
Introduction to Graph Databases

Neo4j

Alejandro Vaisman
avaisman@itba.edu.ar

1Introduction to Graph Databases27/3/25

Neo4j – Advanced Querying

2Introduction to Graph Databases27/3/25

Introduction to Graph Databases 3

Useful Libraries

27/3/25

1. APOC (Awesome Procedures on Cypher)

• Contains many different procedures that extend the capabilities of Neo4j.
• Provides features not covered by Cypher
• Exposes functions (returning a single value) and procedures (producing a result stream) related to:

• Extensions of Cypher with, for instance, dynamic labels or property keys and periodic commits for all operations
• Graph refactoring (cloning nodes, changing a relationship’s starting or ending node, and so on)
• Managing collections and lists
• Database introspection (graph schema, types of properties, and so on)
• Import from/export to files in different formats (JSON, XML, and so on)

• To install, download the right version (this is VERY important, must be the exact version corresponding to the
Neo4j version you are using) and copy it into the Plugins folder.

• In neo4j.conf unmark and write:
 dbms.security.procedures.unrestricted = apoc.*, …
 dbms.security.procedures.allowlist = apoc.*, …

Introduction to Graph Databases 4

Useful Libraries

27/3/25

2. Graph Data Science (GDS previously graph-algo)

• Contains tools to be used in a data science project using data stored in Neo4j:
• Path-related algorithms: Dijkstra, A*, etc.
• Graph algorithms

• Centrality
• Community detection
• Similarity

• Machine learning (ML) models and pipelines
• Python client: allows GDS to be called from Python, without using Cypher

• To install, download the right version and copy it into the Plugins folder.
• In neo4j.conf:
 dbms.security.procedures.unrestricted = apoc.*, gds.*, n10s.*,.….
 dbms.security.procedures.allowlist = apoc.coll.*, apoc.load.*,gds.*, apoc.*, n10s.*,.…

Introduction to Graph Databases 527/3/25

Loading the Northwind (graph) database

Introduction to Graph Databases 6

Bulk-loading a Neo4j graph

27/3/25

1. Using the LOAD CVS statement

Note: The .CSV file must be in the import folder in Neo4j

USING PERIODIC COMMIT
LOAD CSV WITH HEADERS FROM "file:///territories.csv" AS row
CREATE (:Territory {territoryID: row.territoryid, name: row.territorydescription});
============
USING PERIODIC COMMIT
LOAD CSV WITH HEADERS FROM "file:///employees.csv" AS row
CREATE (:Employee{employeeID: row.employeeid,

lastName: row.lastname,firstName: row.firstname, city:row.city,region:row.region,country:row.country});
==============

USING PERIODIC COMMIT
LOAD CSV WITH HEADERS FROM "file:///employeeterritories.csv" AS row
MATCH (t:Territory {territoryID: row.territoryid})
MATCH (e:Employee {employeeID: row.employeeid})
MERGE (e)-[:AssignedTo]->(t)

file:///D:/territories.csv
file:////employees.csv
file:////employeeterritories.csv

Introduction to Graph Databases 7

Bulk-loading a Neo4j graph

27/3/25

2. Using the LOAD CVS statement without USING PERIODIC COMMIT

Note: The .CSV file must be in the import folder in Neo4j

LOAD CSV WITH HEADERS FROM "file:///territories.csv" AS row
CREATE (:Territory {territoryID: row.territoryid, name: row.territorydescription});

:auto LOAD CSV WITH HEADERS FROM 'file:///territories.csv' AS row
CALL {
WITH row
CREATE (e: Territory)
SET e = {
 territoryID: row.territoryid,
 name: row.territorydescription
 }
} IN TRANSACTIONS OF 10 ROWS;

file:///D:/territories.csv

Introduction to Graph Databases 827/3/25

3. Loading from a Postgres DB
• Copy database driver to the “Plugins” folder
• APOC library must also be copied in the “Plugins” folder
• Check the right APOC version for your Neo4j version!!!
• Must download also apoc-5.10.0-extended.jar NOT just apoc-5.10.0-core.jar

WITH "jdbc:postgresql://localhost:5434/NorthwindOLTP?user=postgres&password=postgres" as url
// NorthwindOLTP: your database in the PostgreSQL instance
// url: to be used in the procedure call
CALL apoc.load.jdbc(url,"select * from categories") YIELD row
// row: a “row variable” just as before
RETURN row.description,row.categoryname

This lists the table “categories” in Neo4j.
We can use this also for loading data into Neo4j.

