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Algorithm for Inverter-Based Variable
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Abstract—This paper focuses on the development of maximum
wind power extraction algorithms for inverter-based variable
speed wind power generation systems. A review of existing
maximum wind power extraction algorithms is presented in this
paper, based on which an intelligent maximum power extraction
algorithm is developed by the authors to improve the system
performance and to facilitate the control implementation. As an
integral part of the max-power extraction algorithm, advanced
hill-climb searching method has been developed to take into
account the wind turbine inertia. The intelligent memory method
with an on-line training process is described in this paper. The
developed maximum wind power extraction algorithm has the
capability of providing initial power demand based on error
driven control, searching for the maximum wind turbine power
at variable wind speeds, constructing an intelligent memory, and
applying the intelligent memory data to control the inverter for
maximum wind power extraction, without the need for either
knowledge of wind turbine characteristics or the measurements
of mechanical quantities such as wind speed and turbine rotor
speed. System simulation results and test results have confirmed
the functionality and performance of this method.

Index Terms—Hill climb searching, maximum power extraction,
variable speed wind turbine, wind power generation, wind turbine
model.

I. INTRODUCTION

THE INSTALLED wind power capacity in the world has
been increasing at more than 30% per year over the past

decade [1], [2]. The current surge in wind energy development
is driven by multiple forces in favor of wind power including
its tremendous environmental, social and economic benefits, the
technological maturity, the deregulation of electricity markets
throughout the world, public support, and government incen-
tives. Based on a life-cycle assessment [3], the greenhouse gas
emission from worldwide electricity generation with the 2000
fuel mix is 0.572 kg of equivalent per kWh. In 2000,
the total world electricity generation was 14 617 TWh, emitting
about 8 364 megatons of equivalent . Recent developments
in wind power generation have provided an economically com-
petitive and technically sound solution to reduce greenhouse gas
emissions.
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Fig. 1. Typical wind power generation system connected to a utility grid.

Variable speed operation and direct drive generators have
been the recent developments in wind turbine drive trains.
Compared with constant speed operation, variable speed
operation of wind turbines provides 10–15% higher energy
output, lower mechanical stress and less power fluctuation. In
order to fully realize the benefits of variable speed wind power
generation systems (WPGS), it is critical to develop advanced
control methods to extract maximum power output of wind
turbines at variable wind speeds. A variable speed WPGS needs
a power electronic converter, often called an inverter, to convert
variable-frequency, variable-voltage power from a generator
into constant-frequency constant-voltage power, and to regulate
the output power of the WPGS. Traditionally a gearbox is used
to couple a low speed wind turbine rotor with a high speed
generator in a WPGS. Recently much effort has been placed
on the use of a low speed direct-drive generator to eliminate
the gearbox [15]. A typical WPGS with a variable-speed
direct-drive generator is depicted in Fig. 1.

The mechanical output power at a given wind speed is
drastically affected by the turbine’s tip speed ratio (TSR),
which is defined as the ratio of turbine rotor tip speed to the
wind speed. At a given wind speed, the maximum turbine
energy conversion efficiency occurs at an optimal TSR [4].
Therefore, as wind speed changes, the turbine’s rotor speed
needs to change accordingly in order to maintain the optimal
TSR and thus to extract the maximum power from the available
wind resources.

Previous research has focused on three types of maximum
wind power extraction methods, namely TSR control, power
signal feedback (PSF) control and hill-climb searching (HCS)
control [5]. TSR control regulates the wind turbine rotor speed
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Fig. 2. Block diagram of TSR control.

Fig. 3. Block diagram of PSF control.

Fig. 4. Principle of hill-climb search control.

to maintain an optimal TSR [6]. As shown in Fig. 2, both the
wind speed and turbine speed need to be measured for TSR cal-
culation, and the optimal TSR must be given to the controller.
The first barrier to implement TSR control is the wind speed
measurement [7], which adds to system cost and presents dif-
ficulties in practical implementations. The second barrier is the
need to obtain the optimal value of TSR, which is different from
one system to another. This dependency on turbine-generator
characteristics results in custom-designed control software tai-
lored for individual wind turbines.

PSF control requires the knowledge of the wind turbine’s
maximum power curve [7]–[10], and tracking of this curve
through its control mechanisms, as illustrated in Fig. 3. This
maximum power curve needs to be obtained via simulations
or tests for individual wind turbines, which makes PSF control
difficult and expensive to implement in practice.

