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________________________________________________________________________ 
 
This paper presents the mechanisms in Windows 2000 that enable fine-grained and centrally managed access 
control for both operating system components and applications. These features were added during the transition 
from Windows NT 4.0 to support the Active Directory, a new feature in Windows 2000, and to protect 
computers connected to the Internet. While the access control mechanisms in Windows NT are suitable for file 
systems and applications with simple requirements, they fall short of the needs of applications with complex 
data objects. Our goal was to use operating system access control mechanisms to protect a large object 
hierarchy with many types of objects, each with many data properties. We also wanted to reduce t he exposure 
of users to untrustworthy or exploited programs.  

We introduced three extensions to support these goals. First, we extended the entries in access control lists 
to provide an unlimited number of access rights for a single object and to allow grouping those rights for 
efficiency. Second, we extended the entries to specify precisely how access control lists are assigned to each 
distinct type of object, instead of treating all types identically. Finally, we extended the data structure 
identifying users’ identity to the operating system to allow users to restrict the set of objects a program may 
access. These changes allow a single access control mechanism to be used to protect both system and 
application resources, as well as protect users from each other and users from their programs, simplifying both 
program development and system management. 
 
Categories and Subject Descriptors: D.4.6 [Operating Systems]: Security and Protection – access controls; 
K.6.5 [Management of Computing and Information Systems]: Security and Protection – invasive software 
General Terms: Security, Design, Performance 
Additional Key Words and Phrases: Access control lists, Microsoft Windows 2000, Windows NT, Active 
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1. INTRODUCTION 

One goal of Windows NT 4.0 operating system was to provide a secure platform for 

applications by providing general support for authentication, access control, and auditing. 

However, the addition of the Active Directory in Windows 2000, the follow-on operating 

system to Windows NT, and the increasing frequency of security attacks on trusted 

applications demonstrated several limitations of Windows NT access control. The Active 

Directory, a hierarchical directory service [Iseminger 2000], requires access control at a 

finer granularity and with more centralized control than can be supported by the 

mechanisms in Window NT. The security attacks demonstrated that users could not 

prevent untrusted code from accessing their data. This paper presents the changes made 

to the Windows NT access control mechanisms to address these limitations. 

The increasing integration of applications, when several independent programs 

cooperate and share data, drives the need for new access control mechanisms. There are 

many situations where data from one application must be available to another application, 
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although not always with the same access rights. For example, an electronic mail server 

may access a user account database for determining valid email addresses, but should not 

be able to modify the address. This increased sharing between applications has led to 

centralized repositories of application data, such as the configuration registry in Windows 

NT and Windows 95, and directories services such as Novell NDS and Microsoft’s 

Active Directory. These centralized repositories of data require fine-grained protection to 

restrict each application to only its required access. For example, a mail server may need 

to modify mail routing information on a user object, but should not be able to set users’ 

passwords. 

In many operating systems access control mechanisms are separate for each 

application, such as permissions in the file system and configuration files for user 

applications. Windows NT integrates many security services that were formerly provided 

by applications, such as authentication and access control. As a result, Windows NT has a 

single access control mechanism that is used by all system components, including kernel 

objects, user interface objects, and the file system. The access control mechanism is also 

intended for use by applications, such as web servers or mail servers. This approach 

benefits both administrators and developers by requiring that they learn only a single set 

of mechanisms, enables a common user interface for access control, and reduces the 

amount of security-critical code in applications. 

The major access control mechanism in Windows NT is the access control list (ACL), 

which for each object specifies the operations users may perform. The access control lists 

in Windows NT 4.0 were designed for services, such as the file system, with only a few 

types of objects and with only a small number of operations. However, the Active 

Directory stores data for many different uses, such as logon and authorization, electronic 

mail, and security policy. It contains hundreds of types of data objects, ranging from user 

account data to network printer configuration data, and every object has many properties, 

such as user name and password or printer description. Depending on the needs of the 

application, the properties on a single object may be protected separately, so some are 

accessible to all users while other properties are accessible only to administrators. While 

implementing the directory service we discovered two limitations of the access control 

mechanisms in Windows NT: the access control lists cannot distinguish between large 

numbers of operations on a single object or large numbers of types of objects, and cannot 

propagate access control changes through a tree of objects. 

The solution in Windows 2000 to both limitations is to annotate ACLs with additional 

information, such as whether entries apply to all objects or just a particular type of object. 

For example, access control lists in Windows 2000 specify which types of objects may be 

created and deleted, rather than granting the right to create all types of objects. Access 
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control lists also specify which types of objects inherit access control from a container, 

instead of inheriting the same access control onto all objects. As a result, access control 

lists can precisely specify users’ access to a specific object as well as propagate that 

access to all objects of the same type. 

Another limitation of the access control mechanisms in Windows NT is that they 

were not designed to protect the users from their programs. The mechanisms assume that 

users are in control of the code they execute, and provide no features to ensure that 

programs don’t accidentally corrupt or misuse users’ data. Unfortunately, it has become 

increasingly common for users’ applications to turn malicious. For example, bugs in 

trusted applications, such as web browsers and email clients, cause damage by 

inadvertently exposing all the files on a computer to an attacker  [CERT Coordination 

Center 1995]. Downloaded ActiveX controls  [Denning 1997], while not as trustworthy 

as other applications, are only authenticated with digital signatures and currently must be 

trusted with the full rights of the user.  

Using restricted contexts, Windows 2000 enables programs to run with limited 

authority and access only a subset of the resources available to a user. For example 

downloaded code can be limited to accessing the user interface but not the file system or 

network. With proper configuration, a user can implement the policy of least privilege 

[Saltzer and Schroeder 1975], in which programs are only granted access to the resources 

necessary for their execution. 

This paper presents the access control mechanisms in Windows 2000, with an 

explanation of the tradeoffs that were made in their design. As background, in Section 2 

we describe the access control mechanisms in Windows NT, and the design of the Active 

Directory in Windows 2000. We then explain why new access control mechanisms are 

needed. This is followed by a description of the extensions to support large numbers of 

rights for an object in Section 3 and improvements for centralizing management of access 

control in Section 4. In Section 5 we describe changes to limit the rights of untrusted 

code. In Section 6, we discuss previous work on these problems and then conclude in 

Section 7. 

 
2. BACKGROUND 

To explain the access control extensions in Windows 2000, we first describe access 

control in Windows NT 4.0. The access control mechanisms in Windows 2000 are an 

evolutionary step from the structures and mechanisms in Windows NT, both to maintain 

compatibility with existing applications and to minimize the changes to the operating 

system code. We will then describe the Active Directory and its security requirements. 
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2.1 Access Control Mechanisms in Windows NT 4.0 

The security mechanisms of both Windows NT and Windows 2000 are built around 

discretionary access control, in which the owner of an object may specify who may 

access the object. These operating systems do not support mandatory access control, in 

which the system imposes a policy on all object accesses. Both operating systems 

distinguish objects, entities being accessed, from subjects, the active entities performing 

accesses. Access control in both operating systems is based on access control lists, 

which, for each object, specify the access granted to different subjects. 

 

User SID

Group SIDs

Privileges

Jane User

Administrators
Service Operators
Users

Load Device Driver
Shutdown System
Take Ownership

 

ACL Header:
    Revision: version 1
    ACL Size: 100 bytes
    ACE Count: 2

ACE 1:
    Type: ACCESS_ALLOWED_ACE
    Flags: OBJECT_INHERIT
    Access Rights: read, write, delete
    Principal SID: Administrators

ACE 2:
    Type: ACCESS_ALLOWED_ACE
    Flags: CONTAINER_INHERIT
    Access Rights: read, write, delete child
    Principal SID: Everyone

 
Figure 1 Figure 2 

 
 

Figure 1 shows an example of a simplified access token in Windows NT, containing user and group 

identities and privileges. Figure 2 shows an example access control list (ACL) on a directory with two entries 

(ACEs). 

 
2.1.1 Subjects A subject in Windows NT is represented by an access token, which is a 

kernel data structure storing a user’s identity, group memberships, and privileges. Users 

may be organized into groups, such as all users that work on a project together. Users and 

groups are both security principals, which are the entities that may be granted or denied 

access to an object. Security identifiers, or SIDs, are variable-length byte strings that 

represent security principals. The operating system also supports a small number of 

standard privileges, which are represented as 64-bit numbers and have two purposes. 

First, privileges grant administrative access to a large set of objects, such as all files for 

backup/restore of disks or all drivers for system management. Second, privileges secure 

operations that have no specific object, such as shutting down the system or changing the 

system clock. Privileges may be granted to either users or groups, and the set of 

privileges granted to a security principal is stored in a policy database. Access tokens, 

shown in Figure 1, are constructed during logon by a trusted authentication service, 
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which is responsible for authenticating the user and determining which user identifier, 

group identifiers, and privileges should be in the access token. 

Every process in the operating system has an access token, and threads in a process 

may have a separate access token. If a thread has an access token, then that token is used 

for access control on operations made by the thread. If a thread has no access token, then 

the token from its owning process is used instead. Each process is either explicitly 

assigned an access token during creation (which requires the SeAssignPrimaryToken 

privilege) or copies the token from its creator. After a process starts, its access token may 

not be replaced, and the only change possible to its access token is to enable or disable 

privileges. For example, it is impossible to add or remove groups or change the user 

identity in an access token. Programs may replace the access token of a thread, though, 

which allows programs to impersonate users and perform specific actions with their 

identity. For example, a file server may assign the access token of its client to the thread 

processing the client’s requests, so that calls to the file system to access the user’s files 

will receive proper access control. For inter-process communication, the operating system 

kernel copies the access token between the client and server. For network 

communication, the authentication protocol is responsible for carrying client identities to 

the server, where a new access token is constructed. The token of a process that is 

impersonating is not used for access control, so a program run by a non-privileged user 

may enhance its access to a resource by impersonating the access token of a user who is 

granted more rights to the resource. As a result, administrators must take care not 

authenticate to programs run by non-privileged users. 

 
2.1.2 Access Control. Windows NT provides a single major access control mechanism for 

all system resources that need access control, such as files, user interface objects, and 

kernel objects. Each object requiring protection is assigned a security descriptor, which 

stores all of its security state: the owner, group (used for emulating the Unix owning 

group field), access control list (ACL), and auditing information. The operating system 

provides a standard representation of access control lists for use by both system services 

and applications, removing the need for each application to implement its own access 

control algorithms and structures. 

An access control list is a container for access control entries (ACEs), which 

determine which access rights should be granted or denied to specific security principals. 

An ACL may contain an arbitrary number of ACEs for different users or groups of users. 

