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Chapter 1

Introduction to Markov jump
processes

This chapter consists only of a short and quite informal summary of the most basic defini-
tions and results for Markov Jump processes that are going to be needed in the following.
We often refer to [6] for more (rigorous) details.

We work in this chapter with continuous time stochastic process, i.e. a collection of
random variables (Xt)t∈T , where T is an interval of R+ including 0.

To speak about stochastic processes, one needs to appropriately define a probability
space and a sigma-algebra. We do not describe this construction in details and refer to
[6] for a rigorous introduction. We shall just mention that we generally assume (except
mentioned otherwise) the stochastic processes treated in the sequel to be S-valued (S ⊂
RN
+ , N ⊂ N) and to have paths in the space D = D(T, S) of right-continuous functions

from T to S with finite left limits (càdlàg). Except if explicitly mentioned, N will be
finite. A stochastic process with paths in D can then be viewed as a random element
on the measurable space (D,D), where D denotes the Borel σ-algebra generated by the
standard Skorokhod topology (again we refer to [6] for more details). The filtration (Ft)
is a σ−field on the probability space, usually representing the history of a process until
time t. The smallest filtration with this property is σ{Xs, s ≤ t} and is called the induced
filtration. We say that a process is adapted to a filtration F = (Ft) if Xt is Ft-measurable
for every t. Finally, we call a random time τ a stopping time if {τ ≤ t} ∈ Ft for each time
t. We now define the notion of Markov process and Markov jump processes.

1.1 Markov processes and Markov jump processes

A process is said to be Markov when the law of its position at time t + s, conditionally
on its position at time s, does not depend on its history until s, but only on its position
at time s. More formally,

Definition 1 An adapted process X is said to be Markov if for any times s < t, Xt =
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fs,t(Xs,Us,t) a.s. for some measurable function fs,t and a uniform random variable Us,t

independent of Fs.

In the latter, it will be convenient to introduce a shift operator θt : D → D,

θtωs = ωs+t,∀s, t.

The notation P x will be used to indicate the law of the process conditionally on its
initial position being x. Assuming that the existence of transition kernels Ps,t(Xs, B) =
P (Xt ∈ B|Xs) and that they define correctly and completely a Markov process (which is
demonstrated by Kolmogorov theorem, see Theorem 8.4 in [6]), the Markov property can
also be defined as:

Definition 2 A process X(t) is Markov if for all t, s ≥ 0 and x, P x-almost surely:

Ex(f(X(t+ s))|Ft) = EXt(f(X(t+ s))),

for every measurable and bounded function or equivalently:

P x(X(t+ s) ∈ ·|Ft) = PX(t)(X(t+ s) ∈ ·).

The process is time-homogeneous if Ps,t = Pt−s, in which case Pt is a semi-group
satisfying the following Chapman-Kolmogorov equations:

Pt+s = PtPs, ∀s, t.

In particular, we have:

P x(X(t+ s) ∈ ·|Ft) = PX(t)(X(s) ∈ ·).

We now turn our attention to pure jump processes.

Definition 3 We shall say that a process is a Markov jump process (MJP) (or a pure-
jump Markov process) if it is a (cadlag) Markov process taking values in a subset of NN

Remark 1 This definition implies that the jump times of the process are isolated. How-
ever, remark that it does not preclude explosion in finite time.

We shall moreover always make the assumption that almost surely, there is a finite
number of jumps in a finite interval of time. This is verified for instance if the transitions
defined below are bounded.

One can further prove that a MJP satisfies the strong Markov property, i.e., replacing
the fixed time by a stopping time τ in the Markov property:

P (X(τ + t) ∈ A|Fτ ) = PX(τ)(Xt ∈ A).

Our next aim is to define the rates (infinitesimal generator) of a MJP and as well as
its jump transitions. A crucial step consists in describing the distribution of the times
between jumps.
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Lemma 1 If a state x is not absorbing, then under P x, the time τ until the first jump is
exponentially distributed and independent of Xτ .

Proof: Using the Markov property,

P x(τ > t+ s) = P x(τ > s, τ ◦ θs > t) = P x(τ > s)P (τ > t).

The only non-increasing solutions of these equations are of the form t → e−αt for a non-
negative α. Since x is non-absorbing, α > 0 and since we suppose the process to have a
finite number of jumps in finite intervals, α <∞.

P x(τ > t,Xτ ∈ B) = P x(τ > t,Xτ ◦ θt ∈ B) = P x(τ > t)P x(Xτ ∈ B).

2

We now define the rate function and the transitions kernel as:

r(x) = Ex[τ ]−1.

p(x,B) = P x(X(τ) ∈ B).

The transitions rates are defined as:

q(x, y) = r(x)p(x, y).

We can explain better the structure of MJP by giving a generic construction in terms
of sojourn times and probability of jumping from one state to another which is often easier
to recognize. Note that proving the Markov property directly for arbitrary stochastic jump
processes is not always an easy task in applications while the following characterization is
often simpler to recognize.

Proposition 1 A process is a Markov jump process (MJP) if and only if it has the fol-
lowing dynamics:

• The process stays in a given state x, a random time Sx(called sojourn time), having
an exponential distribution with mean r(x)−1, with r(x) =

∑
y q(x, y).

• Then, it jumps to another state y ̸= x with probability

p(x, y) =
q(x, y)

r(x)
.

Proof: We can argue recursively using the previous lemma to prove that the dynamics
of a MJP are determined by a sequence of i.i.d exponential random variables and from
the transitions of a discrete time Markov chain. For the converse statement, one basically
needs to prove the Markov property. See [6] Theorem 12.17. 2
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1.1.1 Examples and exercises

We illustrate the dynamics explained below on a few examples.

Example 2 (Poisson process) The simplest example of a MJP is the Poisson process
which is a MJP living on S = Z+ and having non-zeros transitions:

q(x, x+ 1) = λ.

r(x) = λ ∈ R+ is the intensity of the process. Many specific properties of the Poisson
process could be stated. In particular, it is the unique point process (i.e., a counting process)
being a MJP, with stationary independent increments. It can be defined (independently of
the theory of MJP presented so far) at least in three ways:

• Via sojourn times :

define a sequence of i.i.d exponential random variables Ei and Sn =
∑n

i=1Ei. Then
define the Poisson process Nt with N0 = 0 and Nt = sup{n : Sn < t}.

• Via the number of occurrences:

For each time t, the number of occurrences Nt in [0, t] has a Poisson distribution. The
position of each occurrence is then chosen independently and uniformly distributed
in [0, t].

• Via differential equations:

Let pi(h) the probability to have i occurrences at time h. Assume the pi differentiable
in 0 and such that p′1(0) = λ, p′≥2(0) = 0,and p0(t+ h) = p0(t)p0(h).

Example 3 (M/M/1 queue) Consider a one-server queue with Poisson arrivals (pa-
rameter λ) and exponential service times (with parameter µ) and a FIFO (first in first out)
scheduling. Let Xt the number of customers in the queue. Given that at time 0, there are
x customers in the queue, using the memory-less property of the exponential distribution,
the next jump is occurring after an exponential random variable of parameter λ (the next
arrival) if x = 0 and the minimum of an exponential random variable of parameter λ (the
next arrival) and an exponential random variable of parameter µ (the next departure) if
x > 0 . Using now that the minimum of two exponential variables is exponential, we have
proved that the times between jumps is exponentially distributed and that the rate function
is:

q(0) = λ, (1.1)

q(x) = λ+ µ, x > 0. (1.2)

Now, the probability that the next jump is an arrival is 1 if x = 0 and λ
λ+µ if x > 0 by

looking at which of the two competing exponential clocks terminates first. We have hence
proved that the process Xt is a MJP using proposition 1.
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Example 4 (The Erlang system) Consider a trunk of N telephone lines. Calls arrive
according to a Poisson process and have an exponential duration with parameter µ. The
number of calls in progress is a MJP with non-zeros transitions:

q(x, x+ 1) = λ1x<N , (1.3)

q(x, x− 1) = µx, (1.4)

for all x.

Exercise 1 Show that the transitions rates q(x, y) may be defined by:

q(x, y) = lim
t→0

1

t
P (Xt = y|X0 = x), x, y ∈ X , (1.5)

q(x, x) = 0. (1.6)

Exercise 2 Prove that the sequences of jump times diverge to infinity iff
∑

n r(Yn)
−1 =

∞, where Yn is a Markov chain on S.

Exercise 3 Construct a MJP when the assumption of a finite number of jumps in a finite
interval is not verified.

Exercise 4 Let X a stochastic process on Nd.The sequence of states it visits is a Markov
chain with transitions probabilities p̄(x, y) (possibly with p̄(x, x) > 0), The times between
two transitions is exponentially distributed with rate λ(x). Show that X is a MJP and give
its transitions.

Exercise 5 Consider a Poisson process Nt such that N0 = 0 and Ei the sequence of times
between jumps. Let Sn =

∑n
i=1Ei. What is the distribution of U = SNt+1 − SNt.