Loading the graph

Introduction to Graph Databases 927/3/25

WITH "jdbc:postgresql://localhost:5434/NorthwindOLTP?user=postgres&password=postgres" as url

CALL apoc.load.jdbc(url,"select * from products") YIELD row

CREATE (:Product {productID: row.productid,productName:row.productname, supplier: row.supplierid,
category:row.categoryid, qtyperunit:row.quantityperunit})

===================================

WITH "jdbc:postgresql://localhost:5434/NorthwindOLTP?user=postgres&password=postgres" as url

CALL apoc.load.jdbc(url,"select * from suppliers") YIELD row

CREATE (:Supplier {supplierID: row.supplierid, supplierName:row.companyname, city:row.city, region:row.region,
country:row.country})

Loading the graph

Introduction to Graph Databases 1027/3/25

USING PERIODIC COMMIT
LOAD CSV WITH HEADERS FROM "file:/NWdata/city.csv" AS row
CREATE (:City {cityID:row.citykey,cityName: row.cityname});

USING PERIODIC COMMIT
LOAD CSV WITH HEADERS FROM "file:/NWdata/territories.csv" AS row
CREATE (:Territory {territoryID: row.territoryID, name: row.territoryDescription});

...

USING PERIODIC COMMIT
LOAD CSV WITH HEADERS FROM "file:/NWdata/employee-territories.csv" AS row
MATCH (territory:Territory{territoryID: row.territoryID})
MATCH (employee:Employee {employeeID: row.employeeID})
MERGE (employee)-[:AssignedTo]->(territory);

Loading the graph

Introduction to Graph Databases 1127/3/25

USING PERIODIC COMMIT
LOAD CSV WITH HEADERS FROM "file:/NWdata/orders.csv" AS row
MATCH (order:Order {orderID: row.orderID})
MATCH (employee:Employee {employeeID: row.employeeID})
MERGE (employee)-[:Sold]->(order);

LOAD CSV WITH HEADERS FROM "file:/NWdata/order-details.csv" AS row
MATCH (order:Order {orderID: row.orderID})
MATCH (product:Product {productID: row.productID})
MERGE (order)-[:Contains{unitPrice:row.unitPrice,quantity:row.quantity, discount:row.discount}]->(product);

USING PERIODIC COMMIT
LOAD CSV WITH HEADERS FROM "file:/NWdata/products.csv" AS row
MATCH (product:Product {productID: row.productID})
MATCH (supplier:Supplier {supplierID: row.supplierID})
MERGE (supplier)-[:Supplies]->(product);

Loading the graph

Introduction to Graph Databases 1227/3/25

CALL apoc.load.jdbc('jdbc:postgresql://localhost:5433/NorthwindOLTP?user=postgres&password=postgres','select * from
employees') YIELD row
MATCH (employee:Employee {employeeID: row.employeeid})
MATCH (employee1:Employee {employeeID: row.reportsto})
MERGE (employee)-[:ReportsTo]->(employee1);

-- Create a view to put together orders and order details

CREATE VIEW order1 AS (SELECT o.orderid AS orderID, o.orderdate AS orderDate, o.shippeddate AS shippedDate, o.shipname AS
shipName, sum(quantity) AS totqty, sum(unitprice*quantity) AS totAmount
FROM orders o, orderdetails o1
WHERE o.orderid = o1.orderid
GROUP BY o.orderid, o.orderdate, o.shippeddate, o.shipname
ORDER BY orderid asc)

CALL apoc.load.jdbc('jdbc:postgresql://localhost:5433/NorthwindOLTP?user=postgres&password=postgres','select * from
ordershg') YIELD row
CREATE (:Order {orderID: row.orderid, orderDate: row.orderdate, ShippedDate: row.shippeddate, shipName:row.shipname,
totalQty:row.totqty, totalAmount:row.totamount});

Loading the graph

Introduction to Graph Databases 13

Schema: Northwindhg database

27/3/25

Introduction to Graph Databases 14

Problem 1. Northwindhg database

27/3/25

• Query 1. List all product names together with their unit price

MATCH (p:Product)
RETURN p.productName, p.unitPrice
ORDER BY p.unitPrice DESC

• Query 2. List the nodes corresponding to products 'Chocolade' & 'Pavlova'

MATCH (p:Product)
WHERE p.productName IN ['Chocolade','Pavlova']
RETURN p

• Query 3. List all product names together with their unit Price for products with names starting with a "C”, whose
unit price is greater than 50

MATCH (p:Product)
WHERE p.productName STARTS WITH "C" AND p.unitPrice > 50
RETURN p.productName, p.unitPrice;

Introduction to Graph Databases 1527/3/25

• Query 4. Same as 3, but considering the sales unit price, not the product’s price.