The two types of ACEs in Windows NT are ACCESS_ALLOWED_ACEs, which grant a 

principal access, and ACCESS_DENIED_ACEs, which deny access. A sample ACL with 

two access control entries is shown in Figure 2. The ACE type field controls whether the 

ACE grants or denies access and the flags control whether it is copied onto the ACL of 
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new objects. The remainder of the ACE contains the security identifier of the principal it 

grants or denies access and an access mask , which is a bit-field specifying the access 

rights. Windows NT allows just sixteen bits to be defined by the implementor of an 

object for specific access rights. In addition to controlling access to objects, rights in 

access control entries on containers may apply to the objects within the container. For 

example, the access rights on directories in a file system are: list directory, add file, add 

subdirectory, delete child, traverse, read attributes, and write attributes. 

 
BOOLEAN
AccessCheck(Acl: ACL,
           DesiredAccess : AccessMask,
           PrincipalSids : SET of Sid)
VAR
  Denied : AccessMask = ∅;
  Granted : AccessMask = ∅;
  Ace : ACE;
foreach Ace ∈ Acl
  if Ace.SID ∈ PrincipalSids
    if Ace.type = GRANT
      Granted = Granted ∪ (Ace.AccessMask - Denied);
    else if Ace.type = DENY
      Denied = Denied ∪ (Ace.AccessMaska - Granted);
    if DesiredAccess ⊆ Granted
      return SUCCESS;

return FAILURE;  
Figure 3: The algorithm for determining access control in Windows NT 4.0. The routine is simplified for 

clarification. 

 

Windows NT places the responsibility for performing access control for both system 

components and applications on the security reference monitor in the operating system’s 

kernel. The reference monitor concept, first described in [Anderson 1972], ensures that 

the access control algorithms are applied uniformly for all applications and system 

services. Applications protecting their own objects typically call the AccessCheck routine 

when an object is first accessed or opened. Subsequent accesses to the object that require 

only rights granted by a previous call to AccessCheck  need not be checked (which may 

cause time-o f-check to time-of-use errors). The AccessCheck  routine passes the ACL, 

requested access rights, and the subject’s access token into the security reference monitor. 

The entries from the ACL are evaluated in order, and each entry’s SID is compared 

against the user and group SIDs in the subject’s access token. If the SID is found, then 

the access rights in the ACE are either granted or denied, according to the type of ACE. 

Once a right has been denied, it may not be granted later by another ACE. Similarly, once 

a right has been granted, it may not be denied later. This algorithm is shown in Figure 3. 

Interleaving allow and deny ACEs enables Windows NT to emulate Unix file system 

ACLs  [Ritchie and Thompson 1974], in which only one entry in the list is ever used to 
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grant a user access. For example, an ACL containing an entry granting a group access to 

a file followed by an entry denying the group all other accesses ensures that a member of 

that group receives the granted accesses and no more. The second ACE denies all other 

accesses and halts further evaluation of the ACL. While the security reference monitor 

supports any ordering of ACEs, the convention in Windows NT 4.0 is to place ACEs 

denying access before ACEs granting access, so that deny entries take precedence1.  

 
Table 1: Flags in the access control entry that control inheritance. 

INHERIT_ONLY_ACE ACE is only used for inheritance; it is not applied to this 
object 

NO_PROPAGATE_INHERIT ACE is inherited onto sub-objects, but no further 
OBJECT_INHERIT_ACE  ACE is inherited onto sub-objects 
CONTAINER_INHERIT_ACE ACE is inherited onto sub-containers 

 
 

2.1.3 Assigning Access Control While there are routines to directly modify existing 

access control lists and an ACL may be specified during object creation, in Windows NT 

they are commonly created by copying entries from the ACL on the container of an 

object. For example, when a file is created in a directory, access control entries from the 

directory’s ACL are inherited and copied onto the ACL of the new file. Inheritance flags 

in each ACE, shown in Table 1, select which entries are copied onto the ACL, and these 

flags distinguish between entries that are copied onto files and onto directories, because 

they support different operations, such as reading data versus listing files. The 

OBJECT_INHERIT_ACE flag causes an entry to be copied from directories onto entities 

that are not containers, e.g. files, and the CONTAINER_INHERIT_ACE causes an entry 

to be copied onto entities that may contain other objects, e.g. directories. The 

INHERIT_ONLY_ACE marks entries on a directory that are not used for granting access 

to the directory but are instead intended only for inheritance. This flag is removed when 

the ACE is inherited. Finally, the NO_PROPAGATE_INHERIT flag limits the 

inheritance by removing all inheritance flags after the ACE has been copied. As a result, 

an entry marked NO_PROPA GATE_INHERIT and CONTAINER_INHERIT_ACE will 

be copied into the ACL of a new directory but not to any directories below it. This 

algorithm is shown in Figure 4. 

 

                                                                 
1 The Windows NT 4.0 ACL editor does not support deny entries at all (the tool does not correctly display 
ACLs with deny entries), which simplifies the user interface. 
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ACL
Inherit(ParentAcl: ACL, IsContainer : BOOLEAN)
VAR
  Ace : ACE;
  ChileAce : ACE;
  ChildAcl : ACL = ∅;
foreach Ace ∈ ParentAcl
  ChildAce = ∅;
  if IsContainer
    if container_inherit ∈ Ace.Flags
      ChildAce = Ace;
      ChildAce.Flags -= inherit_only;
    else if object_inherit ∈ Ace.Flags
      ChildAce = ACE;
      ChildAce.Flags += inherit_only;
  else
    if object_inherit ∈ Ace.Flags
      ChildAce = Ace;
      ChildAce.Flags = 0;
  ChildAcl += ChildAce;

return ChildAcl;
 

Figure 4: Algorithm for inheriting ACEs from a parent container onto a child object or container. The 

algorithm is simplified and does not include processing the NO_PROPAGATE_INHERIT flag, the 

CREATOR_OWNER identity, or generic rights.  

 

Windows NT 4.0 includes two special mechanisms to allow slight variation in ACLs 

between different objects within the container. First, an inheritable ACE may contain the 

special identity CREATOR_OWNER. When an entry with this SID is inherited, the 

principal in the resulting ACE is replaced with the creator of the object. As a result, an 

ACE on a container can specify that the creators of objects within the container be 

granted specific rights. Second, inheritable ACEs may contain special access rights, 

called generic rights that are replaced during inheritance with rights specific to the object 

being created. For example, the ACL on a directory could contain an ACE granting 

generic read access. When this entry is inherited, the generic read access right is replaced 

with a set of rights, specific to the type of object created (either a file or a directory in this 

case), corresponding to read access. This mechanism allows read access to be interpreted 

as a set of finer-grained access rights, such as “read data” and “read attributes” for a file. 

ACL inheritance allows permissions set on a directory to be propagated to every new 

file and directory created within it, but has no impact on already existing files and 

directories. System management tools simulate ACL inheritance onto existing files by 

reapplying inheritance on all the objects under a directory. However, if the user changing 

access control on a directory does not have permission to modify the ACL on an object 

lower in the tree, then inheritance is not applied to that object. Furthermore, there are no 

rules specifying how to merge existing ACLs with changes inherited from a parent, so the 
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Windows NT ACL editor discards the ACL on an object and create a new ACL 

consisting only of inherited entries. 

Two separate mechanisms in Windows NT grant users permission to modify ACLs. 

First, access may be explicitly granted with the WRITE_DAC (write discretionary access 

control) access right. This right grants the permission to add or remove ACEs from the 

ACL. Second, the owner of an object is automatically granted the right to read and 

modify the access control list of the object, and can therefore always manage the object’s 

ACL. The owner is initially set to the creator of an object, but it may be reset by use of 

the SeTakeOwnershipPrivilege privilege. This privilege allows a user to change the 

owner field of a security descriptor to their own identity, after which she may change the 

ACL. Because this privilege is normally granted to administrators, it is impossible to 

prevent administrators from accessing an object. 

 
2.2 Active Directory 

Despite the rich support for access control in Windows NT, the Active Directory requires 

additional capabilities. The Active Directory is the central point for system and 

application management in Windows 2000 and stores many types of information [Isenger 

2000]. The data in the Active Directory are arranged as a hierarchy (single rooted tree) of 

typed objects, and each type has a common set of data properties and behaviors. Many 

objects are used for multiple applications. For example, user account objects are used for 

authentication by the Kerberos protocol as well as by the Exchange mail server for email 

delivery. As a result, a single object must be manageable by multiple sets of 

administrators. There are properties that are common to many types of objects, in 

particular metadata about the object, such as its type and its name, as well as properties 

that are unique to a single type. Finally, the Active Directory may be dynamically 

extended with new object types and by adding new data properties to existing object 

types. For example, a web publishing application could store the default web page for 

each user as a new property on user account objects. 
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Company

Departments Computers DevicesApplications

Research Acquisitions

Name:Jane User
Email: jane_user@company.com
Phone:555-1212
Password: xxxxxxxx

 

 
Figure 5: An example hierarchy in the Active Directory, showing multiple levels of containers with objects. 

Each object has a set of properties, as demonstrated by the properties on the object under the Marketing 

container. 

 

The hierarchical structure of the Active Directory serves several purposes. First, it 

groups objects with similar management properties, such user account objects of people 

in one department of a company. Containers also group objects with similar types, such 

as applications’ configuration data. Despite presenting data as a hierarchy, the Active 

Directory internally stores data in a flat database and maintains indexes over the full 

name of each object as well as other important properties. Figure 5 shows a sample 

directory layout with many containers, each with many objects. Each object has a 

collection of properties, such as a name and password for a user. 

Table 2 presents definitions of terms relating to the Active Directory and access 

control in Windows NT and 2000. 
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Table 2: Definition of terms concerning access control and the Active Directory. 

Term Definition 
ACE (access control entry) Entry in an ACL that specifies, for a security principal, the access 

granted or denied to an object. 
ACL (access control list) List specifying, for an object, access granted or denied to a subject, 

containing access control entries (ACEs). 
Access Token Kernel data structure containing identity and privilege information 

about users active on a system. 
Container An application or system element that may have other elements with 

ACLs below it or contained within it, such as a directory in the file 
system. 

Delegation Granting another subject the permission to perform acts on one’s 
behalf, either by modifying access control lists or modifying the subject 
of access control. 

GUID (globally unique 
identifier) 

A 128-bit number used for identifying object types in the Active 
Directory. 

Impersonation Performing an action with the identity of another subject. 
Inheritance The process of selecting access control entries on the ACL of a 

container to copy onto the ACLs of objects within the container. 
Object An application or system element that may be secured with an ACL 

and that does not have any elements with ACLs below it or contained 
within it, such as a file in the file system. Also a generic term 
describing any resource protected by an ACL, including containers. 

Object Type The description of the properties and behavior of a group of objects in 
the Active Directory, such as all objects representing users. 

Privilege System-wide right for a user to perform an operation, such as load a 
driver or backup a file. 

Property A name and value pair on an object in the Active Directory. 
Property set A group of name and value pairs with common access control policy in 

the Active Directory. 
Security Descriptor Container for security information about an object, including ACL, 

auditing information, and object’s owner. 
Security Principal A user or group, identified by a security identifier (SID). 
SID (security identifier) Variable length byte string identifying users and groups. 
Subject An entity that performs operations, such as a program running on 

behalf of a user. 

