0 0.754 DNA 94.27� 0.7 94.27� 0.7 0.50 94.52� 0.7 94.60� 0.7 0.555 horse-colic 83.15� 1.1 82.07� 1.5 0.21 83.15� 2.0 83.42� 2.0 0.556 Pima 69.52� 2.2 68.73� 2.2 0.36 74.34� 2.0 75.12� 1.5 0.677 sick-euthyroid 97.06� 0.5 97.06� 0.5 0.50 97.35� 0.5 97.35� 0.5 0.508 soybean-large 90.77� 1.1 91.65� 1.0 0.81 92.38� 1.1 93.70� 0.4 0.959 corral 75.00� 3.8 100.00� 0.0 1.00 75.00� 3.8 90.62� 2.6 1.0010 m-of-n-3-7-10 77.34� 1.3 77.34� 1.3 0.50 77.34� 1.3 77.34� 1.3 0.5011 Monk1 75.00� 2.1 97.22� 0.8 1.00 75.00� 2.1 72.22� 2.2 0.1012 Monk2-local 67.13� 2.3 95.60� 1.0 1.00 67.13� 2.3 67.13� 2.3 0.5013 Monk2 67.13� 2.3 63.89� 2.3 0.08 67.13� 2.3 67.13� 2.3 0.5014 Monk3 97.22� 0.8 97.22� 0.8 0.50 97.22� 0.8 97.22� 0.8 0.50Average real: 86.67 86.64 87.90 88.33Average artif. 76.47 88.55 76.47 78.6117
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Figure 11: ID3: Absolute di�erence (best-�rst search FSS minus hill-climbing FSS) in accuracy (left) and instd-devs (right).
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Figure 12: Naive-Bayes: Absolute di�erence in accuracy (left) and in std-devs (right).Table 8: The number of features in the dataset, the number used by ID3 (since it does some feature subsetselection), the number selected by hill-climbing FSS for ID3, best-�rst search FSS for ID3, and analogouslyfor Naive-Bayes. Dataset Number of FeaturesOriginal ID3 ID3-FSS NB-FSSdataset HC BFS HC BFS1 breast cancer 10 9.1 2.9 3.6 4.3 5.22 cleve 13 11.4 2.6 3.4 3.1 3.63 crx 15 13.6 2.9 3.6 1.6 5.94 DNA 180 72 11 11 11 145 horse-colic 22 17.4 2.8 3.4 4.3 5.16 Pima 8 8.0 1.0 2.3 3.8 4.07 sick-euthyroid 25 14 4 4 3 38 soybean-large 35 25.8 12.7 13.7 12.6 13.89 corral 6 4 1 4 1 510 m-of-n-3-7-10 10 10 0 0 0 011 Monk1 6 6 1 3 1 412 Monk2-local 17 14 0 6 0 013 Monk2 6 6 0 3 0 014 Monk3 6 6 2 2 2 218



and degrades on only one (Monk2). Analyzing the selected features, the optimal feature subset wasfound for corral, Monk1, Monk2-local, and Monk3 (only two features out of the three relevant oneswere selected for Monk3 because this correctly led to better prediction accuracy). The improvementover ID3 without FSS (Table 4) is less dramatic but still positive: the absolute di�erence in accuracyis 2.49%, which translates into a relative error reduction of 17.8%.The search was unable to �nd the seven relevant features in m-of-n-3-7-10. Because of the complexitypenalty of 0.1% for extra features, only subsets of two features were tried, and such subsets neverimproved over the majority prediction (ignoring all features) before the search was considered stale(�ve non-improving node expansions). The local maxima in this dataset is too large for the currentsetting of best-�rst search to overcome. A speci�c experiment was conducted to determine how longit would take best-�rst search to �nd the correct feature subset. The stale limit (originally set to �ve)was increased until a node better than the node using zero features, and predicting the majority labelvalue, was found. The �rst stale setting that overcame the local maximumwas 29 (any number abovewould do). At this setting, a node with three features from the seven is found that is more accuratethan majority. Nine more node expansions lead to the correct feature subset. Overall, 193 nodes wereevaluated out of the 1024 possibilities. The total running time to �nd the correct feature subset was33 CPU minutes, and the prediction accuracy was 100%.In the Monk2 dataset, a set of three features were chosen, and accuracy signi�cantly degraded comparedto hill-climbing, which selected the empty feature subset. This is the only signi�cant accuracy di�erencewhere performance degraded because best-�rst search was used (p-value of 0.08). The Monk2 conceptin this encoding is unsuitable for decision trees, as a correct tree (built from the full space) contains 439nodes and 296 leaves. Because the standard training set contains only 169 instances, it is impossibleto build the correct tree using the standard recursive partitioning techniques.� For the arti�cial datasets, there was a signi�cant improvement for Naive-Bayes only for corral (p-valueof 1.00), and performance signi�cantly degraded for Monk1 (p-value of 0.10). The rest of the datasetswere una�ected.The chosen feature subset for corral contained features A0; A1; B0; B1; and the \correlated" feature.It is known that only the �rst four are needed, yet because of the limited representation power of theNaive-Bayes, performance using the \correlated" feature is better than performance using only the �rstfour features. If Naive-Bayes is given access only to the �rst four features, the accuracy degrades from90.62% to 87.50%. This dataset is one example where the optimal feature subset for di�erent inductionalgorithms is known to be di�erent. Decision trees are hurt by the addition of the \correlated" feature(performance degrades), yet Naive-Bayes improves with this feature.The Monk1 dataset degrades in performance because the features head-shape, body-shape, is-smiling,and jacket-color were chosen, yet performance is better if only jacket-color is used. Note that bothhead-shape and body-shape are part of the target concept, yet the representation power of Naive-Bayes is again limited and cannot utilize this information well. As with the Monk2 dataset for ID3,this may be an example of the search over�tting in the sense that some subset seems to slightly improvethe accuracy estimation, but not the accuracy on the independent test set (see Section 6 for furtherdiscussion on issues of over�tting).The datasets m-of-n-3-7-10, Monk2-local, Monk2, and Monk3, all had the same accuracy with best-�rst search as with hill-climbing. The Monk3 dataset cannot be improved by any other feature subset.As with ID3, the search was unable to �nd a good feature subset for m-of-n-3-7-10 (the correct featuresubset allows improving the accuracy to 87.5%). For the Monk2 and Monk2-local datasets, the optimalfeature subset is indeed the empty set! Naive-Bayes on the set of relevant features yields inferiorperformance to a majority inducer, which is how Naive-Bayes behaves on the empty set of features.While best-�rst search gives better performance than hill-climbing, high-level interactions occurring inm-of-n-3-7-10 cannot be caught with a search that starts at the empty feature subset unless the staleparameter is drastically increased. An alternative approach, which su�ers less from feature interaction,starts with the full set of features; however, the running time would make the approach infeasible in practice,especially if there are many features. The running times for the best-�rst search starting from the empty set19
