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Simulation Model of Wind Turbine 3p Torque
Oscillations due to Wind Shear and Tower Shadow

Dale S. L. Dolan, Student Member, IEEE, and Peter W. Lehn, Senior Member, IEEE

Abstract—To determine the control structures and possible
power quality issues, the dynamic torque generated by the blades
of a wind turbine must be represented. This paper presents an
analytical formulation of the generated aerodynamic torque of a
three-bladed wind turbine including the effects of wind shear and
tower shadow. The comprehensive model includes turbine-specific
parameters such as radius, height, and tower dimensions, as well
as the site-specific parameter, the wind shear exponent. The model
proves the existence of a 3p pulsation due to wind shear and ex-
plains why it cannot be easily identified in field measurements. The
proportionality constant between the torque and the wind speed is
determined allowing direct aerodynamic torque calculation from
an equivalent wind speed. It is shown that the tower shadow effect
is more dominant than the wind shear effect in determining the dy-
namic torque, although there is a small dc reduction in the torque
oscillation due to wind shear. The model is suitable for real-time
wind turbine simulation or other time domain simulation of wind
turbines in power systems.

Index Terms—Real-time digital simulation, simulation model,
torque oscillations, tower shadow, wind shear, wind turbine.

I. INTRODUCTION

TORQUE and power generated by a wind turbine is much
more variable than that produced by more conventional

generators. The sources of these power fluctuations are due
both to stochastic processes that determine the wind speeds at
different times and heights, and to periodic processes. These
periodic processes are largely due to two effects termed wind
shear and tower shadow. The term wind shear is used to de-
scribe the variation of wind speed with height while the term
tower shadow describes the redirection of wind due to the tower
structure. In three-bladed turbines, the most common [1] and
largest [2] periodic power pulsations occur at what is known as
a 3p frequency. This is three times the rotor frequency, or the
same frequency at which the blades pass by the tower. Thus,
even for a constant wind speed at a particular height, a tur-
bine blade would encounter variable wind as it rotates. Torque
pulsations and, therefore power pulsations, are observed due to
the periodic variations of wind speed experienced at different
locations.

Torque oscillations have been noted in several studies. It has
been stated that maximum torque and power were noted when
any individual blade was positioned directly downwards [3],
although Thiringer [1] was unable to certify the dependence of
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the oscillation on wind shear. It is believed that tower shadow
is also a source of the 3p oscillations observed in wind turbines
although studies [1], [2] are unable to confirm this.

The 3p oscillations are important to model since they could
have wide ranging effects on control systems and power quality.
In systems connected directly to the grid, these torque oscil-
lations would be important to model in terms of grid power
quality. For systems interfaced to the grid through converters,
these torque oscillations would be more important in terms of
converter control. The torque oscillation model would be useful
in studying these effects via a wind turbine simulator or other
dynamic wind turbine modeling tools. Dynamic wind turbine
models are needed to interface with current power system simu-
lation tools like EMTP or PSCAD/EMTDC [4]. Existing models
use either a simple aerodynamic torque representation, or are
excessively complicated and not viable for incorporation into
EMTP-type simulation tools [5].

Several turbine simulators have been created to model the
wind turbine shaft in laboratory studies. Some simulators are
capable of dynamic simulations [6]–[8] while others are only
capable of performing steady-state simulations [9]. The sim-
ulator may only emulate the elements incorporated into the
model. The simplest and most common approach is to use a ba-
sic steady-state torque equation to calculate wind power and use
this to determine the acceleration on the turbine inertia [9]–[11].
Many of the lab simulators reviewed [8]–[13] did not include
the effects of wind shear or tower shadow, making these simu-
lators unsuitable for studying issues that may arise due to these
effects.

In recent literature, dynamic models of wind turbines have
been used where aerodynamic torque was either represented by
steady-state torque curves [14], [15] or by simple sinusoidal os-
cillations [16]. This paper develops a more complete model of
the wind turbine. The formulation involves a torque model for
the three-bladed turbine that includes the effects of wind shear,
and tower shadow. A pragmatic model appropriate for dynamic
wind turbine modeling tools is not available elsewhere that in-
corporates these effects. The formulation will combine and build
upon previous work to develop such a model. Suitable models
for wind shear and tower shadow will be presented that will be
put into a form from which a total wind field over the entire
rotor area may be determined. A method [17] for converting a
wind field into one equivalent wind speed will then be briefly re-
viewed. An equivalent wind speed including contributions from
the hub height wind speed, wind shear and tower shadow will be
calculated. Finally, a completed normalized torque model will
be presented that is suitable for implementation in a real-time
wind turbine simulator or other time domain simulation.