MATCH (p:Product) <- [c:Contains] - (o:Order)
WHERE p.productName STARTS WITH "C" AND c.unitPrice > 50
RETURN distinct p.productName, p.unitPrice, c.unitPrice;

• Query 5. Total purchased by customer and product

MATCH (c:Customer)
OPTIONAL MATCH (p:Product)<-[pu:Contains]-(:Order)-[:Purchased]->(c)
RETURN c.customerName, p.productName, sum(pu.unitPrice * pu.quantity) as volume
ORDER BY p.productName desc
// 1687 records in the answer
// Check the result omitting the OPTIONAL keyword – 1685 answers

• Query 6. Top 10 employees, considering the number of orders sold

MATCH (:Order)<-[:Sold]-(e:Employee)
RETURN e.firstName,e.lastName, count(*) AS Orders
ORDER BY Orders DESC LIMIT 10

Problem 1. Northwindhg database

Introduction to Graph Databases 1627/3/25

• Query 7. For each employee, build a list with the assigned territories

MATCH (t:Territory)<-[:AssignedTo]-(e:Employee)
RETURN e.lastName, COLLECT(t.name);

• Query 8. For each city, list the companies settled in that city

MATCH (c:City)<-[:locatedIn]-(c1:Customer)
RETURN c.cityname, COLLECT(c1.customerName);

Query 9. How many persons an employee reports to, either directly or transitively?

MATCH (report:Employee)
OPTIONAL MATCH (e)<-[rel:ReportsTo*]-(report)
RETURN report.lastName AS e1, COUNT(rel) AS reports

// What happens id we do not use OPTIONAL? Why do we need the first MATCH clause?

• Query 10. To whom do persons called “Robert” report to?

MATCH (e:Employee)<-[:ReportsTo*]-(sub:Employee)
WHERE sub.firstName = 'Robert'
RETURN e.firstName,e.lastName,sub.lastName

Problem 1. Northwindhg database

Introduction to Graph Databases 1727/3/25

• Query 11. Who does not report to anybody?

MATCH (e:Employee)
WHERE NOT (e)-[:ReportsTo]->()
RETURN e.firstName as TopBossFirst, e.lastName AS TopBossLast

• Query 12. Suppliers, number of categories they supply, and a list of such categories

MATCH (s:Supplier)-->(:Product)-->(c:Category)
WITH s.supplierName as Supplier, COLLECT distinct c.categoryName) as Categories
RETURN Supplier, Categories, size(Categories) AS Quantity ORDER BY Quantity DESC
// We cannot write collect(distinct c.categoryName) as Categories, size(categories), but we can write size(collect(distinct c.categoryName))

MATCH (s:Supplier)-->(:Product)-->(c:Category)
WITH s.supplierName as Supplier, collect(distinct c.categoryName) as Categories, size(COLLECT(distinct c.categoryName)) as Quantity
RETURN Supplier, Quantity ORDER BY Quantity DESC

• Query 13. Suppliers who supply beverages

MATCH (c:Category)<--(:Product)<--(s:Supplier) WHERE c.categoryName = "Beverages"
RETURN DISTINCT s.supplierName as ProduceSuppliers;

Problem 1. Northwindhg database

Introduction to Graph Databases 1827/3/25

• Query 14. Customer who purchases the largest amount of beverages

MATCH (cust:Customer)<-[:Purchased]-(:Order) - [o:Contains] -> (p:Product), (p) - [:hasCategory] -> (c:Category{categoryName:"Beverages"})
RETURN cust.customerName as CustomerName, SUM(o.quantity) LIMIT 1

• Query 15. List the 5 most popular products (considering the number of orders)

MATCH (c:Customer) <- [:Purchased] - (o:Order) - [o1:Contains] -> (p:Product)
RETURN c.customerName, p.productName, count(o1) as orders
ORDER BY orders desc LIMIT 5

Problem 1. Northwindhg database

Introduction to Graph Databases 1927/3/25

• Query 16. Products ordered by customers from the same country than their suppliers