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1,1,1,1Figure 14: The state space search with dotted arrows indicating compound operators. From the root'schildren, the nodes (0,1,0,0) and (0,0,1,0) had the highest evaluation values, followed by (0,0,0,1).discarded. Intuitively, there is more information in the evaluation of the children than just the node withthe maximum evaluation. Compound operators combine operators that led to the best children into a singledynamic operator. Figure 14 depicts a possible set of compound operators for forward selection. The rootnode containing no features was expanded by applying four add operators, each one adding a single feature.The operators that led to 0; 1; 0; 0 and 0; 0; 1; 0 were combined into the �rst compound operator (shown in adashed line going left) because they led to the two nodes with the highest evaluation (evaluation not shown).If the �rst compound operator led to a node with an improved estimate, the second compound operator(shown in a dashed line going right) is created that combines the best three of the original operators, etc.Formally, if we rank the operators by the estimated accuracy of the children, then we can de�ne com-pound operator ci to be the combination of the best i + 1 operators. For example, the �rst compoundoperator will combine the best two operators. If the best two operators each added a feature, then the �rstcompound operator will add both; if one operator added and one operator deleted, then we try to do bothin one operation.The compound operators are applied to the parent, thus creating children nodes that are farther awayin the state space. Each compound node is evaluated and the generation of compound operators continuesas long as the estimated accuracy of the compound nodes improves.Compound operators generalize a few suggestions previously made in the literature. Kohavi (1994)suggested that the search might start from the set of strongly relevant features (the core). If one startsfrom the full set of features, removal of any single strongly relevant feature will cause a degradation inperformance, while removal of any irrelevant or weakly relevant feature will not. Since the last compoundoperator, representing the combination of all delete operators, connects the full feature subset to the emptyset of features, the compound operators from the full feature subset plot a path through the core set offeatures. The path is explored by removing one feature at a time until estimated accuracy deteriorates.Caruana & Freitag (1994) implemented a SLASH version of feature subset selection that eliminates thefeatures not used in the derived decision tree. If there are no features that improve the performance whendeleted, then (ignoring orderings due to ties) one of the compound operators will lead to the same node thatSLASH would take the search to. While the SLASH approach is only applicable for backward elimination,compound operators are also applicable to forward selection.Figure 15 shows two searches with and without compound operators. Compound operators improve thesearch by �nding nodes with higher accuracy faster; however, whenever it is easy to over�t, they cause21
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Figure 15: Comparison of compound (dotted line) and non-compound (solid line) searches. The accuracy(y-axis) is that of the best node (as determined by the algorithm) on an independent test set after a givennumber of node evaluations (x-axis). The running time is proportional to the number of nodes evaluated.over�tting earlier (see Section 6). Experimental results using compound operators are similar to thosewithout them, except that they are sometimes faster. More signi�cant time di�erences are achieved whenthe decision trees are pruned. Detailed results for that case are shown later in the paper (Table 11).The main advantage of compound operators is that they make backward feature subset selection compu-tationally feasible. Table 9 and Figures 16 and 17 show the results of running the best-�rst search algorithmwith compound operators but starting with the full set of features (backward elimination) compared withbest-�rst search forward selection without compound operators. Results for forward selection with and with-out compound operators did not signi�cantly di�er on any �le. Table 10 shows the number of features usedfor each of the di�erent methods. When one starts from the full set of features, feature interactions areeasier for the search to identify. The following observations can be made:� Except for m-of-n-3-7-10, the accuracy results for backward FSS with ID3 generally degraded. Themain improvement was for m-of-n-3-7-10, where the correct seven bits were correctly identi�ed, result-ing in 100% accuracy. The feature subsets were generally larger, and apparently even best-�rst searchcannot overcome some local maxima. For example, DNA stopped with 36 features, but pruning morefeatures would improve the performance because the forward search found a subset of 11 features thatwas signi�cantly better (the accuracy estimation for the 11 feature subset was higher than the one forthe 36 feature subset, and because the same folds are used, if the best-�rst search were to get to this11-feature node, it would prefer it over the �nal node selected in the backward search). In the nextsection, we use the backward search with C4.5 that prunes, and the backward search then becomesmuch easier for the best-�rst search algorithm.� For Naive-Bayes, backward FSS is a slight win in terms of accuracy. Only on crx did the accuracy de-grade signi�cantly (p-val=0.05), while on m-of-n-3-7-10 and DNA it signi�cantly improved (p-val=1.00and 0.99 respectively). In fact, for the DNA dataset, no other known algorithm outperformed Naive-Bayes on the selected feature subset. Taylor et al. (1994, page 159) compared 23 algorithms on thisdataset (with the same split of train/test sets), and the highest ranking one was RBF (radial basisfunctions) using 720 centers with an accuracy of 95.9%. The Naive-Bayes with backward eliminationhad an accuracy of 96.12%.� Them-of-n-3-7-10 dataset with Naive-Bayes is a very interesting case. The feature subset selection �ndssix out of the seven relevant features, and the seventh selected feature is an irrelevant one. Althoughm-of-n can be represented using a hyperplane, and although in a Boolean domain the surface representedby Naive-Bayes is always a hyperplane, it turns out that Naive-Bayes is unable to learn this targetconcept. The table below was constructed by giving Naive-Bayes all possible instances and their correctclassi�cation for the 3-of-7 concept, and testing it on the same instances. We can see that Naive-Bayesis unable to learn 3-of-7, but what is intriguing is that fact that hiding a bit improves the accuracy.22



Table 9: A comparison of a forward best-�rst search without compound operators and backward best-�rstsearch with compound operators. The p-val columns indicates the probability that backward is better thanforward. Dataset ID3 p-val Naive-Bayes p-valBFS-FSS BFS-FSS BFS-FSS BFS-FSSforward back forward back1 breast cancer 94.57� 0.7 93.85� 0.5 0.11 96.00� 0.6 96.00� 0.6 0.502 cleve 79.52� 2.3 75.89� 3.7 0.12 80.23� 3.9 82.56� 2.5 0.763 crx 85.22� 1.6 83.33� 1.5 0.10 86.23� 1.0 84.78� 0.8 0.054 DNA 94.27� 0.7 91.23� 0.8 0.00 94.60� 0.7 96.12� 0.6 0.995 horse-colic 82.07� 1.5 82.61� 1.7 0.63 83.42� 2.0 82.33� 1.3 0.266 Pima 68.73� 2.2 67.44� 1.4 0.24 75.12� 1.5 76.03� 1.6 0.727 sick-euthyroid 97.06� 0.5 97.06� 0.5 0.50 97.35� 0.5 97.35� 0.5 0.508 soybean-large 91.65� 1.0 91.35� 1.0 0.38 93.70� 0.4 94.29� 0.9 0.819 corral 100.00� 0.0 100.00� 0.0 0.50 90.62� 2.6 90.62� 2.6 0.5010 m-of-n-3-7-10 77.34� 1.3 100.00� 0.0 1.00 77.34� 1.3 87.50� 1.0 1.0011 Monk1 97.22� 0.8 97.22� 0.8 0.50 72.22� 2.2 72.22� 2.2 0.5012 Monk2-local 95.60� 1.0 95.60� 1.0 0.50 67.13� 2.3 67.13� 2.3 0.5013 Monk2 63.89� 2.3 64.35� 2.3 0.58 67.13� 2.3 67.13� 2.3 0.5014 Monk3 97.22� 0.8 97.22� 0.8 0.50 97.22� 0.8 97.22� 0.8 0.50Average real: 86.64 85.35 88.33 88.68Average artif. 88.55 92.40 78.61 80.30
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Figure 16: ID3: Absolute di�erence (best-�rst search FSS backward with compound operators minus for-ward) in accuracy (left) and in std-devs (right).