 
 
2.3 Limitations of Windows NT Access Control 

The Windows NT access control structures and mechanisms are powerful and flexible, 

and can emulate other forms of access control lists, such as Unix file system ACLs  

[Ritchie and Thompson 1974] and DCE ACLs  [Mackey and Salz 1993]. They may also 

be used to secure applications, such as databas es or web servers. However, access control 

lists in Windows NT are optimized for applications with only a small number of types 

that are not extensible, such as files and directories in a file system. The mechanisms 

have several limitations with respect to Windows 2000 and the Active Directory: 

1. Access masks are only sixteen bits, so a single ACL can only control sixteen 

different access rights. 

2. Inheritance does not distinguish between objects with different access rights, and 

ACLs cannot be propagated to a tree of objects if some of the objects have ACLs 

that are not inherited.  
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3. There is no mechanism for restricting the rights of a program other than disabling 

privileges. 

The first two flaws arise in the context of the Active Directory because of its many 

object types and many properties on each object type. Managing the Active Directory 

requires that access control must be administrable from the top of the directory hierarchy, 

so that an administrator may delegate control by granting other administrators access to 

all instances of a type of object. 

The third flaw was exposed by the growing number of Windows NT systems 

connected to the Internet, which resulted in security exploits of network applications such 

as web browsers and email clients. As a partial solution, programs must be prevented 

from unnecessary access to user and system resources. This flaw, as well as the difficulty 

of supporting the Active Directory, forced us to update the access control mechanisms for 

Windows 2000.  

 

2.4 Goals for Windows 2000 Access Control 

Our goal as designers of access control in Windows 2000 was primarily to rectify the 

limitations of Windows NT 4.0. We wanted to allow ACLs to control access over an 

arbitrary, extendable, number of rights, so that a single ACL could protect an entry in the 

Active Directory that has many properties. We also wanted to allow administrators to set 

access control at a single point in the Active Directory, and let that policy flow to all 

appropriate objects below that point. Finally, we wanted to allow users to be able to 

safely download programs from the Internet and execute them, knowing that the 

programs could not damage their system or misuse their data. In the following sections 

we will first present our solution for extending the number of rights in an access control 

entry, followed by improvements to the access control inheritance mechanisms, and 

finally our mechanism for restricting the rights of a program. 

 
3. TYPE-SPECIFIC ACCESS CONTROL 

The access control entries in Windows NT 4.0 are unable to protect objects in the Active 

Directory because access masks are limited to only sixteen separate access rights. The 

directory service requires an access right to create each type of object and to access each 

property on an object, so the set of sixteen rights limits both the number of object types 

and the number of properties with different access control on an object. In addition, the 

Active Directory supports adding both new object types and new properties to existing 

objects, so the set of access rights for an object may be dynamically extended. For 

example, it would be impossible to add a new property to a user object with unique 

access control needs once the sixteen available rights have been used for other properties. 
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We considered storing a separate ACL for each property on an object. However, the 

existing ACL data structure is a simple container, so there is no need to duplicate the 

ACL itself. In addition, existing routines for managing ACLs in Windows NT are not 

equipped to manage multiple ACLs on a single object. It is also difficult to share access 

control entries between different properties when each property has a separate ACL. 

Another possibility we considered was to extend the access mask format so that more 

than sixteen bits are used to represent rights. However, we believe it is difficult to 

manage a bit field when properties are added or removed from an object. The solution we 

chose for Windows 2000 was to create a new access control entry format with a field that 

specifies the property on the object, or, in the case of creating and deleting child objects 

in a container, the type of object to which the ACE applies. To reduce the cost of 

protecting objects with many properties, we allow groups of properties to be protected 

with a single entry. This combination allows a small access control list to protect objects 

with simple needs while still allowing the full flexibility of protecting every property 

separately. 

 
3.1 Object Types in ACEs 

 
The new ACE format introduced in Windows 2000 adds two fields to each entry. The 

first new field, named ObjectType, identifies the scope of the access control entry. For 

directory service entries, the field identifies either the property or, for access rights on 

containers, the type of child object to which the entry applies. Other applications may use 

the fields for other purposes. The second new field, InheritedObjectType, controls which 

types of objects inherit the ACE and will be discussed in Section 4. Both fields are 

represented as GUIDs [Leach and Salz 1998], which are sixteen-byte values used by 

DCOM  [Eddon and Eddon 1998] and the Active Directory to identify object types. An 

example of the new ACCESS_ALLOWED_OBJECT_ACE structure is shown in Figure 

6. 
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ACE :
    Type: ACCESS_ALLOWED_OBJECT_ACE
    Flags: OBJECT_INHERIT
    ObjectType: LoginScriptPath
    InheritedObjectType: Users
    Access Rights: read, write
    Principal SID: Administrators

 
Figure 6: Example object type specific ACE granting administrators access to the logon script path. This 

ACE is inherited onto user account objects. The new fields are shown in boldface. 

 

The ObjectType field extends the set of rights available for an object by creating 

many sets of rights, each with a different GUID. Applications must supply an object-type 

GUID to the new AccessCheckByType routine to select the ACEs to evaluate. Only ACEs 

with a matching object type and those with no object type are evaluated. In addition, 

applications may extend the set of rights available at any time by creating new object-

type GUIDs for use in access control entries. Object-type GUIDs have two uses within 

the Active Directory. First, every property on every type of object is assigned a GUID. 

The Active Directory protects properties with ACEs specifying the GUID of the property 

and the granted access, read or write. Second, every type of object is assigned a GUID, 

which is used for the right to create and delete objects in a container. The Active 

Directory grants the right to create a specific type of object within a container with an 

ACE specifying the desired object type and the create child access right. Because the 

same rights apply to all properties and all object types, ACEs with no object-type GUID 

can be interpreted as applying to either all properties, in the case of read and write, or all 

object types, in the case of create and delete child. These semantics are particular to the 

Active Directory, which has very regular objects, and other applications may choose to 

not use ACEs without object types, but for the Active Directory it is very concise to grant 

an administrator access to every property on an object or to create any type of object. 

 
3.2 Property Sets 

Specifying individual properties in ACEs provides fine-grained access control at the cost 

of greatly increasing the number of entries in an ACL. In Windows NT, a single access 

right often grants access to multiple operations or data properties, such as all the 

attributes on a file. In addition, a single ACE could grant access to any subset of the 

available access rights. With object-type specific ACEs, though, a separate entry is 

needed for each dis tinct property, which greatly increases the number of ACEs required. 

The number of calls to check access also increases when multiple properties are accessed, 

because each property must be checked separately. To counter both of these potential 

costs, we introduced a new access check routine, AccessCheckByTypeResultList, which 
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checks for access to multiple properties in a single operation and returns a separate result 

for each property. In addition, this routine allows properties to be grouped into property 

sets, so that ACLs only need a single ACE to grant access to all properties in the set. 

Property sets are identified by a GUID, and access to a property is granted if the access is 

granted to its property set. 

 

BOOLEAN
AccessCheckByType(Acl : ACL,
                  DesiredAccess : AccessMask,
                  PrincipalSids : Set of SID,
                  ObjectGuids : Set of GUID)
VAR
  Denied : AccessMask = ∅;
  Granted : AccessMask = ∅;
  Ace : ACE;
foreach Ace ∈ Acl
  if Ace.SID ∈ PrincipalSids &&

(Ace.ObjectGuid == NULL || Ace.ObjectGuid ∈ ObjectGuids)
    if Ace.type = GRANT
      Granted = Granted ∪ (Ace.AccessMask - Denied);
    else if Ace.type = DENY
      Denied = Denied ∪ (Ace.AccessMask - Granted);
    if DesiredAccess ⊆ Granted
      return SUCCESS;
return FAILURE;

 
Figure 7: The algorithm for checking access to a single property with object -type GUIDs. The changes 

from Windows NT 4.0 are shown in italics. The GUIDs for the property and property set are represented as a set 

for simplicity. 

 

Property sets are not visible within the structure of an access control entry; ACEs do 

not specify whether the object-type GUID refers to an object type (in the case of object 

creation), a property set or a property. Instead, the hierarchy is passed into 

AccessCheckByTypeResultList. This routine takes a list of property GUIDs and their 

containing property set GUIDs. The list must be in depth-first order, with each property 

set followed by the desired properties within it. The hierarchy allows ACEs granting and 

denying access to be correctly interpreted, so that a separate access check result can be 

returned for each property requested. The code for checking access with a single property 

is shown in Figure 7. The data structure supplying the list of properties and property sets 

forces properties to only belong to a single property set, because properties must follow 

their owning property set in the list of GUIDs. 
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Level 0: {none - applies to whole object}

Level 1: {GUID for profile property-set}

Level 2: {GUID for home directory property}

Level 2: {GUID for login script property}

Level 1: {GUID for public property-set}

Level 2: {GUID for user name property}

Level 2: {GUID for user title property}

 
Figure 8: A multi-level list of object-type GUIDs used for an access check. The level indicates the scope of 

the GUID, either the whole object, a property set, or a property. Access to a property is controlled by ACEs 

with the GUIDs for its property set or with no GUID. 

 

An example of such a list is shown in Figure 8. The list specifies which ACEs should 

be evaluated, and each level specifies that an ACE granting access at that level also 

grants access to GUIDs following it at a higher level. Level zero has no GUID, meaning 

that ACEs without GUIDs should be interpreted as applying to all properties and property 

sets. Similarly, ACEs granting access to property set GUIDs at level one also grant access 

to all the properties at level two in that property set. While the Active Directory only uses 

two levels, properties and property sets, the AccessCheckByTypeResultList routine 

supports up to five levels of nesting. Property sets enable compact ACLs for the common 

case when only a few different types of access are needed while allowing the complete 

flexibility of specifying access control separately on each property. 

 

ACL Header:
    Revision: version 2
    ACL Size: 200 bytes
    ACE Count: 3

ACE 1:
    Type: ACCESS_ALLOWED_ACE
    Access Rights: read, write, delete, control
    Principal SID: Administrators

ACE 2:
    Type:  ACCESS_ALLOWED_OBJECT_ACE
    Access Rights: read, write
    Principal SID: Group Admins
    ObjectType: {GUID for public property set}

ACE 3:
    Type:  ACCESS_ALLOWED_OBJECT_ACE
    Access Rights: control
    Principal SID: Jane User
    ObjectType: {GUID for change-password property}

 
Figure 9: A sample ACL for a user object using object -type specific access control entries. 
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3.3 Example 

Figure 9 demonstrates how object types and ACEs are used and shows an ACL on a user 

object in the Active Directory. The first ACE grants administrators full control over all 

the properties of the user. The second ACE grants group administrators read and write 

access to the user’s public information, such as her phone number. The third ACE grants 

the user herself access to change the password on the account. For access rights that 

correspond to executing a procedure and not accessing data, the Active Directory defines 

the right control. In this case, the Active Directory understands that a password change 

protocol is allowed to change a user’s password if it can prove knowledge of the user’s 

previous password. This ACL demonstrates the space saving of property sets, because 

many additional entries would be required to specify access separately for each property 

in the ‘public’ property set. 

