
TCP Maintenance and Minor F. Gont
Extensions (tcpm) UK CPNI
Internet-Draft January 21, 2011
Intended status: BCP
Expires: July 25, 2011

 Security Assessment of the Transmission Control Protocol (TCP)
 draft-ietf-tcpm-tcp-security-02.txt

Abstract

 This document contains a security assessment of the specifications of
 the Transmission Control Protocol (TCP), and of a number of
 mechanisms and policies in use by popular TCP implementations.
 Additionally, it contains best current practices for hardening a TCP
 implementation.

Status of this Memo

 This Internet-Draft is submitted to IETF in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on July 25, 2011.

Copyright Notice

 Copyright (c) 2011 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as

Gont Expires July 25, 2011 [Page 1]

Internet-Draft TCP Security Assessment January 2011

 described in the Simplified BSD License.

Table of Contents

 1. Preface . 5
 1.1. Introduction . 5
 1.2. Scope of this document 6
 1.3. Organization of this document 8
 2. The Transmission Control Protocol 8
 3. TCP header fields . 9
 3.1. Source Port and Destination Port 10
 3.2. Sequence number . 12
 3.3. Acknowledgement Number 14
 3.4. Data Offset . 15
 3.5. Control bits . 15
 3.5.1. Reserved (four bits) 15
 3.5.2. CWR (Congestion Window Reduced) 16
 3.5.3. ECE (ECN-Echo) 16
 3.5.4. URG . 17
 3.5.5. ACK . 17
 3.5.6. PSH . 17
 3.5.7. RST . 19
 3.5.8. SYN . 19
 3.5.9. FIN . 20
 3.6. Window . 20
 3.7. Checksum . 22
 3.8. Urgent pointer . 23
 3.9. Options . 24
 3.10. Padding . 28
 3.11. Data . 28
 4. Common TCP Options . 29
 4.1. End of Option List (Kind = 0) 29
 4.2. No Operation (Kind = 1) 29
 4.3. Maximum Segment Size (Kind = 2) 29
 4.4. Selective Acknowledgement Option 32
 4.4.1. SACK-permitted Option (Kind = 4) 32
 4.4.2. SACK Option (Kind = 5) 33
 4.5. MD5 Option (Kind=19) 35
 4.6. Window scale option (Kind = 3) 36
 4.7. Timestamps option (Kind = 8) 37
 4.7.1. Generation of timestamps 37
 4.7.2. Vulnerabilities 38
 5. Connection-establishment mechanism 39
 5.1. SYN flood . 40
 5.2. Connection forgery 44
 5.3. Connection-flooding attack 45
 5.3.1. Vulnerability . 45

Gont Expires July 25, 2011 [Page 2]

Internet-Draft TCP Security Assessment January 2011

 5.3.2. Countermeasures 46
 5.4. Firewall-bypassing techniques 48
 6. Connection-termination mechanism 49
 6.1. FIN-WAIT-2 flooding attack 49
 6.1.1. Vulnerability . 49
 6.1.2. Countermeasures 50
 7. Buffer management . 52
 7.1. TCP retransmission buffer 52
 7.1.1. Vulnerability . 52
 7.1.2. Countermeasures 53
 7.2. TCP segment reassembly buffer 56
 7.3. Automatic buffer tuning mechanisms 59
 7.3.1. Automatic send-buffer tuning mechanisms 59
 7.3.2. Automatic receive-buffer tuning mechanism 61
 8. TCP segment reassembly algorithm 63
 8.1. Problems that arise from ambiguity in the reassembly
 process . 63
 9. TCP Congestion Control 64
 9.1. Congestion control with misbehaving receivers 66
 9.1.1. ACK division . 66
 9.1.2. DupACK forgery 66
 9.1.3. Optimistic ACKing 67
 9.2. Blind DupACK triggering attacks against TCP 68
 9.2.1. Blind throughput-reduction attack 70
 9.2.2. Blind flooding attack 70
 9.2.3. Difficulty in performing the attacks 71
 9.2.4. Modifications to TCP’s loss recovery algorithms . . . 72
 9.2.5. Countermeasures 74
 9.3. TCP Explicit Congestion Notification (ECN) 79
 9.3.1. Possible attacks by a compromised router 79
 9.3.2. Possible attacks by a malicious TCP endpoint 80
 10. TCP API . 81
 10.1. Passive opens and binding sockets 81
 10.2. Active opens and binding sockets 82
 11. Blind in-window attacks 84
 11.1. Blind TCP-based connection-reset attacks 84
 11.1.1. RST flag . 85
 11.1.2. SYN flag . 86
 11.1.3. Security/Compartment 88
 11.1.4. Precedence . 89
 11.1.5. Illegal options 90
 11.2. Blind data-injection attacks 90
 12. Information leaking . 91
 12.1. Remote Operating System detection via TCP/IP stack
 fingerprinting . 91
 12.1.1. FIN probe . 91
 12.1.2. Bogus flag test 92
 12.1.3. TCP ISN sampling 92

Gont Expires July 25, 2011 [Page 3]

Internet-Draft TCP Security Assessment January 2011

 12.1.4. TCP initial window 92
 12.1.5. RST sampling . 93
 12.1.6. TCP options . 94
 12.1.7. Retransmission Timeout (RTO) sampling 94
 12.2. System uptime detection 94
 13. Covert channels . 95
 14. TCP Port scanning . 95
 14.1. Traditional connect() scan 96
 14.2. SYN scan . 96
 14.3. FIN, NULL, and XMAS scans 96
 14.4. Maimon scan . 98
 14.5. Window scan . 98
 14.6. ACK scan . 99
 15. Processing of ICMP error messages by TCP 99
 16. TCP interaction with the Internet Protocol (IP) 99
 16.1. TCP-based traceroute 99
 16.2. Blind TCP data injection through fragmented IP traffic . 100
 16.3. Broadcast and multicast IP addresses 102
 17. Security Considerations 102
 18. Acknowledgements . 102
 19. References . 103
 20. References . 113
 20.1. Normative References 113
 20.2. Informative References 113
 Appendix A. TODO list . 113
 Appendix B. Change log (to be removed by the RFC Editor
 before publication of this document as an RFC) . . . 113
 B.1. Changes from draft-ietf-tcpm-tcp-security-01 113
 Author’s Address . 114

Gont Expires July 25, 2011 [Page 4]

Internet-Draft TCP Security Assessment January 2011

1. Preface

1.1. Introduction

 The TCP/IP protocol suite was conceived in an environment that was
 quite different from the hostile environment they currently operate
 in. However, the effectiveness of the protocols led to their early
 adoption in production environments, to the point that, to some
 extent, the current world’s economy depends on them.

 While many textbooks and articles have created the myth that the
 Internet protocols were designed for warfare environments, the top
 level goal for the DARPA Internet Program was the sharing of large
 service machines on the ARPANET [Clark, 1988]. As a result, many
 protocol specifications focus only on the operational aspects of the
 protocols they specify, and overlook their security implications.

 While the Internet technology evolved since it early inception, the
 Internet’s building blocks are basically the same core protocols
 adopted by the ARPANET more than two decades ago. During the last
 twenty years, many vulnerabilities have been identified in the TCP/IP
 stacks of a number of systems. Some of them were based on flaws in
 some protocol implementations, affecting only a reduced number of
 systems, while others were based in flaws in the protocols
 themselves, affecting virtually every existing implementation
 [Bellovin, 1989]. Even in the last couple of years, researchers were
 still working on security problems in the core protocols [NISCC,
 2004] [NISCC, 2005].

 The discovery of vulnerabilities in the TCP/IP protocol suite usually
 led to reports being published by a number of CSIRTs (Computer
 Security Incident Response Teams) and vendors, which helped to raise
 awareness about the threats and the best mitigations known at the
 time the reports were published. Unfortunately, this also led to the
 documentation of the discovered protocol vulnerabilities being spread
 among a large number of documents, which are sometimes difficult to
 identify.

 For some reason, much of the effort of the security community on the
 Internet protocols did not result in official documents (RFCs) being
 issued by the IETF (Internet Engineering Task Force). This basically
 led to a situation in which "known" security problems have not always
 been addressed by all vendors. In addition, in many cases vendors
 have implemented quick "fixes" to the identified vulnerabilities
 without a careful analysis of their effectiveness and their impact on
 interoperability [Silbersack, 2005].

 Producing a secure TCP/IP implementation nowadays is a very difficult

Gont Expires July 25, 2011 [Page 5]

Internet-Draft TCP Security Assessment January 2011

 task, in part because of the lack of a single document that serves as
 a security roadmap for the protocols. Implementers are faced with
 the hard task of identifying relevant documentation and
 differentiating between that which provides correct advice, and that
 which provides misleading advice based on inaccurate or wrong
 assumptions.

 There is a clear need for a companion document to the IETF
 specifications that discusses the security aspects and implications
 of the protocols, identifies the existing vulnerabilities, discusses
 the possible countermeasures, and analyzes their respective
 effectiveness.

 This document is the result of a security assessment of the IETF
 specifications of the Transmission Control Protocol (TCP), from a
 security point of view. Possible threats are identified and, where
 possible, countermeasures are proposed. Additionally, many
 implementation flaws that have led to security vulnerabilities have
 been referenced in the hope that future implementations will not
 incur the same problems.

 This document does not aim to be the final word on the security
 aspects of TCP. On the contrary, it aims to raise awareness about a
 number of TCP vulnerabilities that have been faced in the past, those
 that are currently being faced, and some of those that we may still
 have to deal with in the future.

 Feedback from the community is more than encouraged to help this
 document be as accurate as possible and to keep it updated as new
 vulnerabilities are discovered.

 This document is heavily based on the "Security Assessment of the
 Transmission Control Protocol (TCP)" released by the UK Centre for
 the Protection of National Infrastructure (CPNI), available at: http:
 //www.cpni.gov.uk/Products/technicalnotes/
 Feb-09-security-assessment-TCP.aspx .

1.2. Scope of this document

 While there are a number of protocols that may affect the way TCP
 operates, this document focuses only on the specifications of the
 Transmission Control Protocol (TCP) itself.

 The following IETF RFCs were selected for assessment as part of this
 work:

Gont Expires July 25, 2011 [Page 6]

Internet-Draft TCP Security Assessment January 2011

 o RFC 793, "Transmission Control Protocol. DARPA Internet Program.
 Protocol Specification" (91 pages)

 o RFC 1122, "Requirements for Internet Hosts -- Communication
 Layers" (116 pages)

 o RFC 1191, "Path MTU Discovery" (19 pages)

 o RFC 1323, "TCP Extensions for High Performance" (37 pages)

 o RFC 1948, "Defending Against Sequence Number Attacks" (6 pages)

 o RFC 1981, "Path MTU Discovery for IP version 6" (15 pages)

 o RFC 2018, "TCP Selective Acknowledgment Options" (12 pages)

 o RFC 2385, "Protection of BGP Sessions via the TCP MD5 Signature
 Option" (6 pages)

 o RFC 2581, "TCP Congestion Control" (14 pages)

 o RFC 2675, "IPv6 Jumbograms" (9 pages)

 o RFC 2883, "An Extension to the Selective Acknowledgement (SACK)
 Option for TCP" (17 pages)

 o RFC 2884, "Performance Evaluation of Explicit Congestion
 Notification (ECN) in IP Networks" (18 pages)

 o RFC 2988, "Computing TCP’s Retransmission Timer" (8 pages)

 o RFC 3168, "The Addition of Explicit Congestion Notification (ECN)
 to IP" (63 pages)

 o RFC 3465, "TCP Congestion Control with Appropriate Byte Counting
 (ABC)" (10 pages)

 o RFC 3517, "A Conservative Selective Acknowledgment (SACK)-based
 Loss Recovery Algorithm for TCP" (13 pages)

 o RFC 3540, "Robust Explicit Congestion Notification (ECN) Signaling
 with Nonces" (13 pages)

 o RFC 3782, "The NewReno Modification to TCP’s Fast Recovery
 Algorithm" (19 pages)

Gont Expires July 25, 2011 [Page 7]

Internet-Draft TCP Security Assessment January 2011

1.3. Organization of this document

 This document is basically organized in two parts. The first part
 contains a discussion of each of the TCP header fields, identifies
 their security implications, and discusses the possible
 countermeasures. The second part contains an analysis of the
 security implications of the mechanisms and policies implemented by
 TCP, and of a number of implementation strategies in use by a number
 of popular TCP implementations.

2. The Transmission Control Protocol

 The Transmission Control Protocol (TCP) is a connection-oriented
 transport protocol that provides a reliable byte-stream data transfer
 service.

 Very few assumptions are made about the reliability of underlying
 data transfer services below the TCP layer. Basically, TCP assumes
 it can obtain a simple, potentially unreliable datagram service from
 the lower level protocols. Figure 1 illustrates where TCP fits in
 the DARPA reference model.

 +---------------+
 | Application |
 +---------------+
 | TCP |
 +---------------+
 | IP |
 +---------------+
 | Network |
 +---------------+

 Figure 1: TCP in the DARPA reference model

 TCP provides facilities in the following areas:

 o Basic Data Transfer

 o Reliability

 o Flow Control

 o Multiplexing

 o Connections

Gont Expires July 25, 2011 [Page 8]

Internet-Draft TCP Security Assessment January 2011

 o Precedence and Security

 o Congestion Control

 The core TCP specification, RFC 793 [Postel, 1981c], dates back to
 1981 and standardizes the basic mechanisms and policies of TCP. RFC
 1122 [Braden, 1989] provides clarifications and errata for the
 original specification. RFC 2581 [Allman et al, 1999] specifies TCP
 congestion control and avoidance mechanisms, not present in the
 original specification. Other documents specify extensions and
 improvements for TCP.

 The large amount of documents that specify extensions, improvements,
 or modifications to existing TCP mechanisms has led the IETF to
 publish a roadmap for TCP, RFC 4614 [Duke et al, 2006], that
 clarifies the relevance of each of those documents.

3. TCP header fields

 RFC 793 [Postel, 1981c] defines the syntax of a TCP segment, along
 with the semantics of each of the header fields. Figure 2
 illustrates the syntax of a TCP segment.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Source Port | Destination Port |
 +-+
 | Sequence Number |
 +-+
 | Acknowledgment Number |
 +-+
 | Data | |C|E|U|A|P|R|S|F| |
 | Offset|Resrved|W|C|R|C|S|S|Y|I| Window |
 | | |R|E|G|K|H|T|N|N| |
 +-+
 | Checksum | Urgent Pointer |
 +-+
 | Options | Padding |
 +-+
 | data |
 +-+

 Note that one tick mark represents one bit position

 Figure 2: Transmission Control Protocol header format

Gont Expires July 25, 2011 [Page 9]

Internet-Draft TCP Security Assessment January 2011

 The minimum TCP header size is 20 bytes, and corresponds to a TCP
 segment with no options and no data. However, a TCP module might be
 handed an (illegitimate) "TCP segment" of less than 20 bytes.
 Therefore, before doing any processing of the TCP header fields, the
 following check should be performed by TCP on the segments handed by
 the internet layer:

 Segment.Size >= 20

 If a segment does not pass this check, it should be dropped.

 The following subsections contain further sanity checks that should
 be performed on TCP segments.

3.1. Source Port and Destination Port

 The Source Port field contains a 16-bit number that identifies the
 TCP end-point that originated this TCP segment. The TCP Destination
 Port contains a 16-bit number that identifies the destination TCP
 end-point of this segment. In most of the discussion we refer to
 client-side (or "ephemeral") port-numbers and server-side port
 numbers, since that distinction is what usually affects the
 interpretation of a port number.

 TCP SHOULD randomize its ephemeral (client-side) ports, to improve
 its resistance to off-path attacks. For the purpose of ephemeral
 port selection, the largest posible port range SHOULD be used
 (ideally 1024-65535) I-D.ietf-tsvwg-port-randomization.

 DISCUSSION:

 [I-D.ietf-tsvwg-port-randomization] provides advice on port
 randomization.

 TCP MUST NOT allocate port number 0, as its use could lead to
 interoperability problems. If a segment is received with port 0 as
 the Source Port or the Destination Port, a RST segment SHOULD be sent
 in response (provided that the incomming segment does not have the
 RST flag set).

 DISCUSSION:

 While port 0 is a legitimate port number, it has a special meaning
 in the UNIX Sockets API. For example, when a TCP port number of 0
 is passed as an argument to the bind() function, rather than
 binding port 0, an ephemeral port is selected for the
 corresponding TCP end-point. As a result, the TCP port number 0
 is never actually used in TCP segments.

Gont Expires July 25, 2011 [Page 10]

Internet-Draft TCP Security Assessment January 2011

 Different implementations have been found to respond differently
 to TCP segments that have a port number of 0 as the Source Port
 and/or the Destination Port. As a result, TCP segments with a
 port number of 0 are usually employed for remote OS detection via
 TCP/IP stack fingerprinting [Jones, 2003].

 Since in practice TCP port 0 is not used by any legitimate
 application and is only used for fingerprinting purposes, a number
 of host implementations already reject TCP segments that use 0 as
 the Source Port and/or the Destination Port. Also, a number
 firewalls filter (by default) any TCP segments that contain a port
 number of zero for the Source Port and/or the Destination Port.

 We therefore recommend that TCP implementations respond to
 incoming TCP segments that have a Source Port or a Destination
 Port of 0 with an RST (provided these incoming segments do not
 have the RST bit set).

 Responding with an RST segment to incoming segments that have the
 RST bit would open the door to RST-war attacks.

 TCP MUST be able to grecefully handle the case where the source end-
 point (IP Source Address, TCP Source Port) is the same as the
 destination end-point (IP Destination Address, TCP Destination Port).

 DISCUSSION:

 Some systems have been found to be unable to process TCP segments
 in which the source endpoint {Source Address, Source Port} is the
 same than the destination end-point {Destination Address,
 Destination Port}. Such TCP segments have been reported to cause
 malfunction of a number of implementations [CERT, 1996], and have
 been exploited in the past to perform Denial of Service (DoS)
 attacks [Meltman, 1997]. While these packets are very very
 unlikely to exist in real and legitimate scenarios, TCP should
 nevertheless be able to process them without the need of any
 "extra" code.

 A SYN segment in which the source end-point {Source Address,
 Source Port} is the same as the destination end-point {Destination
 Address, Destination Port} will result in a "simultaneous open"
 scenario, such as the one described in page 32 of RFC 793 [Postel,
 1981c]. Therefore, those TCP implementations that correctly
 handle simultaneous opens should already be prepared to handle
 these unusual TCP segments.

 TCP SHOULD NOT allocate of port numbers that are in use by a TCP that
 is in the LISTEN or CLOSED states for use as ephemeral ports, as this

Gont Expires July 25, 2011 [Page 11]

Internet-Draft TCP Security Assessment January 2011

 could allow attackers on the local system to "steal" incomming TCP
 connections.

 DISCUSSION:

 While the only requirement for a selected ephemeral port is that
 the resulting four-tuple (connection-id) is unique (i.e., not
 currently in use by any other TCP connection), in practice it may
 be necessary to not allow the allocation of port numbers that are
 in use by a TCP that is in the LISTEN or CLOSED states for use as
 ephemeral ports, as this might allow an attacker to "steal"
 incoming connections from a local server application. Therefore,
 TCP SHOULD NOT allocate port numbers that are in use by a TCP in
 the LISTEN or CLOSED states for use as ephemeral ports. Section
 10.2 of this document provides a detailed discussion of this
 issue.

 While some systems restrict use of the port numbers in the range
 0-1024 to privileged users, applications SHOULD NOT grant any trust
 based on the port numbers used for a TCP connection.

 DISCUSSION:

 Not all systems require superuser privileges to bind port numbers
 in that range. Besides, with desktop computers such "distinction"
 has generally become irrelevant.

 Middle-boxes such as packet filters MUST NOT assume that clients use
 port numbers from only the Dynamic or Registered port ranges.

 DISCUSSION:

 It should also be noted that some clients, such as DNS resolvers,
 are known to use port numbers from the "Well Known Ports" range.
 Therefore, middle-boxes such as packet filters MUST NOT assume
 that clients use port number from only the Dynamic or Registered
 port ranges.

3.2. Sequence number

 TCP SHOULD select its Initial Sequence Numbers (ISNs) with the
 following expression:

 ISN = M + F(localhost, localport, remotehost, remoteport, secret_key)

 where M is a monotonically increasing counter maintained within TCP,
 and F() is a Pseudo-Random Function (PRF). As it is vital that F()
 not be computable from the outside, F() could be a PRF of the

Gont Expires July 25, 2011 [Page 12]

Internet-Draft TCP Security Assessment January 2011

 connection-id and some secret data. HMAC-SHA-256 would be a good
 choice for F()

 DISCUSSION:

 The choice of the Initial Sequence Number of a connection is not
 arbitrary, but aims to minimize the chances of a stale segment
 from being accepted by a new incarnation of a previous connection.
 RFC 793 [Postel, 1981c] suggests the use of a global 32-bit ISN
 generator, whose lower bit is incremented roughly every 4
 microseconds.

 However, use of such an ISN generator makes it trivial to predict
 the ISN that a TCP will use for new connections, thus allowing a
 variety of attacks against TCP, such as those described in Section
 5.2 and Section 11 of this document. This vulnerability was first
 described in [Morris, 1985], and its exploitation was widely
 publicized about 10 years later [Shimomura, 1995].

 As a matter of fact, protection against old stale segments from a
 previous incarnation of the connection comes from allowing the
 creation of a new incarnation of a previous connection only after
 2*MSL have passed since a segment corresponding to the old
 incarnation was last seen. This is accomplished by the TIME-WAIT
 state, and TCP’s "quiet time" concept. However, as discussed in
 Section 3.1 and Section 11.1.2 of this document, the ISN can be
 used to perform some heuristics meant to avoid an interoperability
 problem that may arise when two systems establish connections at a
 high rate. In order for such heuristics to work, the ISNs
 generated by a TCP should be monotonically increasing.

 The ISN generation scheme recommended in this section was
 originally proposed in RFC 1948 [Bellovin, 1996], such that the
 chances of an attacker from guessing the ISN of a TCP are reduced,
 while still producing a monotonically-increasing sequence that
 allows implementation of the optimization described in Section 3.1
 and Section 11.1.2 of this document.

 [CERT, 2001] and [US-CERT, 2001] are advisories about the security
 implications of weak ISN generators. [Zalewski, 2001a] and
 [Zalewski, 2002] contain a detailed analysis of ISN generators,
 and a survey of the algorithms in use by popular TCP
 implementations.

 Another security consideration that should be made about TCP
 sequence numbers is that they might allow an attacker to count the
 number of systems behind a Network Address Translator (NAT)
 [Srisuresh and Egevang, 2001]. Depending on the ISN generators

Gont Expires July 25, 2011 [Page 13]

Internet-Draft TCP Security Assessment January 2011

 implemented by each of the systems behind the NAT, an attacker
 might be able to count the number of systems behind the NAT by
 establishing a number of TCP connections (using the public address
 of the NAT) and indentifying the number of different sequence
 number "spaces". This information leakage could be eliminated by
 rewriting the contents of all those header fields and options that
 make use of sequence numbers (such as the Sequence Number and the
 Acknowledgement Number fields, and the SACK Option) at the NAT.
 [Gont and Srisuresh, 2008] provides a detailed discussion of the
 security implications of NATs and of the possible mitigations for
 this and other issues.

3.3. Acknowledgement Number

 TCP SHOULD set the Acknowledgement Number to zero when sending a TCP
 segment that does not have the ACK bit set (i.e., a SYN segment).

 TCP MUST check that, on segments that have the ACK bit set, the
 Acknowledgment Number satisfies the expression:

 SND.UNA - SND.MAX.WND <= SEG.ACK <= SND.NXT

 If a TCP segment does not pass this check, the segment MUST be
 dropped, and an ACK segment SHOULD be sent in response.

 DISCUSSION:

 If the ACK bit is on, the Acknowledgement Number contains the
 value of the next sequence number the sender of this segment is
 expecting to receive. According to RFC 793, the Acknowledgement
 Number is considered valid as long as it does not acknowledge the
 receipt of data that has not yet been sent.

 However, as a result of recent concerns on forgery attacks against
 TCP (see Section 11 of this document), ongoing work at the IETF
 [Ramaiah et al, 2008] has proposed to enforce a more strict check
 on the Acknowledgement Number of segments that have the ACK bit
 set:

 SND.UNA - SND.MAX.WND <= SEG.ACK <= SND.NXT

 If the ACK bit is off, the Acknowledgement Number field is not
 valid. We recommend TCP implementations to set the
 Acknowledgement Number to zero when sending a TCP segment that
 does not have the ACK bit set (i.e., a SYN segment). Some TCP
 implementations have been known to fail to set the Acknowledgement
 Number to zero, thus leaking information.

Gont Expires July 25, 2011 [Page 14]

Internet-Draft TCP Security Assessment January 2011

 TCP Acknowledgements are also used to perform heuristics for loss
 recovery and congestion control. Section 9 of this document
 describes a number of ways in which these mechanisms can be
 exploited.

3.4. Data Offset

 TCP MUST enforce the following checks on the Data Offset field:

 Data Offset >= 5

 Data Offset * 4 <= TCP segment length

 If a TCP segment does not pass these checks, it should be silently
 dropped.

 The TCP segment length should be obtained from the IP layer, as
 TCP does not include a TCP segment length field.

 DISCUSSION:

 The Data Offset field indicates the length of the TCP header in
 32-bit words. As the minimum TCP header size is 20 bytes, the
 minimum legal value for this field is 5.

 For obvious reasons, the TCP header cannot be larger than the
 whole TCP segment it is part of.

3.5. Control bits

 The following subsections provide a discussion of the different
 control bits in the TCP header. TCP segments with unusual
 combinations of flags set have been known in the past to cause
 malfunction of some implementations, sometimes to the extent of
 causing them to crash [Postel, 1987] [Braden, 1992]. These packets
 are still usually employed for the purpose of TCP/IP stack
 fingerprinting. Section 12.1 contains a discussion of TCP/IP stack
 fingerprinting.

3.5.1. Reserved (four bits)

 TCP MUST ignore the Reserved field of incoming TCP segments.

 DISCUSSION:

Gont Expires July 25, 2011 [Page 15]

Internet-Draft TCP Security Assessment January 2011

 These four bits are reserved for future use, and must be zero. As
 with virtually every field, the Reserved field could be used as a
 covert channel. While there exist intermediate devices such as
 protocol scrubbers that clear these bits, and firewalls that drop/
 reject segments with any of these bits set, these devices should
 consider the impact of these policies on TCP interoperability.
 For example, as TCP continues to evolve, all or part of the bits
 in the Reserved field could be used to implement some new
 functionality. If some middle-box or end-system implementation
 were to drop a TCP segment merely because some of these bits are
 not set to zero, interoperability problems would arise.

3.5.2. CWR (Congestion Window Reduced)

 DISCUSSION:

 The CWR flag, defined in RFC 3168 [Ramakrishnan et al, 2001], is
 used as part of the Explicit Congestion Notification (ECN)
 mechanism. For connections in any of the synchronized states,
 this flag indicates, when set, that the TCP sending this segment
 has reduced its congestion window.

 An analysis of the security implications of ECN can be found in
 Section 9.3 of this document.

3.5.3. ECE (ECN-Echo)

 DISCUSSION:

 The ECE flag, defined in RFC 3168 [Ramakrishnan et al, 2001], is
 used as part of the Explicit Congestion Notification (ECN)
 mechanism.

 Once a TCP connection has been established, an ACK segment with
 the ECE bit set indicates that congestion was encountered in the
 network on the path from the sender to the receiver. This
 indication of congestion should be treated just as a congestion
 loss in non-ECN-capable TCP [Ramakrishnan et al, 2001].
 Additionally, TCP should not increase the congestion window (cwnd)
 in response to such an ACK segment that indicates congestion, and
 should also not react to congestion indications more than once
 every window of data (or once per round-trip time).

 An analysis of the security implications of ECN can be found in
 Section 9.3 of this document.

Gont Expires July 25, 2011 [Page 16]

Internet-Draft TCP Security Assessment January 2011

3.5.4. URG

 DISCUSSION:

 When the URG flag is set, the Urgent Pointer field contains the
 current value of the urgent pointer.

 Receipt of an "urgent" indication generates, in a number of
 implementations (such as those in UNIX-like systems), a software
 interrupt (signal) that is delivered to the corresponding process.