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Figure 17: Naive-Bayes: Absolute di�erence in accuracy (left) and in std-devs (right).23



Table 10: The number of features in the dataset, the number used by ID3 (since it does some feature subsetselection), the number selected by best-�rst search FSS for ID3 forward without compound and backwardswith compound, and analogously for Naive-Bayes.Dataset Number of FeaturesOriginal ID3 ID3-FSS NB-FSSdataset Forward Backward Forward Backward1 breast cancer 10 9.1 3.6 5.3 5.2 5.92 cleve 13 11.4 3.4 4.6 3.6 7.93 crx 15 13.6 3.6 7.7 5.9 9.14 DNA 180 72 11 36 14 485 horse-colic 22 17.4 3.4 7.2 5.1 6.16 Pima 8 8.0 2.3 5.7 4.0 4.47 sick-euthyroid 25 14 4 4 3 38 soybean-large 35 25.8 13.7 17.7 13.8 16.79 corral 6 4 4 4 5 510 m-of-n-3-7-10 10 10 0 7 0 711 Monk1 6 6 3 3 4 412 Monk2-local 17 14 6 6 0 513 Monk2 6 6 3 3 0 014 Monk3 6 6 2 2 2 2Features given Naive-Bayes Perceptronaccuracy accuracy7 (all) 83.59 100.006 88.28 88.285 82.03 82.03The explanation for this result is as follows. There are �70�+ �71� + �72� = 29 instances out of 27 = 128that have label 0. There are �71�+ �72� � 2 = 49 ones in these 29 instances, so each of the seven featureshas 49=7 = 7 ones. We thus get the following:p(Y = 0 j Xi = 1) = 7=29p(Y = 0 j Xi = 0) = 22=29Similarly,P7i=3 �7i�� i = 399, thus each of the seven features has 399=7 = 57 ones, giving the following:p(Y = 1 j Xi = 1) = 57=99p(Y = 1 j Xi = 0) = 42=99If there are only two ones in an instance, the probabilities computed by Naive-Bayes are:p(Y = 0) / 29=128 � (7=29)2 � (22=29)5 = 0:00331674p(Y = 1) / 99=128 � (57=99)2 � (42=99)5 = 0:00352351giving the label one a small advantage, and making the wrong prediction. Thus there are �72� = 21mistakes out of the 128 possible instances, which is exactly 83.59% accuracy.With only six features, the best thing to do is to predict a label of one when there two \on" bits, whichis what the Naive-Bayes does (the calculation is omitted). This will correctly capture all instancesthat originally had three bits, but will continue to be wrong for those instances that had only two bits.However, out of the 21 instances that had two bits on, six will now have only one bit on because therewere 42 bits total, and each of the seven bits had a one six times. Thus Naive-Bayes will now makeonly 21� 6 = 15 mistakes, which yields an accuracy of 88.28%.24



Table 11: The CPU time for di�erent versions of the wrapper approach. Time is for a single fold when cross-validation was done in an outer loop to estimate accuracy. All tests used compound operators, except forID3-FSS-Forward. The \time" command overowed for ID3-FSS-back on DNA under Sun's Solaris operatingsystem. The command gave a negative number for execution time!CPU time (seconds)ID3-FSS ID3-FSS C4.5-FSS NB-FSSDataset Forward Back Back Backbreast cancer 439 741 1,167 51cleve 746 2,105 816 123crx 936 4,076 1,658 206DNA 42,908 overow 165,621 88,334horse-colic 1,067 2,875 1,434 462Pima 963 2,178 719 57sick-euthyroid 3,764 12,166 7,386 504soybean-large 8,544 4,196 3,931 2,033corral 165 26 47 4m-of-n-3-7-10 213 179 223 55Monk1 128 57 75 15Monk2-local 1,466 574 644 139Monk2 247 90 81 18Monk3 111 55 46 9This example shows that although the hypothesis space for Naive-Bayes in Boolean domains is a spaceof hyperplanes, it is unable to correctly identify this target concept, while a perceptron can. Moreinteresting, however, is the fact that any approach to feature subset selection based on relevance thatis independent of the induction algorithm and that ranks each feature alone (conditioned on the label)must give the same rank to each one of the seven relevant features (due to symmetry), and thus such anapproach will never pick a subset of six features as the wrapper approach does. The wrapper approachindeed �nds the optimal subset for this target concept.Running times for the backward feature subset selection were about �ve times longer than the forward,which is not bad considering the fact that we started with the full set of features (also see the next sectionwhere compound operators help more when C4.5 is used).5 Global ComparisonWe have used ID3 and Naive-Bayes as our basic inducers for feature subset selection because they do nopruning and, therefore, the e�ect of feature subset selection can be seen more clearly. We have seen improve-ments in both algorithms, but an important remaining question is how the wrapper algorithm developedin Sections 3 and 4 compares to the �lter algorithm, and how the feature subset selection versions of thesealgorithms compare to the original versions.Although we have presented arguments in favor of the wrapper approach in Section 2, we had to develop ahigh-performance wrapper algorithm for the empirical comparisons, and this was the purpose of the precedingsections. When used with C4.5, the hill-climbing wrapper often gets stuck in local minima, and the best-�rstsearch wrapper took too long, so the work in the previous sections was necessary for the experiments in thissection.With compound operators, running the wrapper with C4.5 is even faster than running the wrapper withID3 because the compound operators tend to quickly remove the features pruned by C4.5. Features thatdo not appear in the tree are removed because the accuracy estimate does not change and, with the smallcomplexity penalty for every feature, the evaluation function improves. The compound operators can removeall such features after a single node expansion. Without pruning, many more features are used in the tree25
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Figure 18: DNA: Number of features evaluated as the search progresses (C4.5, best-�rst search, backward).The vertical lines signify a node expansion, where the children of the best node are expanded. The slantedline on the top shows how ordinary backward selection would progress.
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Table 12: A comparison of C4.5 with no feature selection, with the Relieved-F �lter (RLF), and with thewrapper using backward best-�rst search with compound operators (BFS). The p-val columns indicates theprobability that the top algorithm is improving over the lower algorithm.C4.5-RLF C4.5-BFS C4.5-BFSDataset C4.5 C4.5-RLF C4.5-BFS vs C4.5 vs C4.5 vs C4.5-RLFbreast cancer 95.42� 0.7 94.42� 1.1 95.28� 0.6 0.14 0.41 0.83cleve 72.30� 2.2 74.95� 3.1 77.88� 3.2 0.84 0.98 0.82crx 85.94� 1.4 84.06� 1.2 85.80� 1.3 0.07 0.46 0.91DNA 92.66� 0.8 92.75� 0.8 94.44� 0.7 0.54 0.99 0.99horse-colic 85.05� 1.2 85.88� 1.0 84.77� 1.3 0.77 0.41 0.17Pima 71.60� 1.9 64.18� 2.3 70.18� 1.3 0.00 0.19 1.00sick-euthyroid 97.73� 0.5 97.73� 0.5 97.91� 0.4 0.50 0.65 0.65soybean-large 91.35� 1.6 91.35� 1.6 91.93� 1.3 0.50 0.65 0.65corral 81.25� 3.5 81.25� 3.5 81.25� 3.5 0.50 0.50 0.50m-of-n-3-7-10 85.55� 1.1 91.41� 0.9 85.16� 1.1 1.00 0.36 0.00Monk1 75.69� 2.1 88.89� 1.5 88.89� 1.5 1.00 1.00 0.50Monk2-local 70.37� 2.2 88.43� 1.5 88.43� 1.5 1.00 1.00 0.50Monk2 65.05� 2.3 67.13� 2.3 67.13� 2.3 0.82 0.82 0.50Monk3 97.22� 0.8 97.22� 0.8 97.22� 0.8 0.50 0.50 0.50Average real: 86.51 85.67 87.27Average artif. 79.19 85.72 84.68and they cause slight random variations in the accuracy estimates. It hence makes more sense to run thefeature subset selection search backwards, which is what we have done. Figures 18 and 19 show how thenumber of features used changes as the search progresses, i.e., as more nodes are evaluated. Notice howbefore each node expansion, the compound operators are applied and combine the operators leading to thebest children, thus drastically decreasing the number of nodes. Without compound operators, the number offeatures could only decrease or increase by one at every node expansion. For example, in the DNA datasetwith C4.5, \only" 3555 nodes were evaluated and a subset of 12 features was selected; without compoundoperators, the algorithm would have to expand (180 � 12) � 180 = 30; 240 nodes just to get to this featuresubset.Running times for backward FSS with C4.5 are still very slow, but generally faster than backward FSSwith ID3. Table 11 shows the running time for di�erent versions of the algorithms. In comparison with theoriginal algorithm, they are about two to three order of magnitude slower. For example, running C4.5 onthe DNA dataset takes about 1.5 minutes. The wrapper model has to run C4.5 �ve times for every nodethat is evaluated