 
3.4 Discussion 

The primary purpose of type-specific ACEs is to allow applications to both have a large 

set of access rights as well as to dynamically extend their set of rights. Hierarchically 

grouping access rights into property sets simplifies management by allowing 

administrators to grant access to a single property set instead of separately granting 

access to all the properties within it. In addition, property sets simplify extending types, 

because no changes to access control lists are needed when a property is added to or 

removed from an existing property set. Property sets also lessen the memory and 

performance impact of a large set of similar rights by allowing many rights to be 

coalesced into a single access control entry. Finally, property sets simplify the user 

interface by allowing the display of a smaller number of property sets rather than 

(potentially) hundreds of individual p roperties.  

We found that properties and property sets simplify debugging of access control 

problems, because there is a clear mapping between access control entries and rights to 

an object. Previously, in Windows NT a single access right frequently controlled access 

to many properties, and there was no mechanism to determine which right controlled 

which properties. As a result, the user interface tools were hard-coded with names for 

access rights instead of the list of properties actually protected. By formalizing the 

mapping, object-type specific access control entries specify exactly which properties may 

be accessed. The tools also no longer rely on a fixed mapping between rights and 

properties, because they may query the directory service for the names of properties and 

the members of property sets listed in an ACL. 

Despite the fine-grained control offered by per-property access control, there has been 

some customer resistance to specifying access rights on individual properties. In 
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particular, administrators find it difficult to manage a large number of properties 

individually, so access control changes are usually applied at the property set level. It is 

not yet clear whether the fine granularity of protecting individual properties is necessary 

if property sets are well chosen.  

If there is an inexact match between property sets and administrative needs, then the 

property set mechanism breaks down and ACLs can become bloated with entries for 

individual properties. For example, this can occur when upgrading Windows NT 4.0 

servers to Windows 2000. The access control lists protecting user account objects in the 

Windows NT 4.0 directory service are converted into ACLs with type-specific ACEs. 

Each access right for a user object in Windows NT 4.0 grants access to many properties, 

and these groups of properties do not map perfectly onto property sets in Windows 2000. 

Rather than converting an access right in Windows NT 4.0 into an access right to a 

Windows 2000 property set, the upgrade process converts it instead into a sequence of 

ACEs granting access to each property. The resulting access control lists can be many 

times longer than those on user account objects created natively in Windows 2000. For 

example, the ACL on a user account upgraded from Windows NT 4.0 may contain more 

than 30 ACEs granting access to specific properties. 

There has been some feedback from developers indicating that allowing a property to 

be a member of multiple property sets would simplify administration and shrink the size 

of access control lists. For example, some properties may logically belong to multiple 

property sets, such as an email address field on a user that may be part of both a contact 

information property set and an email property set. This change, though, would make it 

difficult to understand when access is granted, and is probably better solved through 

property-specific ACEs. 

The primary drawback of storing object-type information in access control entries is 

the increased cost of both storing access control lists and performing access checks when 

there are many properties on an object and access to many properties is being requested. 

For example, it is not uncommon for ACLs in the Active Directory to be more than 1600 

bytes, and for users to request access to ten or more properties. In Windows 2000, the 

NTFS file system reduces the storage cost by only storing one instance of each unique 

ACL. Objects in the file system reference the specific ACL rather than storing a separate 

copy. In the successor to Windows 2000 Server we added these optimizations to the 

Active Directory.  Another potential improvement for evaluating ACLs is to cluster the 

ACEs in an ACL that grant access to a particular property to reduce the number of entries 

that must be inspected.  

Despite these drawbacks, type-specific access control is crucial to the Active 

Directory. This extension allows the Active Directory to use common operating system 
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functionality, so that a single permissions editor may be used for both it and the rest of 

the operating system. In addition, it shares the reference monitor and security 

infrastructure, which minimizes the amount of new code that must be trusted. The 

additional features allow administrators to grant access to only the properties needed for a 

job function or application instead of all those controlled by a more general access right. 

At the same time, property sets preserve fine-grained control while optimizing for the 

common case where many properties share the same access control. Finally, identifying 

properties by GUIDs simplifies adding and removing properties from an object by 

leaving ACEs for other properties unchanged.  

 

4. INHERITANCE CONTR OL 

Windows NT assigns access control to new objects primarily through inheritance of 

access control entries from the ACLs on containers. There are two major limitations to 

the inheritance mechanisms in Windows NT: 

1. It is impossible to specify that different access control lists be inherited onto different 

types of objects within a container.  

2. It is difficult to propagate changes  to ACLs through a tree of objects, because 

inheritance rules cannot be reapplied without erasing any modified ACLs lower in 

the tree. 

Both problems arise in the Active Directory, because of its many types of objects and 

the many different administrators of these objects. One of the goals for the Active 

Directory is to allow delegation of administration, so that one user can grant another user 

control over a subset of the objects in the directory service, such as all printers or objects 

for a department. Administrators must therefore be able to change permissions at one 

place in the directory and let the effects propagate down either to all objects or only those 

of the appropriate type. Using the access control inheritance mechanism from Windows 

NT, which was designed with a file system in mind, all objects within a container inherit 

the same access control. Furthermore, changes to access control at the root of a tree 

overwrite all changes lower in the tree. Consider a directory service with user and printer 

objects and a separate container for each department in a company. Using inheritance to 

grant a printer operator access to all the printers in one department requires that the 

administrator also grant access to all the user account objects, which is unnecessary. 

Thus, changes to the ACL inheritance mechanism were needed to support the Active 

Directory. The file system also benefits from inheritance changes, because changes to 

ACLs are common there as well. 

We considered several solutions for each problem. One solution for supporting 

multiple object types, similar to the design of ACLs in DCE [Mackey and Salz 1993], is 
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to store multiple ACLs on a container, one for each object type. However, as with storing 

an ACL for each property, that approach may be inefficient when many ACEs are 

common to all child objects because the entries must be duplicated in each ACL. As 

discussed in Section 3, the routines for manipulating access control data in Windows NT 

do not support multiple ACLs on a single object, so significant changes would be needed 

for managing multiple ACLs. Storing ACLs for the various types of objects in a separate 

database is another option. However, this solution alone does not allow hierarchical 

propagation of access rights. Instead, we chose to let applications annotate each ACE 

with the type of object that should inherit the ACE. When an object is created, only those 

ACEs with its type or no type are inherited onto the new object. A single ACL can then 

propagate different ACLs  onto each type of object created below it. 

To allow the granting of rights to a tree of objects, we considered dynamic 

inheritance: if an access right is not granted on an object, then access is checked on all 

parent containers until the right is granted or the root is reached. This approach is taken 

by the NDS directory service [Cadjan and Harris 1999]. However, we believe that the 

access control mechanism should not assume that because objects are named in a 

hierarchy they are also stored and accessed in a hierarchy. For example, files in NFS are 

accessed by file identifier, not by path [Callaghan et al. 1995]. Similarly, the Active 

Directory stores data in a flat database with an index over the full name of each object, so 

there is no convenient opportunity to access all the ancestors of an object. Furthermore, 

reading and writing an object is a common operation, while changes to ACLs are 

infrequent, so the performance of propagating ACL changes is not critical relative to the 

speed of an access check. Taking these conditions into account, our implementation uses 

static inheritance, in which inheritance is reapplied only when ACLs change and a new 

ACL is written to each object. Only a single ACL must be evaluated for most access 

checks. To propagate changes correctly, we annotate ACEs with a flag indicating whether 

they were inherited so that the locally applied ACEs can be identified and preserved 

when inheritance is reapplied. In addition, the inheritance mechanism for ACLs is 

idempotent, so that it can be re-applied after a failure. 

 

4.1 TYPE-SPECIFIC INHERITANCE 

Similar to type-specific access control, Windows 2000 allows type-specific inheritance. 

Applications with multiple types of objects mark ACEs with a new field, 

InheritedObjectType, which specifies the type of object that inherits the ACE. When an 

object is created, those ACEs without an inherited object type or with a matching 

inherited object type are copied into its ACL. Similarly, when an access control change is 

propagated, just the matching entries for each type of object are copied onto the objects in 
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a container. Inheritance still distinguishes between containers and objects, because 

containers must be able to propagate access control to their children and therefore copy 

all inheritable ACEs. Objects, in contrast, only require ACEs that apply to the object 

itself. In Windows XP, the successor to Windows 2000, type-specific inheritance is 

extended to support multiple inheritance, so that an object may inherit the access control 

entries for multiple object types. Multiple inheritance allows new specialized types, such 

as “web-users”, which share the properties and inherit the access control of normal users 

in addition to ACEs only needed for web-users. Figure 10 shows pseudo-code for the 

inheritance algorithm. 

ACL
Inherit(ParentAcl: ACL,

ChildAcl: ACL,
ChildType : GUID,

        IsContainer : BOOLEAN)
VAR
  Ace : ACE;
  ChileAce : ACE;

/* remove inherited ACEs from child ACL */
foreach Ace ∈ ChildAcl
  if inherited_ace ∈ Ace.flags
    ChildAcl -= Ace;

/* add inheritable ACEs from parent ACL */
foreach Ace in ParentAcl
  ChildAce = ∅;
  if IsContainer
    if container_inherit ∈ Ace.Flags
      ChildAce = Ace;
      ChildAce.Flags -= inherit_only;
      ChildAce.Flags += inherited_ace;
      /* Mark ACEs without a matching type as
         inherit only */
      if (Ace.InheritedObjectGuid != NULL) &&
         (Ace.InheritedObjectGuid != ChildType)

ChildAce.flags |= inherit_only;
    else if object_inherit ∈ Ace.Flags
      ChildAce = ACE;
      ChildAce.Flags += inherit_only + inherited_ace;
  else if (object_inherit ∈ Ace.Flags ) &&
         ( (Ace.InheritedObjectGuid == NULL) ||
           (Ace.InheritedObjectGuid == ChildType) )
      ChildAce= ACE;
      ChildAce.Flags = inherited_ace;

  ChildAcl += ChildAce;

return ChildAcl;
 

Figure 10: Algorithm for type-specific inheritance. The changes from Windows NT 4.0 are shown in 

italics. The first change removes inherited ACEs, to ensure that inheritance is idempotent. The second change 

marks all inherited ACEs, so they can be removed in the future. The remaining changes verify that the 

InheritedObjectGuid  matches either the type of the object receiving access control, or is empty. The algorithm 

is simplified and does not include processing of the NO_PROPAGATE_INHERIT flag. 
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In order to scale to a large number of objects, we take advantage of the fact that not 

all object types require a variety of different ACLs. The Active Directory implements a 

database of default ACLs that are placed on all objects when they are created. Only 

objects with ACLs that vary in different portions of the directory hierarchy require type-

specific inheritance, which modifies the default ACL. Thus, for object types that only 

need a single ACL for each instance of the object, the default database supplies the ACL. 