To overcome the aforementioned drawbacks, HCS control
has been proposed to continuously search for the peak output
power of the wind turbine [11]–[14], as shown in Fig. 4. HCS
control works well only when the wind turbine inertia is very
small so that the turbine speed reacts to wind speed almost
“instantaneously.” For large inertia wind turbines, the system
output power is interlaced with the turbine mechanical power
and rate of change in the mechanically stored energy, which
often renders the HCS method ineffective.

Equation (1) describes the relationship between the turbine
mechanical power , and the electrical system output power

, where is the load of the turbine; is the friction
torque, is the turbine’s angular speed, J is the turbine’s mo-
ment of inertia, and is the overall electrical efficiency of the
system from generator input to inverter output. When J is very
small, HCS control can search for a maximum through
regulations. When J is not negligible, HCS control fails to reach
the maximum power points under fast wind variations, thus se-
verely limiting the usefulness of this method for large wind
turbines

(1)
It is thus highly desirable to develop a maximum power ex-

traction method for wind turbines, which does not require the
measurement of wind speed or turbine rotor speed, is indepen-
dent of system characteristics, and is applicable to large and
small wind turbines. The authors have developed a new intel-
ligent maximum wind power extraction algorithm which meets
these criteria.

II. WIND TURBINE MODEL

If the turbine rotor friction is ignored, the mechanical char-
acteristics of a wind turbine can be described by (2)–(5). If the
wind speed and the turbine’s load power are given, the turbine
speed can be solved using these equations and the turbine’s

curve which can be obtained by field tests or from de-
sign computations

(2)

(3)

(4)

(5)

where —wind turbine mechanical torque; —load
torque; u—wind speed; A—sweeping area of the turbine rotor;

—turbine performance coefficient; —tip-speed ratio;
—maximum radius of the turbine rotor.
The wind turbine model can be represented as Fig. 5(a)

in MATLAB/SIMULINK for simulation studies. This model
focuses on the energy transfer characteristics within a wind
turbine and does not include the aerodynamic characteristics.
Fig. 5(b) shows a typical wind turbine Cp curve obtained
through field tests [15]. Designed as a subsystem block in
SIMULINK, this model can be easily integrated into the entire
wind power generation system along with other components
for simulation studies.

III. ADVANCED HILL-CLIMB SEARCHING METHOD

To extend the HCS method into WPGSs with different
levels of turbine inertia, advanced hill-climb searching (AHCS)
has been proposed by the authors to maximize , through
detecting the inverter output power and inverter dc-link
voltage . The authors use a diode rectifier to convert the
three-phase output ac voltage of a generator to .
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(a)

(b)

Fig. 5. (a) Wind turbine model. (b) Cp curve used in the wind turbine model.

TABLE I
JUDGEMENT OF TURBINE MECHANICAL POWER VARIATION

is related to by a function of generator field current and
load current : . If the sampling period T of
the control system is adequately small, the variation of
can be ignored for the time interval .
Thus, can be considered as a constant value K during
a sampling period. and can also be considered as
constant values in the same sampling period.

Based on the above assumptions, the differentiation of (1) is
derived as (6) which leads to (7) for digital control purposes.
Equation (8) reveals the process to evaluate and

from discrete sampling moments (n) and .
Thus, the direction of can be judged by Table I according
to (7). If the direction of between (n) and is judged
as “unknown”, the data from , to can
also be used to decide the present direction. and

can then be calculated by (9) as alternatives.
After the direction of is detected, the direction of the in-
verter current demand control signal , can be decided ac-
cording to Table I based on the HCS principle. The searching
step can be selected via experiments or computer simula-

Fig. 6. Structure of the intelligent maximum wind power extraction algorithm.

tions. AHCS forms an integral part of the intelligent maximum
power extraction algorithm

(6)

(7)

(8)

(9)

IV. INTELLIGENT MAXIMUM WIND POWER

EXTRACTION ALGORITHM

To provide effective controls to a WPGS under variable wind
conditions, direct current demand control (DCDC) applies the
recorded search results from AHCS to inverter controls. AHCS
and DCDC together form a complete search-remember-reuse
process for the intelligent maximum wind power extraction
algorithm.