 In UNIX-like systems, receipt of an urgent indication causes a
 SIGURG signal to be delivered to the corresponding process.

 A number of applications handle TCP urgent indications by
 installing a signal handler for the corresponding signal (e.g.,
 SIGURG). As discussed in [Zalewski, 2001b], some signal handlers
 can be maliciously exploited by an attacker, for example to gain
 remote access to a system. While secure programming of signal
 handlers is out of the scope of this document, we nevertheless
 raise awareness that TCP urgent indications might be exploited to
 abuse poorly-written signal handlers.

 Section 3.9 discusses the security implications of the TCP urgent
 mechanism.

3.5.5. ACK

 DISCUSSION:

 When the ACK bit is one, the Acknowledgment Number field contains
 the next sequence number expected, cumulatively acknowledging the
 receipt of all data up to the sequence number in the
 Acknowledgement Number, minus one. Section 3.4 of this document
 describes sanity checks that should be performed on the
 Acknowledgement Number field.

 TCP Acknowledgements are also used to perform heuristics for loss
 recovery and congestion control. Section 9 of this document
 describes a number of ways in which these mechanisms can be
 exploited.

3.5.6. PSH

 As a result of a SEND call, TCP SHOULD send all queued data (provided
 that TCP’s flow control and congestion control algorithms allow it).

 Received data SHOULD be immediately delivered to an application

Gont Expires July 25, 2011 [Page 17]

Internet-Draft TCP Security Assessment January 2011

 calling the RECEIVE function, even if the data already available are
 less than those requested by the application.

 DISCUSSION:

 RFC 793 [Postel, 1981c] contains (in pages 54-64) a functional
 description of a TCP Application Programming Interface (API). One
 of the parameters of the SEND function is the PUSH flag which,
 when set, signals the local TCP that it must send all unsent data.
 The TCP PSH (PUSH) flag will be set in the last outgoing segment,
 to signal the push function to the receiving TCP. Upon receipt of
 a segment with the PSH flag set, the receiving user’s buffer is
 returned to the user, without waiting for additional data to
 arrive.

 There are two security considerations arising from the PUSH
 function. On the sending side, an attacker could cause a large
 amount of data to be queued for transmission without setting the
 PUSH flag in the SEND call. This would prevent the local TCP from
 sending the queued data, causing system memory to be tied to those
 data for an unnecessarily long period of time.

 An analogous consideration should be made for the receiving TCP.
 TCP is allowed to buffer incoming data until the receiving user’s
 buffer fills or a segment with the PSH bit set is received. If
 the receiving TCP implements this policy, an attacker could send a
 large amount of data, slightly less than the receiving user’s
 buffer size, to cause system memory to be tied to these data for
 an unnecessarily long period of time. Both of these issues are
 discussed in Section 4.2.2.2 of RFC 1122 [Braden, 1989].

 In order to mitigate these potential vulnerabilities, we suggest
 assuming an implicit "PUSH" in every SEND call. On the sending
 side, this means that as a result of a SEND call TCP should try to
 send all queued data (provided that TCP’s flow control and
 congestion control algorithms allow it). On the receiving side,
 this means that the received data will be immediately delivered to
 an application calling the RECEIVE function, even if the data
 already available are less than those requested by the
 application.

 It is interesting to note that popular TCP APIs (such as
 "sockets") do not provide a PUSH flag in any of the interfaces
 they define, but rather perform some kind of "heuristics" to set
 the PSH bit in outgoing segments. As a result, the value of the
 PSH bit in the received TCP segments is usually a policy of the
 sending TCP, rather than a policy of the sending application. All
 robust applications that make use of those APIs (such as the

Gont Expires July 25, 2011 [Page 18]

Internet-Draft TCP Security Assessment January 2011

 sockets API) properly handle the case of a RECEIVE call returning
 less data (e.g., zero) than requested, usually by performing
 subsequent RECEIVE calls.

 Another potential malicious use of the PSH bit would be for an
 attacker to send small TCP segments (probably with zero bytes of
 data payload) to cause the receiving application to be
 unnecessarily woken up (increasing the CPU load), or to cause
 malfunction of poorly-written applications that may not handle
 well the case of RECEIVE calls returning less data than requested.

3.5.7. RST

 TCP MUST process RST segments (i.e., segments with the RST bit set)
 as follows:

 o If the Sequence Number of the RST segment is not valid (i.e.,
 falls outside of the receive window), silently drop the segment.

 o If the Sequence Number of the RST segment matches the next
 expected sequence number (RCV.NXT), abort the corresponding
 connection.

 o If the Sequence Number is valid (i.e., falls within the receive
 window) but is not exactly RCV.NXT, send an ACK segment (a
 "challenge ACK") of the form: <SEQ=SND.NXT><ACK=RCV.NXT><CTL=ACK>.
 TCP SHOULD rate-limit these challenge ACK segments.

 DISCUSSION:

 The RST bit is used to request the abortion (abnormal close) of a
 TCP connection. RFC 793 [Postel, 1981c] suggests that an RST
 segment should be considered valid if its Sequence Number is valid
 (i.e., falls within the receive window). However, in response to
 the security concerns raised by [Watson, 2004] and [NISCC, 2004],
 [Ramaiah et al, 2008] proposec the aforementioned stricter
 validity checks.

 Section 11.1 of this document describes TCP-based connection-reset
 attacks, along with a number of countermeasures to mitigate their
 impact.

3.5.8. SYN

 DISCUSSION:

Gont Expires July 25, 2011 [Page 19]

Internet-Draft TCP Security Assessment January 2011

 The SYN bit is used during the connection-establishment phase, to
 request the synchronization of sequence numbers.

 There are basically four different vulnerabilities that make use
 of the SYN bit: SYN-flooding attacks, connection forgery attacks,
 connection flooding attacks, and connection-reset attacks. They
 are described in Section 5.1, Section 5.2, Section 5.3, and
 Section 11.1.2, respectively, along with the possible
 countermeasures.

3.5.9. FIN

 DISCUSSION:

 The FIN flag is used to signal the remote end-point the end of the
 data transfer in this direction. Receipt of a valid FIN segment
 (i.e., a TCP segment with the FIN flag set) causes the transition
 in the connection state, as part of what is usually referred to as
 the "connection termination phase".

 The connection-termination phase can be exploited to perform a
 number of resource-exhaustion attacks. Section 6 of this document
 describes a number of attacks that exploit the connection-
 termination phase along with the possible countermeasures.

3.6. Window

 DISCUSSION:

 The TCP Window field advertises how many bytes of data the remote
 peer is allowed to send before a new advertisement is made.
 Theoretically, the maximum transfer rate that can be achieved by
 TCP is limited to:

 Maximum Transfer Rate = Window / RTT

 This means that, under ideal network conditions (e.g., no packet
 loss), the TCP Window in use should be at least:

 Window = 2 * Bandwidth * Delay

 Using a larger Window than that resulting from the previous
 equation will not provide any improvements in terms of
 performance.

Gont Expires July 25, 2011 [Page 20]

Internet-Draft TCP Security Assessment January 2011

 In practice, selection of the most convenient Window size may also
 depend on a number of other parameters, such as: packet loss rate,
 loss recovery mechanisms in use, etc.

 Security implications of the maximum TCP window size

 An aspect of the TCP Window that is usually overlooked is the
 security implications of its size. Increasing the TCP window
 increases the sequence number space that will be considered
 "valid" for incoming segments. Thus, use of unnecessarily large
 TCP Window sizes increases TCP’s vulnerability to forgery attacks
 unnecessarily.

 In those scenarios in which the network conditions are known
 and/or can be easily predicted, it is recommended that the TCP
 Window is never set to a value larger than that resulting from the
 equations above. Additionally, the nature of the application
 running on top of TCP should be considered when tuning the TCP
 window. As an example, an H.245 signaling application certainly
 does not have high requirements on throughput, and thus a window
 size of around 4 KBytes will usually fulfill its needs, while
 keeping TCP’s resistance to off-path forgery attacks at a decent
 level. Some rough measurements seem to indicate that a TCP window
 of 4Kbytes is common practice for TCP connections servicing
 applications such as BGP.

 In principle, a possible approach to avoid requiring
 administrators to manually set the TCP window would be to
 implement an automatic buffer tuning mechanism, such as that
 described in [Heffner, 2002]. However, as discussed in Section
 7.3.2 of this document these mechanisms can be exploited to
 perform other types of attacks.

 Security implications arising from closed windows

 The TCP window is a flow-control mechanism that prevents a fast
 data sender application from overwhelming a "slow" receiver. When
 a TCP end-point is not willing to receive any more data (before
 some of the data that have already been received are consumed), it
 will advertise a TCP window of zero bytes. This will effectively
 stop the sender from sending any new data to the TCP receiver.
 Transmission of new data will resume when the TCP receiver
 advertises a nonzero TCP window, usually with a TCP segment that
 contains no data ("an ACK").

Gont Expires July 25, 2011 [Page 21]

Internet-Draft TCP Security Assessment January 2011

 This segment is usually referred to as a "window update", as the
 only purpose of this segment is to update the server regarding the
 new window.

 To accommodate those scenarios in which the ACK segment that
 "opens" the window is lost, TCP implements a "persist timer" that
 causes the TCP sender to query the TCP receiver periodically if
 the last segment received advertised a window of zero bytes. This
 probe simply consists of sending one byte of new data that will
 force the TCP receiver to send an ACK segment back to the TCP
 sender, containing the current TCP window. Similarly to the
 retransmission timeout timer, an exponential back-off is used when
 calculating the retransmission timer, so that the spacing between
 probes increases exponentially.

 A fundamental difference between the "persist timer" and the
 retransmission timer is that there is no limit on the amount of
 time during which a TCP can advertise a zero window. This means
 that a TCP end-point could potentially advertise a zero window
 forever, thus keeping kernel memory at the TCP sender tied to the
 TCP retransmission buffer. This could clearly be exploited as a
 vector for performing a Denial of Service (DoS) attack against
 TCP, such as that described in Section 7.1 of this document.

 Section 7.1 of this document describes a Denial of Service attack
 that aims at exhausting the kernel memory used for the TCP
 retransmission buffer, along with possible countermeasures.

3.7. Checksum

 Middleboxes that process TCP segments MUST validate the Checksum
 field, and silently discard the TCP segment if such validation fails.

 DISCUSSION:

 The Checksum field is an error detection mechanism meant for the
 contents of the TCP segment and a number of important fields of
 the IP header. It is computed over the full TCP header pre-pended
 with a pseudo header that includes the IP Source Address, the IP
 Destination Address, the Protocol number, and the TCP segment
 length. While in principle there should not be security
 implications arising from this field, due to non-RFC-compliant
 implementations, the Checksum can be exploited to detect
 firewalls, evade network intrusion detection systems (NIDS),
 and/or perform Denial of Service attacks.

Gont Expires July 25, 2011 [Page 22]

Internet-Draft TCP Security Assessment January 2011

 If a stateful firewall does not check the TCP Checksum in the
 segments it processes, an attacker can exploit this situation to
 perform a variety of attacks. For example, he could send a flood
 of TCP segments with invalid checksums, which would nevertheless
 create state information at the firewall. When each of these
 segments is received at its intended destination, the TCP checksum
 will be found to be incorrect, and the corresponding will be
 silently discarded. As these segments will not elicit a response
 (e.g., an RST segment) from the intended recipients, the
 corresponding connection state entries at the firewall will not be
 removed. Therefore, an attacker may end up tying all the state
 resources of the firewall to TCP connections that will never
 complete or be terminated, probably leading to a Denial of Service
 to legitimate users, or forcing the firewall to randomly drop
 connection state entries.

 If a NIDS does not check the Checksum of TCP segments, an attacker
 may send TCP segments with an invalid checksum to cause the NIDS
 to obtain a TCP data stream different from that obtained by the
 system being monitored. In order to "confuse" the NIDS, the
 attacker would send TCP segments with an invalid Checksum and a
 Sequence Number that would overlap the sequence number space being
 used for his malicious activity. FTester [Barisani, 2006] is a
 tool that can be used to assess NIDS on this issue.

 Finally, an attacker performing port-scanning could potentially
 exploit intermediate systems that do not check the TCP Checksum to
 detect whether a given TCP port is being filtered by an
 intermediate firewall, or the port is actually closed by the host
 being port-scanned. If a given TCP port appeared to be closed,
 the attacker would then send a SYN segment with an invalid
 Checksum. If this segment elicited a response (either an ICMP
 error message or a TCP RST segment) to this packet, then that
 response should come from a system that does not check the TCP
 checksum. Since normal host implementations of the TCP protocol
 do check the TCP checksum, such a response would most likely come
 from a firewall or some other middle-box.

 [Ed3f, 2002] describes the exploitation of the TCP checksum for
 performing the above activities. [US-CERT, 2005d] provides an
 example of a TCP implementation that failed to check the TCP
 checksum.

3.8. Urgent pointer

 Segment.Size - Data Offset * 4 > 0

 If a TCP segment with the URG bit set does not pass this check, it

Gont Expires July 25, 2011 [Page 23]

Internet-Draft TCP Security Assessment January 2011

 MUST be silently dropped.

 For TCP segments that have the URG bit set to zero, sending TCP TCP
 SHOULD set the Urgent Pointer to zero.

 A receiving TCP MUST ignore the Urgent Pointer field of TCP segments
 for which the URG bit is zero.

 DISCUSSION:

 Section 3.7 of RFC 793 [Postel, 1981c] states (in page 42) that to
 send an urgent indication the user must also send at least one
 byte of data.

 If the URG bit is zero, the Urgent Pointer is not valid, and thus
 should not be processed by the receiving TCP. Nevertheless, we
 recommend TCP implementations to set the Urgent Pointer to zero
 when sending a TCP segment that does not have the URG bit set, and
 to ignore the Urgent Pointer (as required by RFC 793) when the URG
 bit is zero.

 Some stacks have been known to fail to set the Urgent Pointer to
 zero when the URG bit is zero, thus leaking out the corresponding
 system memory contents. [Zalewski, 2008] provides further details
 about this issue.

 Some implementations have been found to be unable to process TCP
 urgent indications correctly. [Myst, 1997] originally described
 how TCP urgent indications could be exploited to perform a Denial
 of Service (DoS) attack against some TCP/IP implementations,
 usually leading to a system crash.

3.9. Options

 [IANA, 2007] contains the official list of the assigned option
 numbers. TCP Options have been specified in the past both within the
 IETF and by other groups. [Hnes, 2007] contains an un-official
 updated version of the IANA list of assigned option numbers. The
 following table contains a summary of the assigned TCP option
 numbers, which is based on [Hnes, 2007].

Gont Expires July 25, 2011 [Page 24]

Internet-Draft TCP Security Assessment January 2011

 +--------+----------------------+-----------------------------------+
 | Kind | Meaning | Summary |
 +--------+----------------------+-----------------------------------+
 | 0 | End of Option List | Discussed in Section 4.1 |
 +--------+----------------------+-----------------------------------+
 | 1 | No-Operation | Discussed in Section 4.2 |
 +--------+----------------------+-----------------------------------+
 | 2 | Maximum Segment Size | Discussed in Section 4.3 |
 +--------+----------------------+-----------------------------------+
 | 3 | WSOPT - Window Scale | Discussed in Section 4.6 |
 +--------+----------------------+-----------------------------------+
 | 4 | SACK Permitted | Discussed in Section 4.4.1 |
 +--------+----------------------+-----------------------------------+
 | 5 | SACK | Discussed in Section 4.4.2 |
 +--------+----------------------+-----------------------------------+
 | 6 | Echo (obsoleted by | Obsolete. Specified in RFC 1072 |
 | | option 8) | [Jacobson and Braden, 1988] |
 +--------+----------------------+-----------------------------------+
7	Echo Reply	Obsolete. Specified in RFC 1072
	(obsoleted by option	[Jacobson and Braden, 1988]
	8)	
+--------+----------------------+-----------------------------------+		
8	TSOPT - Time Stamp	Discussed in Section 4.7
	Option	
+--------+----------------------+-----------------------------------+		
9	Partial Order	Historic. Specified in RFC 1693
	Connection Permitted	[Connolly et al, 1994]
+--------+----------------------+-----------------------------------+		
10	Partial Order	Historic. Specified in RFC 1693
	Service Profile	[Connolly et al, 1994]
+--------+----------------------+-----------------------------------+		
11	CC	Historic. Specified in RFC 1644
		[Braden, 1994]
+--------+----------------------+-----------------------------------+		
12	CC.NEW	Historic. Specified in RFC 1644
		[Braden, 1994]
+--------+----------------------+-----------------------------------+		
13	CC.ECHO	Historic. Specified in RFC 1644
		[Braden, 1994]
+--------+----------------------+-----------------------------------+		
14	TCP Alternate	Historic. Specified in RFC 1146
	Checksum Request	[Zweig and Partridge, 1990]
+--------+----------------------+-----------------------------------+		
15	TCP Alternate	Historic. Specified in RFC 1145
	Checksum Data	[Zweig and Partridge, 1990]
+--------+----------------------+-----------------------------------+		
16	Skeeter	Historic
 +--------+----------------------+-----------------------------------+

Gont Expires July 25, 2011 [Page 25]

Internet-Draft TCP Security Assessment January 2011

 +--------+----------------------+-----------------------------------+
 | 17 | Bubba | Historic |
 +--------+----------------------+-----------------------------------+
 | 18 | Trailer Checksum | Historic |
 | | Option | |
 +--------+----------------------+-----------------------------------+
 | 19 | MD5 Signature Option | Discussed in Section 4.5 |
 +--------+----------------------+-----------------------------------+
 | 20 | SCPS Capabilities | Specified in [CCSDS, 2006] |
 +--------+----------------------+-----------------------------------+
 | 21 | Selective Negative | Specified in [CCSDS, 2006] |
 | | Acknowledgements | |
 +--------+----------------------+-----------------------------------+
 | 22 | Record Boundaries | Specified in [CCSDS, 2006] |
 +--------+----------------------+-----------------------------------+
 | 23 | Corruption | Specified in [CCSDS, 2006] |
 | | experienced | |
 +--------+----------------------+-----------------------------------+
 | 24 | SNAP | Historic |
 +--------+----------------------+-----------------------------------+
 | 25 | Unassigned (released | Unassigned |
 | | 2000-12-18) | |
 +--------+----------------------+-----------------------------------+
 | 26 | TCP Compression | Historic |
 | | Filter | |
 +--------+----------------------+-----------------------------------+
 | 27 | Quick-Start Response | Specified in RFC 4782 [Floyd et |
 | | | al, 2007] |
 +--------+----------------------+-----------------------------------+
 | 28-252 | Unassigned | Unassigned |
 +--------+----------------------+-----------------------------------+
 | 253 | RFC3692-style | Described by RFC 4727 [Fenner, |
 | | Experiment 1 | 2006] |
 +--------+----------------------+-----------------------------------+
 | 254 | RFC3692-style | Described by RFC 4727 [Fenner, |
 | | Experiment 2 | 2006] |
 +--------+----------------------+-----------------------------------+

 Table 1: TCP Options

 There are two cases for the format of a TCP option:

 o Case 1: A single byte of option-kind.

 o Case 2: An option-kind byte, followed by an option-length byte,
 and the actual option-data bytes.

 In options of the Case 2 above, the option-length byte counts the

Gont Expires July 25, 2011 [Page 26]

Internet-Draft TCP Security Assessment January 2011

 option-kind byte and the option-length byte, as well as the actual
 option-data bytes.

 All options except "End of Option List" (Kind = 0) and "No Operation"
 (Kind = 1), are of "Case 2".

 For options that belong to the "Case 2" described above, the
 following checks MUST be performed:

 option-length >= 2

 option-offset + option-length <= Data Offset * 4

 Where option-offset is the offset of the first byte of the option
 within the TCP header, with the first byte of the TCP header being
 assigned an offset of 0.

 If a TCP segment fails to pass any of these checks, it SHOULD be
 silently dropped.

 TCP MUST ignore unknown TCP options, provided they pass the
 validation checks specified above. In the same way, middle-boxes
 such as packet filters SHOULD NOT reject TCP segments containing
 "unknown" TCP options that pass the validation checks described
 earlier in this Section.

 DISCUSSION:

 The value "2" in the first equation accounts for the option-kind
 byte and the option-length byte, and assumes zero bytes of option-
 data. This check prevents, among other things, loops in option
 processing that may arise from incorrect option lengths.

 The second equation takes into account the limit on the legitimate
 option length imposed by the syntax of the TCP header, and is
 meant to detect forged option-length values that might make an
 option overlap with the TCP payload, or even go past the actual
 end of the TCP segment carrying the option.

 Middle-boxes such as packet filters should not reject TCP segments
 containing unknown options solely because these options have not been
 present in the SYN/SYN-ACK handshake.

 DISCUSSION:

Gont Expires July 25, 2011 [Page 27]

Internet-Draft TCP Security Assessment January 2011

 There is renewed interest in defining new TCP options for purposes
 like improved connection management and maintenance, advanced
 congestion control schemes, and security features. The evolution
 of the TCP/IP protocol suite would be severely impacted by
 obstacles to deploying such new protocol mechanisms.

 Middle-boxes such as packet filters SHOULD NOT reject TCP segments
 containing unknown options solely because these options have not been
 present in the SYN/SYN-ACK handshake.

 DISCUSSION:

 In the past, TCP enhancements based on TCP options regularly have
 specified the exchange of a specific "enabling" option during the
 initial SYN/SYN-ACK handshake. Due to the severely limited TCP
 option space which has already become a concern, it should be
 expected that future specifications might introduce new options
 not negotiated or enabled in this way. Therefore, middle-boxes
 such as packet filters should not reject TCP segments containing
 unknown options solely because these options have not been present
 in the SYN/SYN-ACK handshake.

 TCP MUST NOT "echo" in any way unknown TCP options received in
 inbound TCP segments.

 DISCUSSION:

 Some TCP implementations have been known to "echo" unknown TCP
 options received in incoming segments. Here we stress that TCP
 must not "echo" in any way unknown TCP options received in inbound
 TCP segments. This is at the foundation for the introduction of
 new TCP options, ensuring unambiguous behavior of systems not
 supporting a new specification.

 Section 4 discusses the security implications of common TCP options.

3.10. Padding

 The TCP header padding is used to ensure that the TCP header ends and
 data begins on a 32-bit boundary. The padding is composed of zeros.

3.11. Data

 The data field contains the upper-layer packet being transmitted by
 means of TCP. This payload is processed by the application process
 making use of the transport services of TCP. Therefore, the security
 implications of this field are out of the scope of this document.

Gont Expires July 25, 2011 [Page 28]

Internet-Draft TCP Security Assessment January 2011

4. Common TCP Options

4.1. End of Option List (Kind = 0)

 TCP implementations MUST be able to gracefully handle those TCP
 segments in which the End of Option List should have been present,
 but is missing.

 DISCUSSION:

 This option is used to indicate the "end of options" in those
 cases in which the end of options would not coincide with the end
 of the TCP header.

 TCP implementations are required to ignore those options they do
 not implement, and to be able to handle options with illegal
 lengths. Therefore, TCP implementations should be able to
 gracefully handle those TCP segments in which the End of Option
 List should have been present, but is missing.

 It is interesting to note that some TCP implementations do not use
 the "End of Option List" option for indicating the "end of
 options", but simply pad the TCP header with several "No
 Operation" (Kind = 1) options to meet the header length specified
 by the Data Offset header field.

4.2. No Operation (Kind = 1)

 The no-operation option is basically used to allow the sending system
 to align subsequent options in, for example, 32-bit boundaries.

 This option does not have any known security implications.

4.3. Maximum Segment Size (Kind = 2)

 The Maximum Segment Size (MSS) option is used to indicate to the
 remote TCP endpoint the maximum segment size this TCP is willing to
 receive.

 The following check MUST be performed on a TCP segment that carries a
 MSS option:

 SYN == 1

 If the segment does not pass this check, it MUST be silently dropped.

 DISCUSSION:

Gont Expires July 25, 2011 [Page 29]

Internet-Draft TCP Security Assessment January 2011

 As stated in Section 3.1 of RFC 793 [Postel, 1981c], this option
 can only be sent in the initial connection request (i.e., in
 segments with the SYN control bit set).

 TCP MUST check that the option length is 4. If the option does not
 pass this check, it MUST be dropped.

 The received MSS SHOULD be sanitized as follows:

 Sanitized_MSS = max(MSS, 536)

 This "sanitized" MSS value SHOULD be used to compute the "effective
 send MSS" by the expression included in Section 4.2.2.6 of RFC 1122
 [Braden, 1989], as follows:

 Eff.snd.MSS = min(Sanitized_MSS+20, MMS_S) - TCPhdrsize - IPoptionsize

 where:

 Sanitized_MSS:
 sanitized MSS value (the value received in the MSS option, with an
 enforced minimum value)

 MMS_S:
 maximum size for a transport-layer message that TCP may send

 TCPhdrsize:
 size of the TCP header, which typically was 20, but may be larger
 if TCP options are to be sent.

 IPoptionsize
 size of any IP options that TCP will pass to the IP layer with the
 current message.

 DISCUSSION:

 The advertised maximum segment size may be the result of the
 consideration of a number of factors. Firstly, if fragmentation
 is employed, the size of the IP reassembly buffer may impose a
 limit on the maximum TCP segment size that can be received.
 Considering that the minimum IP reassembly buffer size is 576
 bytes, if an MSS option is not present included in the connection-
 establishment phase, an MSS of 536 bytes should be assumed.
 Secondly, if Path-MTU Discovery (specified in RFC 1191 [Mogul and
 Deering, 1990] and RFC 1981 [McCann et al, 1996]) is expected to
 be used for the connection, an artificial maximum segment size may
 be enforced by a TCP to prevent the remote peer from sending TCP
 segments which would be too large to be transmitted without

Gont Expires July 25, 2011 [Page 30]

Internet-Draft TCP Security Assessment January 2011

 fragmentation. Finally, a system connected by a low-speed link
 may choose to introduce an artificial maximum segment size to
 enforce an upper limit on the network latency that would otherwise
 negatively affect its interactive applications [Stevens, 1994].

 The TCP specifications do not impose any requirements on the
 maximum segment size value that is included in the MSS option.
 However, there are a number of values that may cause undesirable
 results. Firstly, an MSS of 0 could possible "freeze" the TCP
 connection, as it would not allow data to be included in the
 payload of the TCP segments. Secondly, low values other than 0
 would degrade the performance of the TCP connection (wasting more
 bandwidth in protocol headers than in actual data), and could
 potentially exhaust processing cycles at the sending TCP and/or
 the receiving TCP by producing an increase in the interrupt rate
 caused by the transmitted (or received) packets.

 The problems that might arise from low MSS values were first
 described by [Reed, 2001]. However, the community did not reach
 consensus on how to deal with these issues at that point.

 RFC 791 [Postel, 1981a] requires IP implementations to be able to
 receive IP datagrams of at least 576 bytes. Assuming an IPv4
 header of 20 bytes, and a TCP header of 20 bytes, there should be
 room in each IP packet for 536 application data bytes.

 There are two cases to analyze when considering the possible
 interoperability impact of sanitizing the received MSS value: TCP
 connections relying on IP fragmentation and TCP connections
 implementing Path-MTU Discovery. In case the corresponding TCP
 connection relies on IP fragmentation, given that the minimum
 reassembly buffer size is required to be 576 bytes by RFC 791
 [Postel, 1981a], the adoption of 536 bytes as a lower limit is
 safe.

 In case the TCP connection relies on Path-MTU Discovery, imposing
 a lower limit on the adopted MSS may ignore the advice of the
 remote TCP on the maximum segment size that can possibly be
 transmitted without fragmentation. As a result, this could lead
 to the first TCP data segment to be larger than the Path-MTU.
 However, in such a scenario, the TCP segment should elicit an ICMP
 Unreachable "fragmentation needed and DF bit set" error message
 that would cause the "effective send MSS" (E_MSS) to be decreased
 appropriately. Thus, imposing a lower limit on the accepted MSS
 will not cause any interoperability problems.