1.2 Invariant and stationary measure:

We denote in the sequel X = {Xt, t ≥ 0} a continuous time Markov jump process (MJP)
with state space X ⊂ Nd associated with some transition rates q(., .). We denote px,y(t) =
P x(Xt = y). We suppose in the sequel that X is irreducible i.e. px,y(t) > 0 for all times
t > 0 and all states x, y, which boils down to having a positive probability to reach any
state from any state in a finite number of jumps.

An invariant measure of the MJP X is a positive measure on X verifying the global
balance equations:

π(x)
∑
y

q(x, y) =
∑
y

π(y)q(y, x). (1.7)

Remark 5 The property of aperiodicity is irrelevant in continuous time but plays a cru-
cial role in discrete time. Several discrete versions of a continuous time process can be
constructed. However, even if the continuous time process has a unique stationary dis-
tribution, there is no guarantee in general that a discrete time version of the process is
aperiodic with a unique stationary distribution.
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1.2.1 Recurrence:

• If π has a finite l1 norm, i.e.,
∑

x π(x) < ∞, then the process is said to be pos-
itive recurrent. The condition of irreducibility ensures the uniqueness, up to a
multiplicative constant, of the invariant measure. In particular, π can be normalized
such as to become a probability distribution on X . We speak in this case of the
stationary distribution of X and we say (it will become clear why soon) that
X is ergodic. π can also alternatively be called the equilibrium distribution or the
limiting distribution since

lim
t→∞

P ν(Xt = x) = π(x), ∀x,∀initial distribution ν,

for all distribution ν of the initial position X0.

• If π has an infinite l1 norm, the process is said to be transient if |Xt| → ∞, almost
surely and null recurrent otherwise.

1.2.2 Ergodicity

Consider a MJP X with stationary distribution π.

Theorem 6 With probability 1 (a.s.),

lim
t→∞

1

t

∫ t

0
f(Xs)ds→

∑
x

f(x)π(x).

The proof follows essentially from the law of large numbers for i.i.d sequences. (See
[6].)

1.3 Martingales for jump Markov processes and (backward)
Kolmogorov equation

We suppose Martingale theory known. An appendix at the end of the chapter recalls the
definition and a few fundamental results.

Define a Markov process Xt with bounded transitions q. Define δ the drift operator of
the process such that for all bounded function f :

δf(x) =
∑
y

q(x, y)(f(y)− f(x)).

Proposition 2 For every bounded function f , The process Mt defined by:

Mf
t = f(Xt)− f(x)−

∫ t

0
δf(Xs)ds,

is a martingale.
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Corollary 1 (Kolmogorov equations)

Ex[f(Xt)] = f(x) +

∫ t

0
Ex[δf(Xs)]ds. (1.8)

This last equation can be obtained directly using the strong Markov property (and
without using martingales) as follows. Recall that τ1 is the time of the first jump. Let
σ = τ1∧t. Using the strong Markov property (and property of the conditional expectation):

Ex[f(Xt)] = Ex[f ((X ◦ θσ)t−σ] , (1.9)

= Ex[EXσ [f(Xt−σ)]], (1.10)

= f(x)P (τ1 > t) + Ex
[
EXτ1 [f(Xt−τ1); τ1 ≤ t]

]
, (1.11)

= f(x)e−r(x)t +

∫ t

0
e−sr(x)

∑
y

Ey[f(X(t− s))]q(x, y)ds. (1.12)

Hence

er(x)tEx[f(Xt)] = f(x) +

∫ t

0
esr(x)

∫
q(x, dy)Ey[f(Xs)]ds,

which leads to (1.8) by direct computations.

1.4 Discrete time transformation - Uniformization

1.4.1 Embedded chain

Let (Tn)n∈N the sequence of times at which the process experiences a jump. The embedded
chain is the discrete version corresponding to:

Xe
n = XTn .

Exercise 6 Construct an example showing that the stationary measure of Xe
n is generally

different from the stationary measure of Xt.

We nevertheless have the following Proposition.

Proposition 3 π is invariant for X iff q(·)π(·) is invariant for Xe.

Proof: π is invariant iff ∑
y

π(y)q(y, x) =
∑
y

q(x, y)π(x),

which gives that: ∑
y

π(y)q(y)p(y, x) = q(x)π(x).

2
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1.4.2 Uniformization

If the transitions q are bounded, then an easy way to construct a discrete-time analogue of
the continuous time MJP is to sample the continuous process along the points of a Poisson
process with a sufficiently big intensity γ. Let γ ≥ supx

∑
y q(x, y).

Define the discrete time Markov chain Xd with the following transitions:

qd(x, y) =
q(x, y)

γ
, (1.13)

qd(x, x) = 1−
∑
x

qd(x, y). (1.14)

Then, we can see (the continuous-time) MJP as the composition of a Markov chain
and a Poisson process. (Hence, it is sometimes called a pseudo-Poisson process.)

Proposition 4 A MJP X has bounded rates iff X = Xd ◦N with Xd the Markov chain
previously defined and N a Poisson process with intensity γ.

Proof: If X = Xd◦N , then using that the times between the jumps of the Poisson process
are exponentially distributed and the probability of jumping to a given state depends only
on the current state as Xd is Markov. Using Proposition 1, we have that X is a MJP. The
time between two jumps is exponentially distributed with fixed parameter γ and hence
the process has bounded transitions rates.

Conversely, assume X is a MJP with bounded transitions. Define the chain Xd using
equations (1.13) and let N a Poisson process with parameters γ. Let X ′ = Xd ◦ N . X
and X ′ have clearly the same transitions rates, which implies (see for instance Cor. 6.11
in [6]) that the two processes have the same distribution. 2

The following Proposition makes the uniformization procedure helpful (and simpler
than consider the embedded chain) for many applications.

Proposition 5 The discrete time Markov chain Xd with transitions qd and the continuous
time Markov process Xt with transitions q have the same invariant measures.

Proof: The invariant measure of Xd, πd satisfies:

πd
q

γ
+ π(1−

∑
y q(·, y)
γ

) = πd,

hence

πd(x)
∑
x

q(x, y) =
∑
y

q(x, y)πd(y).

2
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1.5 Coupling and strong ordering

In this Section, we briefly describe the basic tools to compare (in a strong sense) two
MJP. Suppose that we give ourself two stochastic processes Xt and Yt and that we want
to compare (in some sense to be made precise) their laws. A very useful technique in
the theory of probability consists in constructing a (super) process Zt = (X̃t, Ỹt) having
marginals X̃t and Ỹt equal in distribution to (respectively) Xt and Yt and such that the
trajectories (sample paths) of Zt gives information on the comparisons of the laws of Xt

and Yt.
We begin by defining the notion of stochastic ordering. We first give ourselves a partial

order ≺, and we say that a function f : S → R is increasing if:

x ≺ y ⇒ f(x) ≤ f(y).

Definition 4 We say that two random variables are ordered in the strong sense (denoted
X ≤st Y ), if E[f(X)] ≤ E[f(Y )] for all functions f increasing.

This definition extends to stochastic processes:

Definition 5 We say that two stochastic processes are ordered in the strong sense (denoted
X[x] ≤st Y [y] or Xx ≤st Y

y ), if for all initial conditions x ≺ y, and for all times times t:

E[f(Xx
t )] ≤ E[f(Y y

t )],

for all functions f increasing.

We now introduction the definition of a coupling between random variables and pro-
cesses.

Definition 6 We say that Z = (U, V ) is a coupling of the random variables X and Y
(possibly defined on different probability spaces) if the r.v. X and U as well as Y and V
have the same distribution.

Simirlarly, we say that Zt = (Ut, Vt) is a coupling of the processes Xt and Yt (possibly
defined on different probability spaces) if the processes (Xt) and (Ut) as well as (Yt) and
(Vt) have the same distribution (process wise).

We now give a very useful Theorem in probability theory linking stochastic ordering
and coupling:

Theorem 7 X ≤st Y if and only if there exists a coupling (X̃, Ỹ ) such that X ≤ Y almost
surely.

The theorem also extends to stochastic processes.

We illustrate here the power of the coupling technique on a simple example that will
be useful for comparing stochastic networks. A point x ∈ ZN

+ has coordinates (x1, . . . , xN )
and ei denotes the unit vectors in ZN

+ . We call a MJP a birth and death process if from a
point x ∈ ZN

+ , it can jump only to a neighboring point i.e. a point y = x+ei or y = x−ei.
Consider two birth and death processes (i.e. processes having transitions only from

one state to the neighboring states) defined on ZN
+ .
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Lemma 2 Let X = (X1, . . . , XN ) and Y = (Y1, . . . , YN ) be multiclass birth and death
processes such that X has birth rates λi(x) and death rates ϕi(x), and Y has birth rates
ηj(y) and death rates ψj(y). Assume that for all i = 1, . . . , N , and all x, y ∈ ZN

+ such that
xi = yi and (x1, . . . , xN ) ≤ (y1, . . . , yN ),

λi(x) ≤ ηi(y), (1.15)

ϕi(x) ≥ ψi(y). (1.16)

Then for all x, y ∈ ZN
+ such that (x1, . . . , xN ) ≤ (y1, . . . , yN ),

(X1[x], . . . , XN [x]) ≤st (Y1[y], . . . , YN [y]),

where X[x] and Y [y] are versions of X and Y started in x and y, respectively.