A. Algorithm Description

The structure of the algorithm is shown in Fig. 6. Every ex-
ecution cycle begins with and sampling, and calcula-
tions of their differentials. Then, mode switch rules will direct the
control into one of three execution modes, namely initial mode,
training mode, and application mode. Regardless of which mode
the algorithm chooses, the inverter current demand will
be calculated in that mode and fed to the inverter to regulate the
system output power. The controller repeats the above process
to update continuously the current demand. is defined as the
requested peak value of the sinusoidal inverter output current.
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When the intelligent memory is empty for the present
and the system is in transient states, mode switch rules switch
the system control into initial mode, where initial values
are determined by max-power error driven (MPED) control (see
Section IV-B). When the system is in steady states, mode switch
rules switch the system control into training mode, where AHCS
is applied for calculation in a search process. Meanwhile,
memory updating rules are evaluated to fill the trained data into
the empty part, or to optimize the existing part of the intelligent
memory. Training mode acts as a nonlinear system optimizer
with on-line training capability. When the system is in transient
states and the intelligent memory has a current demand data cor-
responding to a value, application mode is activated for fast

determination by direct current demand control (DCDC).
Large variations caused by discrete selections of three

different control modes have been eliminated to avoid algorithm
instability. To obtain from , both initial mode
and training mode calculate variation only, , which is a
small limited value. In application mode, is calculated based
on intelligent memory data obtained in training mode, thereby
providing a seamless transition from training mode. When trans-
ferring from initial mode to application mode at the very begin-
ning before the intelligent memory is fully established, is
mandatorily limited by the program to avoid sudden jumps.
Both system simulation and laboratory tests have proved that
the algorithm is stable between mode switches. No large
change nor large generator voltage and current changes were
observed.

The principle behind this algorithm is a “search-remember-
reuse” process. The algorithm will start from an empty intelli-
gent memory with a relatively poor initial performance. During
the execution, training mode will use the searched data by AHCS
to gradually train the intelligent memory to record the training
experience. The algorithm will reuse the recorded data in appli-
cation mode for fast execution. This “search-remember- reuse”
will repeat itself until an accurate memory of system character-
istics is established. Therefore, after the algorithm is adequately
trained, its power extraction performance is optimized. Since the
intelligent memory is trained on-line during system operation,
such a process is also referred as “on-line training process.”

B. Max-Power Error Driven Control (MPED) in Initial Mode

MPED provides the system with a preliminarily optimized
operating point when the intelligent memory is empty. The
control reference signal of MPED controller is the maximum
system output power, which can only be reached when the
wind speed is sufficiently high. At an arbitrary wind speed,
the MPED controller is designed to keep the error between
the maximum power and the present output power as small as
possible.

The flow chart of the MPED method is shown in Fig. 7, where
is the maximum system output power, err is power error

signal, and are variables to identify the directions
of err and variations, respectively, is the step length
of variation. The method intends to adjust to reduce the
power error, with a fixed step length . Basically, MPED
method extends the regular HCS method into wind energy con-
version systems.

Fig. 7. Flow chart of MPED control.

C. Intelligent Memory and Memory Updating Rules

The intelligent memory records the system max-power points
and the corresponding control variables at different operating
conditions. Depending on the system structure, the control vari-
ables of a wind power generation system may include the in-
verter output current demand for output power control, gen-
erator excitation current for generator output voltage control,
control demand for dc link voltage etc. If is the only control
variable for output power regulation and is the only index
referring to operating condition as in the case of most small vari-
able speed wind turbines, a lookup table can be used to construct
the intelligent memory.

Table II shows the structure of a lookup table implementa-
tion for the intelligent memory, where is the system output
power demand. The table is derived from simulation studies
of a 10-kW wind energy conversion system with a three-blade
horizontal axis wind turbine. The first column contains
dc-link voltage as the index of the lookup table. The second
column is the highest system output power recorded at a
particular . The third column is the corresponding cur-
rent demand sent to the inverter to obtain the maximum power.
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TABLE II
LOOKUP TABLE IMPLEMENTATION OF THE INTELLIGENT MEMORY

In training mode, will be compared with at the
nearest in the table, and the contents of the table will be up-
dated if the present is larger than in the lookup table.
This updating process will repeat continuously until the max-
imum points for every value is fully recorded, forming
the system’s maximum power curve. Data updating rules in
training mode consist of three rules, which need to be satisfied
at the same time before updating the intelligent memory. Math-
ematically expressed as (10), Rule One requests the system to
be at steady state for data updating. In (10), Steady mark is a
small value representing steady state. The reason for Rule One
is that, at transient states, turbine mechanical max-power points
cannot be detected through observation due to the effect of
turbine inertia