Gont Expires July 25, 2011 [Page 31]

Internet-Draft TCP Security Assessment January 2011

 A possible scenario exists in which the proposed enforcement of a
 lower limit in the received MSS might lead to an interoperability
 problem. If a system was attached to the network by means of a
 link with an MTU of less than 576 bytes, and there was some
 intermediate system which either silently dropped (i.e., without
 sending an ICMP error message) those packets equal to or larger
 than that 576 bytes, or some intermediate system simply filtered
 ICMP "fragmentation needed and DF bit set" error messages, the
 proposed behavior would not lead to an interoperability problem,
 when communication could have otherwise succeeded. However, the
 interoperability problem would really be introduced by the network
 setup (e.g., the middle-box silently dropping packets), rather
 than by the mechanism proposed in this section. In any case, TCP
 should nevertheless implement a mechanism such as that specified
 by RFC 4821 [Mathis and Heffner, 2007] to deal with this type of
 "network black-holes".

4.4. Selective Acknowledgement Option

 The Selective Acknowledgement option provides an extension to allow
 the acknowledgement of individual segments, to enhance TCP’s loss
 recovery.

 Two options are involved in the SACK mechanism. The "Sack-permitted
 option" is sent during the connections-establishment phase, to
 advertise that SACK is supported. If both TCP peers agree to use
 selective acknowledgements, the actual selective acknowledgements are
 sent, if needed, by means of "SACK options".

4.4.1. SACK-permitted Option (Kind = 4)

 The SACK-permitted option is meant to advertise that the TCP sending
 this segment supports Selective Acknowledgements.

 The following check MUST be performed on a TCP segment that carries a
 MSS option:

 SYN == 1

 If a segment does not pass this check, it MUST be silently dropped.

 DISCUSSION:

 The SACK-permitted option can be sent only in SYN segments.

 TCP MUST check that the option length is 2. If the option does not
 pass this check it MUST be silently dropped.

Gont Expires July 25, 2011 [Page 32]

Internet-Draft TCP Security Assessment January 2011

4.4.2. SACK Option (Kind = 5)

 The SACK option is used to convey extended acknowledgment information
 from the receiver to the sender over an established TCP connection.
 The option consists of an option-kind byte (which must be 5), an
 option-length byte, and a variable number of SACK blocks.

 TCP MUST silently discard those TCP segments carrying a SACK option
 that does not pass the following check:

 option-offset + option-length <= Data Offset * 4

 TCP MUST silently discard those TCP segments carrying a SACK option
 that does not pass the following check:

 option-length >= 10

 DISCUSSION:

 A SACK Option with zero SACK blocks is nonsensical. The value
 "10" accounts for the option-kind byte, the option-length byte, a
 4-byte left-edge field, and a 4-byte right-edge field.

 TCP MUST silently discard those TCP segments carrying a SACK option
 that does not pass the following check:

 (option-length - 2) % 8 == 0

 DISCUSSION:

 As stated in Section 3 of RFC 2018 [Mathis et al, 1996], a SACK
 option that specifies n blocks will have a length of 8*n+2.

 TCP MUST silently discard those TCP segments carrying a SACK option
 that contains a SACK block that does not pass the following check:

 Left Edge of Block < Right Edge of Block

 As in all the other occurrences in this document, all comparisons
 between sequence numbers should be performed using sequence number
 arithmetic.

 DISCUSSION:

Gont Expires July 25, 2011 [Page 33]

Internet-Draft TCP Security Assessment January 2011

 Each block included in a SACK option represents a number of
 received data bytes that are contiguous and isolated; that is, the
 bytes just below the block, (Left Edge of Block - 1), and just
 above the block, (Right Edge of Block), have not yet been
 received.

 TCP MUST enforce a limit on the number of SACK blocks that a TCP will
 store in memory for each connection at any time.

 DISCUSSION:

 The TCP receiving a SACK option is expected to keep track of the
 selectively-acknowledged blocks. Even when space in the TCP
 header is limited (and thus each TCP segment can selectively-
 acknowledge at most four blocks of data), an attacker could try to
 perform a buffer overflow or a resource-exhaustion attack by
 sending a large number of SACK options.

 For example, an attacker could send a large number of SACK
 options, each of them acknowledging one byte of data.
 Additionally, for the purpose of wasting resources on the attacked
 system, each of these blocks would be separated from each other by
 one byte, to prevent the attacked system from coalescing two (or
 more) contiguous SACK blocks into a single SACK block. If the
 attacked system kept track of each SACKed block by storing both
 the Left Edge and the Right Edge of the block, then for each
 window of data, the attacker could waste up to 4 * Window bytes of
 memory at the attacked TCP.

 The value "4 * Window" results from the expression "(Window / 2) *
 8", in which the value "2" accounts for the 1-byte block
 selectively-acknowledged by each SACK block and 1 byte that would
 be used to separate each SACK blocks from each other, and the
 value "8" accounts for the 8 bytes needed to store the Left Edge
 and the Right Edge of each SACKed block.

 Therefore, it is clear that a limit should be imposed on the
 number of SACK blocks that a TCP will store in memory for each
 connection at any time. Measurements in [Dharmapurikar and
 Paxson, 2005] indicate that in the vast majority of cases
 connections have a single hole in the data stream at any given
 time. Thus, a limit of 16 SACK blocks for each connection would
 handle even most of the more unusual cases in which there is more
 than one simultaneous hole at a time.

Gont Expires July 25, 2011 [Page 34]

Internet-Draft TCP Security Assessment January 2011

4.5. MD5 Option (Kind=19)

 The TCP MD5 option provides a mechanism for authenticating TCP
 segments with a 18-byte digest produced by the MD5 algorithm. The
 option consists of an option-kind byte (which must be 19), an option-
 length byte (which must be 18), and a 16-byte MD5 digest.

 TCP MUST silently drop a TCP segment that carries a TCP MD5 option
 that does not pass the following checks:

 option-offset + option-length <= Data Offset * 4

 option-length == 18

 DISCUSSION:

 The TCP MD5 option is of "Case 2", and has a fixed length.

 DISCUSSION:

 A basic weakness on the TCP MD5 option is that the MD5 algorithm
 itself has been known (for a long time) to be vulnerable to
 collision search attacks.

 [Bellovin, 2006] argues that it has two other weaknesses, namely
 that it does not provide a key identifier, and that it has no
 provision for automated key management. However, it is generally
 accepted that while a Key-ID field can be a good approach for
 providing smooth key rollover, it is not actually a requirement.
 For instance, most systems implementing the TCP MD5 option include
 a "keychain" mechanism that fully supports smooth key rollover.
 Additionally, with some further work, ISAKMP/IKE could be used to
 configure the MD5 keys.

 It is interesting to note that while the TCP MD5 option, as
 specified by RFC 2385 [Heffernan, 1998], addresses the TCP-based
 forgery attacks against TCP discussed in Section 11, it does not
 address the ICMP-based connection-reset attacks discussed in
 Section 15. As a result, while a TCP connection may be protected
 from TCP-based forgery attacks by means of the MD5 option, an
 attacker might still be able to successfully perform the ICMP-
 based counter-part.

 The TCP MD5 option has been obsoleted by the TCP-AO.

Gont Expires July 25, 2011 [Page 35]

Internet-Draft TCP Security Assessment January 2011

4.6. Window scale option (Kind = 3)

 The window scale option provides a mechanism to expand the definition
 of the TCP window to 32 bits, such that the performance of TCP can be
 improved in some network scenarios. The Window scale option consists
 of an option-kind byte (which must be 3), followed by an option-
 length byte (which must be 3), and a shift count (shift.cnt) byte
 (the actual option-data).

 The option may be sent only in the initial SYN segment, but may also
 be sent in a SYN/ACK segment if the option was received in the
 initial SYN segment. If the option is received in any other segment,
 it MUST be silently dropped.

 TCP MUST silently discard TCP segments that contain a Window scale
 option whose option-length is not 3.

 DISCUSSION:

 This option has a fixed length.

 TCP MUST silently discard TCP segments that contain a Window scale
 option that does not pass the following check:

 shift.cnt <= 14

 DISCUSSION:

 As discussed in Section 2.3 of RFC 1323 [Jacobson et al, 1992], in
 order to prevent new data from being mistakenly considered as old
 and vice versa, the resulting window should be equal to or smaller
 than 2^32.

 DISCUSSION:

 [Welzl, 2008] describes major problems with the use of the Window
 scale option in the Internet due to faulty equipment.

 While there are not known security implications arising from the
 window scale mechanism itself, the size of the TCP window has a
 number of security implications. In general, larger window sizes
 increase the chances of an attacker from successfully performing
 forgery attacks against TCP, such as those described in Section 11
 of this document. Additionally, large windows can exacerbate the
 impact of resource exhaustion attacks such as those described in
 Section 7 of this document.

Gont Expires July 25, 2011 [Page 36]

Internet-Draft TCP Security Assessment January 2011

 Section 3.7 provides a general discussion of the security
 implications of the TCP window size. Section 7.3.2 discusses the
 security implications of Automatic receive-buffer tuning
 mechanisms.

4.7. Timestamps option (Kind = 8)

 The Timestamps option, specified in RFC 1323 [Jacobson et al, 1992],
 is used to perform two functions: Round-Trip Time Measurement (RTTM),
 and Protection Against Wrapped Sequence Numbers (PAWS).

 TCP MUST silently discard TCP segments that contain a Timestamps
 option that does not pass the following check:

 option-length == 10

 DISCUSSION:

 As specified by RFC 1323, the option-length must be 10.

4.7.1. Generation of timestamps

 TCP SHOULD generate timestamps with the following expression:

 timestamp = T() + F(localhost, localport, remotehost, remoteport, secret_key)

 where the result of T() is a global system clock that complies with
 the requirements of Section 4.2.2 of RFC 1323 [Jacobson et al, 1992],
 and F() is a function that should not be computable from the outside.
 Therefore, we suggest F() to be a cryptographic hash function of the
 connection-id and some secret data.

 DISCUSSION:

 For the purpose of PAWS, the timestamps sent on a connection are
 required to be monotonically increasing. While there is no
 requirement that timestamps are monotonically increasing across
 TCP connections, the generation of timestamps such that they are
 monotonically increasing across connections between the same two
 endpoints allows the use of timestamps for improving the handling
 of SYN segments that are received while the corresponding four-
 tuple is in the TIME-WAIT state. This is discussed in Section
 11.1.2 of this document.

 F() provides an offset that will be the same for all incarnations
 of a connection between the same two endpoints, while T() provides
 the monotonically increasing values that are needed for PAWS.

Gont Expires July 25, 2011 [Page 37]

Internet-Draft TCP Security Assessment January 2011

 Further discussion about this algorithm is available in
 [I-D.gont-timestamps-generation].

 TCP SHOULD NOT initialize a global timestamp counter to a fixed value
 when the system is bootstrapped.

 DISCUSSION:

 Some implementations are known to initialize their global
 timestamp clock to zero when the system is bootstrapped. This is
 undesirable, as the timestamp clock would disclose the system
 uptime.

 TCP SHOULD set the Timestamp Echo Reply (TSecr) field to zero when
 sending a TCP segment that does not have the ACK bit set (i.e., a SYN
 segment).

 DISCUSSION:

 Some TCP implementations have been found to fail to set the
 Timestamp Echo Reply field (TSecr) to zero in TCP segments that do
 not have the ACK bit set, thus potentially leaking information.

4.7.2. Vulnerabilities

 Blind In-Window Attacks

 Segments that contain a timestamp option smaller than the last
 timestamp option recorded by TCP are silently dropped. This allows
 for a subtle attack against TCP that would allow an attacker to cause
 one direction of data transfer of the attacked connection to freeze
 [US-CERT, 2005c]. An attacker could forge a TCP segment that
 contains a timestamp that is much larger than the last timestamp
 recorded for that direction of the data transfer of the connection.
 The offending segment would cause the recorded timestamp (TS.Recent)
 to be updated and, as a result, subsequent segments sent by the
 impersonated TCP peer would be simply dropped by the receiving TCP.
 This vulnerability has been documented in [US-CERT, 2005d]. However,
 it is worth noting that exploitation of this vulnerability requires
 an attacker to guess (or know) the four-tuple {IP Source Address, IP
 Destination Address, TCP Source Port, TCP Destination Port}, as well
 a valid Sequence Number and a valid Acknowledgement Number. If an
 attacker has such detailed knowledge about a TCP connection, unless
 TCP segments are protected by proper authentication mechanisms (such
 as IPsec [Kent and Seo, 2005]), he can perform a variety of attacks
 against the TCP connection, even more devastating than the one just
 described.

Gont Expires July 25, 2011 [Page 38]

Internet-Draft TCP Security Assessment January 2011

 Information leaking

 Some implementations are known to maintain a global timestamp clock,
 which is used for all connections. This is undesirable, as an
 attacker that can establish a connection with a host would learn the
 timestamp used for all the other connections maintained by that host,
 which could be useful for performing any attacks that require the
 attacker to forge TCP segments. A timestamps generator such as the
 one recommended in Section 4.7.1 of this document would prevent this
 information leakage, as it separates the "timestamps space" among the
 different TCP connections.

 Some implementations are known to initialize their global timestamp
 clock to zero when the system is bootstrapped. This is undesirable,
 as the timestamp clock would disclose the system uptime. A
 timestamps generator such as the one recommended in Section 4.7.1 of
 this document would prevent this information leakage, as the function
 F() introduces an "offset" that does not disclose the system uptime.

 As discussed in Section 3.2 of RFC 1323 [Jacobson et al, 1992], the
 Timestamp Echo Reply field (TSecr) is only valid if the ACK bit of
 the TCP header is set, and its value must be zero when it is not
 valid. However, some TCP implementations have been found to fail to
 set the Timestamp Echo Reply field (TSecr) to zero in TCP segments
 that do not have the ACK bit set, thus potentially leaking
 information. We stress that TCP implementations should comply with
 RFC 1323 by setting the Timestamp Echo Reply field (TSecr) to zero in
 those TCP segments that do not have the ACK bit set, thus eliminating
 this potential information leakage.

 Finally, it should be noted that the Timestamps option can be
 exploited to count the number of systems behind NATs (Network Address
 Translators) [Srisuresh and Egevang, 2001]. An attacker could count
 the number of systems behind a NAT by establishing a number of TCP
 connections (using the public address of the NAT) and indentifying
 the number of different timestamp sequences. This information
 leakage could be eliminated by rewriting the contents of the
 Timestamps option at the NAT. [Gont and Srisuresh, 2008] provides a
 detailed discussion of the security implications of NATs, and
 proposes mitigations for this and other issues.

5. Connection-establishment mechanism

 The following subsections describe a number of attacks that can be
 performed against TCP by exploiting its connection-establishment
 mechanism.

Gont Expires July 25, 2011 [Page 39]

Internet-Draft TCP Security Assessment January 2011

5.1. SYN flood

 TCP SHOULD implement (and enable by default) a syn-cache [Lemon,
 2002].

 TCP SHOULD implement syn-cookies, and SHOULD enable them only after a
 specified number of TCBs has been allocated for connections in the
 SYN-RECEIVED state.

 DISCUSSION:

 TCP uses a mechanism known as the "three-way handshake" for the
 establishment of a connection between two TCP peers. RFC 793
 [Postel, 1981c] states that when a TCP that is in the LISTEN state
 receives a SYN segment (i.e., a TCP segment with the SYN flag
 set), it must transition to the SYN-RECEIVED state, record the
 control information (e.g., the ISN) contained in the SYN segment
 in a Transmission Control Block (TCB), and respond with a SYN/ACK
 segment.

 A Transmission Control Block is the data structure used to store
 (usually within the kernel) all the information relevant to a TCP
 connection. The concept of "TCB" is introduced in the core TCP
 specification RFC 793 [Postel, 1981c].

 In practice, virtually all existing implementations do not modify
 the state of the TCP that was in the LISTEN state, but rather
 create a new TCP (i.e., a new "protocol machine"), and perform all
 the state transitions on this newly-created TCP. This allows the
 application running on top of TCP to service to more than one
 client at the same time. As a result, each connection request
 results in the allocation of system memory to store the TCB
 associated with the newly created TCB.

 If TCP was implemented strictly as described in RFC 793, the
 application running on top of TCP would have to finish servicing
 the current client before being able to service the next one in
 line, or should instead be able to perform some kind of connection
 hand-off.

 An attacker could exploit TCP’s connection-establishment mechanism
 to perform a Denial of Service (DoS) attack, by sending a large
 number of connection requests to the target system, with the
 intent of exhausting the system memory destined for storing TCBs
 (or related kernel data structures), thus preventing the attacked
 system from establishing new connections with legitimate users.
 This attack is widely known as "SYN flood", and has received a lot
 of attention during the late 90’s [CERT, 1996].

Gont Expires July 25, 2011 [Page 40]

Internet-Draft TCP Security Assessment January 2011

 Given that the attacker does not need to complete the three-way
 handshake for the attacked system to tie system resources to the
 newly created TCBs, he will typically forge the source IP address
 of the malicious SYN segments he sends, thus concealing his own IP
 address.

 If the forged IP addresses corresponded to some reachable system,
 the impersonated system would receive the SYN/ACK segment sent by
 the attacked host (in response to the forged SYN segment), which
 would elicit an RST segment. This RST segment would be delivered
 to the attacked system, causing the corresponding connection to be
 aborted, and the corresponding TCB to be removed.

 As the impersonated host would not have any state information for
 the TCP connection being referred to by the SYN/ACK segment, it
 would respond with a RST segment, as specified by the TCP segment
 processing rules of RFC 793 [Postel, 1981c].

 However, if the forged IP source addresses were unreachable, the
 attacked TCP would continue retransmitting the SYN/ACK segment
 corresponding to each connection request, until timing out and
 aborting the connection. For this reason, a number of widely
 available attack tools first check whether each of the (forged) IP
 addresses are reachable by sending an ICMP echo request to them.
 The receipt of an ICMP echo response is considered an indication
 of the IP address being reachable (and thus results in the
 corresponding IP address not being used for performing the
 attack), while the receipt of an ICMP unreachable error message is
 considered an indication of the IP address being unreachable (and
 thus results in the corresponding IP address being used for
 performing the attack).

 [Gont, 2008b] describes how the so-called ICMP soft errors could
 be used by TCP to abort connections in any of the non-synchronized
 states. While implementation of the mechanism described in that
 document would certainly not eliminate the vulnerability of TCP to
 SYN flood attacks (as the attacker could use addresses that are
 simply "black-holed"), it provides an example of how signaling
 information such as that provided by means of ICMP error messages
 can provide valuable information that a transport protocol could
 use to perform heuristics.

 In order to mitigate the impact of this attack, the amount of
 information stored for non-established connections should be
 reduced (ideally, non-synchronized connections should not require
 any state information to be maintained at the TCP performing the
 passive OPEN). There are basically two mitigation techniques for
 this vulnerability: a syn-cache and syn-cookies.

Gont Expires July 25, 2011 [Page 41]

Internet-Draft TCP Security Assessment January 2011

 [Borman, 1997] and RFC 4987 [Eddy, 2007] contain a general
 discussion of SYN-flooding attacks and common mitigation
 approaches.

 The syn-cache [Lemon, 2002] approach aims at reducing the amount
 of state information that is maintained for connections in the
 SYN-RECEIVED state, and allocates a full TCB only after the
 connection has transited to the ESTABLISHED state.

 The syn-cookie [Bernstein, 1996] approach aims at completely
 eliminating the need to maintain state information at the TCP
 performing the passive OPEN, by encoding the most elementary
 information required to complete the three-way handshake in the
 Sequence Number of the SYN/ACK segment that is sent in response to
 the received SYN segment. Thus, TCP is relieved from keeping
 state for connections in the SYN-RECEIVED state.

 The syn-cookie approach has a number of drawbacks:

 * Firstly, given the limited space in the Sequence Number field,
 it is not possible to encode all the information included in
 the initial segment, such as, for example, support of Selective
 Acknowledgements (SACK).

 * Secondly, in the event that the Acknowledgement segment sent in
 response to the SYN/ACK sent by the TCP that performed the
 passive OPEN (i.e., the TCP server) were lost, the connection
 would end up in the ESTABLISHED state on the client-side, but
 in the CLOSED state on the server side. This scenario is
 normally handled in TCP by having the TCP server retransmit its
 SYN/ACK. However, if syn-cookies are enabled, there would be
 no connection state information on the server side, and thus
 the SYN/ACK would never be retransmitted. This could lead to a
 scenario in which the connection could remain in the
 ESTABLISHED state on the client side, but in the CLOSED state
 at the server side, indefinitely. If the application protocol
 was such that it required the client to wait for some data from
 the server (e.g., a greeting message) before sending any data
 to the server, a deadlock would take place, with the client
 application waiting for such server data, and the server
 waiting for the TCP three-way handshake to complete.

 * Thirdly, unless the function used to encode information in the
 SYN/ACK packet is cryptographically strong, an attacker could
 forge TCP connections in the ESTABLISHED state by forging ACK
 segments that would be considered as "legitimate" by the
 receiving TCP.

Gont Expires July 25, 2011 [Page 42]

Internet-Draft TCP Security Assessment January 2011

 * Fourthly, in those scenarios in which establishment of new
 connections is blocked by simply dropping segments with the SYN
 bit set, use of SYN cookies could allow an attacker to bypass
 the firewall rules, as a connection could be established by
 forging an ACK segment with the correct values, without the
 need of setting the SYN bit.

 As a result, syn-cookies are usually not employed as a first line
 of defense against SYN-flood attacks, but are only as the last
 resort to cope with them. For example, some TCP implementations
 enable syn-cookies only after a certain number of TCBs has been
 allocated for connections in the SYN-RECEIVED state. We recommend
 this implementation technique, with a syn-cache enabled by
 default, and use of syn-cookies triggered, for example, when the
 limit of TCBs for non-synchronized connections with a given port
 number has been reached.

 It is interesting to note that a SYN-flood attack should only
 affect the establishment of new connections. A number of books
 and online documents seem to assume that TCP will not be able to
 respond to any TCP segment that is meant for a TCP port that is
 being SYN-flooded (e.g., respond with an RST segment upon receipt
 of a TCP segment that refers to a non-existent TCP connection).
 While SYN-flooding attacks have been successfully exploited in the
 past for achieving such a goal [Shimomura, 1995], as clarified by
 RFC 1948 [Bellovin, 1996] the effectiveness of SYN flood attacks
 to silence a TCP implementation arose as a result of a bug in the
 4.4BSD TCP implementation [Wright and Stevens, 1994], rather than
 from a theoretical property of SYN-flood attacks themselves.
 Therefore, those TCP implementations that do not suffer from such
 a bug should not be silenced as a result of a SYN-flood attack.

 [Zquete, 2002] describes a mechanism that could theoretically
 improve the functionality of SYN cookies. It exploits the TCP
 "simultaneous open" mechanism, as illustrated in Figure 5.

 See Figure 5, in page 46 of the UK CPNI document.

 Use of TCP simultaneous open for handling SYN floods

 In line 1, TCP A initiates the connection-establishment phase by
 sending a SYN segment to TCP B. In line 2, TCP B creates a SYN
 cookie as described by [Bernstein, 1996], but does not set the ACK
 bit of the segment it sends (thus really sending a SYN segment,
 rather than a SYN/ACK). This "fools" TCP A into thinking that
 both SYN segments "have crossed each other in the network" as if a
 "simultaneous open" scenario had taken place. As a result, in
 line 3 TCP A sends a SYN/ACK segment containing the same options

Gont Expires July 25, 2011 [Page 43]

Internet-Draft TCP Security Assessment January 2011

 that were contained in the original SYN segment. In line 4, upon
 receipt of this segment, TCP processes the cookie encoded in the
 ACK field as if it had been the result of a traditional SYN cookie
 scenario, and moves the connection into the ESTABLISHED state. In
 line 5, TCP B sends a SYN/ACK segment, which causes the connection
 at TCP A to move into the ESTABLISHED state. In line 6, TCP A
 sends a data segment on the connection.

 While this mechanism would work in theory, unfortunately there are
 a number of factors that prevent it from being usable in real
 network environments:

 * Some systems are not able to perform the "simultaneous open"
 operation specified in RFC 793, and thus the connection
 establishment will fail.

 * Some firewalls might prevent the establishment of TCP
 connections that rely on the "simultaneous open" mechanism
 (e.g., a given firewall might be allowing incoming SYN/ACK
 segments, but not outgoing SYN/ACK segments).

 Therefore, we do not recommend implementation of this mechanism
 for mitigating SYN-flood attacks.

5.2. Connection forgery

 The process of causing a TCP connection to be illegitimately
 established between two arbitrary remote peers is usually referred to
 as "connection spoofing" or "connection forgery". This can have a
 great negative impact when systems establish some sort of trust
 relationships based on the IP addresses used to establish a TCP
 connection [daemon9 et al, 1996].

 It should be stressed that hosts should not establish trust
 relationships based on the IP addresses [CPNI, 2008] or on the TCP
 ports in use for the TCP connection (see Section 3.1 and Section 3.2
 of this document).

 One of the underlying weaknesses that allow this vulnerability to be
 more easily exploited is the use of an inadequate Initial Sequence
 Number (ISN) generator, as explained back in the 80’s in [Morris,
 1985]. As discussed in Section 3.3.1 of this document, any TCP
 implementation that makes use of an inadequate ISN generator will be
 more vulnerable to this type of attack. A discussion of approaches
 for a more careful generation of Initial Sequence Numbers (ISNs) can
 be found in Section 3.3.1 of this document.

 Another attack vector for performing connection-forgery attacks is

Gont Expires July 25, 2011 [Page 44]

Internet-Draft TCP Security Assessment January 2011

 the use of IP source routing. By forging the Source Address of the
 IP packets that encapsulate the TCP segments of a connection, and
 carefully crafting an IP source route option (i.e., either LSSR or
 SSRR) that includes a system whose traffic he can monitor, an
 attacker could cause the packets sent by the attacked system (e.g.,
 the SYN/ACK segment sent in response to the attacker’s SYN segment)
 to be illegitimately directed to him [CPNI, 2008]. Thus, the
 attacker would not even need to guess valid sequence numbers for
 forging a TCP connection, as he would simply have direct access to
 all this information. As discussed in [CPNI, 2008], it is strongly
 recommended that systems disable IP Source Routing by default, or at
 the very least, they disable source routing for IP packets that
 encapsulate TCP segments.

 The IPv6 Routing Header Type 0, which provides a similar
 functionality to that provided by IPv4 source routing, has been
 officially deprecated by RFC 5095 [Abley et al, 2007].

5.3. Connection-flooding attack

5.3.1. Vulnerability

 The creation and maintenance of a TCP connection requires system
 memory to maintain shared state between the local and the remote TCP.
 As system memory is a finite resource, there is a limit on the number
 of TCP connections that a system can maintain at any time. When the
 TCP API is employed to create a TCP connection with a remote peer, it
 allocates system memory for maintaining shared state with the remote
 TCP peer, and thus the resulting connection would tie a similar
 amount of resources at the remote host as at the local host.
 However, if special packet-crafting tools are employed to forge TCP
 segments to establish TCP connections with a remote peer, the local
 kernel implementation of TCP can be bypassed, and the allocation of
 resources on the attacker’s system for maintaining shared state can
 be avoided. Thus, a malicious user could create a large number of
 TCP connections, and subsequently abandon them, thus tying system
 resources only at the remote peer. This allows an attacker to create
 a large number of TCP connections at the attacked system with the
 intent of exhausting its kernel memory, without exhausting the
 attacker’s own resources. [CERT, 2000] discusses this vulnerability,
 which is usually referred to as the "Naptha attack".

 This attack is similar in nature to the "Netkill" attack discussed in
 Section 7.1.1. However, while Netkill ties both TCBs and TCP send
 buffers to the abandoned connections, Naptha only ties TCBs (and
 related kernel structures), as it doesn’t issue any application
 requests.

Gont Expires July 25, 2011 [Page 45]

Internet-Draft TCP Security Assessment January 2011

 The symptom of this attack is an extremely large number of TCP
 connections in the ESTABLISHED state, which would tend to exhaust
 system resources and deny service to new clients (or possibly cause
 the system to crash).

 It should be noted that it is possible for an attacker to perform the
 same type of attack causing the abandoned connections to remain in
 states other than ESTABLISHED. This might be interesting for an
 attacker, as it is usually the case that connections in states other
 than ESTABLISHED usually have no controlling user-space process (that
 is, the former controlling process for the connection has already
 closed the corresponding file descriptor).

 A particularly interesting case of a connection-flooding attack that
 aims at abandoning connections in a state other than ESTABLISHED is
 discussed in Section 6.1 of this document.