0885-8969/$20.00 © 2006 IEEE
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Fig. 1. Comparison of torque oscillation due to wind shear alone depending
on form of wind shear approximation.

II. WIND SHEAR

Wind speed generally increases with height and this variation
is termed wind shear. Torque pulsations, and therefore power
pulsations, are observed due to the periodic variations of wind
speed seen at different heights. Power and torque oscillate due
to the different wind conditions encountered by each blade as
it rotates through a complete cycle [3]. For instance, a blade
pointing upwards would encounter wind speeds greater than
a blade pointing downwards. During each rotation, the torque
oscillates three times because of each blade passing through
minimum and maximum wind.

It is therefore important to model these wind-shear-induced
3p torque pulsations when studying a wind turbine system. A
common wind shear model, shown as (1), is taken directly from
the literature on wind turbine dynamics [1], [18], [19].

V (z) = VH

( z

H

)α

(1)

For the purpose of this analysis, (1) is converted to a function
of r (radial distance from rotor axis) and θ (azimuthal angle)
giving the following:

V (r, θ) = VH

(
r cos θ + H

H

)α

= VH[1 + Ws(r, θ)] (2)

where VH is the wind speed at hub height, r is the radial distance
from rotor axis, Ws is the wind-shear-shape function [18], α is
the empirical wind shear exponent, H is the elevation of rotor
hub, and z is the elevation above ground. The term Ws(r, θ) is
the disturbance seen in wind speed due to wind shear that is
added to hub height wind speed.

Both Spera [18] and Thresher [19] approximated Ws(r, θ)
by the second-order-truncated Taylor series expansion shown
as follows:

Ws(r, θ) ≈ α
( r

H

)
cos θ +

α(α − 1)
2

( r

H

)2

cos2 θ (3)

However, as shown in Fig. 1, the truncated expansion of (3)
eliminates, in three-bladed turbines, the torque oscillations due

to the wind shear when the contributions from each of the blades
are summed. This is because when the three blade contributions
are summed, the cos θ term yields a zero contribution while the
cos2 θ term contributes only a dc component that adjusts average
wind speed from hub height wind speed to spatial mean wind
speed. This can be seen in Fig. 1, where the resulting torque from
the second order approximation becomes constant, completely
losing the properties of the nonlinear wind shear expression. To
effectively model the 3p effect of wind shear, a cos3 θ term is
necessary, requiring a third-order-truncated Taylor expansion.
Therefore, to model torque oscillations from wind shear, the
approximation used for Ws(r, θ) should be as follows.

Ws(r, θ) ≈ α
( r

H

)
cos θ +

α(α − 1)
2

( r

H

)2

cos2 θ

+
α(α − 1)(α − 2)

6

( r

H

)3

cos3 θ (4)

III. TOWER SHADOW

The distribution of wind is altered by the presence of the
tower. For upwind rotors, the wind directly in front of the tower
is redirected and thereby reduces the torque at each blade when
in front of the tower. This effect is called tower shadow. The
torque pulsations due to tower shadow are most significant when
a turbine has blades downwind of the tower and wind is blocked
as opposed to redirected [20]. For this reason, the majority
of modern wind turbines have upwind rotors. This paper will
therefore only deal with the tower shadow torque oscillations
in horizontal axis three-bladed upwind rotors. This section will
show theoretically the 3p oscillations caused by tower shadow.

The wind field, only considering tower shadow, is defined as
in (5), where VH = hub height wind speed. The term υtower(y, x)
is the disturbance observed in the wind speed due to the tower
shadow that is added to hub height wind speed. Sorensen [17]
modeled tower disturbance using potential flow theory for wind
movement around the tower. Using the reference frames shown
in Fig. 2 yields (6).

V (y, x) = VH + υtower(y, x) (5)

υtower(y, x) = V0a
2 y2 − x2

(x2 + y2)2
(6)

In (6), V0 is the spatial mean wind speed, a is the tower radius,
y is the lateral distance from the blade to the tower midline, and
x is the distance from the blade origin to the tower midline.