in the state space and in DNA there are hundreds of nodes.We shall investigate two hypotheses: �rst, that using a �lter method will improve the accuracy of ID3and Naive-Bayes on real datasets but will be fairly erratic (often hurting performance), and second, thatimprovements from using the wrapper approach will surpass the gains from the �lter and will be moreconsistent. As a representative of the �lter methods, we chose the Relieved-F algorithm (Section 2.4),which seemed to have the most desirable properties among the �lter algorithms discussed. Because of thereasons outlined in the preceding paragraphs, we use the backward best-�rst-search wrapper with compoundoperators as a representative of wrapper algorithms. The experimental methodology used to run and comparealgorithms is the same as described in Section 3.1.Since C4.5 is a modern algorithm that performs well on a variety of real databases, we might expect itto be di�cult to improve upon its performance using feature selection. Table 12 shows that this is the case:overall, the accuracy on real datasets actually decreased when using Relieved-F, but the accuracy slightlyincreased using the wrapper (a 5.5% relative reduction in error). Note however that Relieved-F did performwell on some arti�cial databases, all of which (except for corral) contain only strongly relevant and totallyirrelevant attributes. On three arti�cial datasets, Relieved-F was signi�cantly better than plain C4.5 at the99% con�dence level. On the real datasets, where relevance is ill-determined, Relieved-F often did worse than27



Table 13: A comparison of Naive-Bayes (NB) with no feature selection, with the Relieved-F �lter (RLF),and with the wrapper using backward best-�rst search with compound operators (BFS). The p-val columnsindicates the probability that the top algorithm is improving over the lower algorithm.NB-RLF NB-BFS NB-BFSDataset NB NB-RLF NB-BFS vs NB vs NB vs NB-RLFbreast cancer 97.00� 0.5 95.14� 1.3 96.00� 0.6 0.03 0.04 0.80cleve 82.88� 2.3 82.53� 2.4 82.56� 2.5 0.44 0.45 0.50crx 87.10� 0.8 85.51� 0.8 84.78� 0.8 0.02 0.00 0.18DNA 93.34� 0.7 93.25� 0.7 96.12� 0.6 0.45 1.00 1.00horse-colic 79.86� 2.6 80.95� 2.3 82.33� 1.3 0.67 0.89 0.77Pima 75.90� 1.8 64.57� 2.4 76.03� 1.6 0.00 0.53 1.00sick-euthyroid 95.64� 0.6 95.64� 0.6 97.35� 0.5 0.50 1.00 1.00soybean-large 91.80� 1.2 91.65� 1.2 94.29� 0.9 0.45 0.99 0.99corral 90.62� 2.6 90.62� 2.6 90.62� 2.6 0.50 0.50 0.50m-of-n-3-7-10 86.43� 1.1 85.94� 1.1 87.50� 1.0 0.33 0.85 0.93Monk1 71.30� 2.2 72.22� 2.2 72.22� 2.2 0.66 0.66 0.50Monk2-local 60.65� 2.4 63.43� 2.3 67.13� 2.3 0.88 1.00 0.95Monk2 61.57� 2.3 63.43� 2.3 67.13� 2.3 0.79 0.99 0.95Monk3 97.22� 0.8 97.22� 0.8 97.22� 0.8 0.50 0.50 0.50Average real: 87.94 86.16 88.68Average artif. 77.96 78.81 80.30plain C4.5: on one dataset its performance was signi�cantly worse at the 99% con�dence level, and in no casewas its performance better at even the 90% con�dence level. The wrapper algorithm did signi�cantly betterthan plain C4.5 on two real databases and two arti�cial databases, and was never signi�cantly worse. Notethat the most signi�cant improvement on a real database was on the one real dataset with many features:DNA. Relieved-F was outperformed by the wrapper signi�cantly on two real datasets, but it outperformedthe wrapper on the m-of-n-3-7-10 dataset.On the corral dataset, the wrapper selected the correct features fA1, A2, B1, B2g as the best node earlyin the search, but later settled on only the features A1 and A2, which gave better cross-validation accuracy.The training set is very small (32 instances), so the problem was that even though the wrapper gave theideal feature set to C4.5, it built the correct tree (100% accurate) but then pruned it back because it feltthat the training set data was insu�cient to warrant such a large tree.Perhaps surprisingly, the Naive-Bayes algorithm turned out to be more di�cult to improve using featureselection (Table 13). Both the �lter and wrapper approaches signi�cantly degraded performance on the breastcancer and crx databases. In both cases the wrapper approach chose feature subsets with high estimatedaccuracy that turned out to be poor performers on the real test data. The �lter caused signi�cantly worseperformance in one other dataset, Pima diabetes, and never signi�cantly improved on plain Naive-Bayes,even on the arti�cial datasets. This is partly due to the fact that the severe restricted hypothesis spacebias of Naive-Bayes prevents it from doing well on the arti�cial problems (except for Monk3) for reasonsdiscussed in Section 2.3, and partly because Naive-Bayes' accuracy is hurt more by conditional dependencebetween features than the presence of irrelevant features.In contrast, the wrapper approach signi�cantly improved performance on �ve databases over the plainNaive-Bayes accuracy. In the Monk2 dataset it did so by discarding all features! Because the conditionalindependence assumption is violated, one actually obtains better performance with Naive-Bayes by throwingout all features and using only the marginal probability distribution over the classes. The wrapper approachsigni�cantly improved over the �lter in six cases, and was never signi�cantly outperformed by the �lterapproach.Table 14 shows similar results with ID3. In this case, the �lter approach signi�cantly degraded perfor-mance on one real dataset but signi�cantly improved all of the arti�cial datasets except for Monk2, as didthe wrapper approach. The Monk2 concept is exactly-2-of-6, so all features are relevant. Relieved-F judged28



Table 14: A comparison of ID3 with no feature selection, with the Relieved-F �lter (RLF), and with thewrapper using backward best-�rst search with compound operators (BFS). The p-val columns indicates theprobability that the top algorithm is improving over the lower algorithm.ID3-RLF ID3-BFS ID3-BFSDataset ID3 ID3-RLF ID3-BFS vs ID3 vs ID3 vs ID3-RLFbreast cancer 94.57� 0.9 93.57� 1.5 93.85� 0.5 0.21 0.16 0.60cleve 72.35� 2.3 72.96� 2.1 75.89� 3.7 0.61 0.87 0.83crx 81.16� 1.4 78.70� 1.4 83.33� 1.5 0.04 0.93 1.00DNA 90.64� 0.9 91.57� 0.8 91.23� 0.8 0.86 0.76 0.34horse-colic 81.52� 2.0 81.52� 1.3 82.61� 1.7 0.50 0.72 0.76Pima 68.73� 2.5 63.91� 2.1 67.44� 1.4 0.02 0.26 0.98sick-euthyroid 96.68� 0.6 96.78� 0.5 97.06� 0.5 0.57 0.75 0.71soybean-large 90.62� 0.9 90.19� 0.9 91.35� 1.0 0.32 0.78 0.89corral 100.00� 0.0 100.00� 0.0 100.00� 0.0 0.50 0.50 0.50m-of-n-3-7-10 91.60� 0.9 100.00� 0.0 100.00� 0.0 1.00 1.00 0.50Monk1 82.41� 1.8 97.22� 0.8 97.22� 0.8 1.00 1.00 0.50Monk2-local 82.41� 1.8 95.60� 1.0 95.60� 1.0 1.00 1.00 0.50Monk2 69.68� 2.2 63.90� 2.3 64.35� 2.3 0.01 0.01 0.58Monk3 90.28� 1.4 100.00� 0.0 97.22� 0.8 1.00 1.00 0.00Average real: 84.53 83.65 85.34Average artif. 86.06 92.79 92.39two features to be irrelevant (due to poor statistics from the small training set) and the wrapper's internalcross-validation gave an overly pessimistic estimate to the node representing the subset of all features, whichwas optimal. Note that our \ID3" is actually the C4.5 algorithmwith command line arguments specifying nopruning. As it happens, command line arguments cannot turn o� a tree postprocessing step that can swapa parent decision node with its child, and this swapping results in 100% accuracy on corral with plain ID3.The wrapper signi�cantly outperformed the �lter on two of the real datasets, but performed signi�cantlyworse than the �lter on the Monk3 dataset. In Monk3, the feature subset search did test the node with100% test-set accuracy, but the internal cross-validation estimated its accuracy to be lower than the nodewith 97.22% test-set accuracy.We have focused only on accuracy above, so other criteria merit some consideration. First, the wrappermethod extends directly to minimizing misclassi�cation cost. Most Irvine datasets do not include costinformation and so accuracy is a natural performance metric, but one can trivially use a cost function insteadof accuracy as the evaluation function for the wrapper. For �lter approaches, adapting to misclassi�cationcosts is a research topic. Second, we should compare the number of features selected by the �lter andwrapper. Table 15 shows the number of features in each dataset, the number selected by the Relieved-F�lter (note that since the �lter is independent of the induction algorithm, it prescribes the same set offeatures whether using ID3, C4.5, or Naive-Bayes), and the number selected by the plain versions of thealgorithms and their wrapper-enhanced versions. (Plain Naive-Bayes always uses all features, so it does nothave its own column.) The average reduction column shows the average percentage decrease in number offeatures between each column and its natural benchmark (e.g., RLF and C4.5 are compared to the originaldataset, C4.5-BFS is compared to plain C4.5).It is also interesting to compare results between the original C4.5 algorithm and the wrapped versionsof ID3, C4.5, and Naive-Bayes. Table 16 shows accuracy results for C4.5, ID3 with best-�rst forwardfeature subset selection, C4.5 with best-�rst backward FSS with compound operators, and Naive-Bayes withbackward compound-operator FSS. The following observations can be made:� For real datasets, ID3-FSS and C4.5 perform approximately the same, but ID3-FSS uses fewer features.For the arti�cial datasets, ID3-FSS signi�cantly outperforms C4.5 on three datasets (corral, Monk1,Monk2-local), and is signi�cantly inferior in one (m-of-n-3-7-10).29



