
 - 1 -

Improving the Granularity of
Access Control for Windows 2000
MICHAEL M. SWIFT*, PETER BRUNDRETT, CLIFF VAN DYKE, PRAERIT
GARG, ANNE HOPKINS, SHANNON CHAN, MARIO GOERTZEL AND
GREGORY JENSENWORTH
Microsoft Corporation

__

This paper presents the mechanisms in Windows 2000 that enable fine-grained and centrally managed access
control for both operating system components and applications. These features were added during the transition
from Windows NT 4.0 to support the Active Directory, a new feature in Windows 2000, and to protect
computers connected to the Internet. While the access control mechanisms in Windows NT are suitable for file
systems and applications with simple requirements, they fall short of the needs of applications with complex
data objects. Our goal was to use operating system access control mechanisms to protect a large object
hierarchy with many types of objects, each with many data properties. We also wanted to reduce t he exposure
of users to untrustworthy or exploited programs.

We introduced three extensions to support these goals. First, we extended the entries in access control lists
to provide an unlimited number of access rights for a single object and to allow grouping those rights for
efficiency. Second, we extended the entries to specify precisely how access control lists are assigned to each
distinct type of object, instead of treating all types identically. Finally, we extended the data structure
identifying users’ identity to the operating system to allow users to restrict the set of objects a program may
access. These changes allow a single access control mechanism to be used to protect both system and
application resources, as well as protect users from each other and users from their programs, simplifying both
program development and system management.

Categories and Subject Descriptors: D.4.6 [Operating Systems]: Security and Protection – access controls;
K.6.5 [Management of Computing and Information Systems]: Security and Protection – invasive software
General Terms: Security, Design, Performance
Additional Key Words and Phrases: Access control lists, Microsoft Windows 2000, Windows NT, Active
Directory
__

1. INTRODUCTION

One goal of Windows NT 4.0 operating system was to provide a secure platform for

applications by providing general support for authentication, access control, and auditing.

However, the addition of the Active Directory in Windows 2000, the follow-on operating

system to Windows NT, and the increasing frequency of security attacks on trusted

applications demonstrated several limitations of Windows NT access control. The Active

Directory, a hierarchical directory service [Iseminger 2000], requires access control at a

finer granularity and with more centralized control than can be supported by the

mechanisms in Window NT. The security attacks demonstrated that users could not

prevent untrusted code from accessing their data. This paper presents the changes made

to the Windows NT access control mechanisms to address these limitations.

The increasing integration of applications, when several independent programs

cooperate and share data, drives the need for new access control mechanisms. There are

many situations where data from one application must be available to another application,

 Originally published in the Proceedings of the 6th ACM Symposium on Access Control Models and
Technologies (SACMAT ‘01, Chantilly, VA, May 2001).
* Now at the University of Washington

 - 2 -

although not always with the same access rights. For example, an electronic mail server

may access a user account database for determining valid email addresses, but should not

be able to modify the address. This increased sharing between applications has led to

centralized repositories of application data, such as the configuration registry in Windows

NT and Windows 95, and directories services such as Novell NDS and Microsoft’s

Active Directory. These centralized repositories of data require fine-grained protection to

restrict each application to only its required access. For example, a mail server may need

to modify mail routing information on a user object, but should not be able to set users’

passwords.

In many operating systems access control mechanisms are separate for each

application, such as permissions in the file system and configuration files for user

applications. Windows NT integrates many security services that were formerly provided

by applications, such as authentication and access control. As a result, Windows NT has a

single access control mechanism that is used by all system components, including kernel

objects, user interface objects, and the file system. The access control mechanism is also

intended for use by applications, such as web servers or mail servers. This approach

benefits both administrators and developers by requiring that they learn only a single set

of mechanisms, enables a common user interface for access control, and reduces the

amount of security-critical code in applications.

The major access control mechanism in Windows NT is the access control list (ACL),

which for each object specifies the operations users may perform. The access control lists

in Windows NT 4.0 were designed for services, such as the file system, with only a few

types of objects and with only a small number of operations. However, the Active

Directory stores data for many different uses, such as logon and authorization, electronic

mail, and security policy. It contains hundreds of types of data objects, ranging from user

account data to network printer configuration data, and every object has many properties,

such as user name and password or printer description. Depending on the needs of the

application, the properties on a single object may be protected separately, so some are

accessible to all users while other properties are accessible only to administrators. While

implementing the directory service we discovered two limitations of the access control

mechanisms in Windows NT: the access control lists cannot distinguish between large

numbers of operations on a single object or large numbers of types of objects, and cannot

propagate access control changes through a tree of objects.

The solution in Windows 2000 to both limitations is to annotate ACLs with additional

information, such as whether entries apply to all objects or just a particular type of object.

For example, access control lists in Windows 2000 specify which types of objects may be

created and deleted, rather than granting the right to create all types of objects. Access

 - 3 -

control lists also specify which types of objects inherit access control from a container,

instead of inheriting the same access control onto all objects. As a result, access control

lists can precisely specify users’ access to a specific object as well as propagate that

access to all objects of the same type.

Another limitation of the access control mechanisms in Windows NT is that they

were not designed to protect the users from their programs. The mechanisms assume that

users are in control of the code they execute, and provide no features to ensure that

programs don’t accidentally corrupt or misuse users’ data. Unfortunately, it has become

increasingly common for users’ applications to turn malicious. For example, bugs in

trusted applications, such as web browsers and email clients, cause damage by

inadvertently exposing all the files on a computer to an attacker [CERT Coordination

Center 1995]. Downloaded ActiveX controls [Denning 1997], while not as trustworthy

as other applications, are only authenticated with digital signatures and currently must be

trusted with the full rights of the user.

Using restricted contexts, Windows 2000 enables programs to run with limited

authority and access only a subset of the resources available to a user. For example

downloaded code can be limited to accessing the user interface but not the file system or

network. With proper configuration, a user can implement the policy of least privilege

[Saltzer and Schroeder 1975], in which programs are only granted access to the resources

necessary for their execution.

This paper presents the access control mechanisms in Windows 2000, with an

explanation of the tradeoffs that were made in their design. As background, in Section 2

we describe the access control mechanisms in Windows NT, and the design of the Active

Directory in Windows 2000. We then explain why new access control mechanisms are

needed. This is followed by a description of the extensions to support large numbers of

rights for an object in Section 3 and improvements for centralizing management of access

control in Section 4. In Section 5 we describe changes to limit the rights of untrusted

code. In Section 6, we discuss previous work on these problems and then conclude in

Section 7.

2. BACKGROUND

To explain the access control extensions in Windows 2000, we first describe access

control in Windows NT 4.0. The access control mechanisms in Windows 2000 are an

evolutionary step from the structures and mechanisms in Windows NT, both to maintain

compatibility with existing applications and to minimize the changes to the operating

system code. We will then describe the Active Directory and its security requirements.

 - 4 -

2.1 Access Control Mechanisms in Windows NT 4.0

The security mechanisms of both Windows NT and Windows 2000 are built around

discretionary access control, in which the owner of an object may specify who may

access the object. These operating systems do not support mandatory access control, in

which the system imposes a policy on all object accesses. Both operating systems

distinguish objects, entities being accessed, from subjects, the active entities performing

accesses. Access control in both operating systems is based on access control lists,

which, for each object, specify the access granted to different subjects.

User SID

Group SIDs

Privileges

Jane User

Administrators
Service Operators
Users

Load Device Driver
Shutdown System
Take Ownership

ACL Header:
 Revision: version 1
 ACL Size: 100 bytes
 ACE Count: 2

ACE 1:
 Type: ACCESS_ALLOWED_ACE
 Flags: OBJECT_INHERIT
 Access Rights: read, write, delete
 Principal SID: Administrators

ACE 2:
 Type: ACCESS_ALLOWED_ACE
 Flags: CONTAINER_INHERIT
 Access Rights: read, write, delete child
 Principal SID: Everyone

Figure 1 Figure 2

Figure 1 shows an example of a simplified access token in Windows NT, containing user and group

identities and privileges. Figure 2 shows an example access control list (ACL) on a directory with two entries

(ACEs).

2.1.1 Subjects A subject in Windows NT is represented by an access token, which is a

kernel data structure storing a user’s identity, group memberships, and privileges. Users

may be organized into groups, such as all users that work on a project together. Users and

groups are both security principals, which are the entities that may be granted or denied

access to an object. Security identifiers, or SIDs, are variable-length byte strings that

represent security principals. The operating system also supports a small number of

standard privileges, which are represented as 64-bit numbers and have two purposes.

First, privileges grant administrative access to a large set of objects, such as all files for

backup/restore of disks or all drivers for system management. Second, privileges secure

operations that have no specific object, such as shutting down the system or changing the

system clock. Privileges may be granted to either users or groups, and the set of

privileges granted to a security principal is stored in a policy database. Access tokens,

shown in Figure 1, are constructed during logon by a trusted authentication service,

 - 5 -

which is responsible for authenticating the user and determining which user identifier,

group identifiers, and privileges should be in the access token.

Every process in the operating system has an access token, and threads in a process

may have a separate access token. If a thread has an access token, then that token is used

for access control on operations made by the thread. If a thread has no access token, then

the token from its owning process is used instead. Each process is either explicitly

assigned an access token during creation (which requires the SeAssignPrimaryToken

privilege) or copies the token from its creator. After a process starts, its access token may

not be replaced, and the only change possible to its access token is to enable or disable

privileges. For example, it is impossible to add or remove groups or change the user

identity in an access token. Programs may replace the access token of a thread, though,

which allows programs to impersonate users and perform specific actions with their

identity. For example, a file server may assign the access token of its client to the thread

processing the client’s requests, so that calls to the file system to access the user’s files

will receive proper access control. For inter-process communication, the operating system

kernel copies the access token between the client and server. For network

communication, the authentication protocol is responsible for carrying client identities to

the server, where a new access token is constructed. The token of a process that is

impersonating is not used for access control, so a program run by a non-privileged user

may enhance its access to a resource by impersonating the access token of a user who is

granted more rights to the resource. As a result, administrators must take care not

authenticate to programs run by non-privileged users.

2.1.2 Access Control. Windows NT provides a single major access control mechanism for

all system resources that need access control, such as files, user interface objects, and

kernel objects. Each object requiring protection is assigned a security descriptor, which

stores all of its security state: the owner, group (used for emulating the Unix owning

group field), access control list (ACL), and auditing information. The operating system

provides a standard representation of access control lists for use by both system services

and applications, removing the need for each application to implement its own access

control algorithms and structures.

An access control list is a container for access control entries (ACEs), which

determine which access rights should be granted or denied to specific security principals.

An ACL may contain an arbitrary number of ACEs for different users or groups of users.

The two types of ACEs in Windows NT are ACCESS_ALLOWED_ACEs, which grant a

principal access, and ACCESS_DENIED_ACEs, which deny access. A sample ACL with

two access control entries is shown in Figure 2. The ACE type field controls whether the

ACE grants or denies access and the flags control whether it is copied onto the ACL of

 - 6 -

new objects. The remainder of the ACE contains the security identifier of the principal it

grants or denies access and an access mask , which is a bit-field specifying the access

rights. Windows NT allows just sixteen bits to be defined by the implementor of an

object for specific access rights. In addition to controlling access to objects, rights in

access control entries on containers may apply to the objects within the container. For

example, the access rights on directories in a file system are: list directory, add file, add

subdirectory, delete child, traverse, read attributes, and write attributes.