Results for tower radius of 2 m and four different longitudinal
distances between the tower and the blades are shown in Fig. 3.
It can be seen that as expected, the tower shadow effect is
more pronounced when the blades are closer (x smaller) to the
tower.

An alternate tower-shadow-deficit model (7) is developed
in [21] and shown as follows:

υtower(y, x) = −V0
D

2π

x

(x2 + y2)
(7)

where D is the tower diameter, y is the lateral distance from
the blade to the tower midline, x is the distance from the blade
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Fig. 2. Dimensions used in tower shadow formula.

Fig. 3. Comparison of tower shadow model (6) with different distances be-
tween the tower and the blades.

origin to the tower midline, and V0 is the spatial mean wind
speed. Results for this alternate model with a tower radius of
2 m and four different longitudinal distances between the tower
and the blades are shown in Fig. 4.

Comparison of the two models graphically shows that a more
reasonable model is represented by (6), as it models both the
deceleration of the wind flow in front of the tower and the ac-
celeration of the wind flow on each side of the tower. Therefore,
for modeling torque oscillations due to tower shadow, (6) is
preferable and will be used in subsequent model development.

Different reference wind speeds are used in models for the
disturbance due to wind shear and tower shadow. The wind shear
model uses hub height wind speed (VH) while the tower shadow
model uses spatial mean wind speed (V0). The relationship
between these two wind speeds is formulated in Appendix and

Fig. 4. Comparison of tower shadow model (7) with different distances be-
tween the tower and the blades.

Fig. 5. Variation of m = V0/VH with α for different R/H ratios.

is summarized in Fig. 5. Most often for time-domain simulation,
only a single wind speed value, VH, is available. V0 would
require calculation from an entire spatial wind field that would
normally be unavailable. Therefore, for all practical purposes, in
the torque oscillation model, tower disturbance will be expressed
in terms of VH. Converting (6) from a function of y (lateral
distance) to a function of r (radial distance) and θ (azimuthal
angle) normalized to VH yields as follows:

υ̃tower(r, θ, x) = ma2 r2 sin2(θ) − x2

(r2 sin2(θ) + x2)2
(8)

where a is the tower radius, r is the radial distance from the
blade to the hub center, θ is the azimuthal angle of the blade,
x is the distance from the blade origin to the tower midline,
and m = [1 + α(α−1)(R2)

8H 2 ] as developed in Appendix. It should
be noted that (8) is only valid for 90◦ ≤ θ ≤ 270◦ as above the
horizontal, tower shadow effects should obviously be absent.
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Fig. 6. Comparison of tower shadow at different radii based on a tower with
1.7-m diameter and blades 2.9 m from tower midline.

Fig. 6 shows the variation in the effective tower shadow angle
experienced by different blade elements at varying radial dis-
tances. It is observed that the blade elements closer to the hub
experience tower shadow for a longer period, although the same
wind deficit is seen for all blade elements at an angle of 180◦.

IV. DETERMINATION OF TOTAL WIND FIELD—v(t, r, θ)

To determine the total wind field, the results of (4) and (8)
from Sections II and III are combined. The total wind field due
to both tower shadow and wind shear is given as follows.

v(t, r, θ) = VH(t)[1 + Ws(r, θ)][1 + υ̃tower(r, θ, x)] (9)

v(t, r, θ) = VH(t)[1 + Ws(r, θ) + υ̃tower(r, θ, x)

+ Ws(r, θ)υ̃tower(r, θ, x)]. (10)

As Ws(r, θ)υ̃tower(r, θ, x) would be small compared to other
terms, (11) is a valid approximation of (9). This approach is also
supported in the literature [19].

v(t, r, θ) ≈ VH(t)[1 + Ws(r, θ) + υ̃tower(r, θ, x)] (11)

The spatially varying wind speed can be calculated using the
total wind field model of (11) or its expanded version as follows.

v(t, r, θ)≈VH(t)
[
1+ α

( r

H

)
cos θ +

α(α − 1)
2

( r

H

)2

cos2 θ

+
α(α− 1)(α− 2)

6

( r

H

)3

cos3 θ

+
ma2(r2 sin2 θ−x2)

(r2 sin2 θ + x2)2

]
. (12)

This total wind field model allows one to determine the wind
speed observed at any particular location in the rotor disk area,
knowing only the turbine parameters, wind shear coefficient and
a single hub height wind speed.