For object types that have more varied access control, inheritance allows variation in 

ACLs. Thus, the combination of default ACLs and type-specific inheritance allows 

scalability to a large number of object types. 

 

\Research\Jane: User type
    ACE1: inherited object type = null
    ACE2: inherited object type = User

\Research: container type
    ACE1: inherited object type = null
    ACE2: inherited object type = User
    ACE3: inherited object type = Printer

\Research\HPLaser: Printer type
    ACE1: inherited object type = null
    ACE3: inherited object type = Printer

 
Figure 11: ACLs on a container and two objects within the container. The ACEs on the ‘\Research’ 

container are inheritable onto different object types, so the two child objects receive a different set of ACEs. 

 
Figure 11 shows an example of type-specific inheritance. In this example, the 

Research container has ACEs that are to be inherited onto all objects, User objects, and 

Printer objects. The user Jane inherits the ACEs with no inherited object type and with a 

User object type. Similarly, the HPLaser printer inherits the first ACE and the Printer 

ACE. This exa mple demonstrates how a single ACL can inherit different ACEs onto 

different types of objects. 

 
4.2 Static Inheritance 

Dynamic inheritance, in which permissions for an object may be set on any container 

above the object, presents a simple and intuitive model of access control at the cost of 

checking access on many containers whenever an object is accessed. The Active 

Directory emulates dynamic inheritance by pre-computing the access control for an 

object when ACLs are changed rather than when access is requested. The difference is in 

implementation; the resulting permissions are the same. The primary difficulty in this 

illusion is merging ACEs applied locally to an ACL with the entries inherited from its 

parent. In addition, it must be possible to limit inheritance so that portions of a hierarchy, 

such as those containing private information, can override inheritance. 
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Windows 2000 enables modifications to access control lists to propagate down a tree 

by annotating ACEs with inheritance information. The algorithm for inheriting access 

control in Windows 2000 is idempotent, so that if the propagation of inheritance aborts 

due to a system failure, inheritance can be applied again with identical results. The 

inheritance mechanism is static, because inheritance is only evaluated when an ACL 

changes rather than during every access request. The resulting access for a principal is the 

same as if inheritance were dynamic and an object’s ancestors were checked for access. 

The ACL data structures in Windows 2000 annotate each access control entry with a 

flag indicating whether or not it was inherited. Each ACE that was inherited has the 

INHERITED_ACE flag set in its header. These ACEs are removed before reapplying 

inheritance, leaving only the entries added directly to the ACL. As a result, reapplying 

inheritance does not overwrite locally specified access control entries.  

Inheritance onto an object or container may be disabled, to provide both local control 

and more restrictive access control for portions of the tree. For example, normal users are 

generally able to browse all the objects in the directory. However, an organization may 

want to exempt the acquisition department’s objects, because the names of the objects 

may reveal privileged information. The SE_DACL_PROTECTED flag, which is stored 

on security descriptors, prevents any ACE from being inherited onto an ACL. The ability 

to set this flag, although not stored in an ACL, is granted by the same access right, 

WRITE_DAC, that controls the right to modify the ACL itself. An administrator may 

therefore create a more secure portion of the hierarchy by preventing inheritance of 

access rights.  

In addition to adding these flags, the ordering rules for ACEs changed for Windows 

2000. In Windows NT 4.0 it is recommended that ACEs denying access be placed first in 

an ACL, so that deny ACEs have precedence over allow ACEs. However, to follow the 

discretionary access control model, which allows the owner of an object control over who 

may access the object, we chose to grant administrators of a sub-tree the ability to 

override all inherited permissions, which results in interleaving grant and deny ACEs 

from each container on a single ACE. In addition, this rule provides a closer simulation 

of dynamic access control, in which access is checked by walking up the hierarchy of 

parent containers. The alternative of placing all ACEs denying access first prevents the 

administrator of an object from overriding an inherited ACE that denies access. Similarly, 

placing inherited ACEs first prevents the owner of an object from controlling the 

resulting access. Therefore, in Windows 2000, all locally added ACEs are placed first, 

followed by inherited entries. If the entries are inherited from containers at several levels 

in the tree, then the ACEs from closer containers will be ordered before ACEs from more 

distant containers. The administrator of an object retains full control over the ACL on the 
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object, because she can either protect the object from inherited access control, or add 

explicit ACEs to the beginning of the ACL that are evaluated before (and hence override) 

inherited entries. 

The implementation of inheritance in the Active Directory is significantly different 

than in the file system. In the file system, the management tools, such as the Windows 

Explorer, implement inheritance. When an ACL is changed, these tools walk the file 

system and write new ACLs on to every effected file or directory. If the user running the 

management tool does not have permission to modify the ACL on an object, then 

inheritance stops, even if the object does not explicitly block inheritance. Whether an 

ACL may be changed depends on the user running the management tool, which is 

confusing because it does not simulate the effect of dynamic inheritance. The Active 

Directory, however, propagates ACL changes itself rather than relying on a management 

tool. A user with permission to modify the ACL on a container implicitly has permission 

to modify the inheritable ACEs on all objects underneath that container, unless 

inheritance is explicitly blocked. As a result, changes to the ACLs at the root of a tree 

propagate completely, independent of the rights of the user who made the changes. It was 

our goal that the file system in Windows 2000 would also implement inheritance itself, 

but schedule pressures prevented that change. 

 

Departments
admins:
    read, write
Backup:
    read

Acquisitions
PROTECTED
Jane User:
    all access

Research
developers:
    read, write

 
Figure 12: Dynamic inheritance. The entries on the Departments container are automatically inherited to 

the Research container during access. Adding a new entry requires updating a single ACL, as shown by the 

addition of a single ACE to grant Backup access. The ACLs referenced during an access check on the Research 

container are dashed. 

 

4.3 Example 

To demonstrate the desired effect of inheritance, Figure 12 shows an example of how 

dynamic inheritance can be applied to the directory service. In this example, the 

‘Acquisitions’ container overrides the inherited permissions by removing the access of 

administrators and instead grants access to the user ‘Jane User’. The other container, 

‘Research’, augments the inherited permissions by additionally granting the ‘Developers’ 

group read access. When a new ACE is added to the ‘Departments’ container, the change 
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is effective for the ‘Research’ container, while the ‘Acquisitions’ container is protected 

from inheritance. 

 

Research
developers:
    read, write
admins:
    read, write
backup:
    read

Departments
admins:
    read, write

Acquisitions
PROTECTED
Jane User:
    all access

Research
developers:
    read, write
admins:
     read, write

Departments
admins:
    read, write
backup:
    read
    

Acquisitions
PROTECTED
Jane User:
    all access

 
Figure 13: An example of reapplying inheritance. On the left are shown containers in a directory service, 

and on the right are the result ACLs after the bold-faced entry was added to the ACL on the ‘Departments’ 

container. The ACLs referenced during an access check on the Research container are dashed. 

 

Compared to dynamic inheritance, static inheritance results in changing more ACLs 

when access control changes, and also results in larger ACLs. Figure 13 shows the same 

example from above with static inheritance. The resulting access is the same, but the 

access control lists in this case are longer because information is duplicated on both the 

container and the child ACL. However, there benefit comes during an access check: with 

static inheritance, only the ACL on the object itself must be inspected. With dynamic 

inheritance, as shown in Figure 12, multiple ACLs must be inspected. 

  

4.4 Semantics of Inheritance 

Static inheritance allows complex access control policies to be expressed, such as 

specifying where certain types of objects may be created. To better specify exactly what 

policies may be expressed, we present a formal description of inheritance. Rules one and 

two below give the semantics of the OBJECT_INHERIT_FLAG in conjunction with 

object types.  The first rule ensures that all objects with a matching type inherit the ACE, 

and that the ACE is used for access control (INHERIT_ONLY is turned off). The second 

rule ensures that all containers inherit all OBJECT_INHERIT ACEs as well, but do not 

use it for access control (INHERIT_ONLY is turned on). 

FALSEONLYINHERITAAinheritsO
NULLbjectTypeinheritedOAbjectTypeinheritedOAtypeO

OancestorsCTRUEINHERITOBJECTA
ConACLinAACEsOobjectsCcontainers
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TRUEONLYINHERITAAinheritsC
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Similarly, the rules for the CONTAINER_INHERIT flag are given below. ACEs with 

CONTAINER_INHERIT are inherited to all containers and only those with a matching 

type use it for access control (rule three). On other containers, the ACE is marked as 

INHERIT_ONLY (rule four). 

FALSEONLYINHERITAAinheritsC
NULLbjectTypeinheritedOAbjectTypeinheritedOAtypeC
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TRUEONLYINHERITAAinheritsC
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The fifth and sixth rules order the ACEs in an ACL. By rule five, if two ACEs are 

ordered on a container and the ACEs are inherited to a child object or container, then the 

ACEs must be in the same order in both ACLs. By rule six, if one container is an ancestor 

of another, then the ancestor’s ACEs will appear later in any ACL that inherits from both 

containers. This rule requires that containers be organized as a hierarchy, so that no 

container has more than one parent.  

XonACLinAprecedesA
ACLinAAhasXConACLinAprecedesAXancestorsC
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The rules above ignore the possibility of a protected ACL. The seventh rule, shown 

below, limits the scope of the previous rules for objects and containers flagged with 

SE_DACL_PROTECTED. This rule ensures that none of the ACEs in a protected ACL 

are inherited. 

))((

|,,,

ConACLinAXancestorsC
TRUEPROTECTEDX.SE_DACL_

CcontainersXonACLinAACEsXcontainerobject

∧∈¬⇒
=
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 (7) 

These rules ensure that access control decisions can be propagate fully through a tree of 

objects, stopped only by a protected ACL.  
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ACL Header:
    Revision: version 2
    ACL Size: 400 bytes
    ACE Count: 4

ACE 1:
    Type: ACCESS_ALLOWED_OBJECT_ACE
    Access Rights: write
    Principal SID: PRINCIPAL_SELF
    Inherited Obj. Type: {GUID for User Account Objects}
    Object Type: {GUID for WWW Homepage}

ACE 3:
    Type:  ACCESS_ALLOWED_OBJECT_ACE
    Access Rights: create child
    Principal SID: Administrators
    Inherited Obj. Type: {GUID for Organization Units}
    Object Type: {GUID for User Account Objects}

ACE 2:
    Type: ACCESS_ALLOWED_OBJECT_ACE
    Access Rights: create child
    Principal SID: Server Applcations
    Inherited Obj. Type: {GUID for RPC Services}
    Object Type: {GUID for RPC Endpoint}

ACE 4:
    Type:  ACCESS_DENY_OBJECT_ACE
    Access Rights: create child
    Principal SID: everyone
    Inherited Obj. Type: NULL
    Object Type: {GUID for User Account Objects}

 
Figure 14: Complex policies expressed with static and type-specific inheritance. The combination of the 

two mechanisms allows administrators to direct where certain objects can and cannot be created. 