BOOLEAN
AccessCheck(Acl: ACL,
 DesiredAccess : AccessMask,
 PrincipalSids : SET of Sid)
VAR
 Denied : AccessMask = ∅;
 Granted : AccessMask = ∅;
 Ace : ACE;
foreach Ace ∈ Acl
 if Ace.SID ∈ PrincipalSids
 if Ace.type = GRANT
 Granted = Granted ∪ (Ace.AccessMask - Denied);
 else if Ace.type = DENY
 Denied = Denied ∪ (Ace.AccessMaska - Granted);
 if DesiredAccess ⊆ Granted
 return SUCCESS;

return FAILURE;
Figure 3: The algorithm for determining access control in Windows NT 4.0. The routine is simplified for

clarification.

Windows NT places the responsibility for performing access control for both system

components and applications on the security reference monitor in the operating system’s

kernel. The reference monitor concept, first described in [Anderson 1972], ensures that

the access control algorithms are applied uniformly for all applications and system

services. Applications protecting their own objects typically call the AccessCheck routine

when an object is first accessed or opened. Subsequent accesses to the object that require

only rights granted by a previous call to AccessCheck need not be checked (which may

cause time-o f-check to time-of-use errors). The AccessCheck routine passes the ACL,

requested access rights, and the subject’s access token into the security reference monitor.

The entries from the ACL are evaluated in order, and each entry’s SID is compared

against the user and group SIDs in the subject’s access token. If the SID is found, then

the access rights in the ACE are either granted or denied, according to the type of ACE.

Once a right has been denied, it may not be granted later by another ACE. Similarly, once

a right has been granted, it may not be denied later. This algorithm is shown in Figure 3.

Interleaving allow and deny ACEs enables Windows NT to emulate Unix file system

ACLs [Ritchie and Thompson 1974], in which only one entry in the list is ever used to

 - 7 -

grant a user access. For example, an ACL containing an entry granting a group access to

a file followed by an entry denying the group all other accesses ensures that a member of

that group receives the granted accesses and no more. The second ACE denies all other

accesses and halts further evaluation of the ACL. While the security reference monitor

supports any ordering of ACEs, the convention in Windows NT 4.0 is to place ACEs

denying access before ACEs granting access, so that deny entries take precedence1.

Table 1: Flags in the access control entry that control inheritance.

INHERIT_ONLY_ACE ACE is only used for inheritance; it is not applied to this
object

NO_PROPAGATE_INHERIT ACE is inherited onto sub-objects, but no further
OBJECT_INHERIT_ACE ACE is inherited onto sub-objects
CONTAINER_INHERIT_ACE ACE is inherited onto sub-containers

2.1.3 Assigning Access Control While there are routines to directly modify existing

access control lists and an ACL may be specified during object creation, in Windows NT

they are commonly created by copying entries from the ACL on the container of an

object. For example, when a file is created in a directory, access control entries from the

directory’s ACL are inherited and copied onto the ACL of the new file. Inheritance flags

in each ACE, shown in Table 1, select which entries are copied onto the ACL, and these

flags distinguish between entries that are copied onto files and onto directories, because

they support different operations, such as reading data versus listing files. The

OBJECT_INHERIT_ACE flag causes an entry to be copied from directories onto entities

that are not containers, e.g. files, and the CONTAINER_INHERIT_ACE causes an entry

to be copied onto entities that may contain other objects, e.g. directories. The

INHERIT_ONLY_ACE marks entries on a directory that are not used for granting access

to the directory but are instead intended only for inheritance. This flag is removed when

the ACE is inherited. Finally, the NO_PROPAGATE_INHERIT flag limits the

inheritance by removing all inheritance flags after the ACE has been copied. As a result,

an entry marked NO_PROPA GATE_INHERIT and CONTAINER_INHERIT_ACE will

be copied into the ACL of a new directory but not to any directories below it. This

algorithm is shown in Figure 4.

1 The Windows NT 4.0 ACL editor does not support deny entries at all (the tool does not correctly display
ACLs with deny entries), which simplifies the user interface.

 - 8 -

ACL
Inherit(ParentAcl: ACL, IsContainer : BOOLEAN)
VAR
 Ace : ACE;
 ChileAce : ACE;
 ChildAcl : ACL = ∅;
foreach Ace ∈ ParentAcl
 ChildAce = ∅;
 if IsContainer
 if container_inherit ∈ Ace.Flags
 ChildAce = Ace;
 ChildAce.Flags -= inherit_only;
 else if object_inherit ∈ Ace.Flags
 ChildAce = ACE;
 ChildAce.Flags += inherit_only;
 else
 if object_inherit ∈ Ace.Flags
 ChildAce = Ace;
 ChildAce.Flags = 0;
 ChildAcl += ChildAce;

return ChildAcl;

Figure 4: Algorithm for inheriting ACEs from a parent container onto a child object or container. The

algorithm is simplified and does not include processing the NO_PROPAGATE_INHERIT flag, the

CREATOR_OWNER identity, or generic rights.

Windows NT 4.0 includes two special mechanisms to allow slight variation in ACLs

between different objects within the container. First, an inheritable ACE may contain the

special identity CREATOR_OWNER. When an entry with this SID is inherited, the

principal in the resulting ACE is replaced with the creator of the object. As a result, an

ACE on a container can specify that the creators of objects within the container be

granted specific rights. Second, inheritable ACEs may contain special access rights,

called generic rights that are replaced during inheritance with rights specific to the object

being created. For example, the ACL on a directory could contain an ACE granting

generic read access. When this entry is inherited, the generic read access right is replaced

with a set of rights, specific to the type of object created (either a file or a directory in this

case), corresponding to read access. This mechanism allows read access to be interpreted

as a set of finer-grained access rights, such as “read data” and “read attributes” for a file.

ACL inheritance allows permissions set on a directory to be propagated to every new

file and directory created within it, but has no impact on already existing files and

directories. System management tools simulate ACL inheritance onto existing files by

reapplying inheritance on all the objects under a directory. However, if the user changing

access control on a directory does not have permission to modify the ACL on an object

lower in the tree, then inheritance is not applied to that object. Furthermore, there are no

rules specifying how to merge existing ACLs with changes inherited from a parent, so the

 - 9 -

Windows NT ACL editor discards the ACL on an object and create a new ACL

consisting only of inherited entries.

Two separate mechanisms in Windows NT grant users permission to modify ACLs.

First, access may be explicitly granted with the WRITE_DAC (write discretionary access

control) access right. This right grants the permission to add or remove ACEs from the

ACL. Second, the owner of an object is automatically granted the right to read and

modify the access control list of the object, and can therefore always manage the object’s

ACL. The owner is initially set to the creator of an object, but it may be reset by use of

the SeTakeOwnershipPrivilege privilege. This privilege allows a user to change the

owner field of a security descriptor to their own identity, after which she may change the

ACL. Because this privilege is normally granted to administrators, it is impossible to

prevent administrators from accessing an object.

2.2 Active Directory

Despite the rich support for access control in Windows NT, the Active Directory requires

additional capabilities. The Active Directory is the central point for system and

application management in Windows 2000 and stores many types of information [Isenger

2000]. The data in the Active Directory are arranged as a hierarchy (single rooted tree) of

typed objects, and each type has a common set of data properties and behaviors. Many

objects are used for multiple applications. For example, user account objects are used for

authentication by the Kerberos protocol as well as by the Exchange mail server for email

delivery. As a result, a single object must be manageable by multiple sets of

administrators. There are properties that are common to many types of objects, in

particular metadata about the object, such as its type and its name, as well as properties

that are unique to a single type. Finally, the Active Directory may be dynamically

extended with new object types and by adding new data properties to existing object

types. For example, a web publishing application could store the default web page for

each user as a new property on user account objects.

 - 10 -

Company

Departments Computers DevicesApplications

Research Acquisitions

Name:Jane User
Email: jane_user@company.com
Phone:555-1212
Password: xxxxxxxx

Figure 5: An example hierarchy in the Active Directory, showing multiple levels of containers with objects.

Each object has a set of properties, as demonstrated by the properties on the object under the Marketing

container.

The hierarchical structure of the Active Directory serves several purposes. First, it

groups objects with similar management properties, such user account objects of people

in one department of a company. Containers also group objects with similar types, such

as applications’ configuration data. Despite presenting data as a hierarchy, the Active

Directory internally stores data in a flat database and maintains indexes over the full

name of each object as well as other important properties. Figure 5 shows a sample

directory layout with many containers, each with many objects. Each object has a

collection of properties, such as a name and password for a user.

Table 2 presents definitions of terms relating to the Active Directory and access

control in Windows NT and 2000.

 - 11 -

Table 2: Definition of terms concerning access control and the Active Directory.

Term Definition
ACE (access control entry) Entry in an ACL that specifies, for a security principal, the access

granted or denied to an object.
ACL (access control list) List specifying, for an object, access granted or denied to a subject,

containing access control entries (ACEs).
Access Token Kernel data structure containing identity and privilege information

about users active on a system.
Container An application or system element that may have other elements with

ACLs below it or contained within it, such as a directory in the file
system.

Delegation Granting another subject the permission to perform acts on one’s
behalf, either by modifying access control lists or modifying the subject
of access control.

GUID (globally unique
identifier)

A 128-bit number used for identifying object types in the Active
Directory.

Impersonation Performing an action with the identity of another subject.
Inheritance The process of selecting access control entries on the ACL of a

container to copy onto the ACLs of objects within the container.
Object An application or system element that may be secured with an ACL

and that does not have any elements with ACLs below it or contained
within it, such as a file in the file system. Also a generic term
describing any resource protected by an ACL, including containers.

Object Type The description of the properties and behavior of a group of objects in
the Active Directory, such as all objects representing users.

Privilege System-wide right for a user to perform an operation, such as load a
driver or backup a file.

Property A name and value pair on an object in the Active Directory.
Property set A group of name and value pairs with common access control policy in

the Active Directory.
Security Descriptor Container for security information about an object, including ACL,

auditing information, and object’s owner.
Security Principal A user or group, identified by a security identifier (SID).
SID (security identifier) Variable length byte string identifying users and groups.
Subject An entity that performs operations, such as a program running on

behalf of a user.

2.3 Limitations of Windows NT Access Control

The Windows NT access control structures and mechanisms are powerful and flexible,

and can emulate other forms of access control lists, such as Unix file system ACLs

[Ritchie and Thompson 1974] and DCE ACLs [Mackey and Salz 1993]. They may also

be used to secure applications, such as databas es or web servers. However, access control

lists in Windows NT are optimized for applications with only a small number of types

that are not extensible, such as files and directories in a file system. The mechanisms

have several limitations with respect to Windows 2000 and the Active Directory:

1. Access masks are only sixteen bits, so a single ACL can only control sixteen

different access rights.

2. Inheritance does not distinguish between objects with different access rights, and

ACLs cannot be propagated to a tree of objects if some of the objects have ACLs

that are not inherited.

 - 12 -

3. There is no mechanism for restricting the rights of a program other than disabling

privileges.

The first two flaws arise in the context of the Active Directory because of its many

object types and many properties on each object type. Managing the Active Directory

requires that access control must be administrable from the top of the directory hierarchy,

so that an administrator may delegate control by granting other administrators access to

all instances of a type of object.

The third flaw was exposed by the growing number of Windows NT systems

connected to the Internet, which resulted in security exploits of network applications such

as web browsers and email clients. As a partial solution, programs must be prevented

from unnecessary access to user and system resources. This flaw, as well as the difficulty

of supporting the Active Directory, forced us to update the access control mechanisms for

Windows 2000.

2.4 Goals for Windows 2000 Access Control

Our goal as designers of access control in Windows 2000 was primarily to rectify the

limitations of Windows NT 4.0. We wanted to allow ACLs to control access over an

arbitrary, extendable, number of rights, so that a single ACL could protect an entry in the

Active Directory that has many properties. We also wanted to allow administrators to set

access control at a single point in the Active Directory, and let that policy flow to all

appropriate objects below that point. Finally, we wanted to allow users to be able to

safely download programs from the Internet and execute them, knowing that the

programs could not damage their system or misuse their data. In the following sections

we will first present our solution for extending the number of rights in an access control

entry, followed by improvements to the access control inheritance mechanisms, and

finally our mechanism for restricting the rights of a program.