5.3.2. Countermeasures

 As with many other resource exhaustion attacks, the problem in
 generating countermeasures for this attack is that it may be
 difficult to differentiate between an actual attack and a legitimate
 high-load scenario. However, there are a number of countermeasures
 which, when tuned for each particular network environment, could
 allow a system to resist this attack and continue servicing
 legitimate clients.

 Hosts SHOULD enforce limits on the number of TCP connections with no
 user-space controlling process.

 DISCUSSION:

 Connections in states other than ESTABLISHED usually have no user-
 space controlling process. This prevents the application making
 use of those connections from enforcing limits on the maximum
 number of ongoing connections (either on a global basis or a
 per-IP address basis). When resource exhaustion is imminent or
 some threshold of ongoing connections is reached, the operating
 system should consider freeing system resources by aborting
 connections that have no user-space controlling process. A number
 of such connections could be aborted on a random basis, or based
 on some heuristics performed by the operating system (e.g., first
 abort connections with peers that have the largest number of
 ongoing connections with no user-space controlling process).

 Hosts SHOULD enforce per-process and per-user limits on maximum
 kernel memory that can be used at any time.

Gont Expires July 25, 2011 [Page 46]

Internet-Draft TCP Security Assessment January 2011

 Hosts SHOULD enforce per-process and per-user limits on the number of
 existent TCP connections at any time.

 DISCUSSION:

 While the Naphta attack is usually targeted at a service such as
 HTTP, its impact is usually system-wide. This is particularly
 undesirable, as an attack against a single service might affect
 the system as a whole (for example, possibly precluding remote
 system administration).

 In order to avoid an attack to a single service from affecting
 other services, we advise TCP implementations to enforce per-
 process and per-user limits on maximum kernel memory that can be
 used at any time. Additionally, we recommend implementations to
 enforce per-process and per-user limits on the number of existent
 TCP connections at any time.

 Applications SHOULD enforce limits on the number of simultaneous
 connections that can be established from a single IP address or
 network prefix at any given time.

 DISCUSSION:

 An application could limit the number of simultaneous connections
 that can be established from a single IP address or network prefix
 at any given time. Once that limit has been reached, some other
 connection from the same IP address or network prefix would be
 aborted, thus allowing the application to service this new
 incoming connection.

 There are a number of factors that should be taken into account
 when defining the specific limit to enforce. For example, in the
 case of protocols that have an authentication phase (e.g., SSH,
 POP3, etc.), this limit could be applied to sessions that have not
 yet been authenticated. Additionally, depending on the nature and
 use of the application, it might or might not be normal for a
 single system to have multiple connections to the same server at
 the same time.

 For many network services, the limit of maximum simultaneous
 connections could be kept very low. For example, an SMTP server
 could limit the number of simultaneous connections from a single
 IP address to 10 or 20 connections.

 While this limit could work in many network scenarios, we
 recommend network operators to measure the maximum number of
 concurrent connections from a single IP address during normal

Gont Expires July 25, 2011 [Page 47]

Internet-Draft TCP Security Assessment January 2011

 operation, and set the limit accordingly.

 In the case of web servers, this limit will usually need to be set
 much higher, as it is common practice for web clients to establish
 multiple simultaneous connections with a single web server to
 speed up the process of loading a web page (e.g., multiple graphic
 files can be downloaded simultaneously using separate TCP
 connections).

 NATs (Network Address Translators) [Srisuresh and Egevang, 2001]
 are widely deployed in the Internet, and may exacerbate this
 situation, as a large number of clients behind a NAT might each
 establish multiple TCP connections with a given web server, which
 would all appear to be originate from the same IP address (that of
 the NAT box).

 Firewalls MAY enforce limits on the number of simultaneous
 connections that can be established from a single IP address or
 network prefix at any given time.

 DISCUSSION:

 Some firewalls can be configured to limit the number of
 simultaneous connections that any system can maintain with a
 specific system and/or service at any given time. Limiting the
 number of simultaneous connections that each system can establish
 with a specific system and service would effectively limit the
 possibility of an attacker that controls a single IP address to
 exhaust system resources at the attacker system/service.

5.4. Firewall-bypassing techniques

 TCP MUST silently drop those TCP segments that have both the SYN and
 the RST flags set.

 DISCUSSION:

 Some firewalls block incoming TCP connections by blocking only
 incoming SYN segments. However, there are inconsistencies in how
 different TCP implementations handle SYN segments that have
 additional flags set, which may allow an attacker to bypass
 firewall rules [US-CERT, 2003b].

 For example, some firewalls have been known to mistakenly allow
 incoming SYN segments if they also have the RST bit set. As some
 TCP implementations will create a new connection in response to a
 TCP segment with both the SYN and RST bits set, an attacker could
 bypass the firewall rules and establish a connection with a

Gont Expires July 25, 2011 [Page 48]

Internet-Draft TCP Security Assessment January 2011

 "protected" system by setting the RST bit in his SYN segments.

 Here we advise TCP implementations to silently drop those TCP
 segments that have both the SYN and the RST flags set.

6. Connection-termination mechanism

6.1. FIN-WAIT-2 flooding attack

6.1.1. Vulnerability

 TCP implements a connection-termination mechanism that is employed
 for the graceful termination of a TCP connection. This mechanism
 usually consists of the exchange of four-segments. Figure 6
 illustrates the usual segment exchange for this mechanism.

 Figure 6: TCP connection-termination mechanism

 See Figure 6, in page 50 of the UK CPNI document.

 TCP connection-termination mechanism

 A potential problem may arise as a result of the FIN-WAIT-2 state:
 there is no limit on the amount of time that a TCP can remain in the
 FIN-WAIT-2 state. Furthermore, no segment exchange is required to
 maintain the connection in that state.

 As a result, an attacker could establish a large number of
 connections with the target system, and cause it close each of them.
 For each connection, once the target system has sent its FIN segment,
 the attacker would acknowledge the receipt of this segment, but would
 send no further segments on that connection. As a result, an
 attacker could cause the corresponding system resources (e.g., the
 system memory used for storing the TCB) without the need to send any
 further packets.

 While the CLOSE command described in RFC 793 [Postel, 1981c] simply
 signals the remote TCP end-point that this TCP has finished sending
 data (i.e., it closes only one direction of the data transfer), the
 close() system-call available in most operating systems has different
 semantics: it marks the corresponding file descriptor as closed (and
 thus it is no longer usable), and assigns the operating system the
 responsibility to deliver any queued data to the remote TCP peer and
 to terminate the TCP connection. This makes the FIN-WAIT-2 state
 particularly attractive for performing memory exhaustion attacks, as
 even if the application running on top of TCP were imposing limits on
 the maximum number of ongoing connections, and/or time limits on the

Gont Expires July 25, 2011 [Page 49]

Internet-Draft TCP Security Assessment January 2011

 function calls performed on TCP connections, that application would
 be unable to enforce these limits on the FIN-WAIT-2 state.

6.1.2. Countermeasures

 A number of countermeasures can be implemented to mitigate FIN-WAIT-2
 flooding attacks. Some of these countermeasures require changes in
 the TCP implementations, while others require changes in the
 applications running on top of TCP.

 TCP SHOULD enforce limits on the duration of the FIN-WAIT-2 state.

 DISCUSSION:

 In order to avoid the risk of having connections stuck in the FIN-
 WAIT-2 state indefinitely, a number of systems incorporate a
 timeout for the FIN-WAIT-2 state. For example, the Linux kernel
 version 2.4 enforces a timeout of 60 seconds [Linux, 2008]. If
 the connection-termination mechanism does not complete before that
 timeout value, it is aborted.

 Enabling applications to enforce limits on ongoing connections

 As discussed in Section 6.1.1, the fact that the close() system call
 marks the corresponding file descriptor as closed prevents the
 application running on top of TCP from enforcing limits on the
 corresponding connection.

 While it is common practice for applications to terminate their
 connections by means of the close() system call, it is possible for
 an application to initiate the connection-termination phase without
 closing the corresponding file descriptor (hence keeping control of
 the connection).

 In order to achieve this, an application performing an active close
 (i.e., initiating the connection-termination phase) should replace
 the system-call close(sockfd) with the following code sequence:

 o A call to shutdown(sockfd, SHUT_WR), to close the sending
 direction of this connection

 o Successive calls to read(), until it returns 0, thus indicating
 that the remote TCP peer has finished sending data.

 o A call to setsockopt(sockfd, SOL_SOCKET, SO_LINGER, &l,
 sizeof(l)), where l is of type struct linger (with its members
 l.l_onoff=1 and l.l_linger=90).

Gont Expires July 25, 2011 [Page 50]

Internet-Draft TCP Security Assessment January 2011

 o A call to close(sockfd), to close the corresponding file
 descriptor.

 The call to shutdown() (instead of close()) allows the application to
 retain control of the underlying TCP connection while the connection
 transitions through the FIN-WAIT-1 and FIN-WAIT-2 states. However,
 the application will not retain control of the connection while it
 transitions through the CLOSING and TIME-WAIT states.

 It should be noted that, strictly speaking, close(sockfd) decrements
 the reference count for the descriptor sockfd, and initiates the
 connection termination phase only when the reference count reaches 0.
 On the other hand, shutdown(sockfd, SHUT_WR) initiates the
 connection-termination phase, regardless of the reference count for
 the sockfd descriptor. This should be taken into account when
 performing the code replacement described above. For example, it
 would be a bug for two processes (e.g., parent and child) that share
 a descriptor to both call shutdown(sockfd, SHUT_WR).

 An application performing a passive close should replace the call to
 close(sockfd) with the following code sequence:

 o A call to setsockopt(sockfd, SOL_SOCKET, SO_LINGER, &l,
 sizeof(l)), where l is of type struct linger (with its members
 l.l_onoff=1 and l.l_linger=90).

 o A call to close(sockfd), to close the corresponding file
 descriptor.

 It is assumed that if the application is performing a passive close,
 the application already detected that the remote TCP peer finished
 sending data by means as a result of a call to read() returning 0.

 In this scenario, the application will not retain control of the
 underlying connection when it transitions through the LAST_ACK state.

 Enforcing limits on the number of connections with no user-space
 controlling process

 The considerations and recommendations in Section 5.3.2 for enforcing
 limits on the number of connections with no user-space controlling
 process are applicable to mitigate this vulnerability.

 Limiting the number of simultaneous connections at the application

 The considerations and recommendations in Section 5.3.2 for limiting
 the number of simultaneous connections at the application are to
 mitigate this vulnerability. We note, however, that unless

Gont Expires July 25, 2011 [Page 51]

Internet-Draft TCP Security Assessment January 2011

 applications are implemented to retain control of the underlying TCP
 connection while the connection transitions through the FIN-WAIT-1
 and FIN-WAIT-2 states, enforcing such limits may prove to be a
 difficult task.

 Limiting the number of simultaneous connections at firewalls

 The considerations and recommendations in Section 5.3.2 for enforcing
 limiting the number of simultaneous connections at firewalls are
 applicable to mitigate this vulnerability.

7. Buffer management

7.1. TCP retransmission buffer

7.1.1. Vulnerability

 [Shalunov, 2000] describes a resource exhaustion attack (Netkill)
 that can be performed against TCP. The attack aims at exhausting
 system memory by creating a large number of TCP connections which are
 then abandoned. The attack is usually performed as follows:

 o The attacker creates a TCP connection to a service in which a
 small client request can result in a large server response (e.g.,
 HTTP). Rather than relying on his kernel implementation of TCP,
 the attacker creates his TCP connections by means of a specialized
 packet-crafting tool. This allows the attacker to create the TCP
 connections and later abandon them, exhausting the resources at
 the attacked system, while not tying his own system resources to
 the abandoned connections.

 o When the connection is established (i.e., the three-way handshake
 has completed), an application request is sent, and the TCP
 connection is subsequently abandoned. At this point, any state
 information kept by the attack tool is removed.

 o The attacked server allocates TCP send buffers for transmitting
 the response to the client’s request. This causes the victim TCP
 to tie resources not only for the Transmission Control Block
 (TCB), but also for the application data that needs to be
 transferred.

 o Once the application response is queued for transmission, the
 application closes the TCP connection, and thus TCP takes the
 responsibility to deliver the queued data. Having the application
 close the connection has the benefit for the attacker that the
 application is not able to keep track of the number of TCP

Gont Expires July 25, 2011 [Page 52]

Internet-Draft TCP Security Assessment January 2011

 connections in use, and thus it is not able to enforce limits on
 the number of connections.

 o The attacker repeats the above steps a large number of times, thus
 causing a large amount of system memory at the victim host to be
 tied to the abandoned connections. When the system memory is
 exhausted, the victim host denies service to new connections, or
 possibly crashes.

 There are a number of factors that affect the effectiveness of this
 attack that are worth considering. Firstly, while the attack is
 typically targeted at a service such as HTTP, the consequences of the
 attack are usually system-wide. Secondly, depending on the size of
 the server’s response, the underlying TCP connection may or may not
 be closed: if the response is larger than the TCP send buffer size at
 the server, the application will usually block in a call to write()
 or send(), and would therefore not close the TCP connection, thus
 allowing the application to enforce limits on the number of ongoing
 connections. Consequently, the attacker will usually try to elicit a
 response that is equal to or slightly smaller than the send buffer of
 the attacked TCP. Thirdly, while [Shalunov, 2000] notes that one
 visible effect of this attack is a large number of connections in the
 FIN-WAIT-1 state, this will not usually be the case. Given that the
 attacker never acknowledges any segment other than the SYN/ACK
 segment that is part of the three-way handshake, at the point in
 which the attacked TCP tries to send the application’s response the
 congestion window (cwnd) will usually be 4*SMSS (four maximum-sized
 segments). If the application’s response were larger than 4*SMSS,
 even if the application had closed the connection, the FIN segment
 would never be sent, and thus the connection would still remain in
 the ESTABLISHED state (rather than transit to the FIN-WAIT-1 state).

7.1.2. Countermeasures

 The resource exhaustion attack described in Section 7.1.1 does not
 necessarily differ from a legitimate high-load scenario, and
 therefore is hard to mitigate without negatively affecting the
 robustness of TCP. However, complementary mitigations can still be
 implemented to limit the impact of these attacks.

 Enforcing limits on the number of connections with no user-space
 controlling process

 The considerations and recommendations in Section 5.3.2 for enforcing
 limits on the number of connections with no user-space controlling
 process are applicable to mitigate this vulnerability.

 Enforcing per-user and per-process limits

Gont Expires July 25, 2011 [Page 53]

Internet-Draft TCP Security Assessment January 2011

 While the Netkill attack is usually targeted at a service such as
 HTTP, its impact is usually system-wide. This is particularly
 undesirable, as an attack against a single service might affect the
 system as a whole (for example possibly precluding remote system
 administration).

 In order to avoid an attack against a single service from affecting
 other services, we advise TCP implementations to enforce per-process
 and per-user limits on maximum kernel memory that can be used at any
 time. Additionally, we recommend implementations to enforce per-
 process and per-user limits on the number of existent TCP connections
 at any time.

 Limiting the number of ongoing connections at the application

 The considerations and recommendations in Section 5.3.2 for enforcing
 limits on the number of ongoing connections at the application are
 applicable to mitigate this vulnerability.

 Enabling applications to enforce limits on ongoing connections

 As discussed in Section 6.1.1, the fact that the close() system call
 marks the corresponding file descriptor as closed prevents the
 application running on top of TCP from enforcing limits on the
 corresponding connection.

 While it is common practice for applications to terminate their
 connections by means of the close() system call, it is possible for
 an application to initiate the connection-termination phase without
 closing the corresponding file descriptor (hence keeping control of
 the connection).

 In order to achieve this, an application performing an active close
 (i.e., initiating the connection-termination phase) should replace
 the call to close(sockfd) with the following code sequence:

 o A call to shutdown(sockfd, SHUT_WR), to close the sending
 direction of this connection

 o Successive calls to read(), until it returns 0, thus indicating
 that the remote TCP peer has finished sending data.

 o A call to setsockopt(sockfd, SOL_SOCKET, SO_LINGER, &l,
 sizeof(l)), where l is of type struct linger (with its members
 l.l_onoff=1 and l.l_linger=90).

 o A call to close(sockfd), to close the corresponding file
 descriptor.

Gont Expires July 25, 2011 [Page 54]

Internet-Draft TCP Security Assessment January 2011

 The call to shutdown() (instead of close()) allows the application to
 retain control of the underlying TCP connection while the connection
 transitions through the FIN-WAIT-1 and FIN-WAIT-2 states. However,
 the application will not retain control of the connection while it
 transitions through the CLOSING and TIME-WAIT states. Nevertheless,
 in these states TCP should not have any pending data to send to the
 remote TCP peer or to be received by the application running on top
 of it, and thus these states are less of a concern for this
 particular vulnerability (Netkill).

 It should be noted that, strictly speaking, close(sockfd) decrements
 the reference count for the descriptor sockfd, and initiates the
 connection termination phase only when the reference count reaches 0.
 On the other hand, shutdown(sockfd, SHUT_WR) initiates the
 connection-termination phase, regardless of the reference count for
 the sockfd descriptor. This should be taken into account when
 performing the code replacement described above. For example, it
 would be a bug for two processes (e.g., parent and child) that share
 a descriptor to both call shutdown(sockfd, SHUT_WR).

 An application performing a passive close should replace the call to
 close(sockfd) with the following code sequence:

 o A call to setsockopt(sockfd, SOL_SOCKET, SO_LINGER, &l,
 sizeof(l)), where l is of type struct linger (with its members
 l.l_onoff=1 and l.l_linger=90).

 o A call to close(sockfd), to close the corresponding file
 descriptor.

 It is assumed that if the application is performing a passive close,
 the application already detected that the remote TCP peer finished
 sending data by means as a result of a call to read() returning 0.

 In this scenario, the application will not retain control of the
 underlying connection when it transitions through the LAST_ACK state.
 However, in this state TCP should not have any pending data to send
 to the remote TCP peer or to be received by the application running
 on top of TCP, and thus this state is less of a concern for this
 particular vulnerability (Netkill).

 Limiting the number of simultaneous connections at firewalls

 The considerations and recommendations in Section 5.3.2 for enforcing
 limiting the number of simultaneous connections at firewalls are
 applicable to mitigate this vulnerability.

 Performing heuristics on ongoing TCP connections

Gont Expires July 25, 2011 [Page 55]

Internet-Draft TCP Security Assessment January 2011

 Some heuristics could be performed on TCP connections that may
 possibly help if scarce system requirements such as memory become
 exhausted. A number of parameters may be useful to perform such
 heuristics.

 In the case of the Netkill attack described in [Shalunov, 2000],
 there are two parameters that are characteristic of a TCP being
 attacked:

 o A large amount of data queued in the TCP retransmission buffer
 (e.g., the socket send buffer).

 o Only small amount of data has been successfully transferred to the
 remote peer.

 Clearly, these two parameters do not necessarily indicate an ongoing
 attack. However, if exhaustion of the corresponding system resources
 was imminent, these two parameters (among others) could be used to
 perform heuristics when considering aborting ongoing connections.

 It should be noted that while an attacker could advertise a zero
 window to cause the target system to tie system memory to the TCP
 retransmission buffer, it is hard to perform any useful statistics
 from the advertised window. While it is tempting to enforce a limit
 on the length of the persist state (see Section 3.7.2 of this
 document), an attacker could simply open the window (i.e., advertise
 a TCP window larger than zero) from time to time to prevent this
 enforced limit from causing his malicious connections to be aborted.

7.2. TCP segment reassembly buffer

 TCP MAY discard out-of-order data when system-memory exhaustion is
 imminent.

 DISCUSSION:

 TCP buffers out-of-order segments to more efficiently handle the
 occurrence of packet reordering and segment loss. When out-of-
 order data are received, a "hole" momentarily exists in the data
 stream which must be filled before the received data can be
 delivered to the application making use of TCP’s services. This
 situation can be exploited by an attacker, which could
 intentionally create a hole in the data stream by sending a number
 of segments with a sequence number larger than the next sequence
 number expected (RCV.NXT) by the attacked TCP. Thus, the attacked
 TCP would tie system memory to buffer the out-of-order segments,
 without being able to hand the received data to the corresponding
 application.

Gont Expires July 25, 2011 [Page 56]

Internet-Draft TCP Security Assessment January 2011

 If a large number of such connections were created, system memory
 could be exhausted, precluding the attacked TCP from servicing new
 connections and/or continue servicing TCP connections previously
 established.

 Fortunately, these attacks can be easily mitigated, at the expense
 of degrading the performance of possibly legitimate connections.
 When out-of-order data is received, an Acknowledgement segment is
 sent with the next sequence number expected (RCV.NXT). This means
 that receipt of the out-of-order data will not be actually
 acknowledged by the TCP’s cumulative Acknowledgement Number. As a
 result, a TCP is free to discard any data that have been received
 out-of-order, without affecting the reliability of the data
 transfer. Given the performance implications of discarding out-
 of-order segments for legitimate connections, this pruning policy
 should be applied only if memory exhaustion is imminent.

 As a result of discarding the out-of-order data, these data will
 need to be unnecessarily retransmitted. Additionally, a loss
 event will be detected by the sending TCP, and thus the slow start
 phase of TCP’s congestion control will be entered, thus reducing
 the data transfer rate of the connection.

 It is interesting to note that this pruning policy could be
 applied even if Selective Acknowledgements (SACK) (specified in
 RFC 2018 [Mathis et al, 1996]) are in use, as SACK provides only
 advisory information, and does not preclude the receiving TCP from
 discarding data that have been previously selectively-acknowledged
 by means of TCP’s SACK option, but not acknowledged by TCP’s
 cumulative Acknowledgement Number.

 There are a number of ways in which the pruning policy could be
 triggered. For example, when out of order data are received, a
 timer could be set, and the sequence number of the out-of-order
 data could be recorded. If the hole were filled before the timer
 expires, the timer would be turned off. However, if the timer
 expired before the hole were filled, all the out-of-order segments
 of the corresponding connection would be discarded. This would be
 a proactive counter-measure for attacks that aim at exhausting the
 receive buffers.

 In addition, an implementation could incorporate reactive
 mechanisms for more carefully controlling buffer allocation when
 some predefined buffer allocation threshold was reached. At such
 point, pruning policies would be applied.

 A number of mechanisms can aid in the process of freeing system
 resources. For example, a table of network prefixes corresponding

Gont Expires July 25, 2011 [Page 57]

Internet-Draft TCP Security Assessment January 2011

 to the IP addresses of TCP peers that have ongoing TCP connections
 could record the aggregate amount of out-of-order data currently
 buffered for those connections. When the pruning policy was
 triggered, TCP connections with hosts that have network prefixes
 with large aggregate out-of-order buffered data could be selected
 first for pruning the out-of-order segments.

 Alternatively, if TCP segments were de-multiplexed by means of a
 hash table (as it is currently the case in many TCP
 implementations), a counter could be held at each entry of the
 hash table that would record the aggregate out-of-order data
 currently buffered for those connections belonging to that hash
 table entry. When the pruning policy is triggered, the out-of-
 order data corresponding to those connections linked by the hash
 table entry with largest amount of aggregate out-of-order data
 could be pruned first. It is important that this hash is not
 computable by an attacker, as this would allow him to maliciously
 cause the performance of specific connections to be degraded.
 That is, given a four-tuple that identifies a connection, an
 attacker should not be able to compute the corresponding hash
 value used by the target system to de-multiplex incoming TCP
 segments to that connection.

 Another variant of a resource exhaustion attack against TCP’s
 segment reassembly mechanism would target the data structures used
 to link the different holes in a data stream. For example, an
 attacker could send a burst of 1 byte segments, leaving a one-byte
 hole between each of the data bytes sent. Depending on the data
 structures used for holding and linking together each of the data
 segments, such an attack might waste a large amount of system
 memory by exploiting the overhead needed store and link together
 each of these one-byte segments.

 For example, if a linked-list is used for holding and linking each
 of the data segments, each of the involved data structures could
 involve one byte of kernel memory for storing the received data
 byte (the TCP payload), plus 4 bytes (32 bits) for storing a
 pointer to the next node in the linked-list. Additionally, while
 such a data structure would require only a few bytes of kernel
 memory, it could result in the allocation of a whole memory page,
 thus consuming much more memory than expected.

 Therefore, implementations should enforce a limit on the number of
 holes that are allowed in the received data stream at any given
 time. When such a limit is reached, incoming TCP segments which
 would create new holes would be silently dropped. Measurements in
 [Dharmapurikar and Paxson, 2005] indicate that in the vast
 majority of TCP connections have at most a single hole at any

Gont Expires July 25, 2011 [Page 58]

Internet-Draft TCP Security Assessment January 2011

 given time. A limit of 16 holes for each connection would
 accommodate even most of the very unusual cases in which there can
 be more than hole in the data stream at a given time.

 [US-CERT, 2004a] is a security advisory about a Denial of Service
 vulnerability resulting from a TCP implementation that did not
 enforce limits on the number of segments stored in the TCP
 reassembly buffer.

 Section 8 of this document describes the security implications of
 the TCP segment reassembly algorithm.

7.3. Automatic buffer tuning mechanisms

7.3.1. Automatic send-buffer tuning mechanisms

 A TCP implementing an automatic send-buffer tuning mechanism SHOULD
 enforce the following limit on the size of the send buffer of each
 TCP connection:

 send_buffer_size <= send_buffer_pool / (min_buffer_size * max_connections)

 where

 send_buffer_size:
 Maximum send buffer size to be used for this connection

 send_buffer_pool:
 Total amount of system memory meant for TCP send buffers

 min_buffer_size:
 Minimum send buffer size for each TCP connection

 max_connections:
 Maximum number of TCP connections this system is expected to
 handle at a time

 max_connections may be an artificial limit enforced by the system
 administrator specifically on the number of TCP connections, or may
 be derived from some other system limit (e.g., the maximum number of
 file descriptors)

 DISCUSSION:

 A number of TCP implementations incorporate automatic tuning
 mechanisms for the TCP send buffer size. In most of them, the
 underlying idea is to set the send buffer to some multiple of the
 congestion window (cwnd). This type of mechanism usually improves

Gont Expires July 25, 2011 [Page 59]

Internet-Draft TCP Security Assessment January 2011

 TCP’s performance, by preventing the socket send buffer from
 becoming a bottleneck, while avoiding the need to simply
 overestimate the TCP send buffer size (i.e., make it arbitrarily
 large). [Semke et al, 1998] discusses such an automatic buffer
 tuning mechanism.

 Unfortunately, automatic tuning mechanisms can be exploited by
 attackers to amplify the impact of other resource exhaustion
 attacks. For example, an attacker could establish a TCP
 connection with a victim host, and cause the congestion window to
 be increased (either legitimately or illegitimately). Once the
 congestion window (and hence the TCP send buffer) is increased, he
 could cause the corresponding system memory to be tied up by
 advertising a zero-byte TCP window (see Section 3.7) or simply not
 acknowledging any data, thus amplifying the effect of resource
 exhaustion attacks such as that discussed in Section 7.1.1.

 When an automatic buffer tuning mechanism is implemented, a number
 of countermeasures should be incorporated to prevent the mechanism
 from being exploited to amplify other resource exhaustion attacks.

 Firstly, appropriate policies should be applied to guarantee fair
 use of the available system memory by each of the established TCP
 connections. Secondly, appropriate policies should be applied to
 avoid existing TCP connections from consuming all system
 resources, thus preventing service to new TCP connections.

 Appendix A of [Semke et al, 1998] proposes an algorithm for the
 fair share of the available system memory among the established
 connections. However, there are a number of limits that should be
 enforced on the system memory assigned for the send buffer of each
 connection. Firstly, each connection should always be assigned
 some minimum send buffer space that would enable TCP to perform at
 an acceptable performance. Secondly, some system memory should be
 reserved for future connections, according to the maximum number
 of concurrent TCP connections that are expected to be successfully
 handled at any given time.

 These limits preclude the automatic tuning algorithm from
 assigning all the available memory buffers to ongoing connections,
 thus preventing the establishment of new connections.

 Even if these limits are enforced, an attacker could still create
 a large number of TCP connections, each of them tying valuable
 system resources. Therefore, in scenarios in which most of the
 system memory reserved for TCP send buffers is allocated to
 ongoing connections, it may be necessary for TCP to enforce some
 policy to free resources to either service more TCP connections,

Gont Expires July 25, 2011 [Page 60]

Internet-Draft TCP Security Assessment January 2011

 or to be able to improve the performance of other existing
 connections, by allocating more resources to them.