Table 15: The number of features in each dataset, the number selected by Relieved-F, the number used bythe plain versions of the algorithms, and the number used by the wrapped versions.Dataset All RLF C4.5 C4.5-BFS NB-BFS ID3 ID3-BFSbreast cancer 10 5.7 7.0 3.9 5.9 9.1 5.3cleve 13 10.5 9.1 5.3 7.9 11.4 4.6crx 15 11.5 9.9 7.7 9.1 13.6 7.7DNA 180 178 46 12 48 72 36horse-colic 22 18.2 5.5 4.3 6.1 17.4 7.2Pima 8 1.2 8.0 4.8 4.4 8.0 5.7sick-euthyroid 25 24 4 3 3 14 4soybean-large 35 34.8 22.0 17.1 16.7 25.8 17.7corral 6 5 4 2 5 4 4m-of-n-3-7-10 10 7 9 6 7 10 7Monk1 6 3 5 3 4 6 3Monk2-local 17 8 12 6 5 14 6Monk2 6 4 6 0 0 6 3Monk3 6 3 2 2 2 6 2AverageReduction 30% 37% 40% 28% 6% 19%Table 16: A comparison of C4.5 with ID3-FSS, C4.5-FSS, and Naive-Bayes-FSS. The p-val columns indicatesthe probability that the column before it is improving over C4.5Dataset C4.5 ID3-FSS p-val C4.5-FSS p-val NB-FSS p-valoriginal Frwd-BFS Back-BFS Back-BFSbreast cancer 95.42� 0.7 94.57� 0.7 0.11 95.28� 0.6 0.41 96.00� 0.6 0.81cleve 72.30� 2.2 79.52� 2.3 1.00 77.88� 3.2 0.98 82.56� 2.5 1.00crx 85.94� 1.4 85.22� 1.6 0.31 85.80� 1.3 0.46 84.78� 0.8 0.15DNA 92.66� 0.8 94.27� 0.7 0.99 94.44� 0.7 0.99 96.12� 0.6 1.00horse-colic 85.05� 1.2 82.07� 1.5 0.01 84.77� 1.3 0.41 82.33� 1.3 0.01Pima 71.60� 1.9 68.73� 2.2 0.08 70.18� 1.3 0.20 76.03� 1.6 0.99sick-euthyroid 97.73� 0.5 97.06� 0.5 0.09 97.91� 0.4 0.66 97.35� 0.5 0.21soybean-large 91.35� 1.6 91.65� 1.0 0.59 91.93� 1.3 0.65 94.29� 0.9 0.99corral 81.25� 3.5 100.00� 0.0 1.00 81.25� 3.5 0.50 90.62� 2.6 1.00m-of-n-3-7-10 85.55� 1.1 77.34� 1.3 0.00 85.16� 1.1 0.36 87.50� 1.0 0.97Monk1 75.69� 2.1 97.22� 0.8 1.00 88.89� 1.5 1.00 72.22� 2.2 0.05Monk2-local 70.37� 2.2 95.60� 1.0 1.00 88.43� 1.5 1.00 67.13� 2.3 0.07Monk2 65.05� 2.3 63.89� 2.3 0.31 67.13� 2.3 0.82 67.13� 2.3 0.82Monk3 97.22� 0.8 97.22� 0.8 0.50 97.22� 0.8 0.50 97.22� 0.8 0.50Average real: 86.51 86.64 87.27 88.68Average artif. 79.19 88.55 84.68 80.3030



� C4.5-FSS signi�cantly outperforms C4.5 on two real datasets (cleve and DNA), two arti�cial datasets(Monk1 and Monk2-local), and is never signi�cantly outperformed by C4.5. The relative error isreduced by 5.6% for real datasets and by 26.4% for the arti�cial datasets.� What is perhaps most interesting is how C4.5 and Naive-Bayes with feature subset selection compare.While there are datasets for which either one is better than the other, on the real datasets, C4.5 issigni�cantly better only for the horse-colic dataset, but Naive-Bayes is signi�cantly better for cleve,DNA, Pima, and soybean-large. The relative error of Naive-Bayes is smaller by 16.1%. For the arti�cialdatasets, the two are about equal: C4.5 is signi�cantly better on two datasets (Monk1, Monk2-local),and Naive-Bayes is better on two (corral, m-of-n-3-7-10).In summary, feature subset selection using the wrapper approach signi�cantly improves ID3, C4.5 andNaive-Bayes on the datasets tested. On the real datasets, the wrapper approach is clearly superior to the�lter method. Perhaps the most surprising result is how well Naive-Bayes performs on real datasets oncediscretization and feature subset selection are done. Some explanations for the apparently high accuracy ofNaive-Bayes even when the independence assumptions are violated, are explained in Domingos & Pazzani(1996). However, we can see that in some real-world domains such as DNA, the feature selection step isimportant to improve performance.6 Over�ttingStill, it is an error to argue in front of your data. You �nd yourself insensibly twisting themround to �t your theories.|Sherlock Holmes / The Adventure of Wisteria Lodge.An induction algorithm over�ts the dataset if it models the given data too well and its predictions are poor.An example of an over-specialized hypothesis, or classi�er, is a lookup table on all the features. Over�ttingis closely related to the bias-variance tradeo� (Geman et al. 1992, Breiman et al. 1984): if the algorithm �tsthe data too well, the variance term is large, and hence the overall error is increased.Most accuracy estimation methods, including cross-validation, evaluate the predictive power of a givenhypothesis over a feature subset by setting aside instances (holdout sets) that are not shown to the inductionalgorithm and using them to assess the predictive ability of the induced hypothesis. A search algorithm thatexplores a large portion of the space and that is guided by the accuracy estimates can choose a bad featuresubset: a subset with a high accuracy estimate but poor predictive power.Overuse of the accuracy estimates in feature subset selection may cause over�tting in the feature-subsetspace. Because there are so many feature subsets, it is likely that one of them leads to a hypothesis thathas high predictive accuracy for the holdout sets. A good example of over�tting can be shown using ano-information dataset (Rand) where the features and the label are completely random. The top graph inFigure 20 shows the estimated accuracy versus the true accuracy for the best node the search has found afterexpanding k nodes. One can see that especially for the small sample of size 100, the estimate is extremelypoor (26% optimistic), indicative of over�tting. The bottom graphs in the �gure show over�tting in smallreal-world datasets.Recently, a few machine learning researchers have reported the cross-validation estimates that were usedto guide the search as a �nal estimate of performance, thus achieving overly optimistic results. Instead,experiments using cross-validation to guide the search must report the accuracy of the selected featuresubset on a separate test set or on holdout sets generated by an external loop of cross-validation that werenever used during the feature subset selection process.The problem of over�tting in feature subset space has been previously raised in the machine learningcommunity by Wolpert (1992a) and Scha�er (1993), and the subject has received much attention in thestatistics community (cf. Miller (1990)).Although the theoretical problem exists, our experiments indicate that over�tting is mainly a problemwhen the number of instances is small. Kohavi & Sommer�eld (1995) reported that out of 70 searches forfeature subsets with datasets containing over 250 instances, ten searches were optimistically biased by morethan two standard deviations and one was pessimistically biased by more than two standard deviations (3.5are expected for two standard deviations). While the problem clearly exists, it was not very severe on the31