Proof: Let (X̃, Ỹ ) be the Markov process with paths in D(R+, U), where U = {(x, y) ∈
ZN
+ ×ZN

+ : (x1, . . . , xN ) ≤ (y1, . . . , yN )}, having the upward transitions

(x, y) 7→ (x+ ei, y) at rate λi(x), xi < yi,

(x, y) 7→ (x, y + ei) at rate ηi(y), xi < yi,

(x, y) 7→ (x+ ei, y + ei) at rate λi(x), xi = yi,

(x, y) 7→ (x, y + ei) at rate ηi(y)− λi(x), xi = yi,

and the downward transitions

(x, y) 7→ (x− ei, y) at rate ϕi(x), 0 < xi < yi,

(x, y) 7→ (x, y − ei) at rate ψi(y), 0 < xi < yi,

(x, y) 7→ (x− ei, y − ei) at rate ψi(y), 0 < xi = yi,

(x, y) 7→ (x− ei, y) at rate ϕi(x)− ψi(y), 0 < xi = yi.

In light of 1.15 and 1.16, we see that all transition rates described above are positive.
Moreover, because each of the transitions are mappings from U into U , we can be assured
that the process (X̃, Ỹ ) exists.

By studying the marginals of the transition rates, we see that both X̃ and Ỹ are
Markov, and that their intensity matrices coincide with those of X and Y , respectively.
Hence, for all x and y such that (x, y) ∈ U , we have constructed versions of X[x] and Y [y]
on a common probability space such that (X1[x](t), . . . , XN [x](t)) ≤ (Y1[y](t), . . . , YN [y](t))
for all t almost surely. 2

1.6 Stability analysis

Often the positive recurrence (also called stability or equivalently here the ergodicity) of
MJP that are not defined on a compact space depends in an intricate manner of the tran-
sitions parameters and can be difficult to establish when there is no closed-form expression
available for the invariant measure. A useful technique to get sufficient conditions of sta-
bility is explained below and follows ideas steaming from the analysis of deterministic
dynamical systems.
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1.6.1 The Foster-Lyapunov criterion

We first need to establish a preliminary result. The idea is to come up with a manipulable
representation of the invariant measure.

Proposition 6 Let F a finite subset of S and TF the hitting time of F . Let g(x) = Ex[TF ].
If g is finite and Ex[g(X(1))] <∞ for any x ∈ F , then X is ergodic.

Proof: Define the increasing sequence of stopping times tn by t0 = 0 and tn = inf{s >
tn−1+1, Xs ∈ F}. (We use later on that tn− tn−1 ≥ 1.) X(tn) is a Markov chain (because
X is a MJP) on F , irreducible since X is irreducible thus having an invariant distribution
by the Perron-Frobenius theorem. Let πF this distribution. Define now π̃ by (for any
positive function)

π̃(f) = EπF

(∫ t1

0
f(Xs)ds

)
.

We have that π̃(1) = EπF (t1) = 1 +
∑

x∈F g(x) < ∞ by assumption. Hence, we may
define π the probability distribution obtained by normalizing π̃. Let C the normalization
constant. We now observe that:

Eπ(f(Xt)) =
∑
x∈S

π(x)Ex[f(Xt)]

=
1

C

∑
x∈S

EπF (

∫ t1

0
1Xs=xds)E

x[f(Xt)]

=
1

C

∑
x∈S

EπF (

∫ ∞

0
1Xs=x,t1>sds)E

x[f(Xt)].

Using the Markov property

EπF [f(Xt+s)1Xs=x,t1>s] = EπF [EXs [f(Xt)]1Xs=x,t1>s] = Ex[f(Xt)]E
πF [1Xs=x,t1>s],

which gives:

Eπ(f(Xt)) =
1

C

∑
x∈S

EπF (

∫ ∞

0
f(Xt+s)1Xs=x,t1>sds],

=
1

C
EπF [

∫ t1

0
f(Xt+s)ds],

=
1

C
EπF [

∫ t+t1

t
f(Xs)ds],

=
1

C

(
EπF [

∫ t1

t
f(Xs)ds] + EπF [

∫ t+t1

t1

f(Xs)ds]

)
.

Using the definition of πF , E
πF [

∫ t+t1
t1

f(Xs)ds] = EπF [
∫ t
0 f(Xs)ds]. Hence

Eπ(f(Xt)) =
1

C
EπF [

∫ t1

0
f(Xs)ds] = π(f).

15



Lyapunov-Foster criterion

We can now state the most used result in the analysis of the stability of Markov processes.

Theorem 8 If there exists a (so-called Lyapnov) function L : X → R+, some constants
K,> 0 and an integrable stopping time τ such that:

1. Ex[L(Xτ )]− L(x) ≤ −γEx[τ ], for L(x) > K,

2. the set F = x : L(x) ≤ K is finite,

3. Ex[L(X(1))] <∞, for all x ∈ S.

then the MJP X is ergodic and the hitting time TF of F satisifes:

Ex(TF ) ≤
L(x)

γ
, x /∈ F

.

Proof: Define inductively the sequence of random times (tn) by t0 = 0 and tn = tn−1 +
θtn−1 ◦ τ . Define the filtrations Fτ

n = Ftn and

ν = inf{n : tn ≥ TF }.

ν is a stopping time with respect to (Fτ
n). Define further Sn = L(Xtn) + γtn. Sn is Fτ

n

measurable and

Ex[Sn+1|Fτ
n ] = Ex[L(Xtn+τ◦θtn ) + γ(tn + τ ◦ θtn)|Fτ

n ], (1.17)

= γtn + EXtn [L(Xτ ) + γτ ]. (1.18)

If ν > n, tn < TF and L(Xtn) > K, hence, on ν > n, Ex[Sn+1|Fτ
n ]−Sn = EXtn [L(Xτ )−

f(Xtn) + γτ ] ≤ 0. This implies that Sn∧ν is a non-negative supermartingale. Hence
Ex(Sn∧ν) ≤ S0 and

Ex[L(Xtν∧n) + γtν∧n] ≤ L(x),

and by monotone convergence this implies (L non negative) Ex(tν) ≤ L(x)
γ , which implies

the bound on the hitting time. We then use the previous Proposition.
2

Appendix :Martingales

Any MJP process can be decomposed into two terms, one being the drift part and the
other being in some sense the noise part. This appealing decomposition is a powerful tool
to study the time evolution of the distribution of a Markov process and is based on the
important notion of martingale. We refer to [6] and [10] for an introduction on the subject
and for more details. We recall here only the main definitions and very basic results that
we might use along the way.
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Definition 7 A continuous time process Mt is called a martingale if

• E(Mt|Fs) =Ms, ∀t ≥ s.

• E
(
sup0≤s≤t |Ms|

)
<∞, ∀t.

It is a sub-martingale if
E(Mt|Fs) ≥Ms, ∀t ≥ s.

It is a super-martingale if
E(Mt|Fs) ≤Ms, ∀t ≥ s.

We now state three crucial results concerning Martingales:

Proposition 7 If T is a stopping time (i.e. {T ≤ t} ∈ Ft, ∀t), then:

E(MT∧t) = E(M0).

Proposition 8 A non negative super-martingale converges almost surely to a finite limit.

Proposition 9 (Doob’s inequality)

P ( sup
0≤s≤t

Ms ≥ a) ≤ E(Mt)

a
.
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Chapter 2

Markovian queues

This chapter is based on the book [9]. We aim at describing finer properties and approxi-
mation schemes for the simplest Markovian queues. This can also be seen as an analysis
of very specific birth and death processes.

Another aim is to emphasize the differences of behavior between the M/M/1 and the
M/M/∞. For more advanced readers, this difference is reflected in the spectral description
of the process. See the work of Van Doorn in particular.

2.1 M/M/1

This queue was introduced in the previous chapter. We here give a more precise analysis
of some of its main feature. It is essential to notice that whereas the stationary properties
of the queue are very simple to obtain (see the next proposition), it is on the other hand
very cumbersome to study the transient regime of the queue. We therefore establish useful
ways to overcome these difficulties either in terms of scalings and approximations with the
stationary regime.

Recall that the number of customers X is a MJP with transitions:

q(x, x+ 1) = λ, (2.1)

q(x, x− 1) = µ1x>0. (2.2)

2.1.1 Stationary distribution:

The following Proposition follows immediately from the results of the next chapter.

Proposition 10 If λ < µ, then X is ergodic and its stationary distribution is geometric
with parameter ρ = λ

µ . The stationary distribution of the workload (which is Markov but
not a MJP) is given by:

P (W > x) = ρe−(µ−λ)x.
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2.1.2 Hitting times:

We now turn our attention to the hitting times associated with the MJP Xt. Define
Tz = inf{s > 0 : Xs = z} (with the convention inf ∅ = ∞). Remark that if X(0) = 1, the
T0 is the busy period of the queue.

Proposition 11 If a ≥ b we have for s > 0:

Ea(e−sTb) =
(
E1(e−sT0)

)a−b
,

and

E1(e−sT0) =
λ+ µ+ s−

√
(λ+ µ+ x)2 − 4λµ

2λ
.

Further:

E(e((
√
λ−√

µ)2)T0) ≤
√
µ

λ
.