 When needing to free memory in use for send buffers, particular
 attention should be paid to TCP’s that have a large amount of data
 in the socket send buffer, and that at the same time fall into any
 of these categories:

 * The remote TCP peer that has been advertising a small (possibly
 zero) window for a considerable period of time.

 * There have been a large number of retransmissions of segments
 corresponding to the first few windows of data.

 * Connections that fall into one of the previous categories, for
 which only a reduced amount of data have been successfully
 transferred to the peer TCP since the connection was
 established.

 Unfortunately, all these cases are valid scenarios for the TCP
 protocol, and thus aborting connections that fall in any of these
 categories has the potential of causing interoperability problems.
 However, in scenarios in which all system resources are allocated,
 it may make sense to free resources allocated to TCP connections
 which are tying a considerable amount of system resources and that
 have not made progress in a considerable period of time.

7.3.2. Automatic receive-buffer tuning mechanism

 A number of TCP implementations include automatic tuning mechanisms
 for the receive buffer size. These mechanisms aim at setting the
 socket buffer to a size that is large enough to avoid the TCP window
 from becoming a bottleneck that would limit TCP’s throughput, without
 wasting system memory by over-sizing it.

 [Heffner, 2002] describes a mechanism for the automatic tuning of the
 socket receive buffer. Basically, the mechanism aims at measuring
 the amount of data received during a RTT (Round-Trip Time), and
 setting the socket receive buffer to some multiple of that value.

 A TCP implementing an automatic receive-buffer tuning mechanism
 SHOULD enforce the following limit on the size of the receive buffer
 of each TCP connection:

 recv_buffer_size <= recv_buffer_pool / (min_buffer_size * max_connections)

Gont Expires July 25, 2011 [Page 61]

Internet-Draft TCP Security Assessment January 2011

 where:

 recv_buffer_size:
 Maximum receive buffer size to be used for this connection

 recv_buffer_pool:
 Total amount of system memory meant for TCP receive buffers

 min_buffer_size:
 Minimum receive buffer size for each TCP connection

 max_connections:
 Maximum number of TCP connections this system is expected to
 handle at a time

 max_connections may be an artificial limit enforced by the system
 administrator specifically on the number of TCP connections, or may
 be derived from some other system limit (e.g., the maximum number of
 file descriptors).

 DISCUSSION:

 Unfortunately, automatic tuning mechanisms for the socket receive
 buffer can be exploited to perform a resource exhaustion attack.
 An attacker willing to exploit the automatic buffer tuning
 mechanism would first establish a TCP connection with the victim
 host. Subsequently, he would start a bulk data transfer to the
 victim host. By carefully responding to the peer’s TCP segments,
 the attacker could cause the peer TCP to measure a large data/RTT
 value, which would lead to the adoption of an unnecessarily large
 socket receive buffer. For example, the attacker could
 optimistically send more data than those allowed by the TCP window
 advertised by the remote TCP. Those extra data would cross in the
 network with the window updates sent by the remote TCP, and could
 lead the TCP receiver to measure a data/RTT twice as big as the
 real one. Alternatively, if the TCP timestamp option (specified
 in RFC 1323 [Jacobson et al, 1992]) is used for RTT measurement,
 the attacker could lead the TCP receiver to measure a small RTT
 (and hence a large Data/RTT rate) by "optimistically" echoing
 timestamps that have not yet been received.

 Finally, once the TCP receiver is led to increase the size of its
 receive buffer, the attacker would transmit a large amount of
 data, filling the whole peer’s receive buffer except for a few
 bytes at the beginning of the window (RCV.NXT). This gap would
 prevent the peer application from reading the data queued by TCP,
 thus tying system memory to the received data segments until (if
 ever) the peer application times out.

Gont Expires July 25, 2011 [Page 62]

Internet-Draft TCP Security Assessment January 2011

 A number of limits should be enforced on the amount of system
 memory assigned to any given connection. Firstly, each connection
 should always be assigned some minimum receive buffer space that
 would enable TCP to perform at a minimum acceptable performance.
 Additionally, some system memory should be reserved for future
 connections, according to the maximum number of concurrent TCP
 connections that are expected to be successfully handled at any
 given time.

 These limits preclude the automatic tuning algorithm from
 assigning all the available memory buffers to existing
 connections, thus preventing the establishment of new connections.

 It is interesting to note that a TCP sender will always try to
 retransmit any data that have not been acknowledged by TCP’s
 cumulative acknowledgement. Therefore, if memory exhaustion is
 imminent, a system should consider freeing those memory buffers
 used for TCP segments that were received out of order,
 particularly when a given connection has been keeping a large
 number of out-of-order segments in the receive buffer for a
 considerable period of time.

 It is worth noting that TCP Selective Acknowledgements (SACK) are
 advisory, in the sense that a TCP that has SACKed (but not ACKed)
 a block of data is free to discard that block, and expect the TCP
 sender to retransmit them when the retransmission timer of the
 peer TCP expires.

8. TCP segment reassembly algorithm

8.1. Problems that arise from ambiguity in the reassembly process

 If a TCP segment is received containing some data bytes that had
 already been received, the first copy of those data SHOULD be used
 for reassembling the application data stream.

 DISCUSSION:

 A security consideration that should be made for the TCP segment
 reassembly algorithm is that of data stream consistency between
 the host performing the TCP segment reassembly, and a Network
 Intrusion Detection System (NIDS) being employed to monitor the
 host in question.

 In the event a TCP segment was unnecessarily retransmitted, or
 there was packet duplication in any of the intervening networks, a
 TCP might get more than one copy of the same data. Also, as TCP

Gont Expires July 25, 2011 [Page 63]

Internet-Draft TCP Security Assessment January 2011

 segments can be re-packetized when they are retransmitted, a given
 TCP segment might partially overlap data already received in
 earlier segments. In all these cases, the question arises about
 which of the copies of the received data should be used when
 reassembling the data stream. In legitimate and normal
 circumstances, all copies would be identical, and the same data
 stream would be obtained regardless of which copy of the data was
 used. However, an attacker could maliciously send overlapping
 segments containing different data, with the intent of evading a
 Network Intrusion Detection Systems (NIDS), which might reassemble
 the received TCP segments differently than the monitored system.
 [Ptacek and Newsham, 1998] provides a detailed discussion of these
 issues.

 As suggested in Section 3.9 of RFC 793 [Postel, 1981c], if a TCP
 segment arrives containing some data bytes that have already been
 received, the first copy of those data should be used for
 reassembling the application data stream. It should be noted that
 while convergence to this policy might prevent some cases of
 ambiguity in the reassembly process, there are a number of other
 techniques that an attacker could still exploit to evade a NIDS
 [CPNI, 2008]. These techniques can generally be defeated if the
 NIDS is placed in-line with the monitored system, thus allowing
 the NIDS to normalize the network traffic or apply some other
 policy that could ensure consistency between the result of the
 segment reassembly process obtained by the monitored host and that
 obtained by the NIDS.

 [CERT, 2003] and [CORE, 2003] are advisories about a heap buffer
 overflow in a popular Network Intrusion Detection System resulting
 from incorrect sequence number calculations in its TCP stream-
 reassembly module.

9. TCP Congestion Control

 TCP implements two algorithms, "slow start" and "congestion
 avoidance", for controlling the rate at which data is transmitted on
 a TCP connection [Allman et al, 1999]. These algorithms require the
 addition of two variables as part of TCP per-connection state: cwnd
 and ssthresh.

 The congestion window (cwnd) is a sender-side limit on the amount of
 outstanding data that the sender can have at any time, while the
 receiver’s advertised window (rwnd) is a receiver-side limit on the
 amount of outstanding data. The minimum of cwnd and rwnd governs
 data transmission.

Gont Expires July 25, 2011 [Page 64]

Internet-Draft TCP Security Assessment January 2011

 Another state variable, the slow-start threshold (ssthresh), is used
 to determine whether it is the slow start or the congestion avoidance
 algorithm that should control data transmission. When cwnd <
 ssthresh, "slow start" governs data transmission, and the congestion
 window (cwnd) is exponentially increased. When cwnd > ssthresh,
 "congestion avoidance" governs data transmission, and the congestion
 window (cwnd) is only linearly increased.

 As specified in RFC 2581 [Allman et al, 1999], when cwnd and ssthresh
 are equal the sender may use either slow start or congestion
 avoidance.

 During slow start, TCP increments cwnd by at most SMSS bytes for each
 ACK received that acknowledges new data. During congestion
 avoidance, cwnd is incremented by 1 full-sized segment per round-trip
 time (RTT), until congestion is detected.

 Additionally, TCP uses two algorithms, Fast Retransmit and Fast
 Recovery, to mitigate the effects of packet loss. The "Fast
 Retransmit" algorithm infers packet loss when three Duplicate
 Acknowledgements (DupACKs) are received.

 The value "three" is meant to allow for fast-retransmission of
 "missing" data, while avoiding network packet reordering from
 triggering loss recovery.

 Once packet loss is detected by the receipt of three duplicate-ACKs,
 the "Fast Recovery" algorithm governs the transfer of new data until
 a non-duplicate ACK is received that acknowledges the receipt of new
 data. The Fast Retransmit and Fast Recovery algorithms are usually
 implemented together, as follows (from RFC 2581):

 o When the third duplicate ACK is received, set ssthresh to no more
 than the value given in the equation: ssthresh = max (FlightSize /
 2, 2*SMSS)

 o Retransmit the lost segment and set cwnd to ssthresh plus 3*SMSS.
 This artificially "inflates" the congestion window by the number
 of segments (three) that have left the network and which the
 receiver has buffered.

 o For each additional duplicate ACK received, increment cwnd by
 SMSS. This artificially inflates the congestion window in order
 to reflect the additional segment that has left the network.

 o Transmit a segment, if allowed by the new value of cwnd and the
 receiver’s advertised window.

Gont Expires July 25, 2011 [Page 65]

Internet-Draft TCP Security Assessment January 2011

 o When the next ACK arrives that acknowledges new data, set cwnd to
 ssthresh (the value set in step 1). This is termed "deflating"
 the window.

9.1. Congestion control with misbehaving receivers

 [Savage et al, 1999] describes a number of ways in which TCP’s
 congestion control mechanisms can be exploited by a misbehaving TCP
 receiver to obtain more than its fair share of bandwidth. The
 following subsections provide a brief discussion of these
 vulnerabilities, along with the possible countermeasures.

9.1.1. ACK division

 TCP SHOULD increase cwnd by one SMSS only when a valid ACK covers the
 entire data segment sent

 (note: or should we recommend the other counter-measure (i.e.,
 implementation of ABC?)

 DISCUSSION:

 Given that TCP updates cwnd based on the number of duplicate ACKs
 it receives, rather than on the amount of data that each ACK is
 actually acknowledging, a malicious TCP receiver could cause the
 TCP sender to illegitimately increase its congestion window by
 acknowledging a data segment with a number of separate
 Acknowledgements, each covering a distinct piece of the received
 data segment.

 See Figure 7, in page 64 of the UK CPNI document.

 ACK division attack

 [Savage et al, 1999] describes two possible countermeasures for
 this vulnerability. One of them is to increment cwnd not by a
 full SMSS, but proportionally to the amount of data being
 acknowledged by the received ACK, similarly to the policy
 described in RFC 3465 [Allman, 2003]. Another alternative is to
 increase cwnd by one SMSS only when a valid ACK covers the entire
 data segment sent.

9.1.2. DupACK forgery

 TCP SHOULD keep track of the number of outstanding segments (o_seg),
 and accept only up to (o_seg -1) duplicate Acknowledgements.

 DISCUSSION:

Gont Expires July 25, 2011 [Page 66]

Internet-Draft TCP Security Assessment January 2011

 The second vulnerability discussed in [Savage et al, 1999] allows
 an attacker to cause the TCP sender to illegitimately increase its
 congestion window by forging a number of duplicate
 Acknowledgements (DupACKs). Figure 8 shows a sample scenario.
 The first three DupACKs trigger the Fast Recovery mechanism, while
 the rest of them cause the congestion window at the TCP sender to
 be illegitimately inflated. Thus, the attacker is able to
 illegitimately cause the TCP sender to increase its data
 transmission rate.

 See Figure 8, in page 65 of the UK CPNI document.

 DupACK forgery attack

 Fortunately, a number of sender-side heuristics can be implemented
 to mitigate this vulnerability. First, the TCP sender could keep
 track of the number of outstanding segment (o_seg), and accept
 only up to (o_seg -1) DupACKs. Secondly, a TCP sender might, for
 example, refuse to enter Fast Recovery multiple times in some
 period of time (e.g., one RTT).

 [Savage et al, 1999] also describes a modification to TCP to
 implement a nonce protocol that would eliminate this
 vulnerability. However, this would require modification of all
 implementations, which makes this counter-measure hard to deploy.

9.1.3. Optimistic ACKing

 Another alternative for an attacker to exploit TCP’s congestion
 control mechanisms is to acknowledge data that has not yet been
 received, thus causing the congestion window at the TCP sender to be
 incremented faster than it should.

 See Figure 9, in page 66 of the UK CPNI document.

 Optimistic ACKing attack

 [Savage et al, 1999] describes a number of mitigations for this
 vulnerability. Firstly, it describes a countermeasure based on the
 concept of "cumulative nonce", which would allow a receiver to prove
 that it has received all the segments it is acknowledging. However,
 this countermeasure requires the introduction of two new fields to
 the TCP header, thus requiring a modification to all the
 communicating TCPs, makes this counter-measure hard to deploy.
 Secondly, it describes a possible way to encode the nonce in a TCP
 segment by carefully modifying its size. While this countermeasure
 could be easily deployed (as it is just sender side policy), we
 believe that middle-boxes such as protocol-scrubbers might prevent

Gont Expires July 25, 2011 [Page 67]

Internet-Draft TCP Security Assessment January 2011

 this counter-measure from working as expected. Finally, it suggests
 that a TCP sender might penalize a TCP receiver that acknowledges
 data not yet sent by resetting the corresponding connection. Here we
 discourage the implementation of this policy, as it would provide an
 attack vector for a TCP-based connection-reset attack, similar to
 those described in Section 11.

 [US-CERT, 2005a] is a vulnerability advisory about this issue.

9.2. Blind DupACK triggering attacks against TCP

 While all of the attacks discussed in [Savage et al, 1999] have the
 goal of increasing the performance of the attacker’s TCP connections,
 TCP congestion control mechanisms can be exploited with a variety of
 goals.

 Firstly, if bursts of many duplicate-ACKs are sent to the "sending
 TCP", the third duplicate-ACK will cause the "lost" segment to be
 retransmitted, and each subsequent duplicate-ACK will cause cwnd to
 be artificially inflated. Thus, the "sending TCP" might end up
 injecting more packets into the network than it really should, with
 the potential of causing network congestion. This is a potential
 consequence of the "Duplicate-ACK spoofing attack" described in
 [Savage et al, 1999].

 Secondly, if bursts of three duplicate ACKs are sent to the TCP
 sender, the attacked system would infer packet loss, and ssthresh and
 cwnd would be reduced. As noted in RFC 2581 [Allman et al, 1999],
 causing two congestion control events back-to-back will often cut
 ssthresh and cwnd to their minimum value of 2*SMSS, with the
 connection immediately entering the slower-performing congestion
 avoidance phase. While it would not be attractive for an attacker to
 perform this attack against one of his TCP connections, the attack
 might be attractive when the TCP connection to be attacked is
 established between two other parties.

 It is usually assumed that in order for an off-path attacker to
 perform attacks against a third-party TCP connection, he should be
 able to guess a number of values, including a valid TCP Sequence
 Number and a valid TCP Acknowledgement Number. While this is true if
 the attacker tries to "inject" valid packets into the connection by
 himself, a feature of TCP can be exploited to fool one of the TCP
 endpoints to transmit valid duplicate Acknowledgements on behalf of
 the attacker, hence relieving the attacker of the hard task of
 forging valid values for the Sequence Number and Acknowledgement
 Number TCP header fields.

 Section 3.9 of RFC 793 [Postel, 1981c] describes the processing of

Gont Expires July 25, 2011 [Page 68]

Internet-Draft TCP Security Assessment January 2011

 incoming TCP segments as a function of the connection state and the
 contents of the various header fields of the received segment. For
 connections in the ESTABLISHED state, the first check that is
 performed on incoming segments is that they contain "in window" data.
 That is,

 RCV.NXT <= SEG.SEQ <= RCV.NXT+RCV.WND, or

 RCV.NXT <= SEG.SEQ+SEG.LEN-1 < RCV.NXT+RCV.WND

 If a segment does not pass this check, it is dropped, and an
 Acknowledgement is sent in response:

 <SEQ=SND.NXT><ACK=RCV.NXT><CTL=ACK>

 The goal of this behavior is that, in the event data segments are
 received by the TCP receiver, but all the corresponding
 Acknowledgements are lost, when the TCP sender retransmits the
 supposedly lost data, the TCP receiver will send an Acknowledgement
 reflecting all the data received so far. If "old" TCP segments were
 silently dropped, the scenario just described would lead to a
 "frozen" TCP connection, with the TCP sender retransmitting the data
 for which it has not yet received an Acknowledgement, and the TCP
 receiver silently ignoring these segments. Additionally, it helps
 TCP to detect half-open connections.

 This feature implies that, provided the four-tuple that identifies a
 given TCP connection is known or can be easily guessed, an attacker
 could send a TCP segment with an "out of window" Sequence Number to
 one of the endpoints of the TCP connection to cause it to send a
 valid ACK to the other endpoint of the connection. Figure 10
 illustrates such a scenario.

 See Figure 10, in page 68 of the UK CPNI document.

 Blind Dup-ACK forgery attack

 As discussed in [Watson, 2004] and RFC 4953 [Touch, 2007], there are
 a number of scenarios in which the four-tuple that identifies a TCP
 connection is known or can be easily guessed. In those scenarios, an
 attacker could perform any of the "blind" attacks described in the
 following subsections by exploiting the technique described above.

 The following subsections describe blind DupACK-triggering attacks
 that aim at either degrading the performance of an arbitrary
 connection, or causing a TCP sender to illegitimately increase the
 rate at which it transmits data, potentially leading to network

Gont Expires July 25, 2011 [Page 69]

Internet-Draft TCP Security Assessment January 2011

 congestion.

9.2.1. Blind throughput-reduction attack

 As discussed in Section 9, when three duplicate Acknowledgements are
 received, the congestion window is reduced to half the current amount
 of outstanding data (FlightSize). Additionally, the slow-start
 threshold (ssthresh) is reduced to the same value, causing the
 connection to enter the slower-performing congestion avoidance phase.
 If two congestion-control events occur back to back, ssthresh and
 cwnd will often be reduced to their minimum value of 2*SMSS.

 An attacker could exploit the technique described in Section 9.2 to
 cause the throughput of the attacked TCP connection to be reduced, by
 eliciting three duplicate acknowledgements from the TCP receiver,
 which would cause the TCP sender to reduce its congestion window. In
 principle, the attacker would need to send a burst of only three out-
 of-window segments. However, in case the TCP receiver implements an
 acknowledgement policy such as "ACK every other segment", four out-
 of-window segments might be needed. The first segment would cause
 the pending (delayed) Acknowledgement to be sent, and the next three
 segments would elicit the actual duplicate Acknowledgements.

 Figure 11 shows a time-line graph of a sample scenario. The burst of
 DupACKs (in green) elicited by the burst of out-of-window segments
 (in red) sent by the attacker causes the TCP sender to retransmit the
 missing segment (in blue) and enter the loss recovery phase. Once a
 segment that acknowledges new data is received by the TCP sender, the
 loss recovery phase ends, and cwnd and ssthresh are set to half the
 number of segments that were outstanding when the loss recovery phase
 was entered.

 See Figure 11, in page 69 of the UK CPNI document.

 Blind throughput-reduction attack (time-line graph)

 The graphic assumes that the TCP receiver sends an Acknowledgement
 for every other data segment it receives, and that the TCP sender
 implements Appropriate Byte Counting (specified in RFC 3465 [Allman,
 2003]) on the received Acknowledgement segments. However,
 implementation of these policies is not required for the attack to
 succeed.

9.2.2. Blind flooding attack

 As discussed in Section 9, when three duplicate Acknowledgements are
 received, the "lost" segment is retransmitted, and the congestion
 window is artificially inflated for each DupACK received, until the

Gont Expires July 25, 2011 [Page 70]

Internet-Draft TCP Security Assessment January 2011

 loss recovery phase ends. By sending a long burst of out-of-window
 segments to the TCP receiver of the attacked connection, an attacker
 could elicit a long burst of valid duplicate acknowledgements that
 would illegitimately cause the TCP sender of the attacked TCP
 connection to increase its data transmission rate.

 Figure 12 shows a time-line graph for this attack. The long burst of
 DupACKs (in green) elicited by the long burst of out-of-window
 segments (in red) sent by the attacker causes the TCP sender to enter
 the loss recovery phase and illegitimately inflate the congestion
 window, leading to an increase in the data transmission rate. Once a
 segment that acknowledges new data is received by the TCP sender, the
 loss recovery phase ends, and the data transmission rate is reduced.

 See Figure 12, in page 70 of the UK CPNI document.

 Blind flooding attack (time-line graph)

 Figure 13 is a time-sequence graph produced from packet logs obtained
 from tests of the described attack in a real network. A burst of
 segments is sent upon receipt of the burst of Duplicate
 Acknowledgements illegitimately elicited by the attacker. Figure 14
 is an averaged-throughput graphic for the same time frame, which
 clearly shows the effect of the attack in terms of throughput.

 See Figure 13, in page 71 of the UK CPNI document.

 Blind flooding attack (time sequence graph)

 See Figure 14, in page 71 of the UK CPNI document.

 Blind flooding attack (averaged throughput graph)

 These graphics were produced with Shawn Ostermann’s tcptrace tool
 [Ostermann, 2008]. An explanation of the format of the graphics can
 be found in tcptrace’s manual (available at the project’s web site:
 http://www.tcptrace.org).

9.2.3. Difficulty in performing the attacks

 In order to exploit the technique described in Section 9.2 of this
 document, an attacker would need to know the four-tuple {IP Source
 Address, TCP Source Port, IP Destination Address, TCP Destination
 Port} that identifies the connection to be attacked. As discussed by
 [Watson, 2004] and RFC 4953 [Touch, 2007], there are a number of
 scenarios in which these values may be known or easily guessed.

Gont Expires July 25, 2011 [Page 71]

Internet-Draft TCP Security Assessment January 2011

 It is interesting to note that the attacks described in Section 9.2
 of this document will typically require a much smaller number of
 packets than other "blind" attacks against TCP, such as those
 described in [Watson, 2004] and RFC 4953 [Touch, 2007], as the
 technique discussed in Section 9.2 relieves the attacker from having
 to guess valid TCP Sequence Numbers and a TCP Acknowledgement
 numbers.

 The attacks described in Section 9.2.1 and Section 9.2.2 of this
 document require the attacker to forge the source address of the
 packets it sends. Therefore, if ingress/egress filtering is
 performed by intermediate systems, the attacker’s packets would not
 get to the intended recipient, and thus the attack would not succeed.
 However, we consider that ingress/egress filtering cannot be relied
 upon as the first line of defense against these attacks.

 Finally, it is worth noting that in order to successfully perform the
 blind attacks discussed in Section 9.2.1 and Section 9.2.2 of this
 document, the burst of out-of-sequence segments sent by the attacker
 should not be intermixed with valid data segments sent by the TCP
 sender, or else the Acknowledgement number of the illegitimately-
 elicited ACK segments would change, and the Acknowledgements would
 not be considered "Duplicate Acknowledgements" by the TCP sender.
 Tests performed in real networks seem to suggest that this
 requirement is not hard to fulfill, though.

9.2.4. Modifications to TCP’s loss recovery algorithms

 There are a number of algorithms that augment TCP’s loss recovery
 mechanism that have been suggested by TCP researchers and have been
 specified by the IETF in the RFC series. This section describes a
 number of these algorithms, and discusses how their implementation
 affects (or not) the vulnerability of TCP to the attacks discussed in
 Section 9.2.1 and Section 9.2.2 of this document.

 NewReno

 RFC 3782 [Floyd et al, 2004] specifies the NewReno algorithm, which
 is meant to improve TCP’s performance in the presence of multiple
 losses in a single window of data. The implication of this algorithm
 with respect to the attacks discussed in the previous sections is
 that whenever either of the attacks is performed against a connection
 with a NewReno TCP sender, a full-window (or half a window) of data
 will be unnecessarily retransmitted. This is particularly
 interesting in the case of the blind-flooding attack, as the attack
 would elicit even more packets from the TCP sender.

 Whether a full-window or just half a window of data is retransmitted

Gont Expires July 25, 2011 [Page 72]

Internet-Draft TCP Security Assessment January 2011

 depends on the Acknowledgement policy at the TCP receiver. If the
 TCP receiver sends an Acknowledgement (ACK) for every segment, a
 full-window of data will be retransmitted. If the TCP receiver sends
 an Acknowledgement (ACK) for every other segment, then only half a
 window of data will be retransmitted.

 Figure 15 is a time-sequence graph produced from packet logs obtained
 from tests performed in a real network. Once loss recovery is
 illegitimately triggered by the duplicate-ACKs elicited by the
 attacker, an entire flight of data is unnecessarily retransmitted.
 Figure 16 is an averaged-throughput graphic for the same time-frame,
 which shows an increase in the throughput of the connection resulting
 from the retransmission of segments governed by NewReno’s loss
 recovery.

 See Figure 15, in page 73 of the UK CPNI document.

 NewReno loss recovery (time-sequence graph)

 See Figure 16, in page 74 of the UK CPNI document.

 NewReno loss recovery (averaged throughput graph)

 Limited Transmit

 RFC 3042 [Allman et al, 2001] proposes an enhancement to TCP to more
 effectively recover lost segments when a connection’s congestion
 window is small, or when a large number of segments are lost in a
 single transmission window. The "Limited Transmit" algorithm calls
 for sending a new data segment in response to each of the first two
 Duplicate Acknowledgements that arrive at the TCP sender. This would
 provide two additional transmitted packets that may be useful for the
 attacker in the case of the blind flooding attack described in
 Section 9.2.2 is performed.

 SACK-based loss recovery

 RFC 3517 [Blanton et al, 2003] specifies a conservative loss-recovery
 algorithm that is based on the use of the selective acknowledgement
 (SACK) TCP option. The algorithm uses DupACKs as an indication of
 congestion, as specified in RFC 2581 [Allman et al, 1999]. However,
 a difference between this algorithm and the basic algorithm described
 in RFC 2581 is that it clocks out segments only with the SACK
 information included in the DupACKs. That is, during the loss
 recovery phase, segments will be injected in the network only if the
 SACK information included in the received DupACKs indicates that one
 or more segments have left the network. As a result, those systems

Gont Expires July 25, 2011 [Page 73]

Internet-Draft TCP Security Assessment January 2011

 that implement SACK-based loss recovery will not be vulnerable to the
 blind flooding attack described in Section 9.2.2. However, as RFC
 3517 does not actually require DupACKs to include new SACK
 information (corresponding to data that has not yet been acknowledged
 by TCP’s cumulative Acknowledgement), systems that implement SACK-
 based loss-recovery may still remain vulnerable to the blind
 throughput-reduction attack described in Section 9.2.1. SACK-based
 loss recovery implementations should be updated to implement the
 countermeasure ("Use of SACK information to validate DupACKs")
 described in Section 9.2.5.

9.2.5. Countermeasures

 TCP SHOULD validate the Sequence Number of an incomming TCP segment
 as follows:

 RCV.NXT - MAX.RCV.WND <= SEG.SEQ <= RCV.NXT + RCV.WND

 where MAX.RCV.WND is the largest TCP window that has so far been
 advertised to the remote endpoint.

 If a segment passes this check, the processing rules specified in RFC
 793 [Postel, 1981c] MUST applied. Otherwise, TCP SHOULD send an ACK
 (as specified by the processing rules in RFC 793 [Postel, 1981c]),
 applying rate-limiting to the Acknowledgement segments sent in
 response to out-of-window segments.