 

Figure 14 shows an ACL that takes advantage of both type-specific inheritance and 

static inheritance to express a complex policy. The first ACE depends on the first rule for 

inheriting onto objects and grants users the permission to set their own homepage for the 

World Wide Web. The PRINCIPAL_SELF SID in this ACE represents the user whose 

object is being protected, and is similar to the CREATOR_OWNER SID used for 

inheritance (Section 2.1.3). The service calling AccessCheckByTypeResultList can supply 

an arbitrary SID to replace the PRINCIPAL_SELF SID, unlike the CREATOR_OWNER 

SID, which is replaced during inheritance with an object’s creator (because the creator’s 

identity is stored with the object, in the security descriptor). The Active Directory passes 

in the SID of the object being protected, such as the SID of the user for user account 

objects and the SID of the group for group account objects. This mechanism allows an 

administrator to grant a user permission to modify portions of her own account object but 

not other users’ account objects, and for group members to remove themselves from the 

group.  

The second ACE depends on rule four for container inheritance, and allows server 

applications, such as a database or a web server, to create RPC endpoints in any container 

of type ‘RPC Services’. The key technique here is to create a container type for a specific 
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type of object, and then use a type-specific ACE to grant access to create the object 

within the container. Finally, the third and fourth ACEs in Figure 14 restrict the type of 

container in which a user account object may be created. These ACEs depend on the fifth 

rule, which ensures that the order of the two ACEs is maintained whenever both ACEs 

are inherited. The third entry grants administrators the right to create users in 

Organizational Units and the final entry denies everyone the right to create a user in 

every type of container, due to the NULL inherited object type. Because these two ACEs 

are evaluated in order and inherited in order, a member of the administrators group will 

always be granted access to create a user in an organizational unit, but all other types of 

containers only the ACE denying permission to create users will be inherited, preventing 

everyone from creating users. 

  
4.5 Discussion 

Type-specific inheritance and static inheritance allow centralized management by 

propagating changes through a hierarchy of objects, so that access control changes are 

only made in one place. These features support delegation by allowing an administrator 

to grant access to a single type of object, or even a single property on a single type of 

object. In addition, that access is propagated to new objects when they are created. 

Portions of the tree may also be more protected and block inheritance of rights from 

above. This approach provides the major benefit of dynamic inheritance, which is 

centralized administration but lowers the cost at access time because ACLs along the 

whole path do not need to be evaluated.  

In our experience, the new inheritance mechanisms are typically used for making 

global changes to the Active Directory, as they would to a file system, rather than to 

delegate access to particular object types. For example, administrators are currently wary 

of granting access to create printers and manage all printer objects by placing an access 

control entry at the root of the directory tree. Instead, they prefer to change the ACLs at 

each container with a printer. This again is a form of organizational resistance to 

distributing responsibility for objects in the directory and may change as more 

applications use it to store data. There has also been resistance by administrators to 

dividing the administration of an object between multiple individuals. For example, 

security administrators have been hesitant to allow email administrators the permission to 

modify any portion of a user object, even if the property relates only to email. However, 

this resistance may be an artifact from familiarity with Windows NT 4.0, in which each 

application stored its information separately. As more applications use the Active 

Directory, shared access to objects and split administration may become more common. 

Similar to type-specific access control, static inheritance also simplifies both 

debugging and managing access control because the ACL on an object is usually the sole 
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determinant of access to that object. Only a single ACL must be inspected to determine 

the access granted to a user instead of examining the ACLs from all the containers above 

an object. The user interface in Windows XP even displays the name of the object from 

which an ACE was inherited. In addition, compared to Windows NT, the explicit 

marking of inherited ACEs makes it easier to understand the source of each ACE in an 

ACL.  

The user interaction with ACLs in Windows 2000, while benefiting from explicit 

marking of inherited ACEs, is complicated by the use of privileges and object ownership 

to grant access. The Novell Corporation, in a critique of the Active Directory [Novell Inc. 

2000], complained of two issues. First, the privilege to take ownership of an object 

allows administrators to take complete control over all objects, because an administrator 

may change any object’s ACL. The user interface, though, does not display this ability. 

Second, protecting ACLs from inheritance does not completely restrict access to those 

objects because the ability to take ownership overrides the protection provided by ACLs. 

As a result, it is impossible to prevent any portion of the Active Directory from being 

accessed by a user with the SeTakeOwnershipPrivilege privilege. However, as designers 

we agreed that it was important to grant some level of administrator access to the 

complete directory, to allow the organization to reclaim control of objects when a user 

departs or is unavailable [Microsoft Corp. 2000]. This approach, though, requires limiting 

the use of the take ownership privilege. Granting the right to manage access control 

through a privilege, though, complicates the user interface because the permissions editor 

displays only the contents of the ACL instead of the true permissions granted to the 

object.  

Allowing owners to modify the ACL on an object also reduces the ability to restrict 

who can create certain object types. For example, organizations commonly want only 

security administrators to create user account objects. However, if a user can create any 

type of container, then that user, as owner of the container, may modify the ACL to grant 

herself the right to create new user account objects. The Active Directory avoids this 

limitation by storing, for each type of object, a list of container types that may contain the 

object. If creation of those containers is similarly controlled, then administrators can limit 

the creation of any type of object. User account objects, for example, may only be created 

within organizational unit containers, so limiting the right to create organization units 

also limits the right to create users. The need for these restrictions is due to the semantics 

of the directory service, where objects are accessed by queries rather than strictly by 

name. For example, a user account object may be used for authentication independent of 

where it is created. For applications where the location of an object is more significant, 

such as in a file system, the restriction on creating specific object types may not be 
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needed. In addition, an application may implement a similar restriction without a separate 

list of valid container types by ensuring, with careful use of access control entries that 

unprivileged users are only allowed to create objects, and not containers. 

The Active Directory further complicates static inheritance because the distinction 

between containers and objects is not fixed. Every object type has a property, Container, 

which indicates whether the object may be a container and have other objects below it. 

This flag may change value, so an object type that is initially not a container may later 

become a container. Rather than incur the complexity of updating ACLs when an object 

type is changed, the Active Directory instead treats all objects as containers, causing even 

larger ACLs. 

Compared to Windows NT, this inheritance mechanism increases the cost of access 

control in space, time, and complexity. The inherited ACE information for each object 

type is duplicated in the ACL of every container, so it may require much mo re space to 

store. However, the Active Directory in the follow-on operating system to Windows 2000 

Server stores ACLs in a shared table so that duplicate ACLs can be merged and only a 

single copy of each unique ACL is required. The use of a table of default ACLs greatly 

reduces the size of access control lists because not all object types require ACEs on 

containers. 

The larger ACLs also make access check operations on containers more expensive 

[Microsoft Knowledge Base 2000], because every ACE, whether or not it impacts an 

access control decision, must be read and inspected. Although the speed of access checks 

has not been a problem in the Active Directory, caching the result of an access check can 

lower the cost of access control by not evaluating the same ACL multiple times.  

Finally, applying inheritance statically requires that some piece of code walk the tree 

of objects and reapply inheritance. This reapplication must be resumed if the machine 

crashes, and for certain applications, such as the Active Directory, the reapplication must 

be transactional. The process is much more complex than dynamically applying 

inheritance during an access check, but is on a less frequent code path. Once 

implemented, static inheritance can provide the manageability benefits of dynamic 

inheritance with lower runtime costs. 

 

5. PROTECTION FROM UNTRUSTED CODE 

Fine-grained access control allows administrators to control which users may have access 

to an object, but it does not let users choose which programs may have access. The third 

major access control concern in designing Windows 2000 was preventing misbehaving 

programs from causing damage. One alternative, used by Tron [Berman et al. 1995] and 

Janus [Goldberg et al. 1996], is to augment the operating system with additional checks 
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on the parameters of system calls. While such a mechanism could have worked in 

Windows 2000, the operating system already protects all its internal objects with ACLs 

and privileges. In addition, Windows 2000 has more than two hundred system calls, so 

trapping each one and verifying parameters separately is difficult. We believe that given 

the opportunity to modify the operating system, it is better to extend the existing 

operating system access control mechanisms rather than add a new set of mechanisms. It 

is easier to understand and administer a system with one set of mechanisms than one 

using different mechanisms for different access control purposes. Finally, mu ltiple access 

control mechanisms protecting the same objects may cause confusing results or interact 

poorly, because it is difficult to predict program behavior. 

Our solution, restricted contexts, is based on three goals: 

1. Untrusted code should have no greater access to resources than the user running the 

code. 

2. Users should be able to restrict programs to accessing specific objects or classes of 

objects.  

3. No separate security model, beyond the operating system’s protection and access 

control model, should be needed for restricting code.  

These goals suggest that untrusted code should use operating systems protection 

mechanisms by running in a separate process and address space with its own access 

token, and access control on objects should limit the code to a subset of the objects 

accessible to the user. Restricted contexts apply a second access check after users are 

granted access to the resource, to check the permissions of the running program as well. 

With extensions to existing authentication mechanisms, restricted contexts can also be 

applied across network connections to allow the use of network file systems. Finally, 

restricted contexts can be applied to uses other than untrusted code, such as for delegating 

authority between mutually trusting applications. 

 
5.1 Restricted Contexts 

Windows 2000 allows users to create a limited version of their access token, called a 

restricted token, which may access only a subset of the objects that the user may 

normally access. A process running with a restricted token is a restricted context, and its 

access rights are limited through three independent mechanisms. First, users may remove 

privileges so that the restricted context is limited to only access resources protected by 

access control lists. Second, users may disable groups, so that access granted to those 

groups does not apply to the restricted context. However, the groups must still be checked 

against ACEs denying access, so instead of removing the groups from the access token 

completely, they are instead marked USE_FOR_DENY_ONLY. Finally, and most 

powerfully, users may add a list of restricted SIDs, which represent the identity and 
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access rights of the program being run and are used during access checks. Both the user’s 

normal identities and the restricted SIDs must be granted access to an object. If either set 

of identities is denied access, then the access check fails. Restricted contexts can 

implement simple security policies, such as disabling administrative rights and privileges 

for most programs, as well as more restrictive policies such as limiting a program to 

accessing only a single file. This is accomplished by creating a restricted SID for the 

program and then setting an ACL that grants access to that SID on the desired file. When 

the program is run with the restricted SID in its restrictions, access checks on all objects 

except that file will fail, because no other ACL in the system grants access to the 

program. Figure 15 shows the algorithm for checking access with a restricted token. 

 

BOOLEAN
RestrictedAccessCheck(Acl: ACL,
                     DesiredAccess : AccessMask,
                     RestrictedToken : AccessToken)

if (AccessCheck(Acl, DesiredAccess, RestrictedToken.PrincipalSids) &&
   (AccessCheck(Acl, DesiredAccess, RestrictedToken.RestrictedSids)
  return SUCCESS;
else
  return FAILURE;

 
Figure 15: The algorithm for checking access with a restricted token. 