3. TYPE-SPECIFIC ACCESS CONTROL

The access control entries in Windows NT 4.0 are unable to protect objects in the Active

Directory because access masks are limited to only sixteen separate access rights. The

directory service requires an access right to create each type of object and to access each

property on an object, so the set of sixteen rights limits both the number of object types

and the number of properties with different access control on an object. In addition, the

Active Directory supports adding both new object types and new properties to existing

objects, so the set of access rights for an object may be dynamically extended. For

example, it would be impossible to add a new property to a user object with unique

access control needs once the sixteen available rights have been used for other properties.

 - 13 -

We considered storing a separate ACL for each property on an object. However, the

existing ACL data structure is a simple container, so there is no need to duplicate the

ACL itself. In addition, existing routines for managing ACLs in Windows NT are not

equipped to manage multiple ACLs on a single object. It is also difficult to share access

control entries between different properties when each property has a separate ACL.

Another possibility we considered was to extend the access mask format so that more

than sixteen bits are used to represent rights. However, we believe it is difficult to

manage a bit field when properties are added or removed from an object. The solution we

chose for Windows 2000 was to create a new access control entry format with a field that

specifies the property on the object, or, in the case of creating and deleting child objects

in a container, the type of object to which the ACE applies. To reduce the cost of

protecting objects with many properties, we allow groups of properties to be protected

with a single entry. This combination allows a small access control list to protect objects

with simple needs while still allowing the full flexibility of protecting every property

separately.

3.1 Object Types in ACEs

The new ACE format introduced in Windows 2000 adds two fields to each entry. The

first new field, named ObjectType, identifies the scope of the access control entry. For

directory service entries, the field identifies either the property or, for access rights on

containers, the type of child object to which the entry applies. Other applications may use

the fields for other purposes. The second new field, InheritedObjectType, controls which

types of objects inherit the ACE and will be discussed in Section 4. Both fields are

represented as GUIDs [Leach and Salz 1998], which are sixteen-byte values used by

DCOM [Eddon and Eddon 1998] and the Active Directory to identify object types. An

example of the new ACCESS_ALLOWED_OBJECT_ACE structure is shown in Figure

6.

 - 14 -

ACE :
 Type: ACCESS_ALLOWED_OBJECT_ACE
 Flags: OBJECT_INHERIT
 ObjectType: LoginScriptPath
 InheritedObjectType: Users
 Access Rights: read, write
 Principal SID: Administrators

Figure 6: Example object type specific ACE granting administrators access to the logon script path. This

ACE is inherited onto user account objects. The new fields are shown in boldface.

The ObjectType field extends the set of rights available for an object by creating

many sets of rights, each with a different GUID. Applications must supply an object-type

GUID to the new AccessCheckByType routine to select the ACEs to evaluate. Only ACEs

with a matching object type and those with no object type are evaluated. In addition,

applications may extend the set of rights available at any time by creating new object-

type GUIDs for use in access control entries. Object-type GUIDs have two uses within

the Active Directory. First, every property on every type of object is assigned a GUID.

The Active Directory protects properties with ACEs specifying the GUID of the property

and the granted access, read or write. Second, every type of object is assigned a GUID,

which is used for the right to create and delete objects in a container. The Active

Directory grants the right to create a specific type of object within a container with an

ACE specifying the desired object type and the create child access right. Because the

same rights apply to all properties and all object types, ACEs with no object-type GUID

can be interpreted as applying to either all properties, in the case of read and write, or all

object types, in the case of create and delete child. These semantics are particular to the

Active Directory, which has very regular objects, and other applications may choose to

not use ACEs without object types, but for the Active Directory it is very concise to grant

an administrator access to every property on an object or to create any type of object.

3.2 Property Sets

Specifying individual properties in ACEs provides fine-grained access control at the cost

of greatly increasing the number of entries in an ACL. In Windows NT, a single access

right often grants access to multiple operations or data properties, such as all the

attributes on a file. In addition, a single ACE could grant access to any subset of the

available access rights. With object-type specific ACEs, though, a separate entry is

needed for each dis tinct property, which greatly increases the number of ACEs required.

The number of calls to check access also increases when multiple properties are accessed,

because each property must be checked separately. To counter both of these potential

costs, we introduced a new access check routine, AccessCheckByTypeResultList, which

 - 15 -

checks for access to multiple properties in a single operation and returns a separate result

for each property. In addition, this routine allows properties to be grouped into property

sets, so that ACLs only need a single ACE to grant access to all properties in the set.

Property sets are identified by a GUID, and access to a property is granted if the access is

granted to its property set.

BOOLEAN
AccessCheckByType(Acl : ACL,
 DesiredAccess : AccessMask,
 PrincipalSids : Set of SID,
 ObjectGuids : Set of GUID)
VAR
 Denied : AccessMask = ∅;
 Granted : AccessMask = ∅;
 Ace : ACE;
foreach Ace ∈ Acl
 if Ace.SID ∈ PrincipalSids &&

(Ace.ObjectGuid == NULL || Ace.ObjectGuid ∈ ObjectGuids)
 if Ace.type = GRANT
 Granted = Granted ∪ (Ace.AccessMask - Denied);
 else if Ace.type = DENY
 Denied = Denied ∪ (Ace.AccessMask - Granted);
 if DesiredAccess ⊆ Granted
 return SUCCESS;
return FAILURE;

Figure 7: The algorithm for checking access to a single property with object -type GUIDs. The changes

from Windows NT 4.0 are shown in italics. The GUIDs for the property and property set are represented as a set

for simplicity.

Property sets are not visible within the structure of an access control entry; ACEs do

not specify whether the object-type GUID refers to an object type (in the case of object

creation), a property set or a property. Instead, the hierarchy is passed into

AccessCheckByTypeResultList. This routine takes a list of property GUIDs and their

containing property set GUIDs. The list must be in depth-first order, with each property

set followed by the desired properties within it. The hierarchy allows ACEs granting and

denying access to be correctly interpreted, so that a separate access check result can be

returned for each property requested. The code for checking access with a single property

is shown in Figure 7. The data structure supplying the list of properties and property sets

forces properties to only belong to a single property set, because properties must follow

their owning property set in the list of GUIDs.

 - 16 -

Level 0: {none - applies to whole object}

Level 1: {GUID for profile property-set}

Level 2: {GUID for home directory property}

Level 2: {GUID for login script property}

Level 1: {GUID for public property-set}

Level 2: {GUID for user name property}

Level 2: {GUID for user title property}

Figure 8: A multi-level list of object-type GUIDs used for an access check. The level indicates the scope of

the GUID, either the whole object, a property set, or a property. Access to a property is controlled by ACEs

with the GUIDs for its property set or with no GUID.

An example of such a list is shown in Figure 8. The list specifies which ACEs should

be evaluated, and each level specifies that an ACE granting access at that level also

grants access to GUIDs following it at a higher level. Level zero has no GUID, meaning

that ACEs without GUIDs should be interpreted as applying to all properties and property

sets. Similarly, ACEs granting access to property set GUIDs at level one also grant access

to all the properties at level two in that property set. While the Active Directory only uses

two levels, properties and property sets, the AccessCheckByTypeResultList routine

supports up to five levels of nesting. Property sets enable compact ACLs for the common

case when only a few different types of access are needed while allowing the complete

flexibility of specifying access control separately on each property.

ACL Header:
 Revision: version 2
 ACL Size: 200 bytes
 ACE Count: 3

ACE 1:
 Type: ACCESS_ALLOWED_ACE
 Access Rights: read, write, delete, control
 Principal SID: Administrators

ACE 2:
 Type: ACCESS_ALLOWED_OBJECT_ACE
 Access Rights: read, write
 Principal SID: Group Admins
 ObjectType: {GUID for public property set}

ACE 3:
 Type: ACCESS_ALLOWED_OBJECT_ACE
 Access Rights: control
 Principal SID: Jane User
 ObjectType: {GUID for change-password property}

Figure 9: A sample ACL for a user object using object -type specific access control entries.

 - 17 -

3.3 Example

Figure 9 demonstrates how object types and ACEs are used and shows an ACL on a user

object in the Active Directory. The first ACE grants administrators full control over all

the properties of the user. The second ACE grants group administrators read and write

access to the user’s public information, such as her phone number. The third ACE grants

the user herself access to change the password on the account. For access rights that

correspond to executing a procedure and not accessing data, the Active Directory defines

the right control. In this case, the Active Directory understands that a password change

protocol is allowed to change a user’s password if it can prove knowledge of the user’s

previous password. This ACL demonstrates the space saving of property sets, because

many additional entries would be required to specify access separately for each property

in the ‘public’ property set.

3.4 Discussion

The primary purpose of type-specific ACEs is to allow applications to both have a large

set of access rights as well as to dynamically extend their set of rights. Hierarchically

grouping access rights into property sets simplifies management by allowing

administrators to grant access to a single property set instead of separately granting

access to all the properties within it. In addition, property sets simplify extending types,

because no changes to access control lists are needed when a property is added to or

removed from an existing property set. Property sets also lessen the memory and

performance impact of a large set of similar rights by allowing many rights to be

coalesced into a single access control entry. Finally, property sets simplify the user

interface by allowing the display of a smaller number of property sets rather than

(potentially) hundreds of individual p roperties.

We found that properties and property sets simplify debugging of access control

problems, because there is a clear mapping between access control entries and rights to

an object. Previously, in Windows NT a single access right frequently controlled access

to many properties, and there was no mechanism to determine which right controlled

which properties. As a result, the user interface tools were hard-coded with names for

access rights instead of the list of properties actually protected. By formalizing the

mapping, object-type specific access control entries specify exactly which properties may

be accessed. The tools also no longer rely on a fixed mapping between rights and

properties, because they may query the directory service for the names of properties and

the members of property sets listed in an ACL.

Despite the fine-grained control offered by per-property access control, there has been

some customer resistance to specifying access rights on individual properties. In

 - 18 -

particular, administrators find it difficult to manage a large number of properties

individually, so access control changes are usually applied at the property set level. It is

not yet clear whether the fine granularity of protecting individual properties is necessary

if property sets are well chosen.

If there is an inexact match between property sets and administrative needs, then the

property set mechanism breaks down and ACLs can become bloated with entries for

individual properties. For example, this can occur when upgrading Windows NT 4.0

servers to Windows 2000. The access control lists protecting user account objects in the

Windows NT 4.0 directory service are converted into ACLs with type-specific ACEs.

Each access right for a user object in Windows NT 4.0 grants access to many properties,

and these groups of properties do not map perfectly onto property sets in Windows 2000.

Rather than converting an access right in Windows NT 4.0 into an access right to a

Windows 2000 property set, the upgrade process converts it instead into a sequence of

ACEs granting access to each property. The resulting access control lists can be many

times longer than those on user account objects created natively in Windows 2000. For

example, the ACL on a user account upgraded from Windows NT 4.0 may contain more

than 30 ACEs granting access to specific properties.

There has been some feedback from developers indicating that allowing a property to

be a member of multiple property sets would simplify administration and shrink the size

of access control lists. For example, some properties may logically belong to multiple

property sets, such as an email address field on a user that may be part of both a contact

information property set and an email property set. This change, though, would make it

difficult to understand when access is granted, and is probably better solved through

property-specific ACEs.

The primary drawback of storing object-type information in access control entries is

the increased cost of both storing access control lists and performing access checks when

there are many properties on an object and access to many properties is being requested.