 DISCUSSION:

 As discussed in Section 9.2, TCP responds with an ACK when an out-
 of-window segment is received, to accommodate those scenarios in
 which the Acknowledgement segments that correspond to some
 received data are lost in the network, and to help discover half-
 open TCP connections.

 However, it is possible to restrict the sequence numbers that are
 considered acceptable, and have TCP respond with ACKs only when it
 is strictly necessary.

 A feature of TCP is that, in some scenarios, it can detect half-
 open connections. If an implementation chose to silently drop
 those TCP segments that do not pass the check enforced by the
 equation above, it could prevent TCP from detecting half-open
 connections. Figure 17 shows a scenario in which, provided that
 "TCP B" behaves as specified in RFC 793, a half-open connection
 would be discovered and aborted.

Gont Expires July 25, 2011 [Page 74]

Internet-Draft TCP Security Assessment January 2011

 An established connection is said to be "half open" if one of the
 TCPs has closed or aborted the connection at its end without the
 knowledge of the other, or if the two ends of the connection have
 become desynchronized owing to a crash that resulted in loss of
 memory.

 See Figure 17, in page 76 of the UK CPNI document.

 Half-Open Connection Discovery

 In the scenario illustrated by Figure 17, TCP A crashes losing the
 connection-state information of the TCP connection with TCP B. In
 line 3, TCP A tries to establish a new connection with TCP B,
 using the same four-tuple {IP Source Address, TCP source port, IP
 Destination Address, TCP destination port}. In line 4, as the SYN
 segment is out of window, TCP B responds with an ACK. This ACK
 elicits an RST segment from TCP A, which causes the half-open
 connection at TCP B to be aborted.

 If the SYN segment had been "in window", TCP B would have sent an
 RST segment instead, which would have closed the half-open
 connection. Ongoing work at the TCPM WG of the IETF proposes to
 change this behavior, and make TCP respond to a SYN segment
 received for any of the synchronized states with an ACK segment,
 to avoid in-window SYN segments from being used to perform
 connection-reset attacks [Ramaiah et al, 2008].

 However, in case the out-of-window segment was silently dropped,
 the scenario in Figure 17 would change into that in Figure 18.

 See Figure 18, in page 76 of the UK CPNI document.

 Half-Open Connection Discovery with the proposed counter-measure

 In line 3, the SYN segment sent by TCP A is silently dropped by
 TCP B because it does not pass the check enforced by the equation
 above (i.e., it contains an out-of-window sequence number). As a
 result, some time later (an RTO) TCP A retransmits its SYN
 segment. Even after TCP A times out, the half-open connection at
 TCP B will remain in the same state.

 Thus, a conservative reaction to those segments that do not pass
 the check enforced by the equation above would be to respond with
 an Acknowledgement segment (as specified by RFC 793), applying
 rate-limiting to those Acknowledgement segments sent in response
 to segments that do not pass the check enforced by that equation.
 An implementation might choose to enforce a rate-limit of, e.g.,
 one ACK per five seconds, as a single ACK segment is needed for

Gont Expires July 25, 2011 [Page 75]

Internet-Draft TCP Security Assessment January 2011

 the Half-Open Connection Discovery mechanism to work.

 As the only reason to respond with an ACK to those segments that
 do not pass the check enforced by the equation above is to allow
 TCP to discover half-open connections, an aggressive rate-limit
 can be enforced. As long as the rate-limit prevents out-of-window
 segments from eliciting three Acknowledgment segments in a Round-
 trip Time (RTT), an attacker would not be able to trigger TCP’s
 loss-recovery, and thus would not be able to perform the attacks
 described in the previous sections.

 It is interesting to note that RFC 793 [Postel, 1981c] itself
 states that half-open connections are expected to be unusual.
 Additionally, given that in many scenarios it may be unlikely for
 a TCP connection request to be issued with the same four-tuple as
 that of the half-open connection, a complete solution for the
 discovery of half-open connections cannot rely on the mechanism
 illustrated by Figure 17, either. Therefore, some implementations
 might choose to sacrifice TCP’s ability to detect half-open
 connections, and have a more aggressive reaction to those segments
 that do not pass the check enforced by the equation above by
 silently dropping them.

 This validation check can also help to avoid ACK wars in some
 scenarios that may arise from the use of transparent proxies. In
 those scenarios, when the transparent proxy fails to wire (i.e.,
 is disabled), the sequence numbers of the two end-points of the
 TCP connection become desynchronized, and both TCPs begin to send
 duplicate Acknowledgements to each other, with the intention of
 re-synchronizing them. As the sequence numbers never get re-
 synchronized, the ACK war can only be stopped by an external
 agent.

 TCP SHOULD limit the number of duplicate acknowledgements it will
 honour to:

 Max_DupACKs = (FlightSize / SMSS) - 1

 Where FlightSize and SMSS are the values defined in RFC 2581 [Allman
 et al, 1999]. When more than Max_DupACKs duplicate acknowledgements
 are received, the exceeding DupACKs should be silently dropped.

 DISCUSSION:

 Note that duplicate acknowledgements should be elicited by out-of-
 order segments.

 In the case of TCP connections that have agreed to employ SACK, TCP

Gont Expires July 25, 2011 [Page 76]

Internet-Draft TCP Security Assessment January 2011

 SHOULD validate duplicate ACKs with the following criteria: Valid
 Duplicate ACKs MUST contain new SACK information. The SACK
 information MUST refer to data that has already been sent, but that
 has not yet been acknowledged by TCP’s cumulative Acknowledgement. A
 TCP segment that does not pass this check SHOULD NOT be considered as
 "duplicate Acknowledgement".

 DISCUSSION:

 SACK, specified in 2018 [Mathis et al, 1996], provides a mechanism
 for TCP to be able to acknowledge the receipt of out-of-order TCP
 segments. For connections that have agreed to use SACK, each
 legitimate DupACK will contain new SACK information that reflects
 the data bytes contained in the out-of-order data segment that
 elicited the DupACK.

 RFC 3517 [Blanton et al, 2003] specifies a SACK-based loss
 recovery algorithm for TCP. However, it does recommend TCP
 implementations to validate DupACKs by requiring that they contain
 new SACK information. Results obtained from auditing a number of
 TCP implementations seem to indicate that most TCP implementations
 do not enforce this validation check on incoming DupACKs, either.

 In the case of TCP connections that have agreed to use SACK, a
 validation check should be performed on incoming ACK segments to
 completely eliminate the attacks described in Section 9.2.1 and
 Section 9.2.2 of this document: "Duplicate ACKs should contain new
 SACK information. The SACK information should refer to data that
 has already been sent, but that has not yet been acknowledged by
 TCP’s cumulative Acknowledgement".

 Those ACK segments that do not comply with this validation check
 should not be considered "duplicate ACKs", and thus should not
 trigger the loss-recovery phase.

 In case at least one segment in a window of data has been lost,
 the successive segments will elicit the generation of Duplicate
 ACKs containing new SACK information. This SACK information will
 indicate the receipt of these successive segments by the TCP
 receiver.

 In the case of pure ACKs illegitimately elicited by out-of-window
 segments, however, the ACKs will not contain any SACK information.

 If DSACK (specified in 2883 [Floyd et al, 2000]) were implemented
 by the TCP receiver, then the illegitimately elicited DupACKs
 might contain out-of-window SACK information if the sequence
 number of the forged TCP segment (SEG.SEQ) is lower than the next

Gont Expires July 25, 2011 [Page 77]

Internet-Draft TCP Security Assessment January 2011

 expected sequence number (RECV.NXT) at the TCP receiver. Such
 segments should be considered to indicate the receipt of duplicate
 data, rather than an indication of lost data, and therefore should
 not trigger loss recovery.

 Other possible general mitigations are discussed in the following
 paragraphs:

 TCP port number randomization

 As in order to perform the blind attacks described in Section 9.2.1
 and Section 9.2.2 the attacker needs to know the TCP port numbers in
 use by the connection to be attacked, obfuscating the TCP source port
 used for outgoing TCP connections will increase the number of packets
 required to successfully perform these attacks. Section 3.1 of this
 document discusses the use of port randomization.

 It must be noted that given that these blind DupACK triggering
 attacks do not require the attacker to forge valid TCP Sequence
 numbers and TCP Acknowledgement numbers, port randomization should
 not be relied upon as a first line of defense.

 Ingress and Egress filtering

 Ingress and Egress filtering reduces the number of systems in the
 global Internet that can perform attacks that rely on forged source
 IP addresses. While protection from the blind attacks discussed in
 Section 9.2 should not rely only on Ingress and Egress filtering, its
 deployment is recommended to help prevent all attacks that rely on
 forged IP addresses. RFC 3704 [Baker and Savola, 2004], RFC 2827
 [Ferguson and Senie, 2000], and [NISCC, 2006] provide advice on
 Ingress and Egress filtering.

 Generalized TTL Security Mechanism (GTSM)

 RFC 5082 [Gill et al, 2007] proposes a check on the TTL field of the
 IP packets that correspond to a given TCP connection to reduce the
 number of systems that could successfully attack the protected TCP
 connection. It provides for the attacks discussed in this document
 the same level of protection than for the attacks described in
 [Watson, 2004] and RFC 4953 [Touch, 2007]. While implementation of
 this mechanism may be useful in some scenarios, it should be clear
 that countermeasures discussed in the previous sections provide a
 more effective and simpler solution than that provided by the GTSM.

Gont Expires July 25, 2011 [Page 78]

Internet-Draft TCP Security Assessment January 2011

9.3. TCP Explicit Congestion Notification (ECN)

 ECN (Explicit Congestion Notification) provides a mechanism for
 intermediate systems to signal congestion to the communicating
 endpoints that in some scenarios can be used as an alternative to
 dropping packets.

 RFC 3168 [Ramakrishnan et al, 2001] contains a detailed discussion of
 the possible ways and scenarios in which ECN could be exploited by an
 attacker.

 RFC 3540 [Spring et al, 2003] specifies an improvement to ECN based
 on nonces, that protects against accidental or malicious concealment
 of marked packets from the TCP sender. The specified mechanism
 defines a "NS" ("Nonce Sum") field in the TCP header that makes use
 of one bit from the Reserved field, and requires a modification in
 both of the endpoints of a TCP connection to process this new field.
 This mechanism is still in "Experimental" status, and since it might
 suffer from the behavior of some middle-boxes such as firewalls or
 packet-scrubbers, we defer a recommendation of this mechanism until
 more experience is gained.

 There also is ongoing work in the research community and the IETF to
 define alternate semantics for the ECN field of the IP header (e.g.,
 see [PCNWG, 2009]).

 The following subsections try to summarize the security implications
 of ECN.

9.3.1. Possible attacks by a compromised router

 Firstly, a router controlled by a malicious user could erase the CE
 codepoint (either by replacing it with the ECT(0), ECT(1), or non-ECT
 codepoints), effectively eliminating the congestion indication. As a
 result, the corresponding TCP sender would not reduce its data
 transmission rate, possibly leading to network congestion. This
 could also lead to unfairness, as this flow could experience better
 performance than other flows for which the congestion indication is
 not erased (and thus their transmission rate is reduced).

 Secondly, a router controlled by a malicious user could
 illegitimately set the CE codepoint, falsely indicating congestion,
 to cause the TCP sender to reduce its data transmission rate.
 However, this particular attack is no worse than the malicious router
 simply dropping the packets rather setting their CE codepoint.

 Thirdly, a malicious router could turn off the ECT codepoint of a
 packet, thus disabling ECN support. As a result, if the packet later

Gont Expires July 25, 2011 [Page 79]

Internet-Draft TCP Security Assessment January 2011

 arrives at a router that is experiencing congestion, it may be
 dropped rather than marked. As with the previous scenario, though,
 this is no worse than the malicious router simply dropping the
 corresponding packet.

 It should be noted that a compromised on-path IP router could engage
 in a much broader range of attacks, with broader impacts, and at much
 lower attacker cost than the ones described here. Such a compromised
 router is extremely unlikely to engage in the attack vectors
 discussed in this section, given the existence of more effective
 attack vectors that have lower attacker cost.

9.3.2. Possible attacks by a malicious TCP endpoint

 If a packet with the ECT codepoint set arrives at an ECN-capable
 router that is experiencing moderate congestion, the router may
 decide to set its CE codepoint instead of dropping it. If either of
 the TCP endpoints do not honour the congestion indication provided by
 an ECN-capable router, this would result in unfairness, as other
 (legitimate) ECN-capable flows would still reduce their sending rate
 in response to the ECN marking of packets. Furthermore, under
 moderate congestion, non-ECN-capable flows would be subject to packet
 drops by the same router. As a result, the flow with a malicious TCP
 end-point would obtain better service than the legitimate flows.

 As noted in RFC 3168 [Ramakrishnan et al, 2001], a TCP endpoint
 falsely indicating ECN capability could lead to unfairness, allowing
 the mis-beheaving flow to get more than its fair share of the
 bandwidth. This could be the result of the mis-behavior of either of
 the TCP endpoints. For example, the sending TCP could indicate ECN
 capability, but then send a CWR in response to an ECE without
 actually reducing its congestion window. Alternatively (or in
 addition), the receiving TCP could simply ignore those packets with
 the CE codepoint set, thus avoiding the sending TCP from receiving
 the congestion indication.

 In the case of the sending TCP ignoring the ECN congestion
 indication, this would be no worse than the sending TCP ignoring the
 congestion indication provided by a lost segment. However, the case
 of a TCP receiver ignoring the CE codepoint allows the TCP receiver
 to get more than its fair share of bandwidth in a way that was
 previously unavailable. If congestion was kept "moderate", then the
 malicious TCP receiver could maintain the unfairness, as the router
 experiencing congestion would mark the offending packets of the
 misbehaving flow rather than dropping them. At the same time,
 legitimate ECN-capable flows would respond to the congestion
 indication provided by the CE codepoint, while legitimate non-ECN-
 capable flows would be subject of packet dropping. However, if

Gont Expires July 25, 2011 [Page 80]

Internet-Draft TCP Security Assessment January 2011

 congestion turned to sufficiently heavy, the router experiencing
 congestion would switch from marking packets to dropping packets, and
 at that point the attack vector provided by ECN could no longer be
 exploited (until congestion returns to moderate state).

 RFC 3168 [Ramakrishnan et al, 2001] describes the use of "penalty
 boxes" which would act on flows that do not respond appropriately to
 congestion indications. Section 10 of RFC 3168 suggests that a first
 action taken at a penalty box for an ECN-capable flow would be to
 switch to dropping packets (instead of marking them), and, if the
 flow does not respond appropriately to the congestion indication, the
 penalty box could reset the misbehaving connection. Here we
 discourage implementation of such a policy, as it would create a
 vector for connection-reset attacks. For example, an attacker could
 forge TCP segments with the same four-tuple as the targeted
 connection and cause them to transit the penalty box. The penalty
 box would first switch from marking to dropping packets. However,
 the attacker would continue sending forged segments, at a steady
 rate. As a result, if the penalty box implemented such a severe
 policy of resetting connections for flows that still do not respond
 to end-to-end congestion control after switching from marking to
 dropping, the attacked connection would be reset.

10. TCP API

 Section 3.8 of RFC 793 [Postel, 1981c] describes the minimum set of
 TCP User Commands required of all TCP Implementations. Most
 operating systems provide an Application Programming Interface (API)
 that allows applications to make use of the services provided by TCP.
 One of the most popular APIs is the Sockets API, originally
 introduced in the BSD networking package [McKusick et al, 1996].

10.1. Passive opens and binding sockets

 When there is already a pending passive OPEN for some local port
 number, TCP SHOULD NOT allow processes that do not belong to the same
 user to "reuse" the local port for another passive OPEN.
 Additionally, reuse of a local port SHOULD default to "off", and be
 enabled only by an explicit command (e.g., the setsockopt() function
 of the Sockets API).

 DISCUSSION:

 RFC 793 specifies the syntax of the "OPEN" command, which can be
 used to perform both passive and active opens. The syntax of this
 command is as follows:

Gont Expires July 25, 2011 [Page 81]

Internet-Draft TCP Security Assessment January 2011

 OPEN (local port, foreign socket, active/passive [, timeout] [,
 precedence] [, security/compartment] [, options]) -> local
 connection name

 When this command is used to perform a passive open (i.e., the
 active/passive flag is set to passive), the foreign socket
 parameter may be either fully-specified (to wait for a particular
 connection) or unspecified (to wait for any call).

 As discussed in Section 2.7 of RFC 793 [Postel, 1981c], if there
 are several passive OPENs with the same local socket (recorded in
 the corresponding TCB), an incoming connection will be matched to
 the TCB with the more specific foreign socket. This means that
 when the foreign socket of a passive OPEN matches that of the
 incoming connection request, that passive OPEN takes precedence
 over those passive OPENs with an unspecified foreign socket.

 Popular implementations such as the Sockets API let the user
 specify the local socket as fully-specified {local IP address,
 local TCP port} pair, or as just the local TCP port (leaving the
 local IP address unspecified). In the former case, only those
 connection requests sent to {local port, local IP address} will be
 accepted. In the latter case, connection requests sent to any of
 the system’s IP addresses will be accepted. In a similar fashion
 to the generic API described in Section 2.7 of RFC 793, if there
 is a pending passive OPEN with a fully-specified local socket that
 matches that for which a connection establishment request has been
 received, that local socket will take precedence over those which
 have left the local IP address unspecified. The implication of
 this is that an attacker could "steal" incoming connection
 requests meant for a local application by performing a passive
 OPEN that is more specific than that performed by the legitimate
 application.

10.2. Active opens and binding sockets

 TCP SHOULD NOT allow port numbers that have been allocated for a TCP
 that is the LISTEN or CLOSED states to be specified as the "local
 port" argument of the "OPEN" command.

 An implementation MAY relax the aforementioned restriction when the
 process or system user requesting allocation of such a port number is
 the same that the process or system user controlling the TCP in the
 CLOSED or LISTEN states with the same port number.

 DISCUSSION:

Gont Expires July 25, 2011 [Page 82]

Internet-Draft TCP Security Assessment January 2011

 As discussed in Section 10.1, the "OPEN" command specified in
 Section 3.8 of RFC 793 [Postel, 1981c] can be used to perform
 active opens. In case of active opens, the parameter "local port"
 will contain a so-called "ephemeral port". While the only
 requirement for such an ephemeral port is that the resulting
 connection-id is unique, port numbers that are currently in use by
 a TCP in the LISTEN state should not be allowed for use as
 ephemeral ports. If this rule is not complied, an attacker could
 potentially "steal" an incoming connection to a local server
 application by issuing a connection request to the victim client
 at roughly the same time the client tries to connect to the victim
 server application. If the SYN segment corresponding to the
 attacker’s connection request and the SYN segment corresponding to
 the victim client "cross each other in the network", and provided
 the attacker is able to know or guess the ephemeral port used by
 the client, a TCP simultaneous open scenario would take place, and
 the incoming connection request sent by the client would be
 matched with the attacker’s socket rather than with the victim
 server application’s socket.

 As already noted, in order for this attack to succeed, the
 attacker should be able to guess or know (in advance) the
 ephemeral port selected by the victim client, and be able to know
 the right moment to issue a connection request to the victim
 client. While in many scenarios this may prove to be a difficult
 task, some factors such as an inadequate ephemeral port selection
 policy at the victim client could make this attack feasible.

 It should be noted that most applications based on popular
 implementations of TCP API (such as the Sockets API) perform
 "passive opens" in three steps. Firstly, the application obtains
 a file descriptor to be used for inter-process communication
 (e.g., by issuing a socket() call). Secondly, the application
 binds the file descriptor to a local TCP port number (e.g., by
 issuing a bind() call), thus creating a TCP in the fictional
 CLOSED state. Thirdly, the aforementioned TCP is put in the
 LISTEN state (e.g., by issuing a listen() call). As a result,
 with such an implementation of the TCP API, even if port numbers
 in use for TCPs in the LISTEN state were not allowed for use as
 ephemeral ports, there is a window of time between the second and
 the third steps in which an attacker could be allowed to select a
 port number that would be later used for listening to incoming
 connections. Therefore, these implementations of the TCP API
 should enforce a stricter requirement for the allocation of port
 numbers: port numbers that are in use by a TCP in the LISTEN or
 CLOSED states should not be allowed for allocation as ephemeral
 ports.

Gont Expires July 25, 2011 [Page 83]

Internet-Draft TCP Security Assessment January 2011

 An implementation might choose to relax the aforementioned
 restriction when the process or system user requesting allocation
 of such a port number is the same that the process or system user
 controlling the TCP in the CLOSED or LISTEN states with the same
 port number.

11. Blind in-window attacks

 In the last few years awareness has been raised about a number of
 "blind" attacks that can be performed against TCP by forging TCP
 segments that fall within the receive window [NISCC, 2004] [Watson,
 2004].

 The term "blind" refers to the fact that the attacker does not have
 access to the packets that belong to the attacked connection.

 The effects of these attacks range from connection resets to data
 injection. While these attacks were known in the research community,
 they were generally considered unfeasible. However, increases in
 bandwidth availability and the use of larger TCP windows raised
 concerns in the community. The following subsections discuss a
 number of forgery attacks against TCP, along with the possible
 countermeasures to mitigate their impact.

11.1. Blind TCP-based connection-reset attacks

 Blind connection-reset attacks have the goal of causing a TCP
 connection maintained between two TCP endpoints to be aborted. The
 level of damage that the attack may cause usually depends on the
 application running on top of TCP, with the more vulnerable
 applications being those that rely on long-lived TCP connections.

 An interesting case of such applications is BGP [Rekhter et al,
 2006], in which a connection-reset usually results in the
 corresponding entries of the routing table being flushed.

 There are a variety of vectors for performing TCP-based connection-
 reset attacks against TCP. [Watson, 2004] and [NISCC, 2004] raised
 awareness about connection-reset attacks that exploit the RST flag of
 TCP segments. [Ramaiah et al, 2008] noted that carefully crafted SYN
 segments could also be used to perform connection-reset attacks.
 This document describes yet two previously undocumented vectors for
 performing connection-reset attacks: the Precedence field of IP
 packets that encapsulate TCP segments, and illegal TCP options.

Gont Expires July 25, 2011 [Page 84]

Internet-Draft TCP Security Assessment January 2011

11.1.1. RST flag

 TCP SHOULD implement the mitigation for RST-based attacks specified
 in [Ramaiah et al, 2008].

 DISCUSSION:

 The RST flag signals a TCP peer that the connection should be
 aborted. In contrast with the FIN handshake (which gracefully
 terminates a TCP connection), an RST segment causes the connection
 to be abnormally closed.

 As stated in Section 3.4 of RFC 793 [Postel, 1981c], all reset
 segments are validated by checking their Sequence Numbers, with
 the Sequence Number considered valid if it is within the receive
 window. In the SYN-SENT state, however, an RST is valid if the
 Acknowledgement Number acknowledges the SYN segment that
 supposedly elicited the reset.

 [Ramaiah et al, 2008] proposes a modification to TCP’s transition
 diagram to address this attack vector. The counter-measure is a
 combination of enforcing a more strict validation check on the
 sequence number of reset segments, and the addition of a
 "challenge" mechanism. With the implementation of the proposed
 mechanism, TCP would behave as follows:

 If the Sequence Number of an RST segment is outside the receive
 window, the segment is silently dropped (as stated by RFC 793).
 That is, a reset segment is discarded unless it passes the
 following check:

 RCV.NXT <= Sequence Number < RCV.NXT+RCV.WND

 If the sequence number falls exactly on the left-edge of the
 receive window, the reset is honoured. That is, the connection is
 reset if the following condition is true:

 Sequence Number == RCV.NXT

 If an RST segment passes the first check (i.e., it is within the
 receive window) but does not pass the second check (i.e., it does
 not fall exactly on the left edge of the receive window), an
 Acknowledgement segment ("challenge ACK") is set in response:

 <SEQ=SND.NXT><ACK=RCV.NXT><CTL=ACK>

Gont Expires July 25, 2011 [Page 85]

Internet-Draft TCP Security Assessment January 2011

 This Acknowledgement segment is referred to as a "challenge ACK"
 as, in the event the RST segment that elicited it had been
 legitimate (but silently dropped as a result of enforcing the
 above checks), the challenge ACK would elicit a new reset segment
 that would fall exactly on the left edge of the window and would
 thus pass all the above checks, finally resetting the connection.

 We recommend the implementation of this countermeasure. However,
 we are aware of patent claims on this counter-measure, and suggest
 vendors to research the consequences of the possible patents that
 may apply.

 [US-CERT, 2003a] is an advisory of a firewall system that was
 found particularly vulnerable to resets attack because of not
 validating the TCP Sequence Number of RST segments. Clearly, all
 TCPs (including those in middle-boxes) should validate RST
 segments as discussed in this section.

11.1.2. SYN flag

 Processing of SYN segments received for connections in the
 synchronized states SHOULD occur as follows:

 o If a SYN segment is received for a connection in any synchronized
 state other than TIME-WAIT, respond with an ACK, applying rate-
 throttling. [Ramaiah et al, 2008]

 o If the corresponding connection is in the TIME-WAIT state, then
 process the incomming SYN as specified in
 [I-D.ietf-tcpm-tcp-timestamps].

 DISCUSSION:

 Section 3.9 (page 71) of RFC 793 [Postel, 1981c] states that if a
 SYN segment is received with a valid (i.e., "in window") Sequence
 Number, an RST segment should be sent in response, and the
 connection should be aborted.

 The IETF has published an RFC, "Improving TCP’s Resistance to
 Blind In-Window Attacks" [Ramaiah et al, 2008] which addresses,
 among others, this variant of TCP-based connection-reset attack.
 This section describes the counter-measure proposed by the IETF, a
 problem that may arise from the implementation of that solution,
 and a workaround to it.

 In order to mitigate this attack vector, [Ramaiah et al, 2008]
 proposes to change TCP’s reaction to SYN segments as follows.
 When a SYN segment is received for a connection in any of the

Gont Expires July 25, 2011 [Page 86]

Internet-Draft TCP Security Assessment January 2011

 synchronized states, an Acknowledgement (ACK) segment is sent in
 response.

 As discussed in [Ramaiah et al, 2008], there is a corner-case that
 would not be properly handled by this mechanism. If a host (TCP
 A) establishes a TCP connection with a remote peer (TCP B), and
 then crashes, reboots and tries to initiate a new incarnation of
 the same connection (i.e., a connection with the same four-tuple
 as the previous connection) using an Initial Sequence Number equal
 to the RCV.NXT value at the remote peer (TCP B), the ACK segment
 sent by TCP B in response to the SYN segment would contain an
 Acknowledgement number that would be considered valid by TCP A,
 and thus an RST segment would not be sent in response to the
 Acknowledgement (ACK) segment. As this ACK would not have the SYN
 bit set, TCP A (being in the SYN-SENT state) would silently drop
 it (as stated on page 68 of RFC 793). After a Retransmission
 Timeout (RTO), TCP A would retransmit its SYN segment, which would
 lead to the same sequence of events as before. Eventually, TCP A
 would timeout, and the connection would be aborted. This is a
 corner case in which the introduced change would lead to a non-
 desirable behavior. However, we consider this scenario to be
 extremely unlikely and, in the event it ever took place, the
 connection would nevertheless be aborted after retrying for a
 period of USER TIMEOUT seconds.

 However, when this change is implemented exactly as described in
 [Ramaiah et al, 2008], the potential of interoperability problems
 is introduced, as a heuristic widely incorporated in many TCP
 implementations is disabled.

 In a number of scenarios a socket pair may need to be reused while
 the corresponding four-tuple is still in the TIME-WAIT state in a
 remote TCP peer. For example, a client accessing some service on
 a host may try to create a new incarnation of a previous
 connection, while the corresponding four-tuple is still in the
 TIME-WAIT state at the remote TCP peer (the server). This may
 happen if the ephemeral port numbers are being reused too quickly,
 either because of a bad policy of selection of ephemeral ports, or
 simply because of a high connection rate to the corresponding
 service. In such scenarios, the establishment of new connections
 that reuse a four-tuple that is in the TIME-WAIT state would fail.
 In order to avoid this problem, RFC 1122 [Braden, 1989] states (in
 Section 4.2.2.13) that when a connection request is received with
 a four-tuple that is in the TIME-WAIT state, the connection
 request could be accepted if the sequence number of the incoming
 SYN segment is greater than the last sequence number seen on the
 previous incarnation of the connection (for that direction of the
 data transfer).