V. EQUIVALENT WIND SPEED FORMULATION BASED ON

EQUIVALENT TORQUE

An effective method for formulating an “equivalent wind
speed” has been developed by Sorensen [17]. The equivalent
wind speed is a representation of the actual spatially varying
wind speed that is defined such that it will give the same aerody-
namic torque. The advantage of this method is that a wind speed
without radial dependence may be used. For clarity and com-
pleteness, Sorensen’s approach is briefly outlined in this section.

The aerodynamic torque produced by a three-bladed wind
turbine immersed in a wind field v(t, r, θ) is given as follows:

Tae(t, θ) = 3M(V0) +
3∑

b=1

∫ R

r0

ψ(r)[v(t, r, θb) − V0] dr (13)

where Tae(t, θ) is the aerodynamic torque, M(V0) is the steady-
state blade root moment resulting from spatial mean wind speed
V0, R is the radius of the rotor disk, r0 is the radius at which
blade profile begins, and ψ(r) is the influence coefficient of
the aerodynamic load on the blade root moment. This equation
has been determined through linearization of individual blade
torque dependence on wind speed [17].

An equivalent wind speed veq(t, θ) that does not vary with
the radius is defined which would give the same aerodynamic
torque as the actual spatially varying wind speed. This veq must
be such that

Tae(t, θ) = 3M(V0) +
3∑

b=1

∫ R

r0

ψ(r)[veq(t, θ) − V0] dr. (14)

Sorensen determined (15) to be the expression for equivalent
wind speed by equating (13) and (14)

veq(t, θ) =
1
3

3∑
b=1

∫ R

r0
ψ(r)v(t, r, θb)dr∫ R

r0
ψ(r) dr

(15)

VI. DETERMINATION OF EQUIVALENT WIND SPEED

The total wind field including tower shadow and wind shear
effects will now be converted into one equivalent wind speed.
Three components of this equivalent wind speed will be sep-
arated and solved individually such that the effects from the
hub height wind speed, wind shear, and tower shadow may be
observed separately.

Assuming ψ(r) = kr, and defining n = r0
R and s = 1 − n2,

the total wind field (11) may be inserted into (15) to yield (16)
after some initial simplification.

veq(t, θ) =
2VH

3sR2

3∑
b=1

∫ R

r0

[
r +

r2α

H
cos θb +

r3α(α − 1)
2H2

cos2 θb

+
r4α(α− 1)(α− 2)

6H3
cos3 θb

+
ma2(r3 sin2 θb − rx2)

(r2 sin2 θb + x2)2

]
dr. (16)

This equivalent wind speed will have three components. The
first (veq0

) is due to the hub height wind speed, the second
(veqws

) is due to the wind shear, and the third (veqts
) is due to
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Fig. 7. Normalized equivalent wind speed due to tower shadow (veqts +
veq0 ), wind shear (veqws + veq0 ), and combination of wind shear and tower
shadow (veq0 + veqts + veqws ).

the tower shadow. Therefore, (16) can be decomposed as (17)
whose components are shown as (18)–(20).

veq(t, θ) = veq0
+ veqws

+ veqts
(17)

veq0
=

2VH

3sR2

3∑
b=1

∫ R

r0

[r] dr (18)

veqws
=

2VH

3sR2

3∑
b=1

∫ R

r0

[
r2α

H
cos θb +

r3α(α − 1)
2H2

cos2 θb

+
r4α(α − 1)(α − 2)

6H3
cos3 θb

]
dr (19)

veqts
=

2VH

3sR2

3∑
b=1

∫ R

r0

[
ma2(r3 sin2 θb − rx2)

(r2 sin2 θb + x2)2

]
dr. (20)

Using the results derived in this section, the normalized
equivalent wind speeds were determined for a turbine with
the following representative specifications: R = 20,H = 40,
α = 0.3, a = 0.85, and x = 2.9. The normalized equivalent
wind speed, caused by the tower shadow and the wind shear
both together and individually, of this configuration are shown
in Fig. 7. It is seen that the effect of the tower shadow is more
dominant than the effect of the wind shear.