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Figure 20: Over�tting in feature subset selection. The top graph shows the estimated and true accuraciesfor a random dataset and ID3. The solid line represents the estimated accuracy for a training set of 100instances, the thick grey line for a training set of 500 instances, and the dotted line shows the real accuracy.The bottom graphs graphs show the accuracy for real-world datasets. The solid line is the estimated accuracy,and the dotted line is the accuracy on an independent test set.datasets examined (all datasets contained more than 250 instances in the training set). Moreover, even ifthe estimates are biased, the algorithm may still choose the correct feature subsets because it is the relativeaccuracy that matters most.7 Subset Selection as Search with Probabilistic EstimatesWe now look at the problem of feature subset selection as search with probabilistic estimates. This abstractview generalizes the problem, and we believe it can lead to new practical results, if the abstract problem canbe solved using a di�erent approach than the one used in previous sections.The wrapper approach, which uses accuracy estimation as the evaluation and heuristic function, compli-cates the common state-space search paradigm. The fact that the accuracy estimation is a random variableimplies that there is uncertainty in the returned estimate.One way to decrease the variance is to run the accuracy estimation (e.g., k-fold cross-validation) more thanonce and average the results, as we have done. Increasing the number of runs shrinks the con�dence intervalfor the mean, but requires more time. The tradeo� between more accurate estimates and more extensiveexploration of the search space is referred to as the exploration versus exploitation problem (Kaelbling 1993).We can either exploit our knowledge and shrink the con�dence intervals of the explored nodes to make surewe select the right one, or we can explore new nodes in the hope of �nding better nodes. The tradeo� leads32



to the following abstract search problem.De�nition 7 (Search with Probabilistic Estimates)Let S be a state space with operators between states. Let f : S 7! R be an unbiased probabilistic evaluationfunction that maps a state to a real number, indicating how good the state is. The number returned by f(s)comes from a distribution D(s) with mean f�(s), which is the actual (unknown) value of the state. The goalis to �nd the state s with the maximal value of f�(s).The mapping of this de�nition to the feature subset selection problem is as follows. The states arethe subsets, and the operators are the common ones (add, delete, compound). The evaluation function isthe accuracy estimation accuracy. Although some accuracy estimation techniques, such as cross-validation,are biased, they can be viewed as unbiased estimators for a di�erent quantity; for example, k-fold cross-validation is unbiased for datasets of size m � m=k. Furthermore, for model selection, this pessimism isof minor importance because the bias may cancel out. We now describe work that falls under this generalframework of search with probabilistic estimators.Greiner (1992) described how to conduct a hill-climbing search when the evaluation function is proba-bilistic. The algorithm stops at a node that is a local optimum with high probability, based on the Cherno�bound. Yan & Mukai (1992) analyzed an algorithm based on simulated annealing and showed that it will�nd the global optimum if given enough time.Maron & Moore (1994), in an approach very similar to Greiner's, attempted to shrink the con�denceinterval of the accuracy for a given set of models, until one model can be proven to be optimal with highprobability. The evaluation function is a single step in leave-one-out cross-validation, i.e., the algorithm istrained on randomly chosen n� 1 instances and tested on the one that is left. The induction algorithm usedis instance-based learning, which leads to an extremely fast evaluation because training is not necessary. Astep of leave-one-out is merely a test of whether an instance is classi�ed correctly by its nearest-neighbor.Note, however, that f(s) always returns either a zero or a one. The instance is either correctly classi�ed, ornot. This step must be repeated many times to get a reasonable con�dence bound.The general idea is to race competing models, until one is a clear winner. Models drop out of the racewhen the con�dence interval of the accuracy does not overlap with the con�dence interval of the accuracyof the best model (this is analogous to imposing a higher and lower bound on the estimation function inthe B� algorithm (Berliner 1981)). The race ends when there is a winner, or when all n steps in the leave-one-out cross-validation have been executed. The con�dence interval is de�ned according to Hoe�ding'sformula (Hoe�ding 1963): p����f�(s) � bf(s)��� > �� < 2e�2m�2=B2where bf (s) is the average of m evaluations and B bounds the possible spread of point values. Given acon�dence level, one can determine �, and hence a con�dence interval for f�(s), from the above formula.The paper (Maron & Moore 1994), however, does not discuss any search heuristic, and assumes that a �xedset of models is given by some external source.Moore & Lee (1994) describe an algorithm for feature subset selection that has both ingredients of theabstract problem: it has a search heuristic, and it uses the probabilistic estimates in a non-trivial manner.The algorithm does a forward selection and backward elimination, but instead of estimating the accuracyof each added (deleted) feature using leave-one-out cross-validation, all the features that can be added(deleted) are raced in parallel. Assuming that the distribution of f(s) is normal, con�dence intervals areused to eliminate some features from the race.Schemata search (Moore & Lee 1994) is another search variant that allows taking into account interactionsbetween features. Instead of starting with the empty or full set of features, the search begins with allfeatures marked as \unknown." Each time a feature is chosen and raced between being \in" or \out." Allcombinations of \unknown" features are used in equal probability, thus a feature that should be \in" willwin the race, even if correlated with another feature. Although this method uses the probabilistic estimatesin a Bayesian setting, the basic search strategy is simple hill-climbing.Fong (1995) gives bounds for the sample complexity (the number of samples one needs to collect beforetermination) in the k-armed bandit problem. His -IE approach allows trading o� exploitation and explo-ration, thus generalizing the Kaelbling's interval estimation strategy (Kaelbling 1993). However, in all cases33



the worst-case bound remains the same and the optimal tradeo� between exploration and exploitation wasempirically determined to be domain dependent.8 Related WorkThe pattern recognition literature (Devijver & Kittler 1982, Kittler 1986, Ben-Bassat 1982), statistics lit-erature (Draper & Smith 1981, Miller 1984, Miller 1990, Neter et al. 1990), and recent machine learn-ing papers (Almuallim & Dietterich 1991, Almuallim & Dietterich 1994, Kira & Rendell 1992a, Kira &Rendell 1992b, Kononenko 1994) consist of many such measures for feature subset selection that are allbased on the data alone.Most measures in the pattern recognition and statistics literature are monotonic, i.e., for a sequence ofnested feature subsets F1 � F2 � � � � � Fk, the measure f obeys f(F1) � f(F2) � � � � � f(Fk). Notableselection measures that do satisfy monotonicity assumption are residual sum of squares (RSS), adjusted R-square, minimummean residual, Mallow'sCp (Mallows 1973), discriminant functions, and distance measures,such as the Bhattacharyya distance and divergence. The PRESS measure (Prediction sum of squares),however, does not obey monotonicity. For monotonic functions, branch and bound techniques can be used toprune the search space. Furnival &Wilson (1974) show how to compute the residual sum of squares (RSS) forall possible regressions of k features in less than six (!) oating-point operations per regression; furthermore,the technique can be combined with branch and bound algorithms as described in their paper.3 Narendra& Fukunaga (1977) apparently rediscovered the branch-and-bound technique, which was later improved inYu & Yuan (1993). Most machine learning induction algorithms do not obey monotonic restrictions, and sothis type of dynamic programming cannot be used. Even when branch and bound can be used, the searchis usually exponential, and when there are more than 30 features, suboptimal methods are used.Searching in the space of feature subsets has been studied for many years. Sequential backward elimi-nation, sometimes called sequential backward selection, was introduced by Marill & Green (1963). Kittler(1978) generalized the di�erent variants including forward methods, stepwise methods, and \plus `{takeaway r." Cover & Campenhout (1977) showed that even for multivariate normally distributed features, nohill-climbing procedure that uses a monotonic measure and that selects one feature at a time can �nd thebest feature