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The use of alternative measures to evaluate classifier performance is gaining attention, specially for

imbalanced problems. However, the use of these measures in the classifier design process is still

unsolved. In this work we propose a classifier designed specifically to optimize one of these alternative

measures, namely, the so-called F-measure. Nevertheless, the technique is general, and it can be used to

optimize other evaluation measures. An algorithm to train the novel classifier is proposed, and the

numerical scheme is tested with several databases, showing the optimality and robustness of the

presented classifier.

& 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Evaluation measures have a crucial role in classifier analysis
and design. Accuracy, Recall, Precision, F-measure, kappa, ACU
[10] and some other new proposed measures like Informedness
and Markedness [20] are examples of different evaluation
measures. Depending on the problem and the field of application
one measure could be more suitable than another. While in the
behavioral sciences, Specificity and Sensitivity are commonly
used, in the medical sciences, ROC analysis is a standard for
evaluation. On the other hand, in the Information Retrieval
community and fraud detection, Recall, Precision and F-measure
are considered appropriate measures for testing effectiveness.

In a learning design strategy, the best rule for the specific
application will be the one that get the optimal performance for
the chosen measure.

Looking for the best decision rule, in a Bayesian framework,
implies to minimize the overall risk taking into account the
different misclassification costs [7]; in an equal misclassification
cost problem we can find this optimal solution, with maximum
Accuracy, selecting the class that has the maximum a posteriori
probability.
ll rights reserved.
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However, finding a decision rule that looks for minimum error
rate or maximum Accuracy in an imbalanced domain gives
solutions strongly biased to favor the majority class, getting poor
performance.

This problem is particularly important in those applications
where the instances of a class (the majority one) heavily out-
number the instances of the other (the minority) class and it is
costly to misclassify samples from the minority class. For example
in information retrieval [15], nontechnical losses in power utili-
ties [6,17,18] or medical diagnosis [8].

Identifying these rare events is a challenging issue with great
impact regarding many problems in pattern recognition and data
mining. The main difficulty in finding discriminatory rules for these
applications is that we have to deal with small data sets, with
skewed data distributions and overlapping classes. A range of
classifiers that work successfully for other applications (decision
trees, neural networks, support vector machines (SVMs), etc.) get a
poor performance in this context [24]. For example, in a decision
tree the pruning criterion is usually the classification error, which
can remove branches related with the minority class. In back-
propagation neural networks, the expected gradient vector length
is proportional to the class size, and so the gradient vector is
dominated by the prevalent class and consequently the weights
are determined by this class. SVMs are thought to be more robust to
the class imbalance problem since they use only a few support
vectors to calculate region boundaries. However, in a two class
problem, the boundaries are determined by the prevalent class,
since the algorithm tries to find the largest margin and the
minimum error. A different approach is taken in one-class learning,
ptimal classifier design, Pattern Recognition (2013), http://dx.do
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for example one class SVM, where the model is created based on the
samples of only one of the classes. In [21] the optimality of one-class
SVMs over two-class SVM classifiers is demonstrated for some
important imbalanced problems.

Recently, great effort has been done to give better solutions to
class imbalance problems (see [24,11,12] and references therein).
In most of the approaches that deal with an imbalanced problem,
the idea is to adapt the classifiers that have good Accuracy in
balanced domains. A variety of ways of doing this have been
proposed: changing class distributions [4,5,13], incorporating
costs3 in decision making [2,1], and using alternative performance
metrics instead of Accuracy in the learning process with the
standard algorithms [10].

In this work we propose a different approach to this problem,
designing a classifier based on an optimal decision rule that
maximizes a chosen evaluation measure, in this case the
F-measure [27]. More specifically, if O is the feature space, we
are looking for the classifier u : O-R that maximizes the
F-measure. Here, given the feature vector x, the classifier (or
decision function) u assigns the class oþ if uðxÞ40, and class o�
if uðxÞo0. We address this problem by proposing an energy E½u�

such that its minimum is achieved for the optimal classifier u (in
the sense of the F-measure). We solve this optimization problem
using a gradient descent flow, inspired by the level-set method
[19]. Although the analysis is made for F-measure, it could be
extended to the other measures. In the particular case when the
chosen measure is the Accuracy the proposed algorithm is
equivalent to the Bayes approach.

We also show that, in contrast with common solutions, the
proposed algorithm does not need to change original distributions
or arbitrarily assign misclassification costs to find an appropriate
decision rule for severe imbalanced problems. Although there is
consensus about the need of using suitable evaluation measures
for classifier design, to the best of our knowledge no technique
has been proposed that optimizes these alternative measures over
all decision frontiers.