A. Solving for veq0

This brief section will calculate the component of the equiv-
alent wind speed that is due to the steady-state hub height wind
speed. As expected and shown by (22), this component is simply
equal to the hub height wind speed, VH. It can be seen that this
result is independent of the values of r0, n, and s.

veq0
=

2VH

3sR2

3∑
b=1

[
sR2

2

]
dr (21)

veq0
= VH. (22)

B. Solving for veqws

The component of the equivalent wind speed that is due to
the wind shear is calculated in this section and is given as (28).
Through numerical analysis, it was found that for a conservative
estimate of r0 = 0.1R, that veqws

was comparable to the case
where r0 = 0. Therefore, for the development, r0 will be taken
as equal to 0 to simplify equations allowing n = 0 and s = 1.
If desired, a true value of r0 may be used without much more
computational effort.

veqws
=

2VH

3R2

3∑
b=1

[
R3

3
α

H
cos θb +

R4

4
α(α − 1)

2H2
cos2 θb

+
R5

5
α(α − 1)(α − 2)

6H3
cos3 θb

]
. (23)

To further simplify (23), expressions for the sums must be
developed. Using trigonometric identities and the angle defini-
tions shown in (24), these sums are determined and shown in
the form of (25)–(27) as follows.

θ = θ1, θ2 = θ1 +
2π

3
and θ3 = θ1 +

4π

3
(24)

3∑
b=1

[cos θb ] = 0 (25)

3∑
b=1

[cos2 θb ] =
3
2

(26)

3∑
b=1

[cos3 θb ] =
3
4
cos 3θ. (27)

We can now substitute (25)–(27) into (23) to yield the fi-
nal expression for equivalent wind speed due to wind shear as
follows:

veqws
= VH

[
α(α − 1)

8

(
R

H

)2

+
α(α − 1)(α − 2)

60

(
R

H

)3

cos 3θ

]
. (28)

The normalized equivalent wind speed caused by the wind
shear added to equivalent wind speed due to hub height wind
speed (veqws

+ veq0
) is shown in Fig. 7. It can be observed

that this has a minimum when one blade is pointed directly
downwards but is a relatively small effect (�1%). It is also
seen that there is a reduction in the equivalent wind speed due to
wind shear when normalized to VH. In this case this depression
is ≈0.5%.

C. Solving for veqts

The component of the equivalent wind speed that is due to
the tower shadow is calculated and is given in its final form
as (30). The formulation begins by performing the integration
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within (20) to yield (29).

veqts
=

2mVH

3sR2

3∑
b=1

[
a2 ln (R2 sin2 θb + x2)

2 sin2 θb

−
a2 ln

(
r2
0 sin2 θb + x2

)
2 sin2 θb

+
a2x2

sin2 θb(R2 sin2 θb +x2)
− a2x2

sin2 θb

(
r2
0 sin2 θb +x2

)
]
.

(29)
Numerical evaluation shows that (29) gives nearly identical

results with r0 = 0.1R and r0 = 0. Therefore, to further sim-
plify (29), it will be assumed that r0 = 0 and therefore s = 1.
This allows for the simplification of (29) to (30).

veqts
=

mVH

3R2

3∑
b=1

[
a2

sin2 θb

ln
(

R2 sin2 θb

x2
+ 1

)

− 2a2R2

R2 sin2 θb + x2

]
. (30)

The normalized equivalent wind speed caused by the tower
shadow added to the equivalent wind speed due to the hub height
wind speed (veqts

+ veq0
) is shown in Fig. 7. It can be seen that

this has a minimum when a blade is directly downwards and at
≈3%, is much larger than the effect from the wind shear.

VII. EXTRACTION OF FUNCTION ψ(r)

A typical distribution of aerodynamic load can assume that
ψ(r) is proportional to r [17]. However, to use the equivalent
wind speed to calculate torque oscillations the proportionality
constant must be known. This value is not specified in the litera-
ture and thus must be determined. To extract the proportionality
constant we must linearize the classic torque equation’s (31)
dependence on wind speed. Since (13) is itself derived through
linearization, this may be done without additional loss of gener-
ality. We use an operating point around V0, since the steady-state
torque depends on the spatial mean wind speed.

Tae(t, θ) =
1
2
ρAV 2R

Cp(λ)
λ

. (31)

Linearizing (31), we get (32), where V0 is the spatial mean
wind speed and λ0 is the tip speed ratio at V0.