Gont Expires July 25, 2011 [Page 87]

Internet-Draft TCP Security Assessment January 2011

 This requirement aims at avoiding the sequence number space of the
 new and old incarnations of the connection to overlap, thus
 avoiding old segments from the previous incarnation of the
 connection to be accepted as valid by the new connection.

 The requirement in [Ramaiah et al, 2008] to disregard SYN segments
 received for connections in any of the synchronized states forbids
 the implementation of the heuristic described above. As a result,
 we argue that the processing of SYN segments proposed in [Ramaiah
 et al, 2008] should apply only for connections in any of the
 synchronized states other than the TIME-WAIT state.

11.1.3. Security/Compartment

 If the security/compartment field of an incoming TCP segment does not
 match the value recorded in the corresponding TCB, TCP SHOULD NOT
 abort the connection, but simply discard the corresponding packet.
 Additionally, this whole event SHOULD be logged as a security
 violation.

 DISCUSSION:

 Section 3.9 (page 71) of RFC 793 [Postel, 1981c] states that if
 the IP security/compartment of an incoming segment does not
 exactly match the security/compartment in the TCB, a RST segment
 should be sent, and the connection should be aborted.

 A discussion of the IP security options relevant to this section
 can be found in Section 3.13.2.12, Section 3.13.2.13, and Section
 3.13.2.14 of [CPNI, 2008].

 This certainly provides another attack vector for performing
 connection-reset attacks, as an attacker could forge TCP segments
 with a security/compartment that is different from that recorded
 in the corresponding TCB and, as a result, the attacked connection
 would be reset.

 It is interesting to note that for connections in the ESTABLISHED
 state, this check is performed after validating the TCP Sequence
 Number and checking the RST bit, but before validating the
 Acknowledgement field. Therefore, even if the stricter validation
 of the Acknowledgement field (described in Section 3.4) was
 implemented, it would not help to mitigate this attack vector.

 This attack vector can be easily mitigated by relaxing the
 reaction to TCP segments with "incorrect" security/compartment
 values as specified in this section.

Gont Expires July 25, 2011 [Page 88]

Internet-Draft TCP Security Assessment January 2011

11.1.4. Precedence

 If the Precedence field of an incomming TCP segment does not match
 the value recorded in the corresponding TCB, TCP MUST NOT abort the
 connection, and MUST instead continue processing the segment as
 specified by RFC 793.

 DISCUSSION:

 Section 3.9 (page 71) of RFC 793 [Postel, 1981c] states that if
 the IP Precedence of an incoming segment does not exactly match
 the Precedence recorded in the TCB, a RST segment should be sent,
 and the connection should be aborted.

 This certainly provides another attack vector for performing
 connection-reset attacks, as an attacker could forge TCP segments
 with a IP Precedence that is different from that recorded in the
 corresponding TCB and, as a result, the attacked connection would
 be reset.

 It is interesting to note that for connections in the ESTABLISHED
 state, this check is performed after validating the TCP Sequence
 Number and checking the RST bit, but before validating the
 Acknowledgement field. Therefore, even if the stricter validation
 of the Acknowledgement field (described in Section 3.4) were
 implemented, it would not help to mitigate this attack vector.

 This attack vector can be easily mitigated by relaxing the
 reaction to TCP segments with "incorrect" IP Precedence values.
 That is, even if the Precedence field does not match the value
 recorded in the corresponding TCB, TCP should not abort the
 connection, and should instead continue processing the segment as
 specified by RFC 793.

 It is interesting to note that resetting a connection due to a
 change in the Precedence value might have a negative impact on
 interoperability. For example, the packets that correspond to the
 connection could temporarily take a different internet path, in
 which some middle-box could re-mark the Precedence field (due to
 administration policies at the network to be transited). In such
 a scenario, an implementation following the advice in RFC 793
 would abort the connection, when the connection would have
 probably survived.

 While the IPv4 Type of Service field (and hence the Precedence
 field) has been redefined by the Differentiated Services (DS)
 field specified in RFC 2474 [Nichols et al, 1998], RFC 793
 [Postel, 1981c] was never formally updated in this respect. We

Gont Expires July 25, 2011 [Page 89]

Internet-Draft TCP Security Assessment January 2011

 note that both legacy systems that have not been upgraded to
 implement the differentiated services architecture described in
 RFC 2475 [Blake et al, 1998] and current implementations that have
 extrapolated the discussion of the Precedence field to the
 Differentiated Services field may still be vulnerable to the
 connection reset vector discussed in this section.

11.1.5. Illegal options

 TCP MUST silently drop those TCP segments that contain TCP options
 with illegal option lengths.

 DISCUSSION:

 Section 4.2.2.5 of RFC 1122 [Braden, 1989] discusses the
 processing of TCP options. It states that TCP must be able to
 receive a TCP option in any segment, and must ignore without error
 any option it does not implement. Additionally, it states that
 TCP should be prepared to handle an illegal option length (e.g.,
 zero) without crashing, and suggests handling such illegal options
 by resetting the corresponding connection and logging the reason.
 However, this suggested behavior could be exploited to perform
 connection-reset attacks. Therefore, as discussed in Section 3.10
 of this document, we advise TCP implementations to silently drop
 those TCP segments that contain illegal option lengths.

11.2. Blind data-injection attacks

 An attacker could try to inject data in the stream of data being
 transferred on the connection. As with the other attacks described
 in Section 11 of this document, in order to perform a blind data
 injection attack the attacker would need to know or guess the four-
 tuple that identifies the TCP connection to be attacked.
 Additionally, he should be able to guess a valid ("in window") TCP
 Sequence Number, and a valid Acknowledgement Number.

 As discussed in Section 3.4 of this document, [Ramaiah et al, 2008]
 proposes to enforce a more strict check on the Acknowledgement Number
 of incoming segments than that specified in RFC 793 [Postel, 1981c].

 Implementation of the proposed check requires more packets on the
 side of the attacker to successfully perform a blind data-injection
 attack. However, it should be noted that applications concerned with
 any of the attacks discussed in Section 11 of this document should
 make use of proper authentication techniques, such as those specified
 for IPsec in RFC 4301 [Kent and Seo, 2005].

Gont Expires July 25, 2011 [Page 90]

Internet-Draft TCP Security Assessment January 2011

12. Information leaking

12.1. Remote Operating System detection via TCP/IP stack fingerprinting

 Clearly, remote Operating System (OS) detection is a useful tool for
 attackers. Tools such as nmap [Fyodor, 2006b] can usually detect the
 operating system type and version of a remote system with an
 amazingly accurate precision. This information can in turn be used
 by attackers to tailor their exploits to the identified operating
 system type and version.

 Evasion of OS fingerprinting can prove to be a very difficult task.
 Most systems make use of a variety of protocols, each of which have a
 large number of parameters that can be set to arbitrary values.
 Thus, information on the operating system may be obtained from a
 number of sources ranging from application banners to more obscure
 parameters such as TCP’s retransmission timer.

 Nmap [Fyodor, 2006b] is probably the most popular tool for remote OS
 detection via active TCP/IP stack fingerprinting. p0f [Zalewski,
 2006a], on the other hand, is a tool for performing remote OS
 detection via passive TCP/IP stack fingerprinting. SinFP [SinFP,
 2006] can perform both active and passive fingerprinting. Finally,
 TBIT [TBIT, 2001] is a TCP fingerprinting tool that aims at
 characterizing the behavior of a remote TCP peer based on active
 probes, and which has been widely used in the research community.

 TBIT [TBIT, 2001] implements a number of tests not present in other
 tools, such as characterizing the behavior of a TCP peer with respect
 to TCP congestion control.

 [Fyodor, 1998] and [Fyodor, 2006a] are classic papers on the subject.
 [Miller, 2006] and [Smith and Grundl, 2002] provide an introduction
 to passive TCP/IP stack fingerprinting. [Smart et al, 2000] and
 [Beck, 2001] discuss some techniques for evading OS detection through
 TCP/IP stack fingerprinting.

 The following subsections discuss TCP-based techniques for remote OS
 detection via and, where possible, propose ways to mitigate them.

12.1.1. FIN probe

 TCP MUST silently drop TCP any segments received for a connection in
 the LISTEN state that do not have the SYN, RST, or ACK flags set. In
 the rest of the cases, the processing rules in RFC 793 MUST be
 applied.

 DISCUSSION:

Gont Expires July 25, 2011 [Page 91]

Internet-Draft TCP Security Assessment January 2011

 The attacker sends a FIN (or any packet without the SYN or the ACK
 flags set) to an open port. RFC 793 [Postel, 1981c] leaves the
 reaction to such segments unspecified. As a result, some
 implementations silently drop the received segment, while others
 respond with a RST.

12.1.2. Bogus flag test

 TCP MUST ignore any flags not supported, and MUST NOT reflect them if
 a TCP segment is sent in response to the one just received.

 DISCUSSION:

 The attacker sends a TCP segment setting at least one bit of the
 Reserved field. Some implementations ignore this field, while
 others reset the corresponding connection or reflect the field in
 the TCP segment sent in response.

12.1.3. TCP ISN sampling

 The attacker samples a number of Initial Sequence Numbers by sending
 a number of connection requests. Many TCP implementations differ on
 the ISN generator they implement, thus allowing the correlation of
 ISN generation algorithm to the operating system type and version.

 This document advises implementing an ISN generator that follows the
 behavior described in RFC 1948 [Bellovin, 1996]. However, it should
 be noted that even if all TCP implementations generated their ISNs as
 proposed in RFC 1948, there is still a number of implementation
 details that are left unspecified, which would allow remote OS
 fingerprinting by means of ISN sampling. For example, the time-
 dependent parameter of the hash could have a different frequency in
 different TCP implementations.

12.1.4. TCP initial window

 Many TCP implementations differ on the initial TCP window they use.
 There are a number of factors that should be considered when
 selecting the TCP window to be used for a given system. A number of
 implementations that use static windows (i.e., no automatic buffer
 tuning mechanisms are implemented) default to a window of around 32
 KB, which seems sensible for the general case. On the other hand, a
 window of 4 KB seems to be common practice for connections servicing
 critical applications such as BGP. It is clear that the window size
 is a tradeoff among a number of considerations. Section 3.7
 discusses some of the considerations that should be made when
 selecting the window size for a TCP connection.

Gont Expires July 25, 2011 [Page 92]

Internet-Draft TCP Security Assessment January 2011

 If automatic tuning mechanisms are implemented, we suggest the
 initial window to be at least 4 * RMSS segments. We note that a
 remote OS fingerprinting tool could still sample the advertised TCP
 window, trying to correlate the advertised window with the potential
 automatic buffer tuning algorithm and Operating System.

12.1.5. RST sampling

 If an RST must be sent in response to an incoming segment, then if
 the ACK bit of an incoming TCP segment is off, a Sequence Number of
 zero MUST be used in the RST segment sent in response. That is,

 <SEQ=0><ACK=SEG.SEQ+SEG.LEN><CTL=RST, ACK>

 It should be noted that the SEG.LEN value used for the
 Acknowledgement Number MUST be incremented once for each flag set in
 the original segment that makes use of a byte of the sequence number
 space. That is, if only one of the SYN or FIN flags were set in the
 received segment, the Acknowledgement Number of the response should
 be set to SEG.SEQ+SEG.LEN+1. If both the SYN and FIN flags were set
 in the received segment, the Acknowledgement Number should be set to
 SEG.SEQ+SEG.LEN+2.

 We also RECOMMEND that TCP sets ACK bit (and the Acknowledgement
 Number) in all outgoing RST segments, as it allows for additional
 validation checks to be enforced at the system receiving the segment.

 DISCUSSION:

 [Fyodor, 1998] reports that many implementations differ in the
 Acknowledgement Number they use in response to segments received
 for connections in the CLOSED state. In particular, these
 implementations differ in the way they construct the RST segment
 that is sent in response to those TCP segments received for
 connections in the CLOSED state.

 RFC 793 [Postel, 1981c] describes (in pages 36-37) how RST
 segments are to be generated. According to this RFC, the ACK bit
 (and the Acknowledgment Number) is set in a RST only if the
 incoming segment that elicited the RST did not have the ACK bit
 set (and thus the Sequence Number of the outgoing RST segment must
 be set to zero). However, we recommend TCP implementations to set
 the ACK bit (and the Acknowledgement Number) in all outgoing RST
 segments, as it allows for additional validation checks to be
 enforced at the system receiving the segment.

Gont Expires July 25, 2011 [Page 93]

Internet-Draft TCP Security Assessment January 2011

12.1.6. TCP options

 Different implementations differ in the TCP options they enable by
 default. Additionally, they differ in the actual contents of the
 options, and in the order in which the options are included in a TCP
 segment. There is currently no recommendation on the order in which
 to include TCP options in TCP segments.

12.1.7. Retransmission Timeout (RTO) sampling

 TCP uses a retransmission timer for retransmitting data in the
 absence of any feedback from the remote data receiver. The duration
 of this timer is referred to as "retransmission timeout" (RTO). RFC
 2988 [Paxson and Allman, 2000] specifies the algorithm for computing
 the TCP retransmission timeout (RTO).

 The algorithm allows the use of clocks of different granularities, to
 accommodate the different granularities used by the existing
 implementations. Thus, the difference in the resulting RTO can be
 used for remote OS fingerprinting. [Veysset et al, 2002] describes
 how to perform remote OS fingerprinting by sampling and analyzing the
 RTO of the target system. However, this fingerprinting technique has
 at least the following drawbacks:

 o It is usually much slower than other fingerprinting techniques, as
 it may require considerable time to sample the RTO of a given
 target.

 o It is less reliable than other fingerprinting techniques, as
 latency and packet loss can lead to bogus results.

 While in principle it would be possible to defeat this fingerprinting
 technique (e.g., by obfuscating the granularity of the clock used for
 computing the RTO), we consider that a more important step to defeat
 remote OS detection is for implementations to address the more
 effective fingerprinting techniques described in Sections 12.1.1
 through 12.1.7 of this document.

12.2. System uptime detection

 The "uptime" of a system may prove to be valuable information to an
 attacker. For example, it might reveal the last time a security
 patch was applied. Information about system uptime is usually leaked
 by TCP header fields or options that are (or may be) time-dependent,
 and are usually initialized to zero when the system is bootstrapped.
 As a result, if the attacker knows the frequency with which the
 corresponding parameter or header field is incremented, and is able
 to sample the current value of that parameter or header field, the

Gont Expires July 25, 2011 [Page 94]

Internet-Draft TCP Security Assessment January 2011

 system uptime will be easily obtained. Two fields that can
 potentially reveal the system uptime is the Sequence Number field of
 a SYN or SYN/ACK segment (i.e., when it contains an ISN) and the
 TSval field of the timestamp option. Section 3.3.1 of this document
 discusses the generation of TCP Initial Sequence Numbers. Section
 4.7.1 of this document discusses the generation of TCP timestamps.

13. Covert channels

 As virtually every communications protocol, TCP can be exploited to
 establish covert channels. While an exhaustive discussion of covert
 channels is out of the scope of this document, for completeness of
 the document we simply note that it is possible for a (probably
 malicious) user to establish a covert channel by means of TCP, such
 that data can be surreptitiously passed to a remote system, probably
 unnoticed by a monitoring system, and with the possibility of
 concealing the location of the source system.

 In most cases, covert channels based on manipulation of TCP fields
 can be eliminated by protocol scrubbers and other middle-boxes. On
 the other hand, "timing channels" may prove to be more difficult to
 eliminate.

 [Rowland, 1996] contains a discussion of covert channels in the
 TCP/IP protocol suite, with some TCP-based examples. [Giffin et al,
 2002] describes the use of TCP timestamps for the establishment of
 covert channels. [Zander, 2008] contains an extensive bibliography
 of papers on covert channels, and a list of freely-available tools
 that implement covert channels with the TCP/IP protocol suite.

14. TCP Port scanning

 TCP port scanning aims at identifying TCP port numbers on which there
 is a process listening for incoming connections. That is, it aims at
 identifying TCPs at the target system that are in the LISTEN state.
 The following subsections describe different TCP port scanning
 techniques that have been implemented in freely-available tools.
 These subsections focus only on those port scanning techniques that
 exploit features of TCP itself, and not of other communication
 protocols.

 For example, the following subsections do not discuss the
 exploitation of application protocols (such as FTP) or the
 exploitation of features of underlying protocols (such as the IP
 Identification field) for port-scanning purposes.

Gont Expires July 25, 2011 [Page 95]

Internet-Draft TCP Security Assessment January 2011

14.1. Traditional connect() scan

 The most trivial scanning technique consists in trying to perform the
 TCP three-way handshake with each of the port numbers at the target
 system (e.g. by issuing a call to the connect() function of the
 Sockets API). The three-way handshake will complete for port numbers
 that are "open", but will fail for those port numbers that are
 "closed".

 As this port-scanning technique can be implemented by issuing a call
 to the connect() function of the Sockets API that normal applications
 use, it does not require the attacker to have superuser privileges.
 The downside of this port-scanning technique is that it is less
 efficient than other scanning methods (e.g., the "SYN scan" described
 in Section 14.2), and that it can be easily logged by the target
 system.

14.2. SYN scan

 The SYN scan was introduced as a "stealth" port-scanning technique.
 It aims at avoiding the target system from logging the port scan by
 not completing the TCP three-way handshake. When a SYN/ACK segment
 is received in response to the initial SYN segment, the system
 performing the port scan will respond with an RST segment, thus
 preventing the three-way handshake from completing. While this port-
 scanning technique is harder to detect and log than the traditional
 connect() scan described in Section 14.1, most current NIDS (Network
 Intrusion Detection Systems) can detect and log it.

 SYN scans are sometimes mistakenly reported as "SYN flood" attacks by
 NIDS, though.

 The main advantage of this port scanning technique is that it is much
 more efficient than the traditional connect() scan.

 In order to implement this port-scanning technique, port-scanning
 tools usually bypass the TCP API, and forge the SYN segments they
 send (e.g., by using raw sockets). This typically requires the
 attacker to have superuser privileges to be able to run the port-
 scanning tool.

14.3. FIN, NULL, and XMAS scans

 TCP SHOULD respond with an RST when a TCP segment is received for a
 connection in the LISTEN state, and the incoming segment has neither
 the SYN bit nor the RST bit set.

 DISCUSSION:

Gont Expires July 25, 2011 [Page 96]

Internet-Draft TCP Security Assessment January 2011

 RFC 793 [Postel, 1981c] states, in page 65, that an incoming
 segment that does not have the RST bit set and that is received
 for a connection in the fictional state CLOSED causes an RST to be
 sent in response. Pages 65-66 of RFC 793 describes the processing
 of incoming segments for connections in the state LISTEN, and
 implicitly states that an incoming segment that does not have the
 ACK bit set (and is not a SYN or an RST) should be silently
 dropped.

 As a result, an attacker can exploit this situation to perform a
 port scan by sending TCP segments that do not have the ACK bit set
 to the target system. When a port is "open" (i.e., there is a TCP
 in the LISTEN state on the corresponding port), the target system
 will respond with an RST segment. On the other hand, if the port
 is "closed" (i.e., there is a TCP in the fictional state CLOSED)
 the attacker will not get any response from the target system.

 Since the only requirement for exploiting this port scanning
 vector is that the probe segments must not have the ACK bit set,
 there are a number of different TCP control-bits combinations that
 can be used for the probe segments.

 When the probe segment sent to the target system is a TCP segment
 that has only the FIN bit set, the scanning technique is usually
 referred to as a "FIN scan". When the probe packet is a TCP
 segment that does not have any of the control bits set, the
 scanning technique is usually known as a "NULL scan". Finally,
 when the probe packet sent to the target system has only the FIN,
 PSH, and the URG bits set, the port-scanning technique is known as
 a "XMAS scan".

 It should be clear that while the aforementioned control-bits
 combinations are the most popular ones, other combinations could
 be used to exploit this port-scanning vector. For example, the
 CWR, ECE, and/or any of the Reserved bits could be set in the
 probe segments.

 The advantage of this port-scanning technique is that in can
 bypass some stateless firewalls. However, the downside is that a
 number of implementations do not comply strictly with RFC 793
 [Postel, 1981c], and thus always respond to the probe segments
 with an RST, regardless of whether the port is open or closed.

 This port-scanning vector can be easily defeated as rby responding
 with an RST when a TCP segment is received for a connection in the
 LISTEN state, and the incoming segment has neither the SYN bit nor
 the RST bit set.

Gont Expires July 25, 2011 [Page 97]

Internet-Draft TCP Security Assessment January 2011

14.4. Maimon scan

 If a TCP that is in the CLOSED or LISTEN states receives a TCP
 segment with both the FIN and ACK bits set, it MUST respond with a
 RST.

 DISCUSSION:

 This port scanning technique was introduced in [Maimon, 1996] with
 the name "StealthScan" (method #1), and was later incorporated
 into the nmap tool [Fyodor, 2006b] as the "Maimon scan".

 This port scanning technique employs TCP segments that have both
 the FIN and ACK bits sets as the probe segments. While according
 to RFC 793 [Postel, 1981c] these segments should elicit an RST
 regardless of whether the corresponding port is open or closed, a
 programming flaw found in a number of TCP implementations has
 caused some systems to silently drop the probe segment if the
 corresponding port was open (i.e., there was a TCP in the LISTEN
 state), and respond with an RST only if the port was closed.

 Therefore, an RST would indicate that the scanned port is closed,
 while the absence of a response from the target system would
 indicate that the scanned port is open.

 While this bug has not been found in current implementations of
 TCP, it might still be present in some legacy systems.

14.5. Window scan

 When sending an RST segment, TCP SHOULD set the Window field to zero.

 DISCUSSION:

 This port-scanning technique employs ACK segments as the probe
 packets. ACK segments will elicit an RST from the target system
 regardless of whether the corresponding TCP port is open or
 closed. However, as described in [Maimon, 1996], some systems set
 the Window field of the RST segments with different values
 depending on whether the corresponding TCP port is open or closed.
 These systems set the Window field of their RST segments to zero
 when the corresponding TCP port is closed, and set the Window
 field to a non-zero value when the corresponding TCP port is open.

 As a result, an attacker could exploit this situation for
 performing a port scan by sending ACK segments to the target
 system, and examining the Window field of the RST segments that
 his probe segments elicit.

Gont Expires July 25, 2011 [Page 98]

Internet-Draft TCP Security Assessment January 2011

 In order to defeat this port-scanning technique, we recommend TCP
 implementations to set the Window field to zero in all the RST
 segments they send. Most popular implementations of TCP already
 implement this policy.

14.6. ACK scan

 The so-called "ACK scan" is not really a port-scanning technique
 (i.e., it does not aim at determining whether a specific port is open
 or closed), but rather aims at determining whether some intermediate
 system is filtering TCP segments sent to that specific port number.

 The probe packet is a TCP segment with the ACK bit set which,
 according to RFC 793 [Postel, 1981c] should elicit an RST from the
 target system regardless of whether the corresponding TCP port is
 open or closed. If no response is received from the target system,
 it is assumed that some intermediate system is filtering the probe
 packets sent to the target system.

 It should be noted that this "port scanning" techniques exploits
 basic TCP processing rules, and therefore cannot be defeated at an
 end-system.

15. Processing of ICMP error messages by TCP

 TCP SHOULD silently ignore received ICMP Source Quench messages.

 TCP SHOULD process ICMP "hard errors" as "soft errors" when they are
 received for connections that are in any of he synchronized states.

 TCP SHOULD process ICMP "fragmentation needed and DF bit set" and
 ICMPv6 "Packet Too Big" error messages as described in [RFC5927].

 DISCUSSION:

 [RFC5927] analyzes a number of vulnerabilities based on crafted
 ICMP messages, along with possible counter-measures.

16. TCP interaction with the Internet Protocol (IP)

16.1. TCP-based traceroute

 The traceroute tool is used to identify the intermediate systems the
 local system and the destination system. It is usually implemented
 by sending "probe" packets with increasing IP Time to Live values
 (starting from 0), without maintaining any state with the final

Gont Expires July 25, 2011 [Page 99]

Internet-Draft TCP Security Assessment January 2011

 destination.

 Some traceroute implementations use ICMP "echo request" messages as
 the probe packets, while others use UDP packets or TCP SYN segments.

 In some cases, the state-less nature of the traceroute tool may
 prevent it from working correctly across stateful devices such as
 Network Address Translators (NATs) or firewalls.

 In order to by-pass this limitation, an attacker could establish a
 TCP connection with the destination system, and start sending TCP
 segments on that connection with increasing IP Time to Live values
 (starting from 0) [Zalewski, 2007] [Zalewski, 2008]. Provided ICMP
 error messages are not blocked by any intermediate system, an
 attacker could exploit this technique to map the network topology
 behind the aforementioned stateful devices in scenarios in which he
 could not have achieved this goal using the traditional traceroute
 tool.

 NATs [Srisuresh and Egevang, 2001] and other middle-boxes could
 defeat this network-mapping technique by overwriting the Time to Live
 of the packets they forward to the internal network. For example,
 they could overwrite the Time to Live of all packets being forwarded
 to an internal network with a value such as 128. We strongly
 recommend against overwriting the IP Time to Live field with the
 value 255 or other similar large values, as this could allow an
 attacker to bypass the protection provided by the Generalized TTL
 Security Mechanism (GTSM) described in RFC 5087 [Gill et al, 2007].

 [Gont and Srisuresh, 2008] discusses the security implications of
 NATs, and proposes mitigations for this and other issues.

16.2. Blind TCP data injection through fragmented IP traffic

 As discussed in Section 11.2, TCP data injection attacks usually
 require an attacker to guess or know a number of parameters related
 with the target TCP connection, such as the connection-id {Source
 Address, Source Port, Destination Address, Destination Port}, the TCP
 Sequence Number, and the TCP Acknowledgement Number. Provided these
 values are obfuscated as recommended in this document, the chances of
 an off-path attacker of successfully performing a data injection
 attack against a TCP connection are fairly low for many of the most
 common scenarios.

 As discussed in this document, randomization of the values contained
 in different TCP header fields is not a replacement for cryptographic
 methods for protecting a TCP connection, such as IPsec (specified in
 RFC 4301 [Kent and Seo, 2005]).

Gont Expires July 25, 2011 [Page 100]

Internet-Draft TCP Security Assessment January 2011

 However, [Zalewski, 2003b] describes a possible vector for performing
 a TCP data injection attack that does not require the attacker to
 guess or know the aforementioned TCP connection parameters, and could
 therefore be successfully exploited in some scenarios with less
 effort than that required to exploit the more traditional data-
 injection attack vectors.

 The attack vector works as follows. When one system is transferring
 information to a remote peer by means of TCP, and the resulting
 packet gets fragmented, the first fragment will usually contain the
 entire TCP header which, together with the IP header, includes all
 the connection parameters that an attacker would need to guess or
 know to successfully perform a data injection attack against TCP. If
 an attacker were able to forge all the fragments other than the first
 one, his forged fragments could be reassembled together with the
 legitimate first fragment, and thus he would be relieved from the
 hard task of guessing or knowing connection parameters such as the
 TCP Sequence Number and the TCP Acknowledgement Number.

 In order to successfully exploit this attack vector, the attacker
 should be able to guess or know both of the IP addresses involved in
 the target TCP connection, the IP Identification value used for the
 specific packet he is targeting, and the TCP Checksum of that target
 packet. While it would seem that these values are hard to guess, in
 some specific scenarios, and with some security-unwise implementation
 approaches for the TCP and IP protocols, these values may be feasible
 to guess or know. For example, if the sending system uses
 predictable IP Identification values, the attacker could simply
 perform a brute force attack, trying each of the possible
 combinations for the TCP Checksum field. In more specific scenarios,
 the attacker could have more detailed knowledge about the data being
 transferred over the target TCP connection, which might allow him to
 predict the TCP Checksum of the target packet. For example, if both
 of the involved TCP peers used predictable values for the TCP
 Sequence Number and for the IP Identification fields, and the
 attacker knew the data being transferred over the target TCP
 connection, he could be able to carefully forge the IP payload of his
 IP fragments so that the checksum of the reassembled TCP segment
 matched the Checksum included in the TCP header of the first (and
 legitimate) IP fragment.