The rest of the paper is organized as follows. In Section 2 the
optimal classifier for the F-measure is proposed, and a numerical
scheme to obtain it is presented. Experimental results are shown
in Section 3, and we conclude in Section 4.
2. Proposed classifier formulation

In this paper we assume that there are two classes, one called here
the negative class that represents the majority class, usually asso-
ciated with the normal scenario, and the other called the positive class
that represents the minority class. We define C ¼ foþ ,o�g as the set
of possible classes, being TP (true positive) the number of xAoþ
correctly classified, TN (true negative) the number of xAo� correctly
classified, FP (false positive) and FN (false negative) the number of
xAo� and xAoþ misclassified respectively. Let us also Recall some
related well known definitions:

Accuracy : A¼ TPþTN

TPþTNþFPþFN
,

Recall : R¼ TP

TPþFN
,

Precision : P ¼ TP

TPþFP
,

F-measure : Fb ¼
ð1þb2

ÞRP
b2PþR

:

3 The misclassification cost can be set by experts or learned [24].
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Precision and Recall are two important measures to evaluate the
performance of a given classifier in an imbalance scenario. The Recall
indicates the true positive rate, while the Precision indicates the
positive predictive value. The F-measure combines them with a
parameter bA ½0,þ1Þ. With b¼ 1, Fb is the harmonic mean between
Recall and Precision, meanwhile with bb1 or b51, the Fb
approaches the Recall or the Precision respectively. A high value of
Fb ensures that both Recall and Precision are reasonably high, which
is a desirable property since it indicates reasonable values of both true
positive and false positive rates. The best b value for a specific
application depends on the adequate relation between Recall and
Precision for each particular problem [15].

The task of finding a classifier consists in defining the regions
Oþ and O� of O, such that if x belongs to Oþ =O�, it will be
classified as belonging to the positive/negative class. To train the
classifier to maximize a given performance measure, we must
therefore find the regions Oþ and O� that give maximal perfor-
mance measure for the available data set.

In order to find the classifier that maximizes a given perfor-
mance measure, we must be able to express the quantities FN, FP

and TP in terms of Oþ and O�. These can be calculated by
computing which points of the training data set belong to the
regions Oþ and O�. However, for the realization of the proposed
algorithm, we will estimate these quantities in terms of prob-
ability densities for the positive and negative classes. To this end,
we suppose that we have estimates for certain density functions,
f þ ðxÞ and f�ðxÞ, such that in terms of these functions, we have the
following approximations for the quantities FN, FP, TP and TN:

FN¼ P

Z
O�

f þ ðxÞ dx, ð1Þ

FP¼N

Z
Oþ

f�ðxÞ dx, ð2Þ

TP¼ P

Z
Oþ

f þ ðxÞ dx, ð3Þ

TN¼N

Z
O�

f�ðxÞ dx, ð4Þ

where P and N are the number of positive and negative instances
in the training database, and the distribution functions f þ ðxÞ and
f�ðxÞ satisfyZ
O

f 7 ðxÞ dx¼ 1: ð5Þ

If these functions are known, the task of finding the optimal
classifier consists in finding the regions Oþ and O� that maximize
the chosen measure. As was mentioned before, this choice
depends on the particular problem or application considered. In
this paper we have chosen F-measure as the evaluation measure,
and in the next subsection we present an algorithm to determine
the optimal boundaries for this measure. However, the frame-
work is general, and the generalization to other evaluation
measures that combine FN, FP, TN and TP is straightforward.

2.1. Optimal boundary determination for F-measure

It can be seen that maximizing F-measure is equivalent to
minimizing the quantity:

E¼ b2FNþFP

TP
: ð6Þ

The quantities FN, FP, and TP can be expressed in terms of the
functions f 7 ðxÞ, as was defined in the previous section. Therefore
the task of training a classifier that maximizes F-measure (and
minimizes E) can be approached as finding the regions Oþ and O�
ptimal classifier design, Pattern Recognition (2013), http://dx.do
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that minimize

E¼
k
R
O� f þ ðxÞ dxþ

R
Oþ f�ðxÞ dxR

Oþ f þ ðxÞ dx
, ð7Þ

where

k¼ b2 P

N
: ð8Þ

The extent to which the quantity E given by (7) is representa-
tive of the quantity E depends on the extent to which the densities
are available, given by the functions f 7 ðxÞ defined in the previous
section, represents the distribution of points in the training data.
We will not focus in this work on the task of finding appropriate
probability densities, and for the sake of this paper we suppose
that they are indeed available so that the quantity E is a good
approximation of the quantity E calculated directly from the
available data set.