For example, it is not uncommon for ACLs in the Active Directory to be more than 1600

bytes, and for users to request access to ten or more properties. In Windows 2000, the

NTFS file system reduces the storage cost by only storing one instance of each unique

ACL. Objects in the file system reference the specific ACL rather than storing a separate

copy. In the successor to Windows 2000 Server we added these optimizations to the

Active Directory. Another potential improvement for evaluating ACLs is to cluster the

ACEs in an ACL that grant access to a particular property to reduce the number of entries

that must be inspected.

Despite these drawbacks, type-specific access control is crucial to the Active

Directory. This extension allows the Active Directory to use common operating system

 - 19 -

functionality, so that a single permissions editor may be used for both it and the rest of

the operating system. In addition, it shares the reference monitor and security

infrastructure, which minimizes the amount of new code that must be trusted. The

additional features allow administrators to grant access to only the properties needed for a

job function or application instead of all those controlled by a more general access right.

At the same time, property sets preserve fine-grained control while optimizing for the

common case where many properties share the same access control. Finally, identifying

properties by GUIDs simplifies adding and removing properties from an object by

leaving ACEs for other properties unchanged.

4. INHERITANCE CONTR OL

Windows NT assigns access control to new objects primarily through inheritance of

access control entries from the ACLs on containers. There are two major limitations to

the inheritance mechanisms in Windows NT:

1. It is impossible to specify that different access control lists be inherited onto different

types of objects within a container.

2. It is difficult to propagate changes to ACLs through a tree of objects, because

inheritance rules cannot be reapplied without erasing any modified ACLs lower in

the tree.

Both problems arise in the Active Directory, because of its many types of objects and

the many different administrators of these objects. One of the goals for the Active

Directory is to allow delegation of administration, so that one user can grant another user

control over a subset of the objects in the directory service, such as all printers or objects

for a department. Administrators must therefore be able to change permissions at one

place in the directory and let the effects propagate down either to all objects or only those

of the appropriate type. Using the access control inheritance mechanism from Windows

NT, which was designed with a file system in mind, all objects within a container inherit

the same access control. Furthermore, changes to access control at the root of a tree

overwrite all changes lower in the tree. Consider a directory service with user and printer

objects and a separate container for each department in a company. Using inheritance to

grant a printer operator access to all the printers in one department requires that the

administrator also grant access to all the user account objects, which is unnecessary.

Thus, changes to the ACL inheritance mechanism were needed to support the Active

Directory. The file system also benefits from inheritance changes, because changes to

ACLs are common there as well.

We considered several solutions for each problem. One solution for supporting

multiple object types, similar to the design of ACLs in DCE [Mackey and Salz 1993], is

 - 20 -

to store multiple ACLs on a container, one for each object type. However, as with storing

an ACL for each property, that approach may be inefficient when many ACEs are

common to all child objects because the entries must be duplicated in each ACL. As

discussed in Section 3, the routines for manipulating access control data in Windows NT

do not support multiple ACLs on a single object, so significant changes would be needed

for managing multiple ACLs. Storing ACLs for the various types of objects in a separate

database is another option. However, this solution alone does not allow hierarchical

propagation of access rights. Instead, we chose to let applications annotate each ACE

with the type of object that should inherit the ACE. When an object is created, only those

ACEs with its type or no type are inherited onto the new object. A single ACL can then

propagate different ACLs onto each type of object created below it.

To allow the granting of rights to a tree of objects, we considered dynamic

inheritance: if an access right is not granted on an object, then access is checked on all

parent containers until the right is granted or the root is reached. This approach is taken

by the NDS directory service [Cadjan and Harris 1999]. However, we believe that the

access control mechanism should not assume that because objects are named in a

hierarchy they are also stored and accessed in a hierarchy. For example, files in NFS are

accessed by file identifier, not by path [Callaghan et al. 1995]. Similarly, the Active

Directory stores data in a flat database with an index over the full name of each object, so

there is no convenient opportunity to access all the ancestors of an object. Furthermore,

reading and writing an object is a common operation, while changes to ACLs are

infrequent, so the performance of propagating ACL changes is not critical relative to the

speed of an access check. Taking these conditions into account, our implementation uses

static inheritance, in which inheritance is reapplied only when ACLs change and a new

ACL is written to each object. Only a single ACL must be evaluated for most access

checks. To propagate changes correctly, we annotate ACEs with a flag indicating whether

they were inherited so that the locally applied ACEs can be identified and preserved

when inheritance is reapplied. In addition, the inheritance mechanism for ACLs is

idempotent, so that it can be re-applied after a failure.

4.1 TYPE-SPECIFIC INHERITANCE

Similar to type-specific access control, Windows 2000 allows type-specific inheritance.

Applications with multiple types of objects mark ACEs with a new field,

InheritedObjectType, which specifies the type of object that inherits the ACE. When an

object is created, those ACEs without an inherited object type or with a matching

inherited object type are copied into its ACL. Similarly, when an access control change is

propagated, just the matching entries for each type of object are copied onto the objects in

 - 21 -

a container. Inheritance still distinguishes between containers and objects, because

containers must be able to propagate access control to their children and therefore copy

all inheritable ACEs. Objects, in contrast, only require ACEs that apply to the object

itself. In Windows XP, the successor to Windows 2000, type-specific inheritance is

extended to support multiple inheritance, so that an object may inherit the access control

entries for multiple object types. Multiple inheritance allows new specialized types, such

as “web-users”, which share the properties and inherit the access control of normal users

in addition to ACEs only needed for web-users. Figure 10 shows pseudo-code for the

inheritance algorithm.

ACL
Inherit(ParentAcl: ACL,

ChildAcl: ACL,
ChildType : GUID,

 IsContainer : BOOLEAN)
VAR
 Ace : ACE;
 ChileAce : ACE;

/* remove inherited ACEs from child ACL */
foreach Ace ∈ ChildAcl
 if inherited_ace ∈ Ace.flags
 ChildAcl -= Ace;

/* add inheritable ACEs from parent ACL */
foreach Ace in ParentAcl
 ChildAce = ∅;
 if IsContainer
 if container_inherit ∈ Ace.Flags
 ChildAce = Ace;
 ChildAce.Flags -= inherit_only;
 ChildAce.Flags += inherited_ace;
 /* Mark ACEs without a matching type as
 inherit only */
 if (Ace.InheritedObjectGuid != NULL) &&
 (Ace.InheritedObjectGuid != ChildType)

ChildAce.flags |= inherit_only;
 else if object_inherit ∈ Ace.Flags
 ChildAce = ACE;
 ChildAce.Flags += inherit_only + inherited_ace;
 else if (object_inherit ∈ Ace.Flags) &&
 ((Ace.InheritedObjectGuid == NULL) ||
 (Ace.InheritedObjectGuid == ChildType))
 ChildAce= ACE;
 ChildAce.Flags = inherited_ace;

 ChildAcl += ChildAce;

return ChildAcl;

Figure 10: Algorithm for type-specific inheritance. The changes from Windows NT 4.0 are shown in

italics. The first change removes inherited ACEs, to ensure that inheritance is idempotent. The second change

marks all inherited ACEs, so they can be removed in the future. The remaining changes verify that the

InheritedObjectGuid matches either the type of the object receiving access control, or is empty. The algorithm

is simplified and does not include processing of the NO_PROPAGATE_INHERIT flag.

 - 22 -

In order to scale to a large number of objects, we take advantage of the fact that not

all object types require a variety of different ACLs. The Active Directory implements a

database of default ACLs that are placed on all objects when they are created. Only

objects with ACLs that vary in different portions of the directory hierarchy require type-

specific inheritance, which modifies the default ACL. Thus, for object types that only

need a single ACL for each instance of the object, the default database supplies the ACL.

For object types that have more varied access control, inheritance allows variation in

ACLs. Thus, the combination of default ACLs and type-specific inheritance allows

scalability to a large number of object types.

\Research\Jane: User type
 ACE1: inherited object type = null
 ACE2: inherited object type = User

\Research: container type
 ACE1: inherited object type = null
 ACE2: inherited object type = User
 ACE3: inherited object type = Printer

\Research\HPLaser: Printer type
 ACE1: inherited object type = null
 ACE3: inherited object type = Printer

Figure 11: ACLs on a container and two objects within the container. The ACEs on the ‘\Research’

container are inheritable onto different object types, so the two child objects receive a different set of ACEs.

Figure 11 shows an example of type-specific inheritance. In this example, the

Research container has ACEs that are to be inherited onto all objects, User objects, and

Printer objects. The user Jane inherits the ACEs with no inherited object type and with a

User object type. Similarly, the HPLaser printer inherits the first ACE and the Printer

ACE. This exa mple demonstrates how a single ACL can inherit different ACEs onto

different types of objects.

4.2 Static Inheritance

Dynamic inheritance, in which permissions for an object may be set on any container

above the object, presents a simple and intuitive model of access control at the cost of

checking access on many containers whenever an object is accessed. The Active

Directory emulates dynamic inheritance by pre-computing the access control for an

object when ACLs are changed rather than when access is requested. The difference is in

implementation; the resulting permissions are the same. The primary difficulty in this

illusion is merging ACEs applied locally to an ACL with the entries inherited from its

parent. In addition, it must be possible to limit inheritance so that portions of a hierarchy,

such as those containing private information, can override inheritance.

 - 23 -

Windows 2000 enables modifications to access control lists to propagate down a tree

by annotating ACEs with inheritance information. The algorithm for inheriting access

control in Windows 2000 is idempotent, so that if the propagation of inheritance aborts

due to a system failure, inheritance can be applied again with identical results. The

inheritance mechanism is static, because inheritance is only evaluated when an ACL

changes rather than during every access request. The resulting access for a principal is the

same as if inheritance were dynamic and an object’s ancestors were checked for access.

The ACL data structures in Windows 2000 annotate each access control entry with a

flag indicating whether or not it was inherited. Each ACE that was inherited has the

INHERITED_ACE flag set in its header. These ACEs are removed before reapplying

inheritance, leaving only the entries added directly to the ACL. As a result, reapplying

inheritance does not overwrite locally specified access control entries.

Inheritance onto an object or container may be disabled, to provide both local control

and more restrictive access control for portions of the tree. For example, normal users are

generally able to browse all the objects in the directory. However, an organization may

want to exempt the acquisition department’s objects, because the names of the objects

may reveal privileged information. The SE_DACL_PROTECTED flag, which is stored

on security descriptors, prevents any ACE from being inherited onto an ACL. The ability

to set this flag, although not stored in an ACL, is granted by the same access right,

WRITE_DAC, that controls the right to modify the ACL itself. An administrator may

therefore create a more secure portion of the hierarchy by preventing inheritance of

access rights.

In addition to adding these flags, the ordering rules for ACEs changed for Windows

2000. In Windows NT 4.0 it is recommended that ACEs denying access be placed first in

an ACL, so that deny ACEs have precedence over allow ACEs. However, to follow the

discretionary access control model, which allows the owner of an object control over who

may access the object, we chose to grant administrators of a sub-tree the ability to

override all inherited permissions, which results in interleaving grant and deny ACEs

from each container on a single ACE. In addition, this rule provides a closer simulation

of dynamic access control, in which access is checked by walking up the hierarchy of

parent containers. The alternative of placing all ACEs denying access first prevents the

administrator of an object from overriding an inherited ACE that denies access. Similarly,

placing inherited ACEs first prevents the owner of an object from controlling the

resulting access. Therefore, in Windows 2000, all locally added ACEs are placed first,

followed by inherited entries. If the entries are inherited from containers at several levels

in the tree, then the ACEs from closer containers will be ordered before ACEs from more

distant containers. The administrator of an object retains full control over the ACL on the

 - 24 -

object, because she can either protect the object from inherited access control, or add

explicit ACEs to the beginning of the ACL that are evaluated before (and hence override)

inherited entries.