Proof: The proof first consists in remarking that the hitting time of b < a starting from
a can be decomposed as the sum of the hitting time of a − 1 and then the hitting time
of b starting from a − 1. Using the strong Markov property for MJP (see the previous
chapter), we obtain by induction that:

Ea(e−sTb) = E(e−s
∑a−b

i=1 T i
0),

where T i
0 is an i.i.d sequence of r.v with the distribution of T0. Hence:

Ea(e−sTb) = E1(e−sT 1
0 )a−b

If we define D(t) as a difference of Poisson processes (which can also be seen as the
free process for the queue), then we can easily verify that for u ∈ R, the process:

H(t) = uD(t)eλt(1−u)+µt)(1− 1
u
),

is a martingale. It follows from the independence of the increments of the Poisson process
that:

E(H(t)|Fs) = H(s)e(t−s)(λ(1−u)+µ(1− 1
u
)E(uDt−Ds) = Ds.

Writing g(u) = λ(1−u)+µ(1− 1
u) and using the optional stopping Theorem for martingales,

we obtain that:
E(elog(u)D(t∧T0)+g(u)(t∧T0)) = 1.

We now define us such that g(us) = −s and using Lebesgue convergence Theorem, we
obtain:

E

(
e−sT0

us

)
= 1,

which proves the second claim after simple calculations. Now choose s0 = −(
√
λ−√

µ)2

and use the same technique and the monotone convergence Theorem.
2

Remark 9 The Laplace transform is continuous in 0 for λ ≤ µ and discontinuous for
µ > λ.
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2.1.3 Convergence to the stationary measure

We can use the previous Proposition combined with a coupling to get interesting results
on the speed of convergence of the queue towards its stationary regime.

Define the total variation norm of a signed measure µ on N as:

||µ|| = 1

2

∑
x

|µ(x)|.

We shall later use the following property. For two probability measures µ and ν on N,
we have:

||µ− ν|| = sup
A⊂N

|µ(A)− ν(A)|.

We now state our estimate of the speed of convergence towards equilibrium:

Proposition 12 For ρ < 1, G a geometric distribution with parameter ρ, and Gx the
distribution obtained by taking the supremum of x and a r.v. with distribution G, we have:

||P x
t −G|| ≤ P sup(x,G)(T0 > t) ≤ (

√
µ

λ

x

+ 1)e−(
√
µ−

√
λ)2t. (2.3)

Proof: We couple a stationary process X̃ and a process X started at x, as follows. Before
meeting they evolve independently. After meeting they follow the same trajectory. Let T c

be the meeting time of the two processes. We have that:

sup
A

|E[1X∈A]− E[1X̃∈A]| ≤ sup
A
E|1X∈A − 1X̃∈A|, (2.4)

≤ P (T c > t). (2.5)

We then argue that the hitting time of the two processes is smaller than the hitting time
of 0 by the one of the two process started in a higher value. (Obvious when drawing
trajectories). The inequality then follows from Chebichev inequality and the results of
Proposition 11.

2

2.1.4 Fluid limits

We here look at a scaling corresponding to zooming out the process. This technique is
very useful for more complicated multidimensional processes. Define the scaled Markov

process XK(t) = XKx(Kt)
K started with Kx customers.

Proposition 13 We have the almost sure convergence:

XK(t) → h(t) = (x+ (λ− µ)t)+,

where a+ denotes the maximum of a and 0.
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Proof:
Recall that the hitting time of 0 can be decomposed as a sum of independent random

variables identically distributed with mean 1
µ−λ . Let TK the hitting time of 0 for the

scaled process. Using the strong of large numbers, we get that TK/K → t1 =
x

µ−λ almost
surely.

Before time TK , XK(t) can be written as the difference of two indenpendent (and
inter-independent) Poisson processes Nλ and Nµ. Hence, using the strong law of large
numbers, there exists K0 such that for all k ≥ K0:

∀t ≤ TK

K
, |XK(t)− h(t)| ≤ ϵ, a.s. .

which given the previous result gives that there exists K ′
0 such that for all K ≥ K ′

0

∀t < t1, |XK(t)− h(t)| ≤ ϵ, a.s. .

We conclude the proof by using stochastic comparisons with a scaled process started in
K(x+ ϵ).

Exercise 7 Show that the workload of a G/G/1 queue with independent and interdepen-
dent services has a also an almost sure fluid limit.

Exercise 8 What about the number of customers in a M/G/1 queue?

2.1.5 Fluctuations around the fluid limit

We can use a functional central limit theorem to get a second-order approximation, when
zooming out the state of the queue.

Proposition 14 For t ≤ t1:

√
K(XK − h(t)) →distr. cBt,

with Bt a standart Browninan motion and c =
√
λ+ µ.

Proof: Donsker Theorem shows that a renormalized Poisson process converges in distri-
bution to a Brownian. We the use the almost sure convergence of the hitting time.

2.2 M/M/∞
This queue models the case of an infinite supply of servers. Hence, each customer entering
the queue stays an exponential time corresponding to its ’service’ time. Hence the number
of customers X is a MJP with transitions:

q(x, x+ 1) = λ, (2.6)

q(x, x− 1) = xµ. (2.7)
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2.2.1 Transient distribution:

Proposition 15 If X0 = 0, the number of customers at time t has a Poisson distribution
with parameter

µ(t) = λ

∫
min(x, t)µ exp(−µx)dx.

Proof: Marked point processes and Laplace transforms (See [9]). 2

2.2.2 Stationary distribution:

The following Proposition follows immediately from the results of the next chapter and is
also a direct consequence of the previous Proposition.

Proposition 16 X is ergodic (for all parameters) and its stationary distribution is Pois-
son with parameter ρ = λ

µ .

2.2.3 Convergence to the stationary measure

The speed of convergence is relatively easy to obtain as the transient distribution is Pois-
son.

Proposition 17 Let Pρ a Poisson distribution with parameter ρ.

||P 0
t − Pρ|| ≤ 1− e−λe−µt

(2.8)

Proof: It follows from the fact that for two Poisson random variables with parameters
h ≤ g,

||Poish − Poisg|| ≤ 1− e−(g−h).

2

2.2.4 Fluid limits

In order to look at scaled version of the process, converging to a deterministic limit, we
cannot only zoom out the process anymore. The right scaling is clear when writing the
martingale decomposition and is the following. The arrival rates are multiplied by K,
state is scaled by K while service rates and time are not scaled.

Define the scaled Markov process XK(t) = XKx(Kt)
K started with Kx customers and

the error estimate:

nK(t) = sup
0≤s≤t

|XK(s)− y(s)|.

with y(t) the deterministic process:

y(t) = ρ+ (x− ρ)eµt.

Finally let n̄K(t) = EnK(t).
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Proposition 18 We have the convergence of the scaled process in L1 uniformly on com-
pact sets, i.e.:

n̄k(t) → 0.

Proof:

Using the martingale representation:

XK(t) = XK(0) +MK
t +

∫ t

0
∆(XK(s))ds.

where MK is a martingale. Using Cauchy Schwartz and Doob’s inequality:

E

(
sup
0≤s≤t

MK
s

)2

≤ 4E

(
sup
0≤s≤t

MK
s

2
)
, (2.9)

≤ 4E
(
MK

t
2
)
. (2.10)

(2.11)

⟨MK
t ⟩ = 1

K2

∫ t

0
Kλ+ µXK

s ds.

Using that the process is obviously bounded by taking only arrivals into account:

E⟨MK
t ⟩ ≤ 1

K
(λt+ λµt2/2).

Hence:

E
(
MK

t
2
)

≤ 1

K
(λt+ λµt2/2), (2.12)

and:

E

(
sup
0≤s≤t

MK
s

)
≤

√
1

K
(λt+ λµt2/2). (2.13)

This now allows to obtain that:

n̄K(t) ≤ ϵK +

∫ t

0
n̄K(s)ds.

We conclude using Gronwall Lemma. 2

2.2.5 Fluctuations

We conclude this chapter by mentioning a functional central limit theorem for fluctuations
around the fluid limit (see [?], Chapter 6 for a proof). Define the process Y K(t) =√
K

(
XK(t)− y(t)

)
.
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Proposition 19 Suppose limY K(0) = v. Then Y K converges in distribution towards a
process Zt with independent increments of the form:

Zt = ve−µt +

∫ t

0
e−µ(t−s)h(s)1/2dBs,

with B a standart Brownian motion and h a deterministic function given by:

h(t) = 2λ+ µ(x− ρ)e−µt.
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Chapter 3

Reversible processes

As transient distributions are usually very complicated objects, queuing theorists are often
primarily interested in solving the stationary distributions of the queues and networks they
study. A fundamental tool in that direction is a special notion of symmetry linked to the
time reversibility of the process.

3.1 Definition

Definition 8 X is a reversible MJP if there exists a distribution π on S such that :

π(x)q(x, y) = π(y)q(y, x) (3.1)

These equations are called the detailed balance equations and π is then the stationary
distribution of X. Indeed the summation of (3.1) imply (1.7).

Proposition 20 The process X is reversible if and only if there exists a distribution on
S and a symmetric function γ (i.e., such that γ(x, y) = γ(y, x)) such that:

q(x, y) =
γ(x, y)

π(x)
.