MATCH (c:Customer) -[r:locatedIn]->(cy:City)-[:belongsTo]->(:Region)-[:isIn]->(co:Country)
WITH co, c
MATCH (s:Supplier) WHERE co.countryname = s.country
WITH s, co, c
MATCH (s)-[su:Supplies]-(p:Product)<-[:Contains]-(o:Order)-[:Purchased]->(c)
RETURN c.customerName,s.supplierName,co.countryname,p.productName

OR

MATCH (c:Customer) -[r:locatedIn]->(cy:City)-[:belongsTo]->(:Region)-[:isIn]->(co:Country)
WITH co, c
MATCH (s:Supplier)-[su:Supplies]-(p:Product) <- [:Contains]-(o:Order) - [:Purchased] - >(c)
WHERE co.countryname = s.country
RETURN c.customerName,s.supplierName,co.countryname,p.productName

// Check that we obtain the same result

Problem 1. Northwindhg database

Introduction to Graph Databases 2027/3/25

Problem 2 – Rivers

Introduction to Graph Databases 2127/3/25

Problem 2 – Rivers

Introduction to Graph Databases 2227/3/25

Problem 2 – Rivers

Before we start, let us analyze a smaller problem

Consider the graph “miniwebgraph”.

Introduction to Graph Databases 2327/3/25

Problem 2 – Rivers

Spanning Tree. All nodes reachable from a given node

Consider the graph “miniwebgraph”.

MATCH (n:URL {name:7})
CALL apoc.path.spanningTree(n,{relationshipFilter:"REF>", minLevel: 1})
 YIELD path AS pp
RETURN [p in NODES(pp)|p.name]

This query returns all nodes reachable from node 7.

Note: [7, 6, 4] is in the answer, but NOT [7, 8, 5, 4] because Node 4 has already
been reached

Introduction to Graph Databases 2427/3/25

Problem 2 – Rivers

Spanning Tree for Node 7

MATCH (n:URL {name:7})
CALL apoc.path.spanningTree(n,{relationshipFilter:"REF>", minLevel: 1})
 YIELD path AS pp
RETURN [p in NODES(pp)|p.name]

Introduction to Graph Databases 2527/3/25

Problem 2 – Rivers

Spanning Tree

• Consider now the query:
• All nodes directly reachable from the nodes reachable from node 7

MATCH (n:URL {name:7})
//Nodes reachable from Node 7:
CALL apoc.path.spanningTree(n,{relationshipFilter:"REF>", minLevel: 1})
YIELD path AS pp
UNWIND NODES(pp) as p
//Nodes directly reachable from Node 7:
MATCH (p)-[:REF]->(r:URL)
RETURN p.name, COLLECT(distinct r.name)

Introduction to Graph Databases 2627/3/25

Problem 2 – Rivers

Spanning Tree

• Consider now the query:
• All nodes directly reachable from the nodes reachable from node 7

such that there is a split at such nodes

MATCH (n:URL {name:7})
CALL apoc.path.spanningTree(n,{relationshipFilter:"REF>", minLevel: 1})
 YIELD path AS pp
UNWIND NODES(pp) as p
MATCH (p)-[:REF]->(r:URL)
WITH p, count(DISTINCT r) as co WHERE co > 1
RETURN p.name

Introduction to Graph Databases 2727/3/25

Problem 2 – Rivers

All Possible Paths Computation

• Consider now the query:
• All the paths starting at node 7

MATCH (n:URL {name:7})
CALL apoc.path.expandConfig(n, {relationshipFilter:"REF>", minLevel: 1})
 YIELD path AS pp
RETURN [p in NODES(pp)|p.name]

Note: Now the query returns [7, 6, 4] AND [7, 8, 5, 4]

Problem: computational cost

Introduction to Graph Databases 2827/3/25

Problem 2 – Rivers

Query 5. Find the segments with the maximum number of incoming segments.

MATCH (n:Segment)
OPTIONAL MATCH (src:Segment)-[:flowsTo]->(n)
WITH n, COUNT(distinct src) as indegree
WITH COLLECT ([n, indegree]) as tuples, MAX(indegree) as max
RETURN [t in tuples WHERE t[1] = max |t[0].vhas], max

 Let’s start now with the Rivers graph database

Introduction to Graph Databases 2927/3/25

Query 6. Find the number of splits in the downstream path of segment 6020612

MATCH (n:Segment {vhas:6020612})
CALL apoc.path.spanningTree(n,{relationshipFilter:"flowsTo>", minLevel: 1}) YIELD path AS pp
UNWIND NODES(pp) as p
MATCH (p)-[:flowsTo]->(r:Segment)
WITH p, count(DISTINCT r) as co WHERE co > 1
RETURN count(p)

Let us analyze this query.