 

There are two broad approaches for choosing the restricted SIDs for a program. First, 

each program or class of similar programs may be assigned a different SID. The 

resources needed by those programs must grant that specific SID the required access. The 

second approach is to treat restricted SIDs as privileges protecting a class of resources, 

such as user interface objects or scratch file space, so that programs receive SIDs for each 

resource class they are allowed to access. The ACL on instances of a resource must grant 

access to the SID for that resource. The first approach provides tighter control, because 

restricted programs are only allowed to access specific objects. The second approach, 

though, simplifies administration by removing the need to identify every resource needed 

by a program. The two approaches may be combined, so that some resources are 

accessible through SIDs identifying the program while others are accessible through 

resources class SIDs. In addition to SIDs that are only used as restrictions, normal SIDs, 

such as the user’s or a group’s, may also be used in restrictions. 
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User SID

Group SIDs

Privileges

Jane User

Administrators
    (use for deny only)
Service Operators
    (use for deny only)
Users

(none)

Restricted SIDs StockTicker
Restricted Windows

 
Figure 16: A restricted token. In this token, the Service Operators group SID has been disabled so it can 

only be used to deny access, and all privileges have been removed. In addition, the StockTicker SID has been 

added to the Restricted SIDs field, so that SID must be granted access to any objects accessed by this token. 

 

ACL 2

ACE 2:
    Access Rights: read
    Principal SID: Stock
      Ticker

ACL 1

ACE 1:
    Access Rights: read,
      write, execute
    Principal SID: Jane User

ACE 2:
    Access Rights: read
    Principal SID: Stock
      Ticker

ACL 3

ACE 1:
    Access Rights: read,
      write, execute
    Principal SID: Jane User

ACE 1:
    Access Rights:read,
      write, execute
    Principal SID: Service
      Operators

Granted access: read Granted access: none Granted access: none  
Figure 17: This example shows three ACLs accessed by the restricted context in Figure 16.  

 
Figure 16 shows an example of a restricted context, and Figure 17 shows how it is 

used for an access check. The example access token has two restricted SIDs, 

‘StockTicker’, representing a downloadable stock-ticker application, and ‘Restricted 

Windows’, granting access to the windowing system. In addition, all the privileges have 

been removed and one group, ‘Service Operators’ has been disabled. The three ACLs 

shown in Figure 17 demonstrate the effect of restricted SIDs. In the first ACL, the 

restricted context is allowed read access, because both ‘Jane User’ and ‘StockTicker’ are 

granted access. With the second ACL, access is denied even though ‘StockTicker’ is 

granted access because the ‘Service Operators’ SID in the unrestricted portion of the 

token may only be used to deny but not to grant access. Similarly, the third ACL grants 

the restricted context no access, because there is no ACE granting ‘StockTicker’ any 

access. As a result, the restricted context is granted access to only a subset of the 

resources available to the user. It is important to note that a restricted token cannot be 

used on a single thread to execute untrusted code, because that thread can access any 

process-wide resources, such as handles to open files, or stop impersonating and then run 

with an unrestricted token. 
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Restricted contexts can be used to implement the policy of least privilege [Saltzer and 

Schroeder 1975], which states that a program should have only the privileges necessary 

to perform its job and no more. Least privilege requires that the operating system know 

the set of resources a program requires, and then launch the program in a restricted 

context with access to just those resources. While Windows 2000 does not have a 

mechanism to describe the resources required by a program, it does provide the 

enforcement mechanism to limit resource access. With a proper policy in place, many 

common application exploits, such as macro viruses [CERT Coordination Center 1995], 

can be prevented because the application has no access to unrelated or unnecessary 

resources. 

 
5.2 Applying Restrictions to Operating System Resources 

Limiting access by placing restricted SIDs in access control lists works well for files. The 

file system stores ACLs persistently, so policy does not need to be specified each time the 

system restarts. Users also have tools to manipulate file system ACLs. Most importantly, 

the access rights on files (read, write, and execute) are the same rights that users want to 

limit for untrusted code. For these same reasons, though, many other system resources are 

difficult to protect with restricted SIDs: 

1. Users do not control many objects internal to the operating system, so they may not 

have permission to modify the ACLs on those objects.  

2. The operating system creates the ACL on many non-persistent objects, such as user 

interface objects, at boot time and users do not have an opportunity to store a new 

ACL on these objects. 

3. The access rights for an operating system resource may be at the wrong granularity, 

such as in the case of network sockets, which do not distinguish between different 

endpoints. 

Our solution to protecting operating system resources is twofold. First, we created 

several standard SIDs that may be used in restrictions to grant access to broad classes of 

system resources. The operating system uses these SIDs when protecting its own objects. 

For example, the “restricted-network” SID is used to grant access to network 

components, and the “restricted-windows” SID grants access to the user interface. 

Second, access to resources for which ACLs do not provide the correct granularity of 

protection must be denied by the operating system. In this case, the untrusted application 

contacts a trusted service in a separate process to perform the operation. For example, 

network client code contacts a trusted service that establishes network connections on its 

behalf. The service verifies the client’s identity and checks whether the untrusted code is 

allowed to contact the specific endpoint before creating the connection. Using a separate 

service violates our goal of enforcing access control with a single mechanism, but this 
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problem can be reduced if the service itself uses ACLs to express the security policy. 

Unfortunately, the system-wide restricted SIDs for specific resources and the trusted 

service mechanism were dropped from Windows 2000. There is, though, a single system-

wide restricted SID for identifying restricted contexts. 

 
5.3 Remote Authentication with Restricted Contexts 

Restricted contexts are most useful for local access control but unlike many sandboxing 

mechanisms, they may also extend across a network, such as to a network file server. 

Restricted contexts do not have access to a user’s password, private keys for TLS [Dierks 

and Allen 1999], or Kerberos ticket cache [Neuman and T’so 1994], because the 

untrusted code could authenticate itself as the user and cause a remote server to build an 

access token without restrictions. Windows 2000, through the SSPI interface [Brown 

2000] (similar to GSS-API [Linn 1993]), instead exposes only abstract authentication 

operations. This interface generates messages that the caller sends to a remote machine 

for authentication, but does not expose any secret data such as passwords. For example, 

the Kerberos protocol returns application request messages rather than tickets. The 

authentication protocol can include the restrictions in the authentication messages so that 

they are carried to remote servers. As long as the untrusted code is prevented from 

corrupting the restrictions, a restricted context may authenticate to any network service. 

The Kerberos authentication protocol used in Windows 2000 [Neuman and T’so 

1994] has a field, authorization-data, in its encrypted authentication messages with 

which the client can explicitly limit its authority on the server. When a restricted context 

attempts to authenticate, the Kerberos code captures the context’s restrictions and stores 

them in the authorization-data field of a ticket. When a server receives the ticket, these 

restrictions are applied to the access token before the server application is allowed to 

impersonate the client. As a result, applications do not need to be aware that they are 

running with restrictions or that they are accessing a remote resource; instead the 

operating system manages transmitting the restrictions to the remote server. This feature 

was also implemented but not shipped with Windows 2000. 

 
5.4 Limited Delegation with Restricted Contexts 

Restricted contexts may also be used for application-level delegation of authority for 

applications that trust each other. It is common for Internet applications, such as web 

servers, to contact services running on other machines while processing a request. 

Windows 2000 normally requires a user’s credentials, in the form of a password or 

Kerberos ticket to create an access token for the user. As a result, if the service wants to 

use the system access control routines, it must authenticate the client or be given access 

to an existing copy of the client’s access token. Applications can access services on the 
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same machine while impersonating the client, because the access token is copied through 

the kernel. However, applications cannot authenticate as the client to a service running on 

a separate machine unless the client’s authentication protocol supports delegation of 

credentials and uses the same protocol as the application and server.  

Restricted contexts provide an alternate mechanism for applications that trust each 

other to distribute the task of authorizing a client. Rather than requiring authentication 

protocols that support delegation, the application that authenticates a client instead 

captures the client’s identity, group memberships, and privileges. When the application 

communicates with a remote service, it supplies those memberships and privileges as 

restrictions, either in its own protocol or using an authentication protocol as described in 

Section 5.3. This ability for an application to impersonate a client by restricting its own 

rights with the client’s rights is called limited delegation. To implement this mechanism, 

the service must protect its resources with ACLs that, in addition to granting clients 

access, also grants the application full access. An access token for the application 

restricted by the client’s identities then receives the client’s correct access. Because the 

application receives full access to the server’s resources, the service must trust the 

application both with all its resources and to correctly authenticate clients. However, 

limited delegation is applied only to the applications that trust each other, so the client 

does not need to trust the application with data outside the scope of the application, such 

as unrelated file servers. 

 

Client application Web Server

Database

Basic Auth
User: Jane User
Groups: developers

Kerberos  Auth
User: Web Server
Groups: trusted services
Restrictions: Jane User,
  developers

ACL:
ACE1:
  Access Rights: all access
  Principal Sid: web server
ACE2:
  Access Rights: read
  Principal Sid: user

 
Figure 18: Limited delegation may be used by multi-tier applications to securely delegate the client’s 

authority from the first tier server to later tiers by transmitting the client’s identity as restrictions on the web 

server’s identity. 
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Figure 18 demonstrates the use of limited delegation. The client authenticates with a 

web server using standard web authentication protocols, which causes the web server to 

build an access token. When the web server contacts a database using Kerberos 

authentication, it sends the security identifiers from the client’s access token. The ACLs 

on the database grant the web server full access to all data and grant the client partial 

access. Access checks with the restricted token return the client’s true access. This 

technique allows client identities to be forwarded between trusting servers without 

authentication protocol support for delegation, and without allowing the server to amplify 

their rights to those of the client and access resources unrelated to the application. 

Limited delegation also allows the use of a different authentication protocol between the 

client and the web server than between the web server and the database, because no client 

credentials are needed for the second hop. 

 
5.5 Discussion 

We do not have much experience with restricted contexts due to their limited 

implementation in the shipped version of Windows 2000. However, restricted contexts as 

they are implemented do allow users to limit their rights, so they need not run all 

programs with the same rights. Users may choose to run a web browser and mail program 

in a context without access to work documents. Instead of maintaining a separate account 

for administration, a simple program launch tool could let users disable their 

administrative access to the system when running normal programs and only enable it 

when running administrative tools. Allowing restricted contexts to be used for network 

authentication increases their utility because ordinary applications that need to access 

network services can be run in restricted contexts. As a result, restricted contexts are able 

to both provide safety from untrusted code and protect user data from attacks by 

subverted applications. 

There is no policy component of restricted contexts in Windows 2000 that chooses 

the restrictions for a program. We implemented a policy based on Internet Explorer 

Zones [Microsoft Corp. 2001], which classify web sites into categories of trust and can 

also be used to assign policies to each zone. The policy classified executables by the DNS 

domain name of their source. This classification was used to select a restricted identity, 

which requires trusting DNS to translate names correctly names to addresses. The 

policies for code limited whether code is allowed network access, user interface access, 

and access to the user’s data. This feature was dropped before Windows 2000 shipped. 