 As discussed in Section 4.1 of [CPNI, 2008], IP fragmentation
 provides a vector for performing a variety of attacks against an IP
 implementation. Therefore, we discourage the reliance on IP
 fragmentation by end-systems, and recommend the implementation of
 mechanisms for the discovery of the Path-MTU, such as that described
 in Section 15.7.3 of this document and/or that described in RFC 4821
 [Mathis and Heffner, 2007]. We nevertheless recommend randomization

Gont Expires July 25, 2011 [Page 101]

Internet-Draft TCP Security Assessment January 2011

 of the IP Identification field as described in Section 3.5.2 of
 [CPNI, 2008]. While randomization of the IP Identification field
 does not eliminate this attack vector, it does require more work on
 the side of the attacker to successfully exploit it.

16.3. Broadcast and multicast IP addresses

 TCP connection state is maintained between only two endpoints at a
 time. As a result, broadcast and multicast IP addresses should not
 be allowed for the establishment of TCP connections. Section 4.3 of
 [CPNI, 2008] provides advice about which specific IP address blocks
 should not be allowed for connection-oriented protocols such as TCP.

17. Security Considerations

 This document provides a thorough security assessment of the
 Transmission Control Protocol (TCP), identifies a number of
 vulnerabilities, and specifies possible counter-measures.
 Additionally, it provides implementation guidance such that the
 resilience of TCP implementations is improved.

18. Acknowledgements

 The author would like to thank (in alphabetical order) David Borman,
 Wesley Eddy, and Alfred Hoenes, for providing valuable feedback on
 earlier versions of thi document.

 This document is heavily based on the document "Security Assessment
 of the Transmission Control Protocol (TCP)" [CPNI, 2009] written by
 Fernando Gont on behalf of CPNI (Centre for the Protection of
 National Infrastructure).

 The author would like to thank (in alphabetical order) Randall
 Atkinson, Guillermo Gont, Alfred Hoenes, Jamshid Mahdavi, Stanislav
 Shalunov, Michael Welzl, Dan Wing, Andrew Yourtchenko, Michal
 Zalewski, and Christos Zoulas, for providing valuable feedback on
 earlier versions of the UK CPNI document.

 Additionally, the author would like to thank (in alphabetical order)
 Mark Allman, David Black, Ethan Blanton, David Borman, James Chacon,
 John Heffner, Jerrold Leichter, Jamshid Mahdavi, Keith Scott, Bill
 Squier, and David White, who generously answered a number of
 questions that araised while the aforementioned document was being
 written.

 Finally, the author would like to thank CPNI (formely NISCC) for

Gont Expires July 25, 2011 [Page 102]

Internet-Draft TCP Security Assessment January 2011

 their continued support.

19. References

 Abley, J., Savola, P., Neville-Neil, G. 2007. Deprecation of Type 0
 Routing Headers in IPv6. RFC 5095.

 Allman, M. 2003. TCP Congestion Control with Appropriate Byte
 Counting (ABC). RFC 3465.

 Allman, M. 2008. Comments On Selecting Ephemeral Ports. Available
 at: http://www.icir.org/mallman/share/ports-dec08.pdf

 Allman, M., Paxson, V., Stevens, W. 1999. TCP Congestion Control.
 RFC 2581.

 Allman, M., Balakrishnan, H., Floyd, S. 2001. Enhancing TCP’s Loss
 Recovery Using Limited Transmit. RFC 3042.

 Allman, M., Floyd, S., and C. Partridge. 2002. Increasing TCP’s
 Initial Window. RFC 3390.

 Baker, F. 1995. Requirements for IP Version 4 Routers. RFC 1812.

 Baker, F., Savola, P. 2004. Ingress Filtering for Multihomed
 Networks. RFC 3704.

 Barisani, A. 2006. FTester - Firewall and IDS testing tool.
 Available at: http://dev.inversepath.com/trac/ftester

 Beck, R. 2001. Passive-Aggressive Resistance: OS Fingerprint
 Evasion. Linux Journal.

 Bellovin, S. M. 1989. Security Problems in the TCP/IP Protocol
 Suite. Computer Communication Review, Vol. 19, No. 2, pp. 32-48.

 Bellovin, S. M. 1996. Defending Against Sequence Number Attacks.
 RFC 1948.

 Bellovin, S. M. 2006. Towards a TCP Security Option. IETF Internet-
 Draft (draft-bellovin-tcpsec-00.txt), work in progress.

 Bernstein, D. J. 1996. SYN cookies. Available at:
 http://cr.yp.to/syncookies.html

 Blake, S., Black, D., Carlson, M., Davies, E., Wang, Z., and Weiss,
 W., 1998. An Architecture for Differentiated Services. RFC 2475.

Gont Expires July 25, 2011 [Page 103]

Internet-Draft TCP Security Assessment January 2011

 Blanton, E., Allman, M., Fall, K., Wang, L. 2003. A Conservative
 Selective Acknowledgment (SACK)-based Loss Recovery Algorithm for
 TCP. RFC 3517.

 Borman, D. 1997. Post to the tcp-impl mailing-list. Message-Id:
 <199706061526.KAA01535@frantic.BSDI.COM>. Available at:
 http://www.kohala.com/start/borman.97jun06.txt

 Borman, D., Deering, S., Hinden, R. 1999. IPv6 Jumbograms. RFC
 2675.

 Braden, R. 1989. Requirements for Internet Hosts -- Communication
 Layers. RFC 1122.

 Braden, R. 1992. Extending TCP for Transactions -- Concepts. RFC
 1379.

 Braden, R. 1994. T/TCP -- TCP Extensions for Transactions Functional
 Specification. RFC 1644.

 CCSDS. 2006. Consultative Committee for Space Data Systems (CCSDS)
 Recommendation Communications Protocol Specification (SCPS) --
 Transport Protocol (SCPS-TP). Blue Book. Issue 2. Available at:
 http://public.ccsds.org/publications/archive/714x0b2.pdf

 CERT. 1996. CERT Advisory CA-1996-21: TCP SYN Flooding and IP
 Spoofing Attacks. Available at:
 http://www.cert.org/advisories/CA-1996-21.html

 CERT. 1997. CERT Advisory CA-1997-28 IP Denial-of-Service Attacks.
 Available at: http://www.cert.org/advisories/CA-1997-28.html

 CERT. 2000. CERT Advisory CA-2000-21: Denial-of-Service
 Vulnerabilities in TCP/IP Stacks. Available at:
 http://www.cert.org/advisories/CA-2000-21.html

 CERT. 2001. CERT Advisory CA-2001-09: Statistical Weaknesses in
 TCP/IP Initial Sequence Numbers. Available at:
 http://www.cert.org/advisories/CA-2001-09.html

 CERT. 2003. CERT Advisory CA-2003-13 Multiple Vulnerabilities in
 Snort Preprocessors. Available at:
 http://www.cert.org/advisories/CA-2003-13.html

 Cisco. 2008a. Cisco Security Appliance Command Reference, Version
 7.0. Available at: http://www.cisco.com/en/US/docs/security/asa/
 asa70/command/reference/tz.html#wp1288756

Gont Expires July 25, 2011 [Page 104]

Internet-Draft TCP Security Assessment January 2011

 Cisco. 2008b. Cisco Security Appliance System Log Messages, Version
 8.0. Available at: http://www.cisco.com/en/US/docs/security/asa/
 asa80/system/message/logmsgs.html#wp4773952

 Clark, D.D. 1982. Fault isolation and recovery. RFC 816.

 Clark, D.D. 1988. The Design Philosophy of the DARPA Internet
 Protocols, Computer Communication Review, Vol. 18, No.4, pp. 106-114.

 Connolly, T., Amer, P., Conrad, P. 1994. An Extension to TCP :
 Partial Order Service. RFC 1693.

 Conta, A., Deering, S., Gupta, M. 2006. Internet Control Message
 Protocol (ICMPv6) for the Internet Protocol Version 6 (IPv6)
 Specification. RFC 4443.

 CORE. 2003. Core Secure Technologies Advisory CORE-2003-0307: Snort
 TCP Stream Reassembly Integer Overflow Vulnerability. Available at:
 http://www.coresecurity.com/common/showdoc.php?idx=313&idxseccion=10

 CPNI, 2008. Security Assessment of the Internet Protocol. Available
 at: http://www.cpni.gov.uk/Docs/InternetProtocol.pdf

 CPNI, 2009. Security Assessment of the Transmission Control Protocol
 (TCP). Available at:
 http://www.cpni.gov.uk/Docs/tn-03-09-security-assessment-TCP.pdf

 daemon9, route, and infinity. 1996. IP-spoofing Demystified (Trust-
 Relationship Exploitation), Phrack Magazine, Volume Seven, Issue
 Forty-Eight, File 14 of 18. Available at:
 http://www.phrack.org/archives/48/P48-14

 Deering, S., Hinden, R. 1998. Internet Protocol, Version 6 (IPv6)
 Specification. RFC 2460.

 Dharmapurikar, S., Paxson, V. 2005. Robust TCP Stream Reassembly In
 the Presence of Adversaries. Proceedings of the USENIX Security
 Symposium 2005.

 Duke, M., Braden, R., Eddy, W., Blanton, E. 2006. A Roadmap for
 Transmission Control Protocol (TCP) Specification Documents. RFC
 4614.

 Ed3f. 2002. Firewall spotting and networks analisys with a broken
 CRC. Phrack Magazine, Volume 0x0b, Issue 0x3c, Phile #0x0c of 0x10.
 Available at: http://www.phrack.org/phrack/60/p60-0x0c.txt

 Eddy, W. 2007. TCP SYN Flooding Attacks and Common Mitigations. RFC

Gont Expires July 25, 2011 [Page 105]

Internet-Draft TCP Security Assessment January 2011

 4987.

 Fenner, B. 2006. Experimental Values in IPv4, IPv6, ICMPv4, ICMPv6,
 UDP, and TCP Headers. RFC 4727.

 Ferguson, P., and Senie, D. 2000. Network Ingress Filtering:
 Defeating Denial of Service Attacks which employ IP Source Address
 Spoofing. RFC 2827.

 Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter, L.,
 Leach, P., and Berners-Lee, T. 1999. Hypertext Transfer Protocol --
 HTTP/1.1. RFC 2616.

 Floyd, S., Mahdavi, J., Mathis, M., Podolsky, M. 2000. An Extension
 to the Selective Acknowledgement (SACK) Option for TCP. RFC 2883.

 Floyd, S., Henderson, T., Gurtov, A. 2004. The NewReno Modification
 to TCP’s Fast Recovery Algorithm. RFC 3782.

 Floyd, S., Allman, M., Jain, A., Sarolahti, P. 2007. Quick-Start for
 TCP and IP. RFC 4782.

 Fyodor. 1998. Remote OS Detection via TCP/IP Stack Fingerprinting.
 Phrack Magazine, Volume 8, Issue, 54.

 Fyodor. 2006a. Remote OS Detection via TCP/IP Fingerprinting (2nd
 Generation). Available at: http://insecure.org/nmap/osdetect/.

 Fyodor. 2006b. Nmap - Free Security Scanner For Network Exploration
 and Audit. Available at: http://www.insecure.org/nmap.

 Fyodor. 2008. Nmap Reference Guide: Port Scanning Techniques.
 Available at: http://nmap.org/book/man-port-scanning-techniques.html

 GIAC. 2000. Egress Filtering v 0.2. Available at:
 http://www.sans.org/y2k/egress.htm

 Giffin, J., Greenstadt, R., Litwack, P., Tibbetts, R. 2002. Covert
 Messaging through TCP Timestamps. PET2002 (Workshop on Privacy
 Enhancing Technologies), San Francisco, CA, USA, April2002.
 Available at:
 http://web.mit.edu/greenie/Public/CovertMessaginginTCP.ps

 Gill, V., Heasley, J., Meyer, D., Savola, P, Pignataro, C. 2007. The
 Generalized TTL Security Mechanism (GTSM). RFC 5082.

 Gont, F. 2006. Advanced ICMP packet filtering. Available at:
 http://www.gont.com.ar/papers/icmp-filtering.html

Gont Expires July 25, 2011 [Page 106]

Internet-Draft TCP Security Assessment January 2011

 Gont, F. 2008a. ICMP attacks against TCP. IETF Internet-Draft
 (draft-ietf-tcpm-icmp-attacks-04.txt), work in progress.

 Gont, F.. 2008b. TCP’s Reaction to Soft Errors. IETF Internet-Draft
 (draft-ietf-tcpm-tcp-soft-errors-09.txt), work in progress.

 Gont, F. 2009. On the generation of TCP timestamps. IETF Internet-
 Draft (draft-gont-tcpm-tcp-timestamps-01.txt), work in progress.

 Gont, F., Srisuresh, P. 2008. Security Implications of Network
 Address Translators (NATs). IETF Internet-Draft
 (draft-gont-behave-nat-security-01.txt), work in progress.

 Gont, F., Yourtchenko, A. 2009. On the implementation of TCP urgent
 data. IETF Internet-Draft (draft-gont-tcpm-urgent-data-01.txt), work
 in progress.

 Heffernan, A. 1998. Protection of BGP Sessions via the TCP MD5
 Signature Option. RFC 2385.

 Heffner, J. 2002. High Bandwidth TCP Queuing. Senior Thesis.

 Hnes, A. 2007. TCP options - tcp-parameters IANA registry. Post to
 the tcpm wg mailing-list. Available at:
 http://www.ietf.org/mail-archive/web/tcpm/current/msg03199.html

 IANA. 2007. Transmission Control Protocol (TCP) Option Numbers.
 Avialable at: http://www.iana.org/assignments/tcp-parameters/

 IANA. 2008. Port Numbers. Available at:
 http://www.iana.org/assignments/port-numbers

 Jacobson, V. 1988. Congestion Avoidance and Control. Computer
 Communication Review, vol. 18, no. 4, pp. 314-329. Available at:
 ftp://ftp.ee.lbl.gov/papers/congavoid.ps.Z

 Jacobson, V., Braden, R. 1988. TCP Extensions for Long-Delay Paths.
 RFC 1072.

 Jacobson, V., Braden, R., Borman, D. 1992. TCP Extensions for High
 Performance. RFC 1323.

 Jones, S. 2003. Port 0 OS Fingerprinting. Available at:
 http://www.gont.com.ar/docs/port-0-os-fingerprinting.txt

 Kent, S. and Seo, K. 2005. Security Architecture for the Internet
 Protocol. RFC 4301.

Gont Expires July 25, 2011 [Page 107]

Internet-Draft TCP Security Assessment January 2011

 Klensin, J. 2008. Simple Mail Transfer Protocol. RFC 5321.

 Ko, Y., Ko, S., and Ko, M. 2001. NIDS Evasion Method named SeolMa.
 Phrack Magazine, Volume 0x0b, Issue 0x39, phile #0x03 of 0x12.
 Available at: http://www.phrack.org/issues.html?issue=57&id=3#article

 Lahey, K. 2000. TCP Problems with Path MTU Discovery. RFC 2923.

 Larsen, M., Gont, F. 2008. Port Randomization. IETF Internet-Draft
 (draft-ietf-tsvwg-port-randomization-02), work in progress.

 Lemon, 2002. Resisting SYN flood DoS attacks with a SYN cache.
 Proceedings of the BSDCon 2002 Conference, pp 89-98.

 Maimon, U. 1996. Port Scanning without the SYN flag. Phrack
 Magazine, Volume Seven, Issue Fourty-Nine, phile #0x0f of 0x10.
 Available at:
 http://www.phrack.org/issues.html?issue=49&id=15#article

 Mathis, M., Mahdavi, J., Floyd, S. Romanow, A. 1996. TCP Selective
 Acknowledgment Options. RFC 2018.

 Mathis, M., and Heffner, J. 2007. Packetization Layer Path MTU
 Discovery. RFC 4821.

 McCann, J., Deering, S., Mogul, J. 1996. Path MTU Discovery for IP
 version 6. RFC 1981.

 McKusick, M., Bostic, K., Karels, M., and J. Quarterman. 1996. The
 Design and Implementation of the 4.4BSD Operating System. Addison-
 Wesley.

 Meltman. 1997. new TCP/IP bug in win95. Post to the bugtraq mailing-
 list. Available at: http://insecure.org/sploits/land.ip.DOS.html

 Miller, T. 2006. Passive OS Fingerprinting: Details and Techniques.
 Available at: http://www.ouah.org/incosfingerp.htm .

 Mogul, J., and Deering, S. 1990. Path MTU Discovery. RFC 1191.

 Morris, R. 1985. A Weakness in the 4.2BSD Unix TCP/IP Software.
 Technical Report CSTR-117, AT&T Bell Laboratories. Available at:
 http://pdos.csail.mit.edu/˜rtm/papers/117.pdf .

 Myst. 1997. Windows 95/NT DoS. Post to the bugtraq mailing-list.
 Available at: http://seclists.org/bugtraq/1997/May/0039.html

 Nichols, K., Blake, S., Baker, F., and Black, D. 1998. Definition of

Gont Expires July 25, 2011 [Page 108]

Internet-Draft TCP Security Assessment January 2011

 the Differentiated Services Field (DS Field) in the IPv4 and IPv6
 Headers. RFC 2474.

 NISCC. 2004. NISCC Vulnerability Advisory 236929: Vulnerability
 Issues in TCP. Available at:
 http://www.uniras.gov.uk/niscc/docs/re-20040420-00391.pdf

 NISCC. 2005. NISCC Vulnerability Advisory 532967/NISCC/ICMP:
 Vulnerability Issues in ICMP packets with TCP payloads. Available
 at: http://www.niscc.gov.uk/niscc/docs/re-20050412-00303.pdf

 NISCC. 2006. NISCC Technical Note 01/2006: Egress and Ingress
 Filtering. Available at:
 http://www.niscc.gov.uk/niscc/docs/re-20060420-00294.pdf?lang=en

 Ostermann, S. 2008. tcptrace tool. Tool and documentation available
 at: http://www.tcptrace.org.

 Paxson, V., Allman, M. 2000. Computing TCP’s Retransmission Timer.
 RFC 2988.

 PCNWG. 2009. Congestion and Pre-Congestion Notification (pcn)
 charter. Available at:
 http://www.ietf.org/html.charters/pcn-charter.html

 PMTUDWG. 2007. Path MTU Discovery (pmtud) charter. Available at:
 http://www.ietf.org/html.charters/OLD/pmtud-charter.html

 Postel, J. 1981a. Internet Protocol. DARPA Internet Program.
 Protocol Specification. RFC 791.

 Postel, J. 1981b. Internet Control Message Protocol. RFC 792.

 Postel, J. 1981c. Transmission Control Protocol. DARPA Internet
 Program. Protocol Specification. RFC 793.

 Postel, J. 1987. TCP AND IP BAKE OFF. RFC 1025.

 Ptacek, T. H., and Newsham, T. N. 1998. Insertion, Evasion and
 Denial of Service: Eluding Network Intrusion Detection. Secure
 Networks, Inc. Available at:
 http://www.aciri.org/vern/Ptacek-Newsham-Evasion-98.ps

 Ramaiah, A., Stewart, R., and Dalal, M. 2008. Improving TCP’s
 Robustness to Blind In-Window Attacks. IETF Internet-Draft
 (draft-ietf-tcpm-tcpsecure-10.txt), work in progress.

 Ramakrishnan, K., Floyd, S., and Black, D. 2001. The Addition of

Gont Expires July 25, 2011 [Page 109]

Internet-Draft TCP Security Assessment January 2011

 Explicit Congestion Notification (ECN) to IP. RFC 3168.

 Rekhter, Y., Li, T., Hares, S. 2006. A Border Gateway Protocol 4
 (BGP-4). RFC 4271.

 Rivest, R. 1992. The MD5 Message-Digest Algorithm. RFC 1321.

 Rowland, C. 1997. Covert Channels in the TCP/IP Protocol Suite.
 First Monday Journal, Volume 2, Number 5. Available at:
 http://www.firstmonday.org/issues/issue2_5/rowland/

 Savage, S., Cardwell, N., Wetherall, D., Anderson, T. 1999. TCP
 Congestion Control with a Misbehaving Receiver. ACM Computer
 Communication Review, 29(5), October 1999.

 Semke, J., Mahdavi, J., Mathis, M. 1998. Automatic TCP Buffer
 Tuning. ACM Computer Communication Review, Vol. 28, No. 4.

 Shalunov, S. 2000. Netkill. Available at:
 http://www.internet2.edu/˜shalunov/netkill/netkill.html

 Shimomura, T. 1995. Technical details of the attack described by
 Markoff in NYT. Message posted in USENETs comp.security.misc
 newsgroup, Message-ID: <3g5gkl$5j1@ariel.sdsc.edu>. Available at:
 http://www.gont.com.ar/docs/post-shimomura-usenet.txt.

 Silbersack, M. 2005. Improving TCP/IP security through randomization
 without sacrificing interoperability. EuroBSDCon 2005 Conference.

 SinFP. 2006. Net::SinFP - a Perl module to do OS fingerprinting.
 Available at:
 http://www.gomor.org/cgi-bin/index.pl?mode=view;page=sinfp

 Smart, M., Malan, G., Jahanian, F. 2000. Defeating TCP/IP Stack
 Fingerprinting. Proceedings of the 9th USENIX Security Symposium,
 pp. 229-240. Available at: http://www.usenix.org/publications/
 library/proceedings/sec2000/full_papers/smart/smart_html/index.html

 Smith, C., Grundl, P. 2002. Know Your Enemy: Passive Fingerprinting.
 The Honeynet Project.

 Spring, N., Wetherall, D., Ely, D. 2003. Robust Explicit Congestion
 Notification (ECN) Signaling with Nonces. RFC 3540.

 Srisuresh, P., Egevang, K. 2001. Traditional IP Network Address
 Translator (Traditional NAT). RFC 3022.

 Stevens, W. R. 1994. TCP/IP Illustrated, Volume 1: The Protocols.

Gont Expires July 25, 2011 [Page 110]

Internet-Draft TCP Security Assessment January 2011

 Addison-Wesley Professional Computing Series.

 TBIT. 2001. TBIT, the TCP Behavior Inference Tool. Available at:
 http://www.icir.org/tbit/

 Touch, J. 2007. Defending TCP Against Spoofing Attacks. RFC 4953.

 US-CERT. 2001. US-CERT Vulnerability Note VU#498440: Multiple TCP/IP
 implementations may use statistically predictable initial sequence
 numbers. Available at: http://www.kb.cert.org/vuls/id/498440

 US-CERT. 2003a. US-CERT Vulnerability Note VU#26825: Cisco Secure
 PIX Firewall TCP Reset Vulnerability. Available at:
 http://www.kb.cert.org/vuls/id/26825

 US-CERT. 2003b. US-CERT Vulnerability Note VU#464113: TCP/IP
 implementations handle unusual flag combinations inconsistently.
 Available at: http://www.kb.cert.org/vuls/id/464113

 US-CERT. 2004a. US-CERT Vulnerability Note VU#395670: FreeBSD fails
 to limit number of TCP segments held in reassembly queue. Available
 at: http://www.kb.cert.org/vuls/id/395670

 US-CERT. 2005a. US-CERT Vulnerability Note VU#102014: Optimistic TCP
 acknowledgements can cause denial of service. Available at:
 http://www.kb.cert.org/vuls/id/102014

 US-CERT. 2005b. US-CERT Vulnerability Note VU#396645: Microsoft
 Windows vulnerable to DoS via LAND attack. Available at:
 http://www.kb.cert.org/vuls/id/396645

 US-CERT. 2005c. US-CERT Vulnerability Note VU#637934: TCP does not
 adequately validate segments before updating timestamp value.
 Available at: http://www.kb.cert.org/vuls/id/637934

 US-CERT. 2005d. US-CERT Vulnerability Note VU#853540: Cisco PIX
 fails to verify TCP checksum. Available at:
 http://www.kb.cert.org/vuls/id/853540.

 Veysset, F., Courtay, O., Heen, O. 2002. New Tool And Technique For
 Remote Operating System Fingerprinting. Intranode Research Team.

 Watson, P. 2004. Slipping in the Window: TCP Reset Attacks,
 CanSecWest 2004 Conference.

 Welzl, M. 2008. Internet congestion control: evolution and current
 open issues. CAIA guest talk, Swinburne University, Melbourne,
 Australia. Available at:

Gont Expires July 25, 2011 [Page 111]

Internet-Draft TCP Security Assessment January 2011

 http://www.welzl.at/research/publications/caia-jan08.pdf

 Wright, G. and W. Stevens. 1994. TCP/IP Illustrated, Volume 2: The
 Implementation. Addison-Wesley.

 Zalewski, M. 2001a. Strange Attractors and TCP/IP Sequence Number
 Analysis. Available at:
 http://lcamtuf.coredump.cx/oldtcp/tcpseq.html

 Zalewski, M. 2001b. Delivering Signals for Fun and Profit.
 Available at: http://lcamtuf.coredump.cx/signals.txt

 Zalewski, M. 2002. Strange Attractors and TCP/IP Sequence Number
 Analysis - One Year Later. Available at:
 http://lcamtuf.coredump.cx/newtcp/

 Zalewski, M. 2003a. Windows URG mystery solved! Post to the bugtraq
 mailing-list. Available at:
 http://lcamtuf.coredump.cx/p0f-help/p0f/doc/win-memleak.txt

 Zalewski, M. 2003b. A new TCP/IP blind data injection technique?
 Post to the bugtraq mailing-list. Available at:
 http://lcamtuf.coredump.cx/ipfrag.txt

 Zalewski, M. 2006a. p0f passive fingerprinting tool. Available at:
 http://lcamtuf.coredump.cx/p0f.shtml

 Zalewski, M. 2006b. p0f - RST+ signatures. Available at:
 http://lcamtuf.coredump.cx/p0f-help/p0f/p0fr.fp

 Zalewski, M. 2007. 0trace - traceroute on established connections.
 Post to the bugtraq mailing-list. Available at:
 http://seclists.org/bugtraq/2007/Jan/0176.html

 Zalewski, M. 2008. Museum of broken packets. Available at:
 http://lcamtuf.coredump.cx/mobp/

 Zander, S. 2008. Covert Channels in Computer Networks. Available
 at: http://caia.swin.edu.au/cv/szander/cc/index.html

 Zquete, A. 2002. Improving the functionality of SYN cookies. 6th
 IFIP Communications and Multimedia Security Conference (CMS 2002).
 Available at: http://www.ieeta.pt/˜avz/pubs/CMS02.html

 Zweig, J., Partridge, C. 1990. TCP Alternate Checksum Options. RFC
 1146.

Gont Expires July 25, 2011 [Page 112]

Internet-Draft TCP Security Assessment January 2011

20. References

20.1. Normative References

 [I-D.ietf-tcpm-tcp-timestamps]
 Gont, F., "Reducing the TIME-WAIT state using TCP
 timestamps", draft-ietf-tcpm-tcp-timestamps-03 (work in
 progress), December 2010.

 [I-D.ietf-tsvwg-port-randomization]
 Larsen, M. and F. Gont, "Transport Protocol Port
 Randomization Recommendations",
 draft-ietf-tsvwg-port-randomization-09 (work in progress),
 August 2010.

 [RFC6093] Gont, F. and A. Yourtchenko, "On the Implementation of the
 TCP Urgent Mechanism", RFC 6093, January 2011.

20.2. Informative References

 [I-D.gont-timestamps-generation]
 Gont, F. and A. Oppermann, "On the generation of TCP
 timestamps", draft-gont-timestamps-generation-00 (work in
 progress), June 2010.

 [RFC5927] Gont, F., "ICMP Attacks against TCP", RFC 5927, July 2010.

Appendix A. TODO list

 A Number of formatting issues still have to be fixed in this
 document. Among others are:

 o The ASCII-art corresponding to some figures are still missing. We
 still have to convert the nice JPGs of the UK CPNI document into
 ugly ASCII-art.

 o The references have not yet been converted to xml, but are
 hardcoded, instead. That’s why they may not look as expected

Appendix B. Change log (to be removed by the RFC Editor before
 publication of this document as an RFC)

B.1. Changes from draft-ietf-tcpm-tcp-security-01

 A Number of formatting issues still have to be fixed in this
 document. Among others are:

Gont Expires July 25, 2011 [Page 113]

Internet-Draft TCP Security Assessment January 2011

 o The whole document was reformatted with RFC 1122 style.

Author’s Address

 Fernando Gont
 UK Centre for the Protection of National Infrastructure

 Email: fernando@gont.com.ar
 URI: http://www.cpni.gov.uk

Gont Expires July 25, 2011 [Page 114]