Problem 2 – Rivers

Introduction to Graph Databases 3027/3/25

Problem 2 – Rivers

MATCH (n:Segment {vhas:6020612})
CALL apoc.path.spanningTree(n,{relationshipFilter:"flowsTo>", minLevel: 1}) YIELD path AS pp
RETURN pp

pp is a set of paths

The figure shows three paths, of lengths 1, 2 and 3

Introduction to Graph Databases 3127/3/25

MATCH (n:Segment {vhas:6020612})
CALL. apoc.path.spanningTree(n,{relationshipFilter:"flowsTo>", minLevel: 1}) YIELD path AS pp
RETURN [p in NODES(pp)|p.vhas] limit 3

Problem 2 – Rivers

The figure shows the identifier of the nodes in the three paths, of lengths 1, 2 and 3

Introduction to Graph Databases 3227/3/25

Query 8. Determine if there is a loop in the downstream path of segment 6031518.

MATCH (n:Segment {vhas:6031518})
CALL apoc.path.spanningTree(n, {relationshipFilter: "flowsTo>", minLevel: 1}) YIELD path AS pp
WITH [p in NODES(pp) | p] as nodelist
UNWIND nodelist as p
CALL apoc.path.expandConfig (p, {relationshipFilter:"flowsTo>", minLevel: 1, terminatorNodes:[p],
 whitelistNodes:nodelist}) YIELD path as loop
RETURN count(loop) >0 as loops

• When the same node can be reached following different paths, and we want all possible paths,

spanningTree is not enough
• spanningTree returns all reachable nodes from A: A, B, C, D, E, F, G, to filter out nodes that will not
 be used
• Once it finds a path, it does not check another one, it would find A, B, D or A, C, D, not both

Problem 2 – Rivers

Introduction to Graph Databases 3327/3/25

Query 11. Find all segments reachable from the segment closest to Antwerpen’s
Groenplaats

CALL apoc.spatial.geocodeOnce('Groenplaats Antwerpen Flanders Belgium’)
 YIELD location as ini
MATCH (n:Segment)
WITH n, ini, point.distance(point({longitude:n.source_long,
 latitude:n.source_lat}),
 point(ini)) as d
WITH n, d order by d asc limit 1
CALL apoc.path.spanningTree(n,{relationshipFilter:"flowsTo>", minLevel: 1})
 YIELD path as pp
UNWIND NODES(pp) as p
RETURN p.vhas;

Problem 2 – Rivers

Introduction to Graph Databases 3427/3/25

Problem 3 – Twitter

Note that in this case, there is
a node of type User that also has
the label "Me"

Introduction to Graph Databases 3527/3/25

Problem 3 – Classic queries - Twitter

1. Who do I mention in Twitter?

MATCH (u:Me:User) - [p:POSTS] -> (t:Tweet) - [:MENTIONS] -> (m:User)
WITH u, p, t, m, COUNT(m.screen_name) AS count ORDER BY count DESC
RETURN u, p, t, m

2. Detailed list and count of my mentions

MATCH (u:User:Me)- [:POSTS] -> (t:Tweet)-[:MENTIONS] -> (m:User)
RETURN m.screen_name AS screen_name, COUNT(m.screen_name) AS count
ORDER BY count DESC

Note that u:Me implies that it is referring to myself (in this case, ‘Neo4j’). It is like asking u.name =
‘Neo4j’

Introduction to Graph Databases 3627/3/25

Problem 3 – Twitter

3. Who are my most influential followers?

MATCH (follower:User) - [:FOLLOWS] -> (u:User:Me) // we could simply write (u:Me)
RETURN follower.screen_name AS user, follower.followers AS followers
ORDER BY followers DESC
LIMIT 10

4. Tags most used by me

MATCH (h:Hashtag) < - [:TAGS] - (t:Tweet) < - [:POSTS]-(u:User:Me)
WITH h, COUNT(h) AS Hashtags
ORDER BY Hashtags DESC
LIMIT 10
RETURN h.name, Hashtags

Introduction to Graph Databases 3727/3/25

Problem 3 – Twitter

5. At what rate do people I follow also follow me back?

MATCH (me:User:Me) - [:FOLLOWS]->(f)
WITH me, f, count{(f) - [:FOLLOWS] -> (me)} as doesFollowBack // doesFollowBack is either 0 or 1
RETURN SUM(doesFollowBack) / toFloat(COUNT(f)) AS followBackRate