The implementation of inheritance in the Active Directory is significantly different

than in the file system. In the file system, the management tools, such as the Windows

Explorer, implement inheritance. When an ACL is changed, these tools walk the file

system and write new ACLs on to every effected file or directory. If the user running the

management tool does not have permission to modify the ACL on an object, then

inheritance stops, even if the object does not explicitly block inheritance. Whether an

ACL may be changed depends on the user running the management tool, which is

confusing because it does not simulate the effect of dynamic inheritance. The Active

Directory, however, propagates ACL changes itself rather than relying on a management

tool. A user with permission to modify the ACL on a container implicitly has permission

to modify the inheritable ACEs on all objects underneath that container, unless

inheritance is explicitly blocked. As a result, changes to the ACLs at the root of a tree

propagate completely, independent of the rights of the user who made the changes. It was

our goal that the file system in Windows 2000 would also implement inheritance itself,

but schedule pressures prevented that change.

Departments
admins:
 read, write
Backup:
 read

Acquisitions
PROTECTED
Jane User:
 all access

Research
developers:
 read, write

Figure 12: Dynamic inheritance. The entries on the Departments container are automatically inherited to

the Research container during access. Adding a new entry requires updating a single ACL, as shown by the

addition of a single ACE to grant Backup access. The ACLs referenced during an access check on the Research

container are dashed.

4.3 Example

To demonstrate the desired effect of inheritance, Figure 12 shows an example of how

dynamic inheritance can be applied to the directory service. In this example, the

‘Acquisitions’ container overrides the inherited permissions by removing the access of

administrators and instead grants access to the user ‘Jane User’. The other container,

‘Research’, augments the inherited permissions by additionally granting the ‘Developers’

group read access. When a new ACE is added to the ‘Departments’ container, the change

 - 25 -

is effective for the ‘Research’ container, while the ‘Acquisitions’ container is protected

from inheritance.

Research
developers:
 read, write
admins:
 read, write
backup:
 read

Departments
admins:
 read, write

Acquisitions
PROTECTED
Jane User:
 all access

Research
developers:
 read, write
admins:
 read, write

Departments
admins:
 read, write
backup:
 read

Acquisitions
PROTECTED
Jane User:
 all access

Figure 13: An example of reapplying inheritance. On the left are shown containers in a directory service,

and on the right are the result ACLs after the bold-faced entry was added to the ACL on the ‘Departments’

container. The ACLs referenced during an access check on the Research container are dashed.

Compared to dynamic inheritance, static inheritance results in changing more ACLs

when access control changes, and also results in larger ACLs. Figure 13 shows the same

example from above with static inheritance. The resulting access is the same, but the

access control lists in this case are longer because information is duplicated on both the

container and the child ACL. However, there benefit comes during an access check: with

static inheritance, only the ACL on the object itself must be inspected. With dynamic

inheritance, as shown in Figure 12, multiple ACLs must be inspected.

4.4 Semantics of Inheritance

Static inheritance allows complex access control policies to be expressed, such as

specifying where certain types of objects may be created. To better specify exactly what

policies may be expressed, we present a formal description of inheritance. Rules one and

two below give the semantics of the OBJECT_INHERIT_FLAG in conjunction with

object types. The first rule ensures that all objects with a matching type inherit the ACE,

and that the ACE is used for access control (INHERIT_ONLY is turned off). The second

rule ensures that all containers inherit all OBJECT_INHERIT ACEs as well, but do not

use it for access control (INHERIT_ONLY is turned on).

FALSEONLYINHERITAAinheritsO
NULLbjectTypeinheritedOAbjectTypeinheritedOAtypeO

OancestorsCTRUEINHERITOBJECTA
ConACLinAACEsOobjectsCcontainers

←⇒
=∨=∧

∈∧=
∀∀∀

_.,
)...(

)(_.
|,,

 (1)

 - 26 -

TRUEONLYINHERITAAinheritsC
CancestorsCTRUEINHERITOBJECTA

ConACLinAACEsCCcontainers

←⇒
∈∧=

∀∀

_.,'
)'(_.

|,',
 (2)

Similarly, the rules for the CONTAINER_INHERIT flag are given below. ACEs with

CONTAINER_INHERIT are inherited to all containers and only those with a matching

type use it for access control (rule three). On other containers, the ACE is marked as

INHERIT_ONLY (rule four).

FALSEONLYINHERITAAinheritsC
NULLbjectTypeinheritedOAbjectTypeinheritedOAtypeC

CancestorsCTRUEINHERITCONTAINERA
ConACLinAACEsCcontainersCcontainers

←⇒
=∨=∧

∈∧=
∀∀∀

_.,'
)..'.(

)'(_.
|,',

 (3)

TRUEONLYINHERITAAinheritsC
NULLbjectTypeinheritedOAbjectTypeinheritedOAtypeC

CancestorsCTRUEINHERITCONTAINERA
ConACLinAACEsCcontainersCcontainers

←⇒
≠∧≠∧

∈∧=
∀∀∀

_.,'
)..'.(

)'(_.
|,',

 (4)

The fifth and sixth rules order the ACEs in an ACL. By rule five, if two ACEs are

ordered on a container and the ACEs are inherited to a child object or container, then the

ACEs must be in the same order in both ACLs. By rule six, if one container is an ancestor

of another, then the ancestor’s ACEs will appear later in any ACL that inherits from both

containers. This rule requires that containers be organized as a hierarchy, so that no

container has more than one parent.

XonACLinAprecedesA
ACLinAAhasXConACLinAprecedesAXancestorsC

XcontainersobjectsCcontaineronACLinACEsAA

'
',')(

|,,',

⇒
∧∧∈

∀∀
 (5)

XonACLinAprecedesA
ACLinAAhasXXancestorsCCancestorsC

ConACLinACcontaineronACLinA
CCcontainersXcontainersobjectsACEsinheritednonAA

'
',)(')'(

''
|',,,,',

⇒
∧∈∧∈∧

∧
∃∀−∀

 (6)

The rules above ignore the possibility of a protected ACL. The seventh rule, shown

below, limits the scope of the previous rules for objects and containers flagged with

SE_DACL_PROTECTED. This rule ensures that none of the ACEs in a protected ACL

are inherited.

))((

|,,,

ConACLinAXancestorsC
TRUEPROTECTEDX.SE_DACL_

CcontainersXonACLinAACEsXcontainerobject

∧∈¬⇒
=

∀∀∀
 (7)

These rules ensure that access control decisions can be propagate fully through a tree of

objects, stopped only by a protected ACL.

 - 27 -

ACL Header:
 Revision: version 2
 ACL Size: 400 bytes
 ACE Count: 4

ACE 1:
 Type: ACCESS_ALLOWED_OBJECT_ACE
 Access Rights: write
 Principal SID: PRINCIPAL_SELF
 Inherited Obj. Type: {GUID for User Account Objects}
 Object Type: {GUID for WWW Homepage}

ACE 3:
 Type: ACCESS_ALLOWED_OBJECT_ACE
 Access Rights: create child
 Principal SID: Administrators
 Inherited Obj. Type: {GUID for Organization Units}
 Object Type: {GUID for User Account Objects}

ACE 2:
 Type: ACCESS_ALLOWED_OBJECT_ACE
 Access Rights: create child
 Principal SID: Server Applcations
 Inherited Obj. Type: {GUID for RPC Services}
 Object Type: {GUID for RPC Endpoint}

ACE 4:
 Type: ACCESS_DENY_OBJECT_ACE
 Access Rights: create child
 Principal SID: everyone
 Inherited Obj. Type: NULL
 Object Type: {GUID for User Account Objects}

Figure 14: Complex policies expressed with static and type-specific inheritance. The combination of the

two mechanisms allows administrators to direct where certain objects can and cannot be created.

Figure 14 shows an ACL that takes advantage of both type-specific inheritance and

static inheritance to express a complex policy. The first ACE depends on the first rule for

inheriting onto objects and grants users the permission to set their own homepage for the

World Wide Web. The PRINCIPAL_SELF SID in this ACE represents the user whose

object is being protected, and is similar to the CREATOR_OWNER SID used for

inheritance (Section 2.1.3). The service calling AccessCheckByTypeResultList can supply

an arbitrary SID to replace the PRINCIPAL_SELF SID, unlike the CREATOR_OWNER

SID, which is replaced during inheritance with an object’s creator (because the creator’s

identity is stored with the object, in the security descriptor). The Active Directory passes

in the SID of the object being protected, such as the SID of the user for user account

objects and the SID of the group for group account objects. This mechanism allows an

administrator to grant a user permission to modify portions of her own account object but

not other users’ account objects, and for group members to remove themselves from the

group.

The second ACE depends on rule four for container inheritance, and allows server

applications, such as a database or a web server, to create RPC endpoints in any container

of type ‘RPC Services’. The key technique here is to create a container type for a specific

 - 28 -

type of object, and then use a type-specific ACE to grant access to create the object

within the container. Finally, the third and fourth ACEs in Figure 14 restrict the type of

container in which a user account object may be created. These ACEs depend on the fifth

rule, which ensures that the order of the two ACEs is maintained whenever both ACEs

are inherited. The third entry grants administrators the right to create users in

Organizational Units and the final entry denies everyone the right to create a user in

every type of container, due to the NULL inherited object type. Because these two ACEs

are evaluated in order and inherited in order, a member of the administrators group will

always be granted access to create a user in an organizational unit, but all other types of

containers only the ACE denying permission to create users will be inherited, preventing

everyone from creating users.

4.5 Discussion

Type-specific inheritance and static inheritance allow centralized management by

propagating changes through a hierarchy of objects, so that access control changes are

only made in one place. These features support delegation by allowing an administrator

to grant access to a single type of object, or even a single property on a single type of

object. In addition, that access is propagated to new objects when they are created.

Portions of the tree may also be more protected and block inheritance of rights from

above. This approach provides the major benefit of dynamic inheritance, which is

centralized administration but lowers the cost at access time because ACLs along the

whole path do not need to be evaluated.

In our experience, the new inheritance mechanisms are typically used for making

global changes to the Active Directory, as they would to a file system, rather than to

delegate access to particular object types. For example, administrators are currently wary

of granting access to create printers and manage all printer objects by placing an access

control entry at the root of the directory tree. Instead, they prefer to change the ACLs at

each container with a printer. This again is a form of organizational resistance to

distributing responsibility for objects in the directory and may change as more

applications use it to store data. There has also been resistance by administrators to

dividing the administration of an object between multiple individuals. For example,

security administrators have been hesitant to allow email administrators the permission to

modify any portion of a user object, even if the property relates only to email. However,

this resistance may be an artifact from familiarity with Windows NT 4.0, in which each

application stored its information separately. As more applications use the Active

Directory, shared access to objects and split administration may become more common.

Similar to type-specific access control, static inheritance also simplifies both

debugging and managing access control because the ACL on an object is usually the sole

 - 29 -

determinant of access to that object. Only a single ACL must be inspected to determine

the access granted to a user instead of examining the ACLs from all the containers above

an object. The user interface in Windows XP even displays the name of the object from

which an ACE was inherited. In addition, compared to Windows NT, the explicit

marking of inherited ACEs makes it easier to understand the source of each ACE in an

ACL.

The user interaction with ACLs in Windows 2000, while benefiting from explicit

marking of inherited ACEs, is complicated by the use of privileges and object ownership

to grant access. The Novell Corporation, in a critique of the Active Directory [Novell Inc.

2000], complained of two issues. First, the privilege to take ownership of an object

allows administrators to take complete control over all objects, because an administrator

may change any object’s ACL. The user interface, though, does not display this ability.

Second, protecting ACLs from inheritance does not completely restrict access to those

objects because the ability to take ownership overrides the protection provided by ACLs.

As a result, it is impossible to prevent any portion of the Active Directory from being

accessed by a user with the SeTakeOwnershipPrivilege privilege. However, as designers

we agreed that it was important to grant some level of administrator access to the

complete directory, to allow the organization to reclaim control of objects when a user

departs or is unavailable [Microsoft Corp. 2000]. This approach, though, requires limiting

the use of the take ownership privilege. Granting the right to manage access control

through a privilege, though, complicates the user interface because the permissions editor

displays only the contents of the ACL instead of the true permissions granted to the

object.