To perform the minimization of the quantity E, we express the
problem in terms of an auxiliary function u(x), defined so that
uðxÞ40 if xAOþ and uðxÞo0 if xAO�. For instance, the signed
distance to the boundary between Oþ and O� is commonly used
in the implementation, since it has proven to give good results.
The boundary between the regions Oþ and O� is therefore given
by the surface which satisfies the equation uðxÞ ¼ 0. Definition (7)
may be thus expressed as a functional of u(x):

E½u� ¼
k
R

HEð�uðxÞÞf þ ðxÞ dxþ
R

HEðuðxÞÞf�ðxÞ dxR
HEðuðxÞÞf þ ðxÞ dx

, ð9Þ

where HEðyÞ is a smoothed Heaviside function and the domains of
integration are now all O. In these terms, the task of training the
classifier consists in finding a function um(x) which minimizes this
functional. To this end, we must find the function um(x) that
cancels the first variation of the functional E½u�, which can be
written in terms of the functional derivative of E½u�. Calculating
this functional derivative we have

E0½uðxÞ� ¼
1R

HEðuÞf þ ðxÞ dx
dEðuðxÞÞ½f�ðxÞ�ðkþE½u�Þf þ ðxÞ�, ð10Þ

where dEðyÞ is the derivative of HEðyÞ, that is, a smoothed
Dirac delta function. To solve the minimization problem, we must
now find the classifier function um(x) that satisfies

E0½umðxÞ� ¼ 0: ð11Þ

2.2. Implementation

The classical gradient descent flow method is used in order to
solve the Euler–Lagrange equation (11). Specifically, the following
PDE (partial differential equation) is solved with a certain
initialization u0:

@uðx,tÞ

@t
¼�E0½uðx,tÞ�,

uðx,0Þ ¼ u0ðxÞ:

8<
: ð12Þ

When the steady state of this PDE is reached, Eq. (11) is
satisfied (see [23] for more details). Since Eq. (11) is to be solved
numerically, in principle any sufficiently regular densities f(x) are
allowed, and therefore the proposed algorithm does not depend
on the particulars of the density estimation process.

The introduction of the auxiliary function u(x) is motivated by
the Level Set Method [19], and although it is not the same kind of
curve evolution, these approaches share some known implemen-
tation details that must be taken into account. For instance, in
order to guarantee stability, it is usual to reinitialize (after a
certain amount of iterations) the function u(x) in order to keep it
as a distance function. The only relevant information of u(x), in
Please cite this article as: M. Di Martino, et al., A new framework for o
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terms of the evaluation of the functional E½u�, is the partition
ðOþ ,O�Þ that u(x) defines. Therefore, it is possible to reinitialize
the function u(x) to the signed distance function to the zero-level
set, since this keeps the sign of u(x) unchanged, and therefore the
classifier and the energy E½u� remain unchanged. For the explicit
scheme and more details see [25].

Another usual practice is to add a regularization term Du to
the flow (12) (corresponding to a Tikhonov term in the functional
[26]). This latter is a minor detail that does not significantly affect
the resulting function u.

The resulting numerical scheme to solve (11) is then:

unþ1 ¼ un�DtG,

where

G¼ dEðunÞðf 2�b
2f 1Þ

Z
O

f 1HEðu
nÞ dx

�dEðunÞf 1

Z
O
½f 2HEðu

nÞþb2f 1HEð�unÞ� dxþlDu

and Dt is the time step. This iterative algorithm is repeated until
convergence (i.e. the difference between un and unþ1 is small).

At each time t, the zero level set of uðx,tÞ is the decision frontier
of the classifier. In Fig. 1, the evolution of this frontier is shown,
from the initial u0 to the final uðx,TÞ, for a certain database
(described in the next section). The densities of the positive and
negative classes are represented in green and red respectively.

Although we have no rigorous proof on the existence of a
solution to the equation provided, we have exhaustive empirical
evidence that if the zero level set of the initialization u0 includes
or intersects all the connected components of the support of
either one of the densities, then the gradient descent flow
converges to the global optimum.
3. Experimental results

3.1. Synthetic data

3.1.1. Data description

For the experimental validation, we used the four different
databases shown in Fig. 2. Database 1 has a negative class with a
Gaussian distribution while the positive samples have a ring

distribution (Fig. 2(a)). In this particular case there are 5000
samples of the negative class and the same amount of the positive
class. Database 2 has a multimodal distribution for both the
positive and negative samples. For this database there are
10,000 samples of the negative class and 1000 samples of the
positive class. The third database has a horseshoe distribution
with 10,000 samples of the majority class and 1000 samples of
the minority class. The last database has the same distributions as
database 1, but with 10,000 negative samples and 1000 positive
samples.