Another possible policy, used by WindowBox [Balfanz and Simon 2000], is to create 

several isolated environments with only limited sharing. Applications with similar 

security risks are run in the same environment and can share data freely. However, 
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WindowBox limits sharing between environments to avoid the spread of viruses or 

Trojan horses. The advantage of this mechanism is that it presents a simple and 

understandable user interface. Restricted contexts could also be used in conjunction with 

the policy language used by MAPbox [Acharya and Raje 2000], which classifies 

applications according to their resource usage and provides parameterized categories of 

applications.  

Beyond policy, there are several issues with restricted contexts that we have not 

resolved. We have not determined the correct context for a process executing code from 

multiple sources. Intersecting the two contexts may create too restrictive a context, and 

the union of the two contexts is not safe. The user interface for ACL editing also presents 

problems. Normally, all the SIDs that may be present on ACLs are stored on in the 

Active Directory. If users may fabricate SIDs for restrictions and place them on ACLs, 

then the ACL editor must have a mechanism for translating the SIDs into names, such as 

a separate database of locally defined SIDs or an external interface for translating SIDs. 

Despite these issues the restricted context mechanism remains a powerful tool for 

expressing many security policies. 

 

6. RELATED WORK 

The problems we faced for Windows 2000 are not unique and have been addressed by 

many earlier systems, although not in the same combination. Other directory services 

support fine-grained access control, and the inheritance of ACLs has been addressed in 

many settings ranging from object-oriented databases to distributed systems. Restricting 

the access rights of programs has also been addressed by many operating systems. In this 

section we discuss relevant systems and their relationship to our design. 

 

6.1 Fine Grained Access Control 

While there have been many access control list implementations in operating systems, 

they typically cannot support directory services. Instead, directory services implement 

their own mechanisms in order to support complex objects. The access control model in 

Novell’s directory service, NDS 8  [Cadjan and Harris 1999], resembles the model in 

Windows 2000 due to its similar application domain. NDS supports both inheritance of 

access rights as well as protection of individual properties. NDS differs from the Active 

Directory by implementing dynamic inheritance, in which access rights on containers are 

evaluated during access rather than propagating the rights to individual objects. 

Furthermore, NDS does not support grouping properties into property sets, and does not 

support the inheritance of rights for specific properties. Instead, only rights for all 

properties at once may be inherited. NDS’s inherited rights filters, which block the 
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inheritance of specific rights (such as read all properties) instead of all rights, are more 

flexible than Windows 2000’s mechanism that blocks all inheritance. 

The access control mechanism in DCE  [Mackey and Salz 1993] also supports 

directory services. DCE stores many separate ACLs to expand the rights available for an 

object, while Windows 2000 incorporates the additional rights into a single list. Also, 

DCE stores two separate ACLs for inheritance, one for newly created objects and one for 

containers, rather than distinguishing between many different types of objects within a 

single ACL. 

The Netscape Directory Server [Sun Microsystems 2001] uses ACL rules rather than 

explicit ACLs on objects. The rules contain a target, which is an LDAP search rule 

[Yeong et al. 1995], permissions, such as read and write, and a bind rule, which indicates 

the clients to which the ACL applies. This format is more expressive than the ACLs in 

Windows 2000, because the target field may specify not only a single object or tree of 

objects but also arbitrary sets of objects based on their properties. However, these rules 

are specific to LDAP and cannot be used for other applications, and are therefore not as 

general as ACLs in Windows 2000. 

The access control list support from other operating systems, such as Sun’s Solaris 

[Winsor 2001] and Linux [Grunbacher 2001] is not as flexible as that in Windows 2000 

in that they are designed exclusively for file system use. Both the Solaris and Linux ACL 

mechanisms store a single default ACL on directories for all files created within the 

directory, so they are unable to distinguish between multiple types of objects. In addition, 

the ACLs do not store inheritance information, so changes cannot be propagated through 

a tree without losing existing ACLs. Security-Enhanced Linux [Loscocco and Smalley 

2001b] enhances ACLs with a class identifier, to allow different rights for different types 

of objects, such as TCP sockets and raw sockets. However, this ACL support neither 

expands the number of rights for a single object nor specifies how ACLs are inherited 

hierarchically. 

 

6.2 Access Control Inheritance 

The issue of inheriting ACLs hierarchically has been addressed in many settings. Twidle 

and Sloman [1988] discuss the inheritance of rights between domains of objects in a 

distributed system, and specify, similar to Windows 2000, that both positive and negative 

rights in a subdomain should override the inherited rights from a parent domain. Moffett 

et al. [1990] discuss mechanisms for implementing inheritance statically by combining 

the inherited access control entries from parent containers into the ACL for a single 

object, which is our choice for Windows 2000. [Fernandez et al. 1989] addresses the 

issue of inheritance in an object oriented database, and outlines an inheritance policy 
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similar to Windows 2000, but implemented dynamically by inspecting the ACLs of 

parent objects rather than pre-computing the ACL on an object. 

WebDAV [Clemm et al. 2001] uses a similar inheritance model to Windows 2000, 

reflecting Microsoft’s input into its design. In addition to supporting static inheritance 

and protecting objects from inheritance, WebDAV does not restrict objects to a tree 

structure. Instead, ACLs explicitly reference the source of their inherited entries. 

 

6.3 Restricting Executables 

The problem of restricting executing code has also been addressed by many other 

systems, although in a different fashion. Most similar to restricted tokens are the process 

access groups of the Andrew distributed system [Satyanarayanan 1989], in which a child 

process can be launched with some of its groups disabled. While the groups were also 

disabled when accessing network services, the system does not address negative 

authorizations, in which users could be denied access based on group membership. 

Process access groups also do not allow for finer grained control than existing security 

groups. 

Similar to restricted contexts, Janus  [Goldberg et al. 1996], Tron  [Berman et al.], and 

MAPbox [Acharya and Raje 2000] provide isolation for untrusted code by protecting 

objects in the operating system. However, rather than protecting the objects directly, they 

instead trap system calls and inspect the parameters for access. In addition, Janus 

provides a language, also used by MAPbox, to specify security policies. MAPbox 

enhances Janus by providing parameterized behavior classes, so that applications with 

similar needs may share policies. These approaches use a separate set of security 

mechanisms and configuration tools for protecting users from untrusted code than are 

used for protecting users from each other, and as a result are not integrated with the 

existing operating system security mechanisms. The benefit of these systems is that they 

provide a policy for restricting code and are more flexible than restricted contexts 

because they see all the parameters to system calls, rather than just the desired access to 

an object. The Linux Intrusion Detection System (LIDS) [Hatch 2001] provides enhanced 

isolation functionality to Linux,  and allows rights to be granted to programs rather than 

just users, but again is not integrated with other operating system protection mechanisms. 

The WindowBox project [Balfanz and Simon 2000] provides a policy for isolation by 

separating applications onto distinct user-visible desktops rather than just running them in 

different contexts. However, rather than having a general mechanism for limiting 

executable code, WindowBox limits access by tagging objects with a single SID, and 

then checking for that SID in an access token. 
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Several operating systems have been constructed to limit the damage from exploited 

programs by providing additional isolation between processes. Hewlett Packard’s 

Compartmented Mode Workstation (CMW)  [Zhong 1997] and Domain and Type 

Enforcement (DTE) in Unix  [Walker et al. 1996] provide isolation between processes 

and restrict the objects accessible to a process based on their type. While the security 

models of these operating systems are more powerful than Windows 2000’s, these 

operating systems also required greater development effort to achieve that power. 

Security-Enhanced Linux [Loscocco and Smalley 2001a] also restricts programs by 

labeling objects and provides automatic protection domain changes when invoking a new 

program. This operating system, similar to restricted contexts, can also restrict program 

to accessing only a small set of objects, although it augments the operating system 

protection with rules in a configuration file rules instead of storing access control lists on 

objects. Again, the guarantees of SELinux are stronger, but the changes to the operating 

system are greater, and the operating system is left with multiple mechanisms for 

expressing access control. However, unlike Windows 2000, SELinux, CMW and DTE in 

Unix provide better isolation of programs because they have a notion of information flow 

[Bell and LaPadula 1976, Denning 1976]. In Windows 2000, a rogue mail program in a 

restricted context may save a file that is later accessed from an unrestricted context where 

it can cause damage, whereas these operating systems label objects with their source to 

fully is olate programs and their outputs. 

Restricted contexts are a mechanism that may by used to implement many security 

policies, such as role-based access control (RBAC)  [Sandhu et al. 1996] in which users 

select specific roles when performing job tasks. A user may have different access rights 

depending on their role when running a program. Similar to RBAC, restricted contexts 

allow programs to be run with different rights according to their task. However, restricted 

contexts depend on the existence of an unrestricted context that has complete access to 

the user’s resources, while role-based access control does not. 

Restricted contexts are similar to the compound principals from [Abadi et al. 1993], 

where two principals can be required for access. Compound principals, though, are used 

in ACLs to grant access to the combination of two subjects, such as “Jane User and 

StockTicker”. Restricted contexts instead subdivide an existing subject of access control 

into two, and require that both parts be granted access separately. 

Finally, Mazières and Kaashoek [1997] suggest that operating systems should support 

hierarchically named capabilities, in which a user may append identifiers to her user 

identifier to create many levels of sub-identities. These capabilities are similar to 

restricted contexts in that users can create limited versions of their identity, but programs 

must specify which single capability is to be used for each access. 
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7. CONCLUSION 

In this paper we presented the extensions made to the Windows NT 4.0 access control 

mechanisms for Windows 2000. These extensions enable the access control mechanisms 

of Windows NT, designed primarily for file systems, to apply to applications with more 

complex needs, such as a directory service. While many of the ideas have been seen 

before in other applications or systems or in slightly different forms, in Windows 2000 

the same implementation of ACLs is used by all system services and many applications 

rather than creating a separate mechanism for each use. The combination of features in 

Windows 2000’s ACLs provides a balance of feasibility, performance, and 

manageability. In particular, extending access control entries to specify both a portion of 

an object for access checks and a type of object for inheritance allows the existing model, 

designed for file systems, to be applied to many other applications. The extended 

inheritance controls enable centralized management of large hierarchies of objects by 

allowing inheritance to be reapplied without disrupting previously modified ACLs. The 

addition of restricted contexts makes it possible to apply operating system security 

mechanisms to isolate misbehaving code by allowing users to restrict the set of objects 

accessible to a program. Unfortunately, the improvements described in Sections 5.2 and 

5.3 (protecting system objects and remote authentication, respectively) did not make it 

into the shipped version of Windows 2000. Overall, these changes greatly improve the 

scalability and security of the Windows 2000, while retaining the simplicity of a single 

access control mechanism throughout the operating system. 
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