Allowing owners to modify the ACL on an object also reduces the ability to restrict

who can create certain object types. For example, organizations commonly want only

security administrators to create user account objects. However, if a user can create any

type of container, then that user, as owner of the container, may modify the ACL to grant

herself the right to create new user account objects. The Active Directory avoids this

limitation by storing, for each type of object, a list of container types that may contain the

object. If creation of those containers is similarly controlled, then administrators can limit

the creation of any type of object. User account objects, for example, may only be created

within organizational unit containers, so limiting the right to create organization units

also limits the right to create users. The need for these restrictions is due to the semantics

of the directory service, where objects are accessed by queries rather than strictly by

name. For example, a user account object may be used for authentication independent of

where it is created. For applications where the location of an object is more significant,

such as in a file system, the restriction on creating specific object types may not be

 - 30 -

needed. In addition, an application may implement a similar restriction without a separate

list of valid container types by ensuring, with careful use of access control entries that

unprivileged users are only allowed to create objects, and not containers.

The Active Directory further complicates static inheritance because the distinction

between containers and objects is not fixed. Every object type has a property, Container,

which indicates whether the object may be a container and have other objects below it.

This flag may change value, so an object type that is initially not a container may later

become a container. Rather than incur the complexity of updating ACLs when an object

type is changed, the Active Directory instead treats all objects as containers, causing even

larger ACLs.

Compared to Windows NT, this inheritance mechanism increases the cost of access

control in space, time, and complexity. The inherited ACE information for each object

type is duplicated in the ACL of every container, so it may require much mo re space to

store. However, the Active Directory in the follow-on operating system to Windows 2000

Server stores ACLs in a shared table so that duplicate ACLs can be merged and only a

single copy of each unique ACL is required. The use of a table of default ACLs greatly

reduces the size of access control lists because not all object types require ACEs on

containers.

The larger ACLs also make access check operations on containers more expensive

[Microsoft Knowledge Base 2000], because every ACE, whether or not it impacts an

access control decision, must be read and inspected. Although the speed of access checks

has not been a problem in the Active Directory, caching the result of an access check can

lower the cost of access control by not evaluating the same ACL multiple times.

Finally, applying inheritance statically requires that some piece of code walk the tree

of objects and reapply inheritance. This reapplication must be resumed if the machine

crashes, and for certain applications, such as the Active Directory, the reapplication must

be transactional. The process is much more complex than dynamically applying

inheritance during an access check, but is on a less frequent code path. Once

implemented, static inheritance can provide the manageability benefits of dynamic

inheritance with lower runtime costs.

5. PROTECTION FROM UNTRUSTED CODE

Fine-grained access control allows administrators to control which users may have access

to an object, but it does not let users choose which programs may have access. The third

major access control concern in designing Windows 2000 was preventing misbehaving

programs from causing damage. One alternative, used by Tron [Berman et al. 1995] and

Janus [Goldberg et al. 1996], is to augment the operating system with additional checks

 - 31 -

on the parameters of system calls. While such a mechanism could have worked in

Windows 2000, the operating system already protects all its internal objects with ACLs

and privileges. In addition, Windows 2000 has more than two hundred system calls, so

trapping each one and verifying parameters separately is difficult. We believe that given

the opportunity to modify the operating system, it is better to extend the existing

operating system access control mechanisms rather than add a new set of mechanisms. It

is easier to understand and administer a system with one set of mechanisms than one

using different mechanisms for different access control purposes. Finally, mu ltiple access

control mechanisms protecting the same objects may cause confusing results or interact

poorly, because it is difficult to predict program behavior.

Our solution, restricted contexts, is based on three goals:

1. Untrusted code should have no greater access to resources than the user running the

code.

2. Users should be able to restrict programs to accessing specific objects or classes of

objects.

3. No separate security model, beyond the operating system’s protection and access

control model, should be needed for restricting code.

These goals suggest that untrusted code should use operating systems protection

mechanisms by running in a separate process and address space with its own access

token, and access control on objects should limit the code to a subset of the objects

accessible to the user. Restricted contexts apply a second access check after users are

granted access to the resource, to check the permissions of the running program as well.

With extensions to existing authentication mechanisms, restricted contexts can also be

applied across network connections to allow the use of network file systems. Finally,

restricted contexts can be applied to uses other than untrusted code, such as for delegating

authority between mutually trusting applications.

5.1 Restricted Contexts

Windows 2000 allows users to create a limited version of their access token, called a

restricted token, which may access only a subset of the objects that the user may

normally access. A process running with a restricted token is a restricted context, and its

access rights are limited through three independent mechanisms. First, users may remove

privileges so that the restricted context is limited to only access resources protected by

access control lists. Second, users may disable groups, so that access granted to those

groups does not apply to the restricted context. However, the groups must still be checked

against ACEs denying access, so instead of removing the groups from the access token

completely, they are instead marked USE_FOR_DENY_ONLY. Finally, and most

powerfully, users may add a list of restricted SIDs, which represent the identity and

 - 32 -

access rights of the program being run and are used during access checks. Both the user’s

normal identities and the restricted SIDs must be granted access to an object. If either set

of identities is denied access, then the access check fails. Restricted contexts can

implement simple security policies, such as disabling administrative rights and privileges

for most programs, as well as more restrictive policies such as limiting a program to

accessing only a single file. This is accomplished by creating a restricted SID for the

program and then setting an ACL that grants access to that SID on the desired file. When

the program is run with the restricted SID in its restrictions, access checks on all objects

except that file will fail, because no other ACL in the system grants access to the

program. Figure 15 shows the algorithm for checking access with a restricted token.

BOOLEAN
RestrictedAccessCheck(Acl: ACL,
 DesiredAccess : AccessMask,
 RestrictedToken : AccessToken)

if (AccessCheck(Acl, DesiredAccess, RestrictedToken.PrincipalSids) &&
 (AccessCheck(Acl, DesiredAccess, RestrictedToken.RestrictedSids)
 return SUCCESS;
else
 return FAILURE;

Figure 15: The algorithm for checking access with a restricted token.

There are two broad approaches for choosing the restricted SIDs for a program. First,

each program or class of similar programs may be assigned a different SID. The

resources needed by those programs must grant that specific SID the required access. The

second approach is to treat restricted SIDs as privileges protecting a class of resources,

such as user interface objects or scratch file space, so that programs receive SIDs for each

resource class they are allowed to access. The ACL on instances of a resource must grant

access to the SID for that resource. The first approach provides tighter control, because

restricted programs are only allowed to access specific objects. The second approach,

though, simplifies administration by removing the need to identify every resource needed

by a program. The two approaches may be combined, so that some resources are

accessible through SIDs identifying the program while others are accessible through

resources class SIDs. In addition to SIDs that are only used as restrictions, normal SIDs,

such as the user’s or a group’s, may also be used in restrictions.

 - 33 -

User SID

Group SIDs

Privileges

Jane User

Administrators
 (use for deny only)
Service Operators
 (use for deny only)
Users

(none)

Restricted SIDs StockTicker
Restricted Windows

Figure 16: A restricted token. In this token, the Service Operators group SID has been disabled so it can

only be used to deny access, and all privileges have been removed. In addition, the StockTicker SID has been

added to the Restricted SIDs field, so that SID must be granted access to any objects accessed by this token.

ACL 2

ACE 2:
 Access Rights: read
 Principal SID: Stock
 Ticker

ACL 1

ACE 1:
 Access Rights: read,
 write, execute
 Principal SID: Jane User

ACE 2:
 Access Rights: read
 Principal SID: Stock
 Ticker

ACL 3

ACE 1:
 Access Rights: read,
 write, execute
 Principal SID: Jane User

ACE 1:
 Access Rights:read,
 write, execute
 Principal SID: Service
 Operators

Granted access: read Granted access: none Granted access: none
Figure 17: This example shows three ACLs accessed by the restricted context in Figure 16.

Figure 16 shows an example of a restricted context, and Figure 17 shows how it is

used for an access check. The example access token has two restricted SIDs,

‘StockTicker’, representing a downloadable stock-ticker application, and ‘Restricted

Windows’, granting access to the windowing system. In addition, all the privileges have

been removed and one group, ‘Service Operators’ has been disabled. The three ACLs

shown in Figure 17 demonstrate the effect of restricted SIDs. In the first ACL, the

restricted context is allowed read access, because both ‘Jane User’ and ‘StockTicker’ are

granted access. With the second ACL, access is denied even though ‘StockTicker’ is

granted access because the ‘Service Operators’ SID in the unrestricted portion of the

token may only be used to deny but not to grant access. Similarly, the third ACL grants

the restricted context no access, because there is no ACE granting ‘StockTicker’ any

access. As a result, the restricted context is granted access to only a subset of the

resources available to the user. It is important to note that a restricted token cannot be

used on a single thread to execute untrusted code, because that thread can access any

process-wide resources, such as handles to open files, or stop impersonating and then run

with an unrestricted token.

 - 34 -

Restricted contexts can be used to implement the policy of least privilege [Saltzer and

Schroeder 1975], which states that a program should have only the privileges necessary

to perform its job and no more. Least privilege requires that the operating system know

the set of resources a program requires, and then launch the program in a restricted

context with access to just those resources. While Windows 2000 does not have a

mechanism to describe the resources required by a program, it does provide the

enforcement mechanism to limit resource access. With a proper policy in place, many

common application exploits, such as macro viruses [CERT Coordination Center 1995],

can be prevented because the application has no access to unrelated or unnecessary

resources.

5.2 Applying Restrictions to Operating System Resources

Limiting access by placing restricted SIDs in access control lists works well for files. The

file system stores ACLs persistently, so policy does not need to be specified each time the

system restarts. Users also have tools to manipulate file system ACLs. Most importantly,

the access rights on files (read, write, and execute) are the same rights that users want to

limit for untrusted code. For these same reasons, though, many other system resources are

difficult to protect with restricted SIDs:

1. Users do not control many objects internal to the operating system, so they may not

have permission to modify the ACLs on those objects.

2. The operating system creates the ACL on many non-persistent objects, such as user

interface objects, at boot time and users do not have an opportunity to store a new

ACL on these objects.

3. The access rights for an operating system resource may be at the wrong granularity,

such as in the case of network sockets, which do not distinguish between different

endpoints.

Our solution to protecting operating system resources is twofold. First, we created

several standard SIDs that may be used in restrictions to grant access to broad classes of

system resources. The operating system uses these SIDs when protecting its own objects.

For example, the “restricted-network” SID is used to grant access to network

components, and the “restricted-windows” SID grants access to the user interface.

Second, access to resources for which ACLs do not provide the correct granularity of

protection must be denied by the operating system. In this case, the untrusted application

contacts a trusted service in a separate process to perform the operation. For example,

network client code contacts a trusted service that establishes network connections on its

behalf. The service verifies the client’s identity and checks whether the untrusted code is

allowed to contact the specific endpoint before creating the connection. Using a separate

service violates our goal of enforcing access control with a single mechanism, but this

 - 35 -

problem can be reduced if the service itself uses ACLs to express the security policy.

Unfortunately, the system-wide restricted SIDs for specific resources and the trusted

service mechanism were dropped from Windows 2000. There is, though, a single system-

wide restricted SID for identifying restricted contexts.

5.3 Remote Authentication with Restricted Contexts

Restricted contexts are most useful for local access control but unlike many sandboxing

mechanisms, they may also extend across a network, such as to a network file server.