The selected databases do not play any particular role, the idea
was to consider different scenarios such as: imbalance (databases
2–4) and balance (database 1), and also evaluate a wide variety of
shapes for the class distributions. In these experimental compar-
isons, a classical kernel density estimation technique was used to
infer the densities of the positive and negative classes [28].

3.1.2. Numerical results

We compare the proposed algorithm, from now on called OFC
(acronym for optimal F-measure classification), with one class
SVM (with and without kernel), the C45 tree and the traditional
Naive Bayes classifier. The parameters for each algorithm
were chosen to maximize the F-measure (performing 10-fold
ptimal classifier design, Pattern Recognition (2013), http://dx.do
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Fig. 2. Databases. (a) Database 1. (b) Database 2. (c) Database 3. (d) Database 4.

Fig. 1. Evolution of the zero level set of u (decision frontier). (a) Initialization. (b) After 100 iterations. (c) After 600 iterations. (d) After 700 iterations. (d) After 800

iterations. (e) After 1200 iterations. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this article.)
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cross-validation). In the next subsection we will briefly explain
why we chose those algorithms and what considerations must be
taken into account before the performance comparison.

Table 1 shows in detail the results obtain for the database 4. Each
algorithm was run 10 times (and for each execution 10-fold cross-
validation was performed), using b¼ 1 and e¼ 10�5. As it can be
seen, the best F-measure was obtained for OFC (as expected) followed
by the one class SVM classifier.

It is worth mentioning the Naive Bayes performance. It is the
algorithm with the best Accuracy, which is expectable, but with the
poorest F-measure. This is the typical behavior of those classifiers
which are designed for minimizing the classification error in
problems where the classes are highly overlapped and unbalanced.
To illustrate this point we consider a one-dimensional problem with
Gaussian distributions for both the negative and positive classes, with
means 1 and 3 respectively, and the unitary variance. The number of
samples is 1000 for the positive class and 50,000 for the negative
class. The decision problem (i.e. the determination of the regions Oþ
and O�) in this toy example amounts to choosing a decision thresh-
old t which sets the frontier between the classes in the real line, so
that O� ¼ f�1,tg and Oþ ¼ ft,1g. So for the different values of t,
one would get different values of the Accuracy, Recall, Precision and
F-measure. Fig. 3 shows these dependencies as a function of this
decision threshold. We can see that the OFC solution is the one that
gives the best F-measure, with a good tradeoff between Recall and
Precision (consistent with the b¼ 1 chosen) and a loss of approxi-
mately 0.5% of Accuracy compared with the optimal Accuracy that
Please cite this article as: M. Di Martino, et al., A new framework for o
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could be obtained by the Naive Bayes solution ðt¼ 3:96Þ. Getting a
better Accuracy or Precision, but very bad Recall, could be a bad
solution when the positive class is the relevant one (cancer lesion,
fraud samples). We can also see from this figure that setting the
threshold away from the optimal F-measure point it is possible to get
a better value of Precision, sacrificing the value of the Recall, and
conversely. This is consistent with the result found for OSVMþker
shown in Table 1, which has slightly lower F-measure than OFC,
getting in this way a higher Recall yet lower Precision.

In Fig. 4 the mean Fb values obtained over 10 executions using
databases 1–4 are shown. The standard deviations were under 1%
in all cases. As was explained above, when the classes have
similar amounts of samples, or separable distributions (databases
1–2), the differences between the traditional algorithms (C45–NB)
and those designed for imbalance problems (OSVM–OFC) is not so
important, while in the other cases (databases 3–4) the difference
became more significant.

Finally Fig. 5 shows an additional experiment that illustrates
the robustness of the algorithm when varying b (which changes
the weight of the Recall and Precision in the Fb definition). For
this experiment, database 3 was used.

3.2. Experiment with skin segmentation data

To conclude this section, we present an additional experiment
with skin segmentation data [3] from the UCI Machine Learning
Repository. The skin data set was collected by randomly sampling
ptimal classifier design, Pattern Recognition (2013), http://dx.do
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Table 1
Performance values (%) over 10 executions of each algorithm using database 4

(b¼ 1).