Steady mark (10)

Rule Two requests that the system be running in the down-hill
region (see Fig. 4), which ensures the wind turbine operate in the
stable operation region. Rule Two is expressed as (11). The first
two equations in (11) present an increasing as seen in (7).
If the third equation of (11) can also be satisfied, the system is
then operating in the down-hill region and thus ready for data
updates

(11)

Expressed as (12), Rule Three is to replace the existing data
in the intelligent memory with the data corresponding to higher
power. This rule forces the data in memory to be updated toward
the max-power curve of the wind turbine system

(12)

The objective of intelligent memory updating is to search
and record the system’s max-power curve (i.e.,
curve) when the system is in steady states.

Fig. 8. DCDC principles.

D. Direct Current Demand Control in Application Mode

Mode switch rules activate application mode when the system
is in transient states and the data in the intelligent memory is
available for the present dc-link voltage. Intelligent memory
records the relationship optimized for max-power
extraction at variable wind speeds, as described by (13). DCDC
utilizes this recorded relationship to determine the value
based on the present dc-link voltage . From the definition
of , the inverter output power, i.e., the WPGS output power
can be expressed as (14), where is the grid voltage, N is
the number of phases of the grid. of (14) is the
current waveform coefficient, which is equal to one when the
output current is sinusoidal. For quasisinusoidal current wave-
forms due to insufficient dc-link voltage, is a con-
stant between zero and one, and is determined by and
for a chosen inverter PWM strategy.

By submitting (13) into (14), can be determined by
and can thus be simply treated as a function of , as repre-
sented by in (15). Submitting (15) to (1), (16) is de-
rived

(13)

(14)

(15)

(16)

Because the intelligent memory is optimized for max-power
extraction, the based curve can be illus-
trated as the dash line of Fig. 8, which is close to and ultimately
will be the turbine’s max-power curve. The solid lines of Fig. 8
illustrate the turbine output power curve, i.e.,
versus at different wind speeds. Assuming the system is run-
ning at point C at a wind speed of 5 m/s, DCDC will use the at
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TABLE III
WIND SYSTEM SPECIFICATIONS

point C to find a corresponding based on the data recorded in
the intelligent memory as per (13), to control the inverter output
power following (14). The inverter output will be equal to
the recorded , and the will be a point on the
dash-line curve corresponding to the present . Because this
dash-line point is higher than turbine’s mechanical power
at point C, the left side of (16) will be negative. The turbine will
then slow down until reaching point A, which is eventually the
max-power point at the wind speed of 5 m/s.

Therefore, DCDC will force the system to operate at the in-
tersection points of the turbine power curve and the dash line,
which is recorded in the intelligent memory after initial opti-
mization and is updated in training mode to become eventually
the system max-power curve with the highest Cp value at any
wind speed.

V. SIMULATION RESULTS

Simulations on the max-power extraction algorithm are
conducted based on two different WPGS models. One is a
10-kW Bergey EXCEL wind turbine system model, with a
permanent magnet synchronous generator and a single-phase
IGBT inverter. The other is a 50-kW vertical axis wind turbine
system model, with a 50-kW direct-drive synchronous gen-
erator and a three-phase IGBT inverter. The specifications of
these two systems are listed as Table III. The WPGS models
are first established using SIMULINK block sets, and the
max-power algorithm is written in the MATLAB program.

For a practical wind turbine, the best Cp is about 0.4 where
the maximum wind power is extracted [4]. Based on the devel-
oped maximum power extraction algorithm, Fig. 9(a) shows the
progress of average Cp of the 10-kW system when the wind
speed changes randomly between 2 m/s and 14 m/s every 150 s,
while Fig. 9(b) shows that of the 50 kW system. From these
two figures, the average Cp is relatively low at the initial stage.
After a certain time, the algorithm is able to gradually search for
better operating points. Correspondingly, the turbine’s average
Cp is continuously improved. For the 10-kW system with small
turbine inertia, the algorithm can reach and maintain thereafter
an average Cp of 0.39 after 500 min of on-line training. For the
50-kW system with large turbine inertia, the necessary training
time is longer.

Fig. 9 demonstrates that the proposed max-power extraction
algorithm is suitable for both small inertia and large inertia wind
turbine systems, and the algorithm is able to extract the max-
imum available wind energy after a sufficient period of training.