3.2 Time reversal

Fix a time τ > 0 and consider the reversed time process

Xτ
t = Xτ−t.

It is important to remark that it is difficult to interpret Xτ when X is not stationary:
in this case, Xτ is not even time-homogeneous. However, if X is stationary, then its time
reversal has the simple structure described in the following proposition:

Proposition 21 Xτ verifies:

• Xτ is Markov,
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• For s < t,

P (Xτ
t = y|Xτ

s = x) =
P (Xτ−t = y)

P (Xτ−s = x)
P (Xτ−s = x|X0 = y). (3.2)

• If X is stationary ergodic with a stationary distribution π, so is Xτ (stationary
ergodic with stationary distribution π).

• If X is stationary, the transitions of Xτ are given by

qτ (x, y) =
π(y)

π(x)
q(y, x). (3.3)

Proof: Consider a set A belonging to the σ-algebra Fτ
s (generated by {Xτ

r , 0 ≤ r ≤ s})
and take s < t.

P (Xτ
t = y|Xτ

s = x,A) =
P (Xτ−t = y,Xτ−s = x,A)

P (Xτ−s = x,A)
, (3.4)

=
P (Xτ−t = y)P (Xτ−s = x|Xτ−t = y)P (A|Xτ−s = x)

P (Xτ−s = x)P (A|Xτ−s = x)
.(3.5)

Suppose X stationary with stationary distribution π, then the law of Xt is π for each t,
which implies the second statement. In that case, taking s = 0 and t → 0 in (3.2) leads
to (3.3).

The meaning and the term of time-reversibility is better understood through the fol-
lowing theorem:

Theorem 10 X is reversible if and only if Xτ is ergodic and

(Xτ−t1 , . . . Xτ−tn) =distr (Xt1 , . . . Xtn), (3.6)

for all sequences of time t1, . . . tn.

Proof: X is reversible if and only if qτ = q. Two MJP have the same transitions if and
only if they have the same distribution (i.e. same distribution for all finite marginals). 2

3.2.1 Kolmogorov criterion

In this section, we give a practical criterion to recognize reversibility without calculating
the stationary measure.

Theorem 11 (Kolmogorov) The following statements are equivalent:

• there exists a positive measure π satisfying the detailed balance equations for q ,

• ∀n ∈ N, ∀x0, x1, . . . , xn ∈ X with xn = x0,

n∏
i=1

q(xi−1, xi) =

n∏
i=1

q(xi, xi−1). (3.7)

28



• For each path ∀x0, x1, . . . , xn ∈ X , such that each xi communicates with xi+1 for all

i, the quantity (defined for non-zero transitions)
∏n

i=1 q(x
i−1,xi)∏n

i=1 q(x
i,xi−1)

depends only on x0

and xn.

Proof:We prove that q reversible implies (3.7). There exists π such that
∏n

i=1 q(x
i−1, xi)π(xi−1) =∏n

i=1 π(x
i)q(xi, xi−1). Because x0 = xn, we can cancel the π. 2

If reversibility is satisfied, the stationary measure can easily be expressed in terms of
the transitions.

Theorem 12 If there exists a positive measure π satisfying the detailed balance equations
for q, an invariant measure is given by:

π(x) =
n∏

i=1

ρ(xi−1, xi), x ∈ X \ x0, (3.8)

π(x0) = 1, (3.9)

ρ(xi−1, xi) =
q(xi−1, xi)

q(xi, xi−1)
. (3.10)

The following proposition is essential to study processes that are restriction of reversible
processes.

Proposition 22 Consider a MJP X reversible with stationary distribution π on S. Then,
its restriction S̃ to S̃ ⊂ S is reversible with a stationary measure π̃. If X is ergodic, then
X̃ is ergodic with stationary distribution:

π̃(x) =
π(x)∑
y∈S̃ π(y)

. (3.11)

Proof: x, y ∈ S̃, π(x)q(x, y) = π(y)q(y, x). X̃ is reversible and π is invariant for X̃ on X̃ .
2

3.2.2 Reversible state dependent birth and death processes

As previously defined, a birth and death process is a process with transitions from x ∈ X
to y = x+ ei or y = x− ei. The analysis of many processes representing the state of some
queuing network boils down to find the stationary measure of birth and death processes.

One-dimensional birth and death processes A one dimensional birth and death
death process with strictly positive transitions is always reversible. It follows from the
Kolmogorov criterion (or alternatively from a simple manipulation of the global balance
equations) that:
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Proposition 23 The transitions of a birth and death process on N with strictly positive
transitions λ(n) and µ(n) satisfy the detailed balance equations and has the following
invariant measure:

π(n) =

n∏
i=1

λ(i− 1)

µ(i)
.

Exercise 9 Prove the previous Proposition.

Fixed birth rates, state dependent death rates: We consider a birth and death
process X on Nd with the following strictly positive transitions:

q(x, x+ ei) = λi, i = 1, . . . d

q(x, x+ ei) = ϕi(x), i = 1, . . . d.

Proposition 24 The following statements are equivalent:

• There exists π solution of the detailed balance equations for q.

• The transitions ϕi(x) verify:

ϕi(x)ϕj(x− ei) = ϕj(x)ϕi(x− ej),∀i, j ∈ {1 . . . , d}, ∀x ∈ Nd. (3.12)

• There exists a strictly positive function Φ such that the transitions ϕi(x) write:

ϕi(x) =
Φ(x− ei)

Φ(x)
, ∀i ∈ {1 . . . , d},∀x ∈ Nd. (3.13)

Exercise 10 Prove the previous Proposition.

Fixed death rates, state-dependent birth rates: The same analysis can be carried
out for the symmetric situation:

q(x, x+ ei) = λi(x), i = 1, . . . d

q(x, x+ ei) = ϕi, i = 1, . . . d.

Using Kolmogorov criterion, we get the following Proposition:

Proposition 25 The following statements are equivalent:

• There exists π solution of the detailed balance equations for q.

• The transitions λi(x) verify:

λi(x)λj(x+ ei) = λj(x)λi(x+ ej), ∀i, j ∈ {1 . . . , d}, ∀x ∈ Nd. (3.14)

• There exists a strictly positive function Λ such that the transitions λi(x) write:

λi(x) =
Λ(x+ ei)

Λ(x)
, ∀i ∈ {1 . . . , d},∀x ∈ Nd. (3.15)
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Chapter 4

Jackson and Whittle networks

4.1 The tandem queue

The simplest example of two interacting queues consists of a two queues in tandem: cus-
tomers arrive at queue 1 according to a Poisson process (of rate λ) and demand an ex-
ponentially distributed service time of mean 1/µ1. After being served at the first queue,
they joined the second queue, when they once again demand an exponentially distributed
service time of mean 1/µ2. The assumption of exponential inter-arrival and service times
has two important consequences:

• Any non-anticipating and work conserving scheduling (not taking into account the
residual service times of the customers in the system) is equivalent in the sense that
the number of customers has the same probabilistic description.

• The process describing the number of customers at each queue is a Markov process.

Though the dynamics of the second queue are clearly impacted by the dynamics of
the first one, we will see that in the stationary regime, the 2 queues behave as if they
were independent. This property is closely related to some reversibility properties of the
system. Verify however that the MJP process describing the number of customers in the
2 queues is not strictly reversible. (Consider for instance the states (0, 0) and (1, 0).)
The process is going to be called quasi-reversible or partially reversible and the theory of
partial reversibility is going to be extensively studied in the next Chapter.

4.1.1 Burke-Reich theorem

Reversibility of the first queue The number of customers in the first queue is itself
a Markov process. It is thus a one-dimensional birth and death process (corresponding to
a M/M/1 queue) and it is reversible. It is stationary if λ < µ1. (More about ergodicity
conditions is established in Chapter ??.)

Theorem 13 (The output Theorem) If λ < µ1, the departure process from the first
queue in the stationary regime is a Poisson process.
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Proof: Suppose λ < µ1, then X1 is stationary. Using the reversibility and stationarity
of X1, the time reversal process of X1 has the same transitions as X. Hence, its arrival
process is a Poisson process. The departure process of the queue can be interpreted as the
arrival process of the time reversed process of X. 2

Independence of the two queues in the stationary regime: Denote D(t) the
process couting the departures from the first queue. Using the reversibility of the first
queue, the following result can be established:

Proposition 26 Assume X stationary. For each time t0, X1(t0) is independent of D(t), t <
t0.

Proof: In the stationary regime, the reversed time process Xτ
1 has the same dynamics as

X1. The arrival process of the reversed-time is the departure process of X1 . The arrival
process after t0 of Xτ

1 is independent of Xτ
1 (s), s ≤ t0. Hence, the departure process and

the arrival process of X1 before t0 are independent of X1(t0). 2

We deduce from the previous Proposition that:

• In the stationary regime, the arrival process of the second queue is a Poisson process
and is independent of the state of the first queue.

• In the stationary regime, the two queues are independent. Thus, the stationary
measure has a product form π(x) = π1(x1)π2(x2).