subset of a desired size; even a 2-1 algorithm that adds the best pair and removes the worstsingle feature can fail. More recent papers attempt to use AI techniques, such as beam search and bidirec-tional search (Siedlecki & Sklansky 1988), best-�rst search (Xu, Yan & Chang 1989), and genetic algorithms(Vafai & De Jong 1992, Vafai & De Jong 1993). All the algorithms described above use a deterministicevaluation function, although in some cases they can easily be extended to probabilistic estimates, suchas cross-validation that we use. Recently, Bala, Jong, Haung, Vafaie & Wechsler (1995) used the wrapperapproach with holdout for accuracy estimation and a genetic algorithm to search the space. Langley (1994)reviewed feature subset selection methods in machine learning and contrasted the wrapper and �lter ap-proaches. Atkeson (1991) used leave-one-out cross-validation to search a multidimensional real-valued spacewhich includes feature weights in addition to other parameters for local learning.The theory of rough sets de�nes notions of relevance that are closely related to the ones de�ned here(Pawlak 1991). The set of strongly relevant features form the core and any set of features that allow aBayes classi�er to achieve the highest possible accuracy forms a reduct. A reduct can only contain stronglyrelevant and weakly relevant features. Pawlak (1991) shows that the core is the intersection of all the reductsand that every reduct consists only of the core features and weakly relevant features. Pawlak (1993) wrotethat one of the most important and fundamental notions to the rough sets philosophy is the need to discoverredundancy and dependencies between features, and there has been a lot of work on feature subset selectioncoming from the rough sets community (cf. Modrzejewski (1993) and Ziarko (1991)). While the goal of�nding a good feature subset is the same, Kohavi & Frasca (1994) have claimed that relevance does notnecessarily imply usefulness for induction tasks (see also Section 2.3).While we concentrated on feature selection of relevant features in this paper, an alternative method is toweigh features, giving each one a degree of relevance. Theoretical results have been shown for multiplicative3The Forest Service must have been really interested in this problem. Furnival was at the School of Forestry at YaleUniversity, and Wilson was from the USDA Forest Service! One would think that they should have been working on treepruning and not on linear regression. 34



learning algorithms, which work well for linear combinations of features (e.g., perceptrons) (Littlestone &Warmuth 1994). The concept of taking a weighted combination of classi�ers generalizes the idea of choosingfeatures and is commonly referred to as the problem of combining expert advice (Littlestone 1988, Cesa-Bianchi, Freund, Haussler, Helmbold, Schapire & Warmuth 1994).Skalak (1994) uses the wrapper approach for feature subset selection and for decreasing the number ofprototypes stored in instance-based methods. He shows that very few prototypes sometimes su�ce. This isan example of choosing relevant instances as opposed to relevant features.Turney (1996) de�nes a feature to be primary if there is one feature value such that the probability of aclass changes when conditioned on this value.4 A primary feature is thus informative about the class whenconsidered all by itself. He then de�nes a contextual feature as a non-primary relevant feature. A featureis contextual only if it helps in the context of all others. Contextual features are harder to �nd because theyinvolve interactions. These de�nitions are orthogonal to ours: a feature may be primary and either stronglyor weakly relevant, or contextual and either strongly or weakly relevant.Since the introduction of the wrapper approach (John et al. 1994), we have seen it used in a few papers.Langley & Sage (1994a) used the wrapper approach to select features for Naive-Bayes (but without dis-cretization) and Langley & Sage (1994b) used it to select features for a nearest-neighbor algorithm. Pazzani(1995) used the wrapper approach to select features and join features (create super-features that compoundothers) for Naive-Bayes and showed that it indeed �nds correct combinations when features interact. Singh& Provan (1995) and Provan & Singh (1995) used the wrapper approach to select features for Bayesian net-works and showed signi�cant improvements over the original K2 algorithm. Street, Mangasarian & Wolberg(1995) use the wrapper in the context of a linear programming generalizer. All the algorithms mentionedabove use a hill-climbing search engine.Aha & Bankert (1994) used the wrapper for identifying feature subsets in a cloud classi�cation problemwith 204 features and 1633 instances; they concluded that their empirical results strongly support theclaim that the wrapper strategy is superior to �lter methods. Aha & Bankert (1995) compare forward andbackward feature subset selection using the wrapper approach and a beam-search engine and conclude thatforward selection is better. In other work, we have applied the wrapper approach to parameter tuning as well(speci�cally, setting the parameters of C4.5 for maximal performance) in Kohavi & John (1995). Mladeni�c(1995) independently extended the use of wrappers from feature subset selection to parameter tuning. Doak(1992) has developed a method similar to the wrapper approach independently, and compared many searchengines for feature subset selection; however, he was not aware of the fact that one should use an independenttest set for the �nal estimation and used the accuracy estimation used to guide the search (see Section 6).59 Future WorkMany variations and extensions of the current work are possible. We have examined hill-climbing and best-�rst search engines. Other approaches could be examined, such as simulated annealing approaches thatevaluate the better nodes more times (Laarhoven & Aarts 1987). Looking at the search, we have seen thatone general area of the search space is explored heavily when it is found to be good. It might be worthwhile tointroduce some diversity into the search, following the genetic algorithmand genetic programmingapproaches(Holland 1992, Goldberg 1989, Koza 1992). The problem has been abstracted as search with probabilisticestimates (Section 7), but we have not done experiments in an attempt to understand the tradeo� betweenthe quality of the estimates and the search size, i.e., exploration versus exploitation experiments.The search for a good subset is conducted in a very large space. We have started the search from theempty set of features and from the full set of features, but one can start from some other initial node. Onepossibility is to estimate which features are strongly relevant, and start the search from this subset, althoughcompound operators seem to be a partial answer to this problem. Another possibility is to start at randompoints and conduct a series of hill-climbing searches. We could also start with the set of features suggestedby Relieved-F, or at least ensure that this set is explored by the wrapper at some point during the search.4A longer discussion of contextual features may be found in Turney (1993), although the de�nitions originally given werefound to be awed as mentioned in Turney (1996).5The results in both papers by Aha and Bankert, those of Mladeni�c, and those of Doak must be interpreted cautiouslybecause they were using the cross-validation accuracy used during the search as the �nal estimated performance as opposed toan independent test set or an external loop of cross-validation as we have done.35