Classifier Fb Acc Rec Pre

OFC 33.6770.14 71.9870.10 78.2570.44 21.4570.09

C45 18.6470.79 87.8970.17 15.2670.73 23.9870.99
OSVM 25.3070.50 62.1370.62 70.5872.41 15.4170.27

OSVMþker 31.9770.68 67.1771.63 84.7671.77 19.7170.60

N. Bayes 1.5470.42 90.6170.02 0.8170.23 16.3772.99

Fig. 3. Performance measures for several values of the decision threshold t, for the

unidimensional problem with b¼ 1. F-measure in blue (solid), Recall in green

(decreasing dashed), Precision in black (increasing dashed) and Accuracy in red

(dash–dot). (For interpretation of the references to color in this figure caption, the

reader is referred to the web version of this article.)

Fig. 4. Fb values for different classifiers using databases 1–4.

Fig. 5. Fb performance of the different classifiers, for several values of b.

Fig. 6. Algorithm comparison using skin segmentation data. F-measure for OFC (in

black) and one class SVM (in blue). (For interpretation of the references to color in

this figure caption, the reader is referred to the web version of this article.)
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R, G, B (red, green, blue) values from face images of various age
groups (young, middle, and old), race groups (White, Black, and
Asian), and genders obtained from FERET database and PAL
database. Total sample size is 245,057 samples; out of which
50,859 correspond to skin samples and 194,198 to nonskin
samples. The results are shown in Fig. 6, where OFC and OSVM
are compared for several values of b. One class SVM4 achieves the
4 As in the previous experiments OSVM parameters were set using cross-

validation selecting those parameters that gives the highest F-measure.

Please cite this article as: M. Di Martino, et al., A new framework for o
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highest Recall but with a poor Precision, therefore obtaining a low
F-measure, while our approach outperforms OSVM in terms of
F-measure as expected. Observe that for values bb1, maximizing
the F-measure is equivalent than maximizing the Recall, and
therefore both approaches (OSVM and OFC) are practically
equivalent. In addition, the time required for OFC was approxi-
mately 10 times lower than for OSVM.

3.3. Analysis and considerations

In the previous subsection the results for different databases were
provided, showing that the proposed algorithm is suitable for
imbalanced problems. Even though in this work we include the
results obtained for the algorithms C45, Naive Bayes and One Class
SVM (with and without kernel) for the sake of completeness, we
consider that the performance comparison should be done with One
Class SVM, since the other algorithms are not designed for imbal-
anced problems.

The results of Naive Bayes and C45 reinforce the well-known
behavior: traditional approaches have good performance in the most
common (balanced) problems, but they are not adequate for imbal-
anced problems.

On the other hand, several techniques are proposed in the
literature to improve the performance of this type of algorithms in
the unbalanced scenarios, such as SMOTE, ADABOOST, SMOOTEbost
among others (see [4,5,16,14,9–12] and references therein for more
details). However, all these methods are pre or post-processing
ptimal classifier design, Pattern Recognition (2013), http://dx.do
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techniques that use the base classifiers as black boxes, and the
main point of this section is to compare these base classifiers by
themselves.

In terms of the computational performance of the algorithm
proposed, through the examples studied it was found that the
algorithm (as implemented for the tests realized) runs very efficiently
in low dimensions, for instance running much faster than the OSVM
algorithm used to compare performances in the example using skin
segmentation data. However, it must be noted that the memory
storage of our implementation depends on the size of the grid used to
compute the decision function u(x). Nevertheless, efficient solutions
to this problem are available, for instance allowing to evaluate the
kernel density estimation at m evaluation points from n sample
points in OðnþmÞ [22].
4. Conclusions and future work

We have proposed a new framework for classification in
imbalanced problems, and classifier design in general. We pre-
sented the optimality conditions for the decision frontier to
maximize the F-measure, and a numerical scheme to solve the
problem.

The technique is general, in the sense that it can be used to
obtain optimal classifiers with respect to other evaluation
measures (in addition to the F-measure).

The analysis is supported by the experimental results, which show
the potential and practical use of the proposed scheme.

There are other important properties and experiments to
consider, making it interesting to further study the proposed
framework. For instance, the feasibility and convenience of using
kernels with the proposed classifier is subject of future research,
as well as the combination of the proposed framework with other
techniques used to improve traditional classifiers (such as SMO-
TEboost or ADABOOST).

The application of the optimal Fb classifier to other very important
problems, such as fraud detection [6] and polyp detection [8], is part
of future work as well.
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