• Solving the balance equations, (given we have a product form) leads to:

π(x) =

(
1− λ

µ1

)(
λ

µ1

)x1
(
1− λ

µ2

)(
λ

µ2

)x2

(4.1)

4.1.2 Partial reversibility

In this section, we show the same result using a different approach, that will turn out to
be more powerful in the sequel. Since the routing between queue 1 and 2 breaks the strict
reversibility property of the 2-dimensional process X, it is natural to consider an auxiliary
process X̄ (that we shall call the adjoint process), that has the same input and service
rates that X, but different transitions, given by:

q̄(x, x+ ei) = λ, i = 1, 2, (4.2)

q̄(x, x− ei) = µi, i = 1, 2. (4.3)

This process can directly be interpreted as two independent one-dimensional process and
it is obvious that is stationary measure has a product form, given by (4.1). The partial
balance equations for X̄ write:

π(x)q̄(x, x+ ei) = π(x+ ei)q̄(x, x− ei), i = 1, 2, . (4.4)
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which can be rewritten as:

π(x)λ = µ2π(x+ e2), (4.5)

π(x)µ2 = λπ(x− e2) = µ1π(x+ e1 − e2), (4.6)

π(x)µ1 = λπ(x− e1). (4.7)

Summing these equalities,

π(x)(λ+ µ1 + µ2) = µ1π(x+ e1 − e2) + µ2π(x+ e2) + λπ(x− e1),

This approach does actually not need any assumption on the routing matrix and shall
considerably be generalized in the next chapter.

4.2 Open feed-forward Jackson networks

The direct reversibility arguments involved for the proof of the Burke-Reich theorem can
easily be extended to any kind of feed-forward networks, i.e., such that once a node is
visited, it is not visited twice. Hence, defining the traffic equations

ωi = λi +
∑
j

pjiωj , (4.8)

the product form of a N -dimensional feed forward networks with constant service rates at
each queue directly follows:

π(x1, . . . , xN ) =
N∏
i=1

(
1− ωi

µi

)(
ωi

µ1

)xi

. (4.9)

4.3 Whittle networks

We will consider here an open queuing network of N nodes. At any node i, exogenous
arrivals form a Poisson process of intensity νi.

In all the following, we will focus on the process X(t) = (x1(t), ..., xN (t)) representing
the number of clients at each node of a Whittle network. We may consider either a finite
or infinite state space X . ei shall denote i-th the unit vector in NN .

4.3.1 Definitions

Definition 9 (Processor-sharing queues and networks) • In a processor-sharing
queue of capacity ϕ1(t), the service capacity of the queue at time t is equally shared
between all the clients present in the queue at every instant t. (Hence, any client is

served at time t with service rate ϕ1(t)
x1(t)

)
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• We shall call a processor-sharing network a queueing network of processor-sharing
nodes with state-dependent capacities. The dynamics of a Processor sharing network
with exponential service requirements can be characterized by the following principle:
whenever the network is in state x, the time to the next movement of a single unit
from node i to node j is exponentially distributed with rate pijϕi(x) . (pij represents
the routing probability from node i to node j while ϕi(x) represents the allocation
of badwidth at node i). At node i, customers require i.i.d. exponential services

services of mean 1/µi. After service completion at node i, a customer is routed to
node j with probability pij and leaves the network with probability pi ≡ 1−

∑
j pij.

The transition rates of the number of customers or units at each node are hence
given by:

q(x, y) =

pjkϕj(x) if y = x− ej + ek
pjϕj(x) if y = x− ej
νj if y = x+ ej

0 otherwise

(4.10)

Definition 10 (Whittle network) A Whittle network is a processor sharing network
such that the service rates have the property of balance :

ϕi(x)ϕj(x− ei) = ϕj(x)ϕi(x− ej), i, j = 1, . . . , N, xi > 0, xj > 0. (4.11)

We assume moreover that ϕi(x) > 0 if and only if xi > 0.

Remark 14 These networks are somehow the most general instances of tractable multi-
class networks as the capacity (or speed) ϕi of node i may depend on the whole state of
the system x = (x1, . . . , xN ), where xi is the number of customers at node i.

Remark 15 We shall relax the assumption of exponential services later on in the sense
that a network with non-exponential services at each node but all other characteristics
preserved will have the same stationary measure.

The balance capacity is directly linked to the reversibility of the process representing
the number of customers in the network (see the previous Chapter). Let ⟨x, x−ein , . . . , x−
ein−1 . . . x− ei1x, 0⟩ be a direct path from state x to state 0, i.e., a path of length n where
n is the number of customers in state x. The balance property implies that the expression

Φ(x) = 1/ϕi1(x)ϕi2(x− ei1) . . . ϕin(x− ein−1 . . .− ei1), (4.12)

is independent of the considered direct path. In particular, the capacities are uniquely
characterized by the function Φ, referred to as the balance function:

ϕi(x) =
Φ(x− ei)

Φ(x)
, i = 1, . . . , N, xi > 0. (4.13)

Conversely, if there exists a function Φ such that the capacities satisfy (4.15), it can be
easily verified that these capacities are balanced. We say that the capacities are balanced
by Φ.

Remark 16 (Jackson networks) A Jackson network is a Whittle network in which the
service rate at each node depends only of the number of clients at this node.
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4.3.2 Invariant measures

Open whittle networks

For the sake of simplicity, we focus thereafter on the case of open or closed networks.
However, this assumption is not necessary and the same analysis could be done for mixed
networks. The arguments to obtain the stationary measure of these networks are a sys-
tematic extension of those given in the previous Chapter for the tandem queue. Let
ρi =

λi
µi
.

Theorem 17 (Invariant measure) The invariant measure of an open Whittle network
is given by:

π(x) = Φ(x)

N∏
i=1

ρxi
i , (4.14)

where Φ is the balance function of the network:

ϕi(x) =
Φ(x− ei)

Φ(x)
, i = 1, . . . , N, xi > 0. (4.15)

The effective arrival rate λi at node i is uniquely defined by the equations:

λi = νi +
∑
j

λjpji, i = 1, . . . , N.

and ρi = λi/µi the traffic intensity at node i.

Theorem 18 Define another Markov Jump process X̄, called the adjoint process, by the
following transitions:

x 7→ x+ ei at rate λi,

x 7→ x− ei at rate ϕi(x)1(xi > 0),

The process X̄ is reversible and has the same stationary measure as X.

Proof: We prove both theorems simultaneously. It follows from the results on Chapter 3,
that X̄ is reversible. Hence its stationary measure is given by 4.14. We then verify the
global balance equations for X using π. We have:

λiπ(x) = π(x+ ei)ϕi(x+ ei),

which leads to:∑
i

ϕi(x)π(x) =
∑
i

π(x− ei)λi, (4.16)

=
∑
i

π(x− ei)(νi +
∑
j

pjiλj), (4.17)

=
∑
i

π(x− ei)νi +
∑
j

pjiϕ(x− ei + ej)π(x− ei + ej), (4.18)
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Summing the traffic equations gives
∑
νi =

∑
i λipi. Hence:∑

i

νiπ(x) =
∑
i

π(x)λipi, (4.19)

=
∑
i

piϕi(x+ ei)π(x+ ei). (4.20)

2

A key question is then to characterize the allocations (ϕj)j=1..N for which a PS network
is a Whittle network for any distribution of services and hence to find a necessary and
sufficient condition of “insensitivity”. We prove in the next Section that the property
of balance is a necessary and sufficient condition of insensitivity for processor-sharing
networks with fixed arrival rates.

4.3.3 Examples of Whittle networks

We describe here various models useful to develop performance evaluation and dimension-
ing tools for various real-life networks functioning according it specific topologies.

Example 19 (Loss network)
Our first example deals with the modeling of the so called streaming traffic correspond-

ing mainly to voice or video traffic and using a circuit-switched like technology. Equiva-
lently one may think of a telephone network as follows. The network is constituted of a
set of links each one having several lines or circuits. Te number of circuits in each link is
called the capacity of the link. In the network, there are several routes corresponding to
different source destinations pairs that can communicate with each other. Calls arrive to
the network and if accepted, occupy a circuit in each of the links of the route that follow,
during the whole duration of the call. Suppose now that calls arrive according to a Poisson
process and having an exponentially distributed duration with parameter 1. Let Xr denote
the number of r. Let X = (X1, . . . , XN ) ∈ NN be the N -dimensional stochastic process on
describing the numbers of calls in progress on each route.

Assume first that all the links have an infinite number of circuits. Then the coordinate
of X are independent and each one behave as an M/M/∞ queue. I.e., the transitions of
X are given by:

q(x, x− ei) = xi,

q(x, x+ ei) = λi,

and the stationary distribution of the system is given by:

π(x) =
∏
i

λxi
i e

−λi

xi!
.

Now assume that a given link l can support at most Cl calls. Then the state space
is reduced to S = {x ∈∈ NN , Ax ≤ C, where the matrix A is the link-route incidence
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matrix and C is the vector (Cl) of capacities of the links. Hence the process X̃ has the
same dynamics as the process X previously described if we truncate the whole orthant to
S. Using the reversibility of X, and Proposition 22 of the previous Chapter, we obtain
that X̃ is reversible and has the stationary distribution:

π̃(x) =
1

Z
π(x)1x∈S ,

where Z is the normalizing constant associated to the state space S. This normalizing
constant can be difficult to calculate for high dimensional networks. However there are
several techniques to (try to) overcome this difficulty:

• Using recursive calculations to obtain Z. The efficiency of this program depends
crucially on the shape of the state space (i.e. on the specific constraints).