The wrapper approach is very slow. For larger datasets, it is possible to use cheaper accuracy estimationmethods, such as holdout, or decrease the number of folds. Furthermore, some inducers allow incrementaloperations on the classi�ers (add and delete instances), leading to the possibility of doing incremental cross-validation as suggested in Kohavi (1995a), thus drastically reducing the running time. Although C4.5 doesnot support incremental operations, Utgo� (1994) has shown that this is possible and has implemented afast version of leave-one-out for decision trees (Utgo� 1995). The wrapper approach is also very easy toparallelize. In a node expansion, all children can be evaluated in parallel, which will cut the running timeby a factor equal to the number of attributes (e.g., 180 for DNA).In theory, every possible feature subset identi�es a di�erent model, so the problem can be viewed asthat of model selection (Linhart & Zucchini 1986) in statistics. If there are only a few models, as is thecase when one chooses between three induction algorithms, one can estimate the accuracy of each one andselect the one with the highest accuracy (Scha�er 1993) or perhaps even �nd some underlying theory to helppredict the best one for a given dataset (see Brazdil, Gama & Henery (1994) for an attempt that was notvery successful in �nding regularities in the StatLog project). For all but the smallest problems, the spaceof possible feature subsets is too large for brute-force enumeration of all possibilities, and we must resort toheuristic search.Recently, aggregation techniques, sometimes called stacking, have been advocated by many people inmachine learning, neural networks, and Statistics (Wolpert 1992b, Breiman 1994, Freund & Schapire 1995,Schapire 1990, Freund 1990, Perrone 1993, Krogh & Vedelsby 1995, Buntine 1992, Kwok & Carter 1990). It ispossible to build many models, each one with a di�erent parameter setting or with a di�erent feature subset,and let them vote on the class. Aggregation techniques reduce the variance of the models by aggregatingthem, but they make it extremely hard to interpret the resulting classi�er.10 SummaryWe have described the feature subset selection problem in supervised learning, which involves identifyingthe relevant or useful features in a dataset and giving only that subset to the learning algorithm. We haveinvestigated the relevance and irrelevance of features, and concluded that weak and strong relevance areneeded to capture our intuition better. We have then shown that these de�nitions are mainly useful withrespect to an optimal rule, i.e., Bayes rule, but that in practice one should look for optimal features withrespect to the speci�c learning algorithm and training set at hand. Such optimal features do not necessarilycorrespond to relevant features (either weak or strong) as shown in Section 2.3. The optimal features dependon the speci�c biases and heuristics of the learning algorithm, and hence the wrapper approach naturally�ts with this de�nition. Feature relevance helped motivate compound operators, which work well in practiceand are currently the only practical way to conduct backward searches for feature subsets using the wrapperapproach when the datasets have many features.The wrapper approach requires a search space, operators, a search engine, and an evaluation function.For the evaluation function, we used cross-validation as our accuracy estimation technique, based on theresults in Kohavi (1995b). We have used the common search space with add and delete operators as thebasis for comparing two search engines: hill-climbing and best-�rst search. We have then de�ned compoundoperators that use more information in the children of an expanded node, not just the maximumvalue. Thesecompound operators make a backward search, starting from the full set of features, practical. Best-�rst searchwith compound operators seems to be a strong performer and improves ID3, C4.5, and Naive-Bayes, bothin accuracy, and in comprehensibility, as measured by the number of features used.We showed several problems with �lter methods that attempt to de�ne relevance independently of thelearning algorithm. These problems include: inability to remove a feature in symmetric targets conceptssuch as m-of-n-3-7-10 where removal of one feature improves performance (Section 4), inability to includeirrelevant features that may actually help performance (Example 3), and inability to remove correlatedfeatures that may hurt performance (Section 2.4). Not only have we given theoretical reasons why relevanceshould be de�ned relative to an algorithm, but we conducted experiments comparing the wrapper approachwith Relieved-F, a �lter approach to feature subset selection.Our comparisons include two di�erent families of induction algorithms: decision trees and Naive-Bayes.Signi�cant performance improvement is achieved for both. For the DNA dataset, which was extensively36



compared in the Statlog project, the wrapper approach using Naive-Bayes reduced the error rate from 6.1%to 3.9% (a relative error reduction of 36%), making it the best known induction algorithm for this problem.One of the more surprising results was how well Naive-Bayes performed overall. In the global comparison(Table 16), Naive-Bayes with feature selection outperforms C4.5 (with and without feature selection) on thereal datasets.Our experiments were done on real and arti�cial datasets. In some cases, the results varied dramaticallybetween these two sets. One reason is that many of the real datasets were already preprocessed to includeonly relevant features (DNA being the only exception), while the arti�cial ones included irrelevant features onpurpose. The arti�cial datasets were mostly noise-free (except monk3), while the real ones contained noise.Finally, the arti�cial problems contained high-order interactions, which make it harder for hill-climbingalgorithms such as C4.5 to �nd the optimal feature subset. We expect that tougher problems containinginteractions will occur more in unprocessed datasets coming from the real world.We have also shown some problems with the wrapper approach, namely over�tting and the large amountsof CPU time required, and we de�ned the search problem as an abstract state space search with probabilisticestimates, a formulation that may capture other general problems and that might be studied independentlyto solve the existing problems. The time issue seems to be the most important, although with larger amountsof data, cross-validation can be replaced with holdout accuracy estimation for an immediate improvementin time by a factor of �ve. Over�tting is a problem of lesser importance and seems to occur mostly in smalltraining sets; as more data is available for training, over�tting it by chance is much harder.In supervised classi�cation learning, the question of whether a feature in a dataset is relevant to a givenprediction task is less useful than the question of whether a feature is relevant to the prediction task givena learning algorithm. If the goal is to optimize accuracy, one should ask whether a set of features is optimalfor a task given the learning algorithm and the training set. Di�erent algorithms have di�erent biases anda feature that may help one algorithm may hurt another. Similarly, di�erent training set sizes might implythat a di�erent set of features is optimal. If only a small training set is given, it may be better to reduce thenumber of features and thus reduce the algorithm's variance; when more instances are given, more featurescan be chosen to reduce the algorithm's bias.AcknowledgmentsWe would also like to thank Karl Peger for his help in formulating the wrapper idea. We would like thankour anonymous reviewers. One reviewer formulated Example 3, which is much better than our originalexample. Pat Langley, Nick Littlestone, Nils Nilsson, and Peter Turney gave helpful feedback on the ideasand presentation. Dan Sommer�eld implemented large parts of the wrapper inMLC++ (Kohavi et al. 1996),and all of the experiments were done usingMLC++. George John's work was supported under a NationalScience Foundation Graduate Research Fellowship.ReferencesAha, D. W. (1992), \Tolerating noisy, irrelevant and novel attributes in instance-based learning algorithms",International Journal of Man-Machine Studies 36(1), pp. 267{287.Aha, D. W. & Bankert, R. L. (1994), Feature selection for case-based classi�cation of cloud types: Anempirical comparison, in Working Notes of the AAAI-94 Workshop on Case-Based Reasoning, pp. 106{112.Aha, D. W. & Bankert, R. L. (1995), A comparative evaluation of sequential feature selection algorithms,in D. Fisher & H. Lenz, eds, Proceedings of the Fifth International Workshop on Arti�cial Intelligenceand Statistics, Ft. Lauderdale, FL, pp. 1{7.Aha, D.W., Kibler, D. & Albert, M. K. (1991), \Instance-based learning algorithms",Machine Learning 6(1),pp. 37{66.Almuallim, H. & Dietterich, T. G. (1991), Learning with many irrelevant features, in Ninth National Con-ference on Arti�cial Intelligence, MIT Press, pp. 547{552.37
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