Restricted contexts do not have access to a user’s password, private keys for TLS [Dierks

and Allen 1999], or Kerberos ticket cache [Neuman and T’so 1994], because the

untrusted code could authenticate itself as the user and cause a remote server to build an

access token without restrictions. Windows 2000, through the SSPI interface [Brown

2000] (similar to GSS-API [Linn 1993]), instead exposes only abstract authentication

operations. This interface generates messages that the caller sends to a remote machine

for authentication, but does not expose any secret data such as passwords. For example,

the Kerberos protocol returns application request messages rather than tickets. The

authentication protocol can include the restrictions in the authentication messages so that

they are carried to remote servers. As long as the untrusted code is prevented from

corrupting the restrictions, a restricted context may authenticate to any network service.

The Kerberos authentication protocol used in Windows 2000 [Neuman and T’so

1994] has a field, authorization-data, in its encrypted authentication messages with

which the client can explicitly limit its authority on the server. When a restricted context

attempts to authenticate, the Kerberos code captures the context’s restrictions and stores

them in the authorization-data field of a ticket. When a server receives the ticket, these

restrictions are applied to the access token before the server application is allowed to

impersonate the client. As a result, applications do not need to be aware that they are

running with restrictions or that they are accessing a remote resource; instead the

operating system manages transmitting the restrictions to the remote server. This feature

was also implemented but not shipped with Windows 2000.

5.4 Limited Delegation with Restricted Contexts

Restricted contexts may also be used for application-level delegation of authority for

applications that trust each other. It is common for Internet applications, such as web

servers, to contact services running on other machines while processing a request.

Windows 2000 normally requires a user’s credentials, in the form of a password or

Kerberos ticket to create an access token for the user. As a result, if the service wants to

use the system access control routines, it must authenticate the client or be given access

to an existing copy of the client’s access token. Applications can access services on the

 - 36 -

same machine while impersonating the client, because the access token is copied through

the kernel. However, applications cannot authenticate as the client to a service running on

a separate machine unless the client’s authentication protocol supports delegation of

credentials and uses the same protocol as the application and server.

Restricted contexts provide an alternate mechanism for applications that trust each

other to distribute the task of authorizing a client. Rather than requiring authentication

protocols that support delegation, the application that authenticates a client instead

captures the client’s identity, group memberships, and privileges. When the application

communicates with a remote service, it supplies those memberships and privileges as

restrictions, either in its own protocol or using an authentication protocol as described in

Section 5.3. This ability for an application to impersonate a client by restricting its own

rights with the client’s rights is called limited delegation. To implement this mechanism,

the service must protect its resources with ACLs that, in addition to granting clients

access, also grants the application full access. An access token for the application

restricted by the client’s identities then receives the client’s correct access. Because the

application receives full access to the server’s resources, the service must trust the

application both with all its resources and to correctly authenticate clients. However,

limited delegation is applied only to the applications that trust each other, so the client

does not need to trust the application with data outside the scope of the application, such

as unrelated file servers.

Client application Web Server

Database

Basic Auth
User: Jane User
Groups: developers

Kerberos Auth
User: Web Server
Groups: trusted services
Restrictions: Jane User,
 developers

ACL:
ACE1:
 Access Rights: all access
 Principal Sid: web server
ACE2:
 Access Rights: read
 Principal Sid: user

Figure 18: Limited delegation may be used by multi-tier applications to securely delegate the client’s

authority from the first tier server to later tiers by transmitting the client’s identity as restrictions on the web

server’s identity.

 - 37 -

Figure 18 demonstrates the use of limited delegation. The client authenticates with a

web server using standard web authentication protocols, which causes the web server to

build an access token. When the web server contacts a database using Kerberos

authentication, it sends the security identifiers from the client’s access token. The ACLs

on the database grant the web server full access to all data and grant the client partial

access. Access checks with the restricted token return the client’s true access. This

technique allows client identities to be forwarded between trusting servers without

authentication protocol support for delegation, and without allowing the server to amplify

their rights to those of the client and access resources unrelated to the application.

Limited delegation also allows the use of a different authentication protocol between the

client and the web server than between the web server and the database, because no client

credentials are needed for the second hop.

5.5 Discussion

We do not have much experience with restricted contexts due to their limited

implementation in the shipped version of Windows 2000. However, restricted contexts as

they are implemented do allow users to limit their rights, so they need not run all

programs with the same rights. Users may choose to run a web browser and mail program

in a context without access to work documents. Instead of maintaining a separate account

for administration, a simple program launch tool could let users disable their

administrative access to the system when running normal programs and only enable it

when running administrative tools. Allowing restricted contexts to be used for network

authentication increases their utility because ordinary applications that need to access

network services can be run in restricted contexts. As a result, restricted contexts are able

to both provide safety from untrusted code and protect user data from attacks by

subverted applications.

There is no policy component of restricted contexts in Windows 2000 that chooses

the restrictions for a program. We implemented a policy based on Internet Explorer

Zones [Microsoft Corp. 2001], which classify web sites into categories of trust and can

also be used to assign policies to each zone. The policy classified executables by the DNS

domain name of their source. This classification was used to select a restricted identity,

which requires trusting DNS to translate names correctly names to addresses. The

policies for code limited whether code is allowed network access, user interface access,

and access to the user’s data. This feature was dropped before Windows 2000 shipped.

Another possible policy, used by WindowBox [Balfanz and Simon 2000], is to create

several isolated environments with only limited sharing. Applications with similar

security risks are run in the same environment and can share data freely. However,

 - 38 -

WindowBox limits sharing between environments to avoid the spread of viruses or

Trojan horses. The advantage of this mechanism is that it presents a simple and

understandable user interface. Restricted contexts could also be used in conjunction with

the policy language used by MAPbox [Acharya and Raje 2000], which classifies

applications according to their resource usage and provides parameterized categories of

applications.

Beyond policy, there are several issues with restricted contexts that we have not

resolved. We have not determined the correct context for a process executing code from

multiple sources. Intersecting the two contexts may create too restrictive a context, and

the union of the two contexts is not safe. The user interface for ACL editing also presents

problems. Normally, all the SIDs that may be present on ACLs are stored on in the

Active Directory. If users may fabricate SIDs for restrictions and place them on ACLs,

then the ACL editor must have a mechanism for translating the SIDs into names, such as

a separate database of locally defined SIDs or an external interface for translating SIDs.

Despite these issues the restricted context mechanism remains a powerful tool for

expressing many security policies.

6. RELATED WORK

The problems we faced for Windows 2000 are not unique and have been addressed by

many earlier systems, although not in the same combination. Other directory services

support fine-grained access control, and the inheritance of ACLs has been addressed in

many settings ranging from object-oriented databases to distributed systems. Restricting

the access rights of programs has also been addressed by many operating systems. In this

section we discuss relevant systems and their relationship to our design.

6.1 Fine Grained Access Control

While there have been many access control list implementations in operating systems,

they typically cannot support directory services. Instead, directory services implement

their own mechanisms in order to support complex objects. The access control model in

Novell’s directory service, NDS 8 [Cadjan and Harris 1999], resembles the model in

Windows 2000 due to its similar application domain. NDS supports both inheritance of

access rights as well as protection of individual properties. NDS differs from the Active

Directory by implementing dynamic inheritance, in which access rights on containers are

evaluated during access rather than propagating the rights to individual objects.

Furthermore, NDS does not support grouping properties into property sets, and does not

support the inheritance of rights for specific properties. Instead, only rights for all

properties at once may be inherited. NDS’s inherited rights filters, which block the

 - 39 -

inheritance of specific rights (such as read all properties) instead of all rights, are more

flexible than Windows 2000’s mechanism that blocks all inheritance.

The access control mechanism in DCE [Mackey and Salz 1993] also supports

directory services. DCE stores many separate ACLs to expand the rights available for an

object, while Windows 2000 incorporates the additional rights into a single list. Also,

DCE stores two separate ACLs for inheritance, one for newly created objects and one for

containers, rather than distinguishing between many different types of objects within a

single ACL.

The Netscape Directory Server [Sun Microsystems 2001] uses ACL rules rather than

explicit ACLs on objects. The rules contain a target, which is an LDAP search rule

[Yeong et al. 1995], permissions, such as read and write, and a bind rule, which indicates

the clients to which the ACL applies. This format is more expressive than the ACLs in

Windows 2000, because the target field may specify not only a single object or tree of

objects but also arbitrary sets of objects based on their properties. However, these rules

are specific to LDAP and cannot be used for other applications, and are therefore not as

general as ACLs in Windows 2000.

The access control list support from other operating systems, such as Sun’s Solaris

[Winsor 2001] and Linux [Grunbacher 2001] is not as flexible as that in Windows 2000

in that they are designed exclusively for file system use. Both the Solaris and Linux ACL

mechanisms store a single default ACL on directories for all files created within the

directory, so they are unable to distinguish between multiple types of objects. In addition,

the ACLs do not store inheritance information, so changes cannot be propagated through

a tree without losing existing ACLs. Security-Enhanced Linux [Loscocco and Smalley

2001b] enhances ACLs with a class identifier, to allow different rights for different types

of objects, such as TCP sockets and raw sockets. However, this ACL support neither

expands the number of rights for a single object nor specifies how ACLs are inherited

hierarchically.

6.2 Access Control Inheritance

The issue of inheriting ACLs hierarchically has been addressed in many settings. Twidle

and Sloman [1988] discuss the inheritance of rights between domains of objects in a

distributed system, and specify, similar to Windows 2000, that both positive and negative

rights in a subdomain should override the inherited rights from a parent domain. Moffett

et al. [1990] discuss mechanisms for implementing inheritance statically by combining

the inherited access control entries from parent containers into the ACL for a single

object, which is our choice for Windows 2000. [Fernandez et al. 1989] addresses the

issue of inheritance in an object oriented database, and outlines an inheritance policy

 - 40 -

similar to Windows 2000, but implemented dynamically by inspecting the ACLs of

parent objects rather than pre-computing the ACL on an object.

WebDAV [Clemm et al. 2001] uses a similar inheritance model to Windows 2000,

reflecting Microsoft’s input into its design. In addition to supporting static inheritance

and protecting objects from inheritance, WebDAV does not restrict objects to a tree

structure. Instead, ACLs explicitly reference the source of their inherited entries.

6.3 Restricting Executables

The problem of restricting executing code has also been addressed by many other

systems, although in a different fashion. Most similar to restricted tokens are the process

access groups of the Andrew distributed system [Satyanarayanan 1989], in which a child

process can be launched with some of its groups disabled. While the groups were also

disabled when accessing network services, the system does not address negative

authorizations, in which users could be denied access based on group membership.

Process access groups also do not allow for finer grained control than existing security

groups.

Similar to restricted contexts, Janus [Goldberg et al. 1996], Tron [Berman et al.], and

MAPbox [Acharya and Raje 2000] provide isolation for untrusted code by protecting

objects in the operating system. However, rather than protecting the objects directly, they

instead trap system calls and inspect the parameters for access. In addition, Janus

provides a language, also used by MAPbox, to specify security policies. MAPbox

enhances Janus by providing parameterized behavior classes, so that applications with

similar needs may share policies. These approaches use a separate set of security

mechanisms and configuration tools for protecting users from untrusted code than are

used for protecting users from each other, and as a result are not integrated with the

existing operating system security mechanisms. The benefit of these systems is that they

provide a policy for restricting code and are more flexible than restricted contexts

because they see all the parameters to system calls, rather than just the desired access to

an object. The Linux Intrusion Detection System (LIDS) [Hatch 2001] provides enhanced

isolation functionality to Linux, and allows rights to be granted to programs rather than

just users, but again is not integrated with other operating system protection mechanisms.

The WindowBox project [Balfanz and Simon 2000] provides a policy for isolation by

separating applications onto distinct user-visible desktops rather than just running them in

different contexts. However, rather than having a general mechanism for limiting

executable code, WindowBox limits access by tagging objects with a single SID, and

then checking for that SID in an access token.