• Using bounds (involving for instance only the usual Erlang formula).

Example 20 (A processor sharing queue with several classes of customers)
We now turn our attention to a different kind of traffic, the so-called date traffic,

corresponding mainly to file and webpages downloads and emails.
Consider a single link sharing its capacity between several competing flow transfers.

Here the capacity has to be understood as the number of bits per second that can be trans-
mitted through the link. Suppose that flows of class-i arrive according to a Poisson process
of parameter λi and have an exponentially distributed size with parameter µi.

Let X = (X1, . . . , XN ) ∈ ZN be the N -dimensional stochastic process describing the
numbers of flows in progress. Thus, Xi represents the number of concurrent flows of class
i. In the absence of additional priority mechanisms, and supposing a fair-sharing of the
capacity of the link, X is a multi-dimensional birth-and-death process with transition rates:

q(x, x− ei) = µi
xi
|x|
,

q(x, x+ ei) = λi,

where |x| =
∑N

j=1 xj.
Using the results of this Chapter, it is not difficult to realize that X is stable if∑N

i=1
λi
µi
< 1 in which case it is reversible and has the stationary distribution:

π(x) =

(
|x|

x1, . . . , xN

) N∏
i=1

(λi
µi)

xi

(1−
N∑
i=1

λi
µi

).

Example 21 (Bandwidth sharing network with balanced fairness allocation)
Bandwidth-sharing network models have become quite a standard modeling tool over the

past decade for communication networks. In particular, they have been used extensively to
represent the flow level dynamics of data traffic in wireline and wireless networks as well
as for the integration of voice and data traffic Bandwidth-sharing networks generalize more
traditional voice traffic models, e.g. [7]. We give in the following a succint description of
these models.
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Consider a communication with N traffic classes. Each traffic class uses a given route
through a wired network or consumes a certain amount of a wireless link. To keep the
description simpler, we shall only consider the case of wired networks.

Consider for example the tree network represented in Figure 4.1, with two traffic routes,
each passing through a dedicated link, followed by a common link. If each dedicated link
has a capacity ci ≤ 1, i = 1, 2, and the common link has capacity 1, the flow on each route
gets a capacity ϕi(x) that lies in the polyhedron C:

ϕi(x) ≤ ci, i = 1, 2, (4.21)
2∑

i=1

ϕi(x) ≤ 1. (4.22)

Figure 4.1: Tree network

Another example is the linear network represented in Figure 4.2 with 3 routes sharing
two links. While the first route passes through both links, routes 2 and 3 only use one of
the links (one each). This gives the following capacity constraints:

ϕ1(x) + ϕ2(x) ≤ c1, (4.23)

ϕ1(x) + ϕ3(x) ≤ c2. (4.24)

In general, like for the specific foregoing examples, the capacity constraints determine
the space over which a network controller can choose a desired allocation function. It has
been argued in [?] that a good approximation of current congestion control algorithms such
as TCP (the Internet’s predominant Transfer Control Protocol) can be obtained by using
the weighted proportional fair allocation, which solves an optimization problem for each
vector x of instantaneous numbers of flows. Specifically, the weighted proportional fair
allocation η(x) for state vector x maximizes

N∑
i=1

wixi log(ηi), η ∈ C,

where the weights wi are class-dependent control parameters.
This framework has been generalized to so-called weighted α-fair allocations, which

provide flexibility to model different levels of fairness in the network. Another important
alternative is the balanced fair allocation [?], which allows a closed form expression for the
stationary distribution of the numbers of flows in progress. In addition, the balanced fair
allocation gives a good approximation of the proportional fair allocation while being easily
evaluated, which is attractive for performance evaluation.
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Figure 4.2: Linear network

From a “queuing network perspective, even if there is no queue here, resources are
shared according to a processor-sharing service discipline between routes and we can define
a processor sharing network to describe the stochastic dynamics of the communication
network. The service rates are state-dependent: they may depend on the number of flows
within the same class, as well as on the numbers of flows in all the other classes. . Note
that the service rate function ϕ captures the allocation of bandwidth which is determined
by the specific network topology, the link rates, and the congestion control mechanisms.

Let X = (X1, . . . , XN ) ∈ ZN be the N -dimensional stochastic process describing the
numbers of flows in progress. Thus, Xi represents the number of concurrent flows of class
i. In the absence of additional priority mechanisms, X is a multi-dimensional birth-and-
death process with transition rates:

q(x, x− ei) = µiϕi(x),

q(x, x+ ei) = λi,

where the i-th coordinate of the vector ei ∈ ZN is 1 and all its others coordinates equal 0.

4.3.4 Closed Whittle networks, representation of the stationary measure
via an open network

Consider now a closed networkN withK nodes, N customers and fixed Markovian routing
pij . In the sequel, we suppose that at least one of the following assumption is verified:

• the service times are exponentially distributed,

• the scheduling disciplines are PS at each node.

Suppose moreover that the traffic equations have a unique solution ωi, i = 1 . . .K, up
to multiplicative constant and that the service rates of the networks are balanced, i.e.,
there exists a so-called balance function Φ such that,

ϕi(x) =
Φ(x− ei)

Φ(x)
,

with x = (x1, . . . , xK), and ei the unit vectors in NK .

Proposition 27 The stationary measure of the network writes (for all λ):

π(x) =

K∏
i=1

(λωi)
xiΦ(x).
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The stationary distribution of the network can be interpreted as the conditional measure
of an equivalent open network as follows:

πN (x) = P (XN = x) =
P (Y = x)

P (|Y | = N)
,

where Y is an open network with no internal routing, external arrival ωi, and the same
service rates ϕi.

Proof: We prove that the assumptions of the Proposition implies the partial reversibility
of the network. Define the adjoint process X̄ with transitions q̄ given by:

∀i, j, x, q̄(x, x− ei + ej) = ϕi(x)ωj .

Using the balance conditions of the service rates, it is easily verified that:

π(x)q̄(x, x+ ei − ej) = π(x+ ei − ej)q̄(x+ ei − ej , x), ∀x, i, j.

This shows that the network N is partially reversible and has the stationary measure π
Define Y as the process of the number of customers of the open network N̄ with external
intensities λωi, i = 1 . . .K. The balance of the service rates automatically implies the
reversibility of Y and that Y has the stationary measure π. The previous Proposition
allows to conclude that P (XN = x) = P (Y=x)

P (|Y |=N) . 2

Large networks

The last Proposition tells us that the asymptotic behavior of the closed network when
N → ∞ is defined by the properties of the open network N for a large total amount of
customers. A natural example is a Jackson network with the same traffic characteristics
at each node (see the following section). It is clear from the previous that Y being in
this case distributed as a set of independent variables, the central limit theorem allows to
approximate the behaviour of the closed network.

Another interesting example is a closed network with a fair sharing of a unique capacity
between the K classes of the network, we have, for x such that |x| = N ,

Φ(x) =

(
N

x1, . . . xK

)
.

Choosing λ such that λ
∑
ωi = 1, and writing (pi)i=1,...,K = (λωi)i=1,...K , we get that πN is

a multinomial distribution and using the central limit theorem, the marginal distributions
πNi (xi) verifies :

(πNi −Npi)√
N

→ N (0, 1).
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Chapter 5

Insensitivity

A stochastic network is generally a ”stochastic dynamical” system which is not Markovian,
e.g. when the service requirements distributions are not exponentially distributed. We
show in the sequel how we can nevertheless use the Markovian analysis developed so far
for Whittle networks to deal with much more general cases.

Definition 11 A network with Poisson arrivals is said to be insensitive when its station-
ary distribution depends on the service time distribution only via its mean.

5.1 Renewal processes and residual life paradox

To proceed with the analysis of the insensitivity of Whittle networks, we first need to
recall a basic fact of renewal theory. Define Nt = (Ti) a point process such that T0 = 0,
the sequence (Ti+1 − Ti) is i.i.d with absolutely continuous distribution function θ and a
mean m. We aim at calculating the distribution of the remaining time to the next point of
the point process starting from an arbitrary point t, i.e. the distribution of Rt = tNt+1− t.
This can also be thought as the residual time until the next arrival seen by an observer
arriving uniformly between two points of N . Think for example that the point process
corresponds to arrivals of buses, and that you arrive at the bus stop.

We first develop an intuitive argument. Let A the distribution of the total inter-arrival
time seen by the observer. A basic fact is that A is not distributed as θ. An observer has
more chances to get into a longer inter-arrival time. Pushing a little bit the intuition, one
might convince herself that the (density of) probability of finding an inter-arrival time of
length s should be proportional to s as well as the frequency of original inter-arrival times
of this length, i.e.

dθA(s) = Csdθ(s).

Normalizing gives:

dθA(s) =
1

m
sdθ(s).
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Now it is easy to accept that an observe arrives uniformly in A, which gives that:

dθ̄(t) =
1

m

∫ ∞

t

1

s
dθA(s) =

1− θ(t)

m
dt.