Tae(t, θ) = Tae(t, θ)
∣∣∣∣V =V0
λ=λ0

+
∂Tae(t, θ)

∂V

∣∣∣∣ V =V0
λ=λ0

∆V

=
1
2
ρAV0

2R
Cp(λ0)

λ0
+ ρAV0R

Cp(λ0)
λ0

∆V. (32)

Defining n = r0
R and s = 1 − n2, and with ∆V =

veq(t, θ) − V0, (14) may now be transformed to (34).

Tae(t, θ) = 3M(V0) +
3∑

b=1

∫ R

r0

kr∆V dr (33)

Tae(t) = 3M(V0) + 3k
sR2

2
∆V. (34)

Equating (32) and (34) yields two new important results,
shown as follows.

3M(V0) =
1
2
ρAV 2

0 R
Cp(λ0)

λ0
(35)

k =
2ρAV0

3sR

Cp(λ0)
λ0

. (36)

The first result (35) shows that the addition of the steady-state
blade root moments over the three blades [3M(V0)] is equivalent
to the classic torque equation (31) at a particular wind speed. The
second result (36) gives the proportionality constant between
the torque deviation from the steady-state torque and the wind
speed deviation from the average wind speed. This new result
is important since it allows direct calculation of aerodynamic
torque from equivalent wind speed.

VIII. TORQUE OSCILLATIONS

With the three formulations of equivalent wind speed com-
ponents, the overall torque oscillations can now be modeled.
Using the linearized aerodynamic torque relation (34) and
allowing ∆V = veq(t, θ) − V0 and V0 = mVH, we get the
following results:

Tae(t, θ) = 3M(V0) +
3ksR2

2
[veq(t, θ) − V0] (37)

Tae(t, θ) = 3M(V0) +
3ksR2

2
× [veqws

+ veqts
+ VH − mVH]. (38)

Normalizing (38) to torque at wind speed V0, we get the
expression

Tae(t, θ) = 1 +
2

mVH
[veqws

+ veqts
+ (1 − m)VH]. (39)

Using the end result of the formulation (39), the torque os-
cillations were determined for a turbine with the following rep-
resentative specifications: R = 20,H = 40, α = 0.3, a = 0.85,
and x = 2.9. As an illustration of possible results of the mod-
eling, the normalized torque oscillations due to wind shear and
tower shadow alone, as well as the total torque oscillations of
this configuration are shown in Fig. 8. Again it is observed that
the effects of wind shear on the total aerodynamic torque are
much smaller than those due to tower shadow, although they do
reshape the curve in regions. It is observed that both the oscil-
lations due to wind shear and tower shadow have a minimum
when one blade is pointed directly downwards and a maximum
when one blade is pointing directly upwards. The wind shear
effect is relatively small (�1%), while the effect of the tower
shadow is much larger, in this case approximately 6% of the
total aerodynamic torque. It is also seen that there is a small
(≈1%) negative dc offset in the torque oscillation due to wind
shear. This offset seems to disappear in the total torque. This is
due to the normalization by a steady-state torque that occurs at
V0. As this dc offset is already contained in the 3M(V0) term of
(38), its duplication in the wind shear term is corrected for by
the (1 − m)VH term.

Dependence of the total 3p pulsation on wind shear exponent
(α) and dependence of wind-shear-induced 3p pulsation on
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Fig. 8. Resulting normalized aerodynamic torque due to wind shear (1 +
2

m VH
veqws ), tower shadow (1 + 2

m VH
veqts ), and combination of wind shear

and tower shadow (1 + 2
m VH

veqts + 2
m VH

veqws +
2(1−m )

m ).

Fig. 9 Relative magnitude (per unit mean torque) of 3p pulsation as a function
of wind shear exponent (α).

α is shown in Fig. 9. As observed in the graph, although a
correlation is seen between α and the wind-shear-induced 3p
pulsation, no significant correlation is observed between α and
the total 3p pulsation.

IX. DISCUSSION

The torque model gives two particularly interesting results.
The first is that the tower shadow effects are much more dom-
inant than are the wind shear effects. The second is that the
maximum torque is observed when a blade is pointing directly
upwards. The modeled torque oscillations clearly depend on
turbine parameters R,H, a, and x and site parameter α. The
wind shear component of the oscillations depends on R,H, and
α and the tower shadow component of the oscillations depends
mainly on R, a, and x.