 - 41 -

Several operating systems have been constructed to limit the damage from exploited

programs by providing additional isolation between processes. Hewlett Packard’s

Compartmented Mode Workstation (CMW) [Zhong 1997] and Domain and Type

Enforcement (DTE) in Unix [Walker et al. 1996] provide isolation between processes

and restrict the objects accessible to a process based on their type. While the security

models of these operating systems are more powerful than Windows 2000’s, these

operating systems also required greater development effort to achieve that power.

Security-Enhanced Linux [Loscocco and Smalley 2001a] also restricts programs by

labeling objects and provides automatic protection domain changes when invoking a new

program. This operating system, similar to restricted contexts, can also restrict program

to accessing only a small set of objects, although it augments the operating system

protection with rules in a configuration file rules instead of storing access control lists on

objects. Again, the guarantees of SELinux are stronger, but the changes to the operating

system are greater, and the operating system is left with multiple mechanisms for

expressing access control. However, unlike Windows 2000, SELinux, CMW and DTE in

Unix provide better isolation of programs because they have a notion of information flow

[Bell and LaPadula 1976, Denning 1976]. In Windows 2000, a rogue mail program in a

restricted context may save a file that is later accessed from an unrestricted context where

it can cause damage, whereas these operating systems label objects with their source to

fully is olate programs and their outputs.

Restricted contexts are a mechanism that may by used to implement many security

policies, such as role-based access control (RBAC) [Sandhu et al. 1996] in which users

select specific roles when performing job tasks. A user may have different access rights

depending on their role when running a program. Similar to RBAC, restricted contexts

allow programs to be run with different rights according to their task. However, restricted

contexts depend on the existence of an unrestricted context that has complete access to

the user’s resources, while role-based access control does not.

Restricted contexts are similar to the compound principals from [Abadi et al. 1993],

where two principals can be required for access. Compound principals, though, are used

in ACLs to grant access to the combination of two subjects, such as “Jane User and

StockTicker”. Restricted contexts instead subdivide an existing subject of access control

into two, and require that both parts be granted access separately.

Finally, Mazières and Kaashoek [1997] suggest that operating systems should support

hierarchically named capabilities, in which a user may append identifiers to her user

identifier to create many levels of sub-identities. These capabilities are similar to

restricted contexts in that users can create limited versions of their identity, but programs

must specify which single capability is to be used for each access.

 - 42 -

7. CONCLUSION

In this paper we presented the extensions made to the Windows NT 4.0 access control

mechanisms for Windows 2000. These extensions enable the access control mechanisms

of Windows NT, designed primarily for file systems, to apply to applications with more

complex needs, such as a directory service. While many of the ideas have been seen

before in other applications or systems or in slightly different forms, in Windows 2000

the same implementation of ACLs is used by all system services and many applications

rather than creating a separate mechanism for each use. The combination of features in

Windows 2000’s ACLs provides a balance of feasibility, performance, and

manageability. In particular, extending access control entries to specify both a portion of

an object for access checks and a type of object for inheritance allows the existing model,

designed for file systems, to be applied to many other applications. The extended

inheritance controls enable centralized management of large hierarchies of objects by

allowing inheritance to be reapplied without disrupting previously modified ACLs. The

addition of restricted contexts makes it possible to apply operating system security

mechanisms to isolate misbehaving code by allowing users to restrict the set of objects

accessible to a program. Unfortunately, the improvements described in Sections 5.2 and

5.3 (protecting system objects and remote authentication, respectively) did not make it

into the shipped version of Windows 2000. Overall, these changes greatly improve the

scalability and security of the Windows 2000, while retaining the simplicity of a single

access control mechanism throughout the operating system.

ACKNOWLEDGEMENTS

We would like to thank the other members of the security, directory service, and DCOM

teams at Microsoft, in particular Robert Reichel and Murli Satagopan, for contributing to

the ideas presented here. Robert Grimm was our fabulous shepherd on an earlier version

of this paper and provided comments on several versions. Steve Gribble and Andrew

Whitaker provided valuable feedback on an early draft of this paper. Kedar Dubhashi

provided valuable updates on the changes made for Windows XP.

REFERENCES

ABADI, M., BURROWS, M., LAMPSON, B., AND PLOTKIN, G. 1993. A Calculus for access control in distributed

systems. ACM Transactions on Programming Languages and System s 15, 4(Oct), 706-734.
ACHARYA, A. AND RAJE M. 2000. MAPbox: Using parameterized behavior classes to confine untrusted

applications. In Proceedings of the 9 th USENIX Security Symposium , Denver, Colorado, Aug..
ANDERSON, J. 1972, Computer security technology planning study. Technical Report ESD-TR-73-51, Vols. I

and II, Air Force Electronic Systems Division. NTIS document number AD758206.
BALFANZ, D. AND SIMON, D. 2000. WindowBox: A simple security model for the connected desktop. In

Proceedings of the 4th USENIX Windows Systems Symposium, Seattle Washington, Aug.

 - 43 -

BELL , D. AND LAPADULA, D. 1976. Secure computer systems: Unified exposition and Multics interpretation.
Technical Report MTR-2997 Rev. 1 (Mar.). MITRE Corp., Bedford, MA. Also ADA023588, National
Technical Information Service.

BERMAN, A., BOURASSA , V., AND SELBERG, E. 1995. TRON: Process-specific file protection for the UNIX
operating system. In Proceedings of the 1995 USENIX Winter Technical Conference , New Orleans,
Louisana, Jan., 165—175.

BROWN, K. 2000. Explore the security support provider interface using the SSPI workbench Utility. MSDN
Magazine, Aug. Available at http://msdn.microsoft.com/msdnmag/issues/0800/ Security/Security0800.asp.

CADJAN, N AND HARRIS, J. 1999. Administering NDS, corporate edition. McGraw-Hill Professional Publishing.
CALLAGHAN, B., PAWLOSKI, B. AND STAUBACH , P. 1995. NFS version 3 protocol specification. Request for

Comments RFC 1813, Internet Engineering Task Force.
CERT COORDINATION CENTER, 1995. CERT Advisory CA-2000-16 Microsoft ‘IE Script’/Access/OBJECT Tag

Vulnerability . Aug. Available at http://www.cert.org/advisories/CA-2000-16.html.
CLEMM, G., HOPKINS, A., SEDLAR, E., AND WHITEHEAD, J. 2001. WebDAV access control protocol. Internet

draft draft -ietf-webdav-acl-07, Internet Engineering Task Force, Nov.
DENNING, A. 1997. ActiveX controls inside out, second edition, Microsoft Press.
DENNING, D. 1976. A Lattice Model of Secure Information Flow. Communications of the ACM 19 , 5(Aug.),

236-243.
DIERKS, T. AND ALLEN, C. 1999. The TLS protocol. Request for Comments RFC 2246, Internet Engineering

Task Force, Jan.
EDDON, G. AND EDDON, H. 1998. Inside distributed COM. Microsoft Press.
FERNANDEZ, E., GUDES, E., AND SONG , H. 1989. A security model for object -oriented databases. In Proceedings

of the IEEE Symposium on Security and Privacy. Oakland, California, May, 110-115.
GOLDBERG, I., WAGNER D., THOMAS, R. AND BREWER, E. A. 1996. A secure environment for untrusted helper

applications - Confining the Wily Hacker. In Proceedings of the 6 th USENIX Security Symposium , San Jose,
California, Jul.

GRUNBACHER, A. 2001. Extended attributes and ACLs for Linux. Available at http://acl.bestbits.at.
HATCH , B. 2001. An overview of LIDS, part one. Oct. Available at http://www.securityfocus.com/ infocus/1496.
ISEMINGER, D. 2000. Active Directory Services for Microsoft Windows 2000 Technical Reference. Microsoft

Press
LEACH , P. AND SALZ, R. 1998. UUIDs and GUIDs. Internet Draft draft -leach-uuids-guids-01.txt. Internet

Engineering Task Force, Feb.
LINN, J. 1993. Generic Security Service API. Request For Comments RFC 1508, Internet Engineering Task

Force, Sep.
LOSCOCCO , P., AND SMALLEY, S. 2001a. Integrating flexible support for security policies into the Linux

Operating System. In Proceedings of the FREENIX Track: 2001 USENIX Annual Technical Conference,
Boston Massachusetts, June.

LOSCOCCO , P., AND SMALLEY, S. 2001b. Meeting critical security objectives with security-enhanced Linux. In
Proceedings of the 2001 Ottawa Linux Symposium. Ottawa, Ontario, Jul.

MACKEY, D. AND SALZ, R. 1993. DCE ACL Library – Functional Specification. OSF DCE SIG Request For
Comments 46.0, Oct.

MAZIÉRES, D. AND KAASHOEK, M. F. 1997. Secure applications need flexible operating systems. In Proceedings
of the 6 th Workshop on Hot Topics in Operating Systems, Cape Cod, Massachusetts, May.

MICROSOFT CORPORATION. 2000. Novell wrong about windows 2000 security hole. Feb. Available at
http://www.microsoft.com/WINDOWS2000/server/evaluation/news/bulletins/ novellresponse3.asp.

MICROSOFT CORPORATION. 2001, Internet security part 1: the basics. Microsoft Insider. Available at
http://www.microsoft.com/insider/internet/articles/security.htm.

MICROSOFT KNOWLEDGE BASE . 2000. Large numbers of ACEs in ACLs impair directory service performance.
Available at http://support.microsoft.com/support/kb/articles/q271/8/76.asp, Sep.

MOFFETT J., SLOMAN, M., AND TWIDLE, K. 1990. Specifying discretionary access control policy for distributed
systems. Computer Communications 13, 9(Nov.), 571-580.

NEUMAN, B. C. AND T’SO, T. 1994. Kerberos: An authentication service for computer networks. IEEE
Communications 32. 9(Sept.), 33-38.

NOVELL INC. 2000, The NDS advantage: AD security. Feb. Available at
http://www.novell.com/competitive/nds/security.html.

RITCHIE, D. AND THOMPSON, K.1974. The UNIX timesharing system. Communications of the ACM 17, 7(Jul.)
365-375.

SALTZER. J. AND SCHROEDER, M. 1975. The Protection of Information in Computer Systems. Proceedings of the
IEEE 63 , 9(Sep.), 1278-1308.

SANDHU , R., COYNE, E., FEINSTEIN, H., AND YOUMAN, C. 1996. Role-based access control models. IEEE
Computer 29 , 2(Feb.) 38- 47.

SATYANARAYANAN , M. 1989. Integrating security in a large distributed system. ACM Transactions on
Computer Systems 7 , 3(Aug), 247-280.

SUN MICROSYSTEMS INC. 2001. Deployment Guide, Netscape Directory Server version 6.0. Available at
http://enterprise.netscape.com/docs/directory/index.html

TWIDLE, K., AND SLOMAN, M. 1988. Domain based configuration and name management for distributed
systems. In Proceedings of the IEEE Workshop on the Future Trends of Distributed Computer Systems in
the 1990s, Hong Kong, Sep., 7-153.

 - 44 -

WALKER, K., STERNE, D., BADGER, M., PETKAC, M., SHERMANN, D. AND OOSTENDORP K. 1996. Confining
Root Programs with Domain and Type Enforcement (DTE). In Proceedings of the 6th USENIX Security
Symposium, San Jose, California, Jul.

WINSOR, J. 2001. Solaris 8 System Administrator's Guide, Prentice Hall.
YEONG, W., HOWES, T., AND KILLE, S. 1995. Lightweight Directory Access Protocol. Request for Comments

RFC 1777, Internet Engineering Task Force, Mar.
ZHONG, Q. 1997. Providing Secure Environments for Untrusted Network Applications. In Proceedings of the 2nd

IEEE International Workshop on Enterprise Security, Cambridge, Massachusetts, June.