Fig. 9. Average Cp progress curve. (a) 10-kW system. (b) 50-kW system.

Fig. 10. Laboratory test environment.

VI. LABORATORY TEST RESULTS

A. Wind Turbine Simulator System [16]

The intelligent maximum wind power extraction algorithm
has been implemented and tested in our research laboratory. The
test environment is shown as Fig. 10, where a wind turbine sim-
ulator system is used as the prime mover to drive a synchronous
generator in replacement of a real wind turbine [16]. A single-
phase IGBT inverter is used to extract the generator output en-
ergy and to feed to a resistor load bank. The max-power al-
gorithm is implemented in the microcontroller system of the
single-phase inverter.

A variable speed induction motor drive system is developed
to simulate characteristics of real wind turbines. The wind tur-
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Fig. 11. Searching performance without online training.

bine simulator controller accepts the motor torque and speed as
feedback signals, calculates current and frequency demands of
the three-phase drive inverter based on the dynamic wind turbine
model presented in Section II, and exports these demand signals
to a drive inverter to form a close-loop control. The drive inverter
then controls the induction motor to generate shaft torque like
a real wind turbine. The wind simulator controller can automat-
ically generate wind speed variations according to a measured
wind profile, or set a fixed wind speed for bench testing.

B. Performance Tests of the Max-Power Algorithm

Various laboratory tests have been conducted based on the
developed maximum power extraction algorithm. The perfor-
mance of the algorithm was first tested and evaluated with and
without the online training process. Fig. 11 shows the test re-
sults without online training, under a constant wind speed set at
6 m/s. After the startup period, the inverter begins to search for
optimal points for max-power extraction. The searching process
is shown in this figure, as depicted by the gradual increase in
both Cp and motor power (i.e., wind turbine mechanical power).
However, without the on-line training, the searching progress is
slow. The high Cp region of about 0.4 has not been reached after
340 s of searching. In a real wind turbine environment, a con-
stant wind speed can rarely last for 340 s. This test proves the
necessity of online training as an integral part of the developed
max-power extraction algorithm. Fig. 12 shows the test results
after the algorithm has received two hours of online training,
at a constant wind speed of 5 m/s. The test data show faster
searching process and Cp achievement than those of Fig. 11.

C. Dynamic Tests for Variable Wind Speeds

The dynamic response of the developed algorithm at variable
wind speeds has been tested after the system has received two
hours of online training. Fig. 13 shows the test results with the
wind speed changing from 3 to 5 m/s. The system initially op-
erated at a wind speed of 3 m/s and then step-changed to 5 m/s.
It can be observed from Fig. 13 that the transition time for the
algorithm to reach new steady state with high Cp once again is
about 125 s.

Fig. 12. Searching performance with 2 h of online training data available at
the beginning of the search.

Fig. 13. Dynamic test results with 2 h of online training data available at the
beginning of this test.

VII. CONCLUSION

This paper focuses on the development of maximum wind
power extraction algorithms for inverter-based variable speed
WPGS. Existing max-power extraction algorithms have been
briefly reviewed. WPGS models have been established by
the authors for simulation studies. The advanced hill-climb
searching method has been proposed in this paper for maximum
power searching in wind systems with various turbine inertia.
AHCS is independent of system hardware characteristics, and
thus has overcome the difficulties of the previous hill-climb
searching methods caused by wind turbine inertia. Without a
need for measurements of wind speed and turbine rotor speed,
AHCS is simple to implement.

To further improve the dynamic performance of AHCS, the
intelligent maximum wind power extraction algorithm has been
developed. By recording in an intelligent memory the search re-
sults of AHCS through an on-line training process, the algorithm
can record the optimum system operating conditions, and then
use DCDC to find the max-power points rapidly and effectively.
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Computer simulation has been conducted for two wind power
generation systems, a 10-kW Bergey wind turbine system with
a single-phase inverter, and a 50-kW vertical axis wind turbine
system with a three-phase inverter. The functionality and perfor-
mance of the proposed intelligent max-power extraction algo-
rithm have been verified. The intelligent max-power algorithm
has been successfully implemented in a single-phase IGBT in-
verter for wind energy conversion systems. Laboratory test re-
sults based on a wind simulator system have further confirmed
the effectiveness of the developed maximum wind power extrac-
tion algorithm.
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