The wind shear exponent obviously has an effect on the torque
oscillations due to wind shear. However, as seen in Fig. 9, there
is not a significant correlation between α and the total 3p pul-
sation. This is due to the wind-shear-induced component being
approximately only 5% of the tower-shadow-induced compo-
nent. This explains why Thiringer was unable to find a good
correlation between α and measured 3p pulsation [1].

In Fig. 9, maximal oscillations occur at a value of α = 0.423,
where the oscillations are approximately 50% larger than those
observed for a typical value of α, such as that used to generate
Fig. 8. As seen in the figure, this would still result in a very small
oscillation. For wind shear, the actual magnitude of R and H are
not critical as it is only their ratio that has an effect. Typically,
2
5 ≤ R

H ≤ 2
3 . The higher the ratio, the greater the effect the wind

shear would have as there is a wider range of wind speeds that
the blade experiences in a rotation. For a ratio of 2

3 , the torque
oscillation is five times larger than that observed for a ratio of
2
5 . However, combining the effects of these two parameters to
yield maximal torque oscillations still only amounts to a peak
value of approximately 0.4% of steady-state torque. Although
this torque oscillation is a relatively small one compared to
the tower-shadow-induced oscillations, it is still included in the
pragmatic model. This is done for three reasons. First, the effect
is quite easy to include as it can be represented in a closed form
expression. Second the model also contributes a dc component
that modifies the average torque, and lastly the torque oscillation
reshapes the curve at the peak torque.

For tower shadow, the actual radius of the turbine, indepen-
dent of height, is important. A larger turbine radius results
in both a narrower angle where a torque reduction is seen as
well as a slightly smaller reduction in overall torque. As can
be easily observed by the formula for equivalent wind speed
due to the tower shadow (30), the radius of the tower has a
squared relationship with total torque disturbance. Doubling of
the tower radius will give a fourfold increase in torque distur-
bance. The distance from the tower (x) is also an important fac-
tor. The closer the blades are to the tower, the larger the effect of
the tower shadow.

X. CONCLUSION

A comprehensive yet pragmatic torque model has been devel-
oped for the three-bladed wind turbine. The model proves the ex-
istence of wind-shear-induced 3p oscillations and demonstrates
that in practice, their presence is masked by the much larger
tower-shadow-induced oscillations. It is determined that max-
imum torque is seen when a blade is pointing directly upwards
for both wind shear and tower shadow effects. The modeled
torque oscillations depend mostly on R, a, and x, as these are
related to tower shadow. Although wind shear causes small 3p
oscillations, it also contributes approximately a 1% dc reduction
in average torque. The proportionality constant between wind
speed variations and torque oscillations is determined, allowing
direct aerodynamic torque calculation from an equivalent wind
speed. This model is a useful representation of the aerodynamic
torque of a wind turbine for use in real-time wind turbine simu-
lators and other dynamic-model-simulation-based applications.
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APPENDIX

A relationship between spatial average wind speed V0 and hub
height wind speed VH is required such that tower shadow and
wind shear formulas can be combined with only one wind speed
term. To calculate spatial average wind speed V0, the varying
wind speed from wind shear is integrated over rotor area and
divided by the total rotor area.

V0 =
1

πR2

∫ 2π

0

∫ R

0

VH[1 + Ws(r, θ)]r dr dθ (40)

V0 =
1

πR2

∫ 2π

0

∫ R

0

VH

[
1 + α(

r

H
) cos θ

+
α(α − 1)

2

( r

H

)2

cos2 θ

+
α(α − 1)(α − 2)

6

( r

H

)3

cos3 θ

]
r dr dθ (41)

V0 =
VH

πR2

∫ R

0

[
2πr +

πα(α − 1)r3

2H2

]
dr (42)

V0 =
VH

πR2

[
2π

R2

2
+

πα(α − 1)R4

8H2

]
(43)

V0 = VH

[
1 +

α(α − 1)(R2)
8H2

]
= mVH. (44)

In (40)–(44), VH is the wind speed at hub height, R is the
blade radius, α is the empirical wind shear exponent, and H is
the elevation of rotor hub.

It is shown in Fig. 5 that 0.986 < V0
VH

≤ 1, for R
H < 0.67 and

0.1 < α ≤ 1. Therefore, for most cases a simplification that
V0 = VH is justified. For more accuracy (44) can be used.
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