We hence have the following Proposition:

Proposition 28 Given a stationary renewal point process Nt = (Ti), with T1 − T0 ≡ θ,
the distribution of the residual lifetime is

θ̄(t) =
1−

∫∞
t (1− θ(s))ds

m
.

Proof: A formal proof can be given using renewal theory (see [1]). We give here a sketch
of the proof based on the renewal equation. Given the stationarity of Nt, it is clear that
the distribution of Rt does not depend on t. Further using the stationarity we have that
E(Nt+s) = E(Nt) + E(Ns) which implies that there exists a constant c such that:

E(Nt) = ct.

Using the renewal equation N = θ̄ + F ∗ U (where ∗ denotes convolution) and taking
expectations:

ct = θ̄(t) +

∫ t

0
c(t− y)dθy.

Integrating by parts and normalizing give the desired result.
2

This Proposition can also be seen as a simple consequence of the definition of the Palm
probability using the framework of Palm calculus (see [?]): For any stationary ergodic
process,

E(g(S0)) = E0(λS0g(S0)),

where E0 is the mean according to the Palm probability, obtained by conditioning on the
(0-probability) event T0 = 0.

5.2 The coupling construction for a PS queue with state
dependent rates

Consider a processor sharing queue with Poissonian arrivals with state dependent rate
λ(n) and service rates ϕ(n). Customers have a generally distributed (absolutely continu-
ous) service requirement with mean 1 and distribution Θ. Processor sharing means that

the residual service time of each customers decrease with speed β(n)
n , when there are n

customers in the system.
To keep a Markovian description of the system, it is now necessary to record the

residual service times of each customer. The state space S is the union of N and of the
union of Rn, for each n ∈ N (here the ordering of customers is irrelevant) and we define
the appropriate σ-algebra. Xt = (Xn

t , Rt) is hence the number of customers and their
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residual service times at time t. Note that X is not a MJP but belongs to wider class of
Markov process, sometimes designated as piece-wise deterministic Markov processes.

Define θ̄n the product distribution on Rn with θ̄ the distribution of the residual life time
for a renewal point process with inter-arrival distribution θ (see the previous Proposition).

Now for a distribution π (on S), define θ̄π =
∑

n π(n)θ̄
n.

Theorem 22 If the distribution π is solution of the detailed balanced equations with re-
spect to the transitions λ(·) and ϕ(·), then µ̄π is invariant for Xt.

Proof:

This proof is based on the ideas gathered in [12].

Suppose without lost of generality that θ has mean m = 1. Define θ̂n = θ̄n−1 × θ. We
are going to couple Xt with a process X̂ which has the following dynamics:

• on completion of the workload of a customer, it is immediately replaced by a new
customer, having an independent workload with distribution θ.

• there are no arrivals.

For any distribution p, µ̄p is stationary for X̂. Let P and P̂ the transition kernels of
both process and D the set of functions such that both kernels are continuous in t = 0.
Let f ∈ D.

θ̄πPhf − θ̄πP̂hf = E θ̄πf(Xh)−E θ̄πf(X̂h) (5.1)

= h
∑
n

π(n)[λ(n)(θ̂n+1f − θ̄nf) + ϕ(n)(θ̄n−1f − θ̂nf)] + o(h),(5.2)

= h
∑
n

[π(n)λ(n)− ϕ(n+ 1)π(n+ 1)]](θ̂n+1f − θ̄nf) + o(h), (5.3)

= o(h). (5.4)

In equation (5.2), we have used that:

• The service discipline being processor sharing, all customers are symmetric in the
sense that if they were numbered in the queue, then every customer receives the
same amount of the service.

• Given the symmetry of service, a completion of service for the original process occurs
before time h with probability

P ( min
i=1,...,n

θ̄i ≤
β(n)

n
h) = 1− P (θ̄i ≥ h

β(n)

n
)n (5.5)

= 1− (1−
∫ h

β(n)
n

0
(1− θ(s))ds)n, (5.6)

= hβ(n) + o(h). (5.7)
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• The arrival being Poisson, there is no need to keep track of the time since the last
arrival. An arrival occurs before h with probability α(n)h+ o(h). When an arrival
occurs, the new law of the residual times is changed into θ̂n+1 (keeping in mind that
the order of the customers does not matter).

• The probability that more than one events (arrival or service completion) is of order
o(h).

Using that θ̄π is stationarity for X̂, this gives that

|θ̄πPhf − θ̄πf | = o(h),

uniformly on D. This implies that θ̄π is stationary for X.

5.3 Insensitivity of processor sharing networks

We give a necessary and sufficient for a processor sharing network to be insensitive:

Theorem 23 A processor sharing network with fixed arrival rates is insensitive if and
only if it is a Whittle network.

In other words, partial reversibility or reversibility of the adjoint process is a sufficient
and necessary condition of insensitivity.

Proof: Proving that the conditions of the theorem are sufficient for insensitivity can be
proved following the same approach as for a single PS queue, combined with the detailed
balance equations for the adjoint process.

The second part of the proof (necessary conditions) uses ideas from Bonald and
Proutiere [4]. We use an induction of the number of classes. If N = 1, note that the
process and the adjoint process coincide (once one has get rid of the loops, see Chapter 1)
and both are reversible. Suppose the result true for N − 1 classes. (Assume for simplicity
that there are no transitions for one node to itself.) Consider a network of N classes and
take the service requirements of node N to be:

• 0, with probability 1− α,

• 1/α, with probability α.

Remark that such a distribution has mean 1. The network with these service require-
ments at node N is equivalent to a new network with:

ν̃i = νi + (1− α)pNiνN , i = 1 . . . N − 1,

p̃ij = pij + (1− α)piNpNi, i, j = 1 . . . N − 1,

ν̃N = ανN ,

p̃iN = αpiN , i = 1 . . . N − 1,
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ϕ̃i(x) = ϕ(x), i = 1 . . . N − 1,

ϕ̃N (x) = αϕ(x).

Insensitivity implies that the network has the same invariant measure for all α > 0.
Letting α→ 0, we obtain:

ν̃i = νi + pNiνN , i = 1 . . . N − 1,

p̃ij = pij + piNpNi, i, j = 1 . . . N − 1,

ν̃N = 0,

p̃iN = 0, i = 1 . . . N − 1,

ϕ̃i(x) = ϕ(x), i = 1 . . . N − 1,

ϕ̃N (x) = 0.

Look at he limiting balance equations. They are the balance equations of a N − 1
dimensional process. Using the induction assumption, the associated adjoint process is
reversible. Now note that the transitions q̄ of the adjoint process associated with the N−1
first queues are equal to the transitions of the adjoint process associated with the original
N queues. Hence for all states such that xN = yN , we have that:

π(x)q̄(x, y) = π(y)q̄(y, x).

Since node N was chosen arbitrarily, the equality is verified for all states.
2
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Chapter 6

Appendix: queuing relations

6.1 Little’s law

Proposition 29 Let λ the arrival rate of customers to an ergodic queuing system in steady
state and X the process describing the number of customers or jobs in the system (X does
not need to be a MJP). Finally, let S the sojourn time of a customer. We have:

E[X] = λE[S].

Remark 24 Note that E[X]
E[S] should intuitively be the departure rate of the system, which

in steady state should be equal to the arrival rate.

Proof: Assume that the system empties infinitely often (otherwise both quantities con-
verge to infinity). Let T a time when the system gets empty (after having being busy) and
k(T0) the number of customers served between 0 and T . Let An and Dn the sequences of
arrival and departures times of customers (say of the n-th customers). We denote Cn the
reunion of both sequences. The empirical mean sojourn time of customers at time T is:

S̄k =
1

k

k∑
i=1

(Di −Ai) → E[S], k → ∞.

The empirical mean number of customers of a customer at time T is:

X̄T =
1

T

∫ T

0
X(s)ds =

1

T

2k−1∑
i=1

X(C+
i )(Ci+1 − Ci).

The relation (easily proved with a picture)

k∑
i=1

(Di −Ai) =

2k−1∑
i=1

X(C+
i )(Ci+1 − Ci),

and the ergodicity of the process S̄k =→ E[S], k → ∞, X̄T =→ E[X], T → ∞, allow to
conclude.
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6.2 PASTA

Consider a stationary ergodic queuing system where the inter-arrival times are independent
from the service times. Define px the stationary probability of having x jobs in the system.
Define now p0x the number of customers seen at the moment of arrivals.

Proposition 30 If the arrival processes are Poisson, then px = p0x.

Proof: We prove the Proposition for a single queue. The general case being more cum-
bersome but conecptually equivalent. Let A(t, t+ δ) the event of having an arrival in the
interval [t, t+ δ]

p0x = lim
t→∞

lim
δ→0

P (Xt = x|A(t, t+ δ)), (6.1)

= lim
t→∞

lim
δ→0

P (Xt = x,A(t, t+ δ))

P (A(t, t+ δ))
, (6.2)

= lim
t→∞

lim
δ→0

P (A(t, t+ δ)|Xt = x)P (Xt = x)

P (A(t, t+ δ))
(6.3)

The memory less of the exponential distribution implies that that A(t, t + δ) is inde-
pendent of Xt, which allows to conclude.

2
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