6. Who tweets about me, but I do not follow?

MATCH (ou:User) - [:POSTS] -> (t:Tweet) - [mt:MENTIONS] -> (me:User:Me)
WITH DISTINCT ou, me
WHERE (ou) - [:FOLLOWS] -> (me) AND NOT (me) - [:FOLLOWS] -> (ou)
RETURN ou.screen_name

Introduction to Graph Databases 3827/3/25

Problem 3 – Twitter

7. What links do I retweet, and how often are they favorited?

MATCH (:User:Me) - [:POSTS] -> (t:Tweet) - [:RETWEETS] -> (rt) - [:CONTAINS] -> (link:Link)
RETURN t.id_str AS tweet, link.url AS url, rt.favorites AS favorites
ORDER BY favorites DESC

8. Users that tweet some of my hashtags?

MATCH (me:User:Me)-[:POSTS]->(tweet:Tweet)-[:TAGS]->(ht)
MATCH (ht) <- [:TAGS] - (tweet2:Tweet) <- [:POSTS] - (sugg:User)
WHERE sugg <> me AND NOT (tweet2) - [:RETWEETS] -> (tweet)
RETURN sugg.name, COLLECT(distinct(ht.name)) as tags

Introduction to Graph Databases 3927/3/25

Problem 4 – Spatial queries - OSM

• Route and tagged Points of
Interest for Central Park,
based on OpenStreetMap

• We take the role of a virtual
tourist

• Plugin to extract data:
https://github.com/neo4j-
contrib/osm

Introduction to Graph Databases 4027/3/25

Problem 4 – OSM

• In Cypher, APOC allows us to geocode an address and for example, compute a distance. Only points are currently
supported. For example:

CALL apoc.spatial.geocodeOnce('Parque Rivadavia, Buenos Aires, Argentina') YIELD location as ini
CALL apoc.spatial.geocodeOnce('Teatro Colón, Buenos Aires, Argentina') YIELD location as ini1
WITH point({srid:4326, x:ini.longitude,y:ini.latitude}) AS p1, point({srid:4326, x:ini1.longitude,y:ini1.latitude}) AS p2
RETURN p1.x, p1.y, p2.x, p2.y, point.distance(p1,p2)

Introduction to Graph Databases 4127/3/25

Problem 4 – OSM

CALL apoc.spatial.geocodeOnce('Sigmund Freud Museum, Vienna, Austria') YIELD location as ini
CALL apoc.spatial.geocodeOnce('State Opera, Vienna, Austria') YIELD location as ini1
WITH point(ini) AS p1, point(ini1) as p2
RETURN p1.x, p1.y, p2.x, p2.y, point.distance(p1,p2)

CALL apoc.spatial.geocodeOnce('Facultad de Ingeniería, Montevideo, Uruguay') YIELD location as ini
CALL apoc.spatial.geocodeOnce('Aeropuerto, Montevideo, Uruguay') YIELD location as ini1
WITH point(ini) AS p1, point(ini1) as p2
RETURN p1.x, p1.y, p2.x, p2.y, point.distance(p1,p2)

Introduction to Graph Databases 4227/3/25

Problem 4 – OSM

1. Find a PoI of type clock, and the PoIs 100 m around it

MATCH (p:PointOfInterest {type:'clock'}) RETURN p.name

MATCH (p1:PointOfInterest {type:'clock'}), (p2:PointOfInterest)
WHERE p1<>p2 AND point.distance(p1.location, p2.location) < 100
RETURN p2.name

Introduction to Graph Databases 4327/3/25

Problem 4 – OSM

2. How far apart are the zoo school and the clock as a straight line (as the crow flies)?

MATCH (p1:PointOfInterest {type:'clock'}), (p2:PointOfInterest {name:'Zoo School'}) RETURN
point.distance(p1.location,p2.location)

 3. What is the actual walking distance?

MATCH path=shortestpath((p1:PointOfInterest {type:'clock'})-[:ROUTE*]-(p2:PointOfInterest {name:'Zoo School'}))
WITH relationships(path) AS rels
//extract all the relationships in the path as an array
UNWIND rels AS rel
RETURN sum(rel.distance)

Introduction to Graph Databases 4427/3/25

Problem 4 – OSM

4. Locate which cafe type:'cafe' is closest to a bicycle rental place type:'bicycle rental'. What’s the name of the cafe?

MATCH path = shortestPath((p1:PointOfInterest {type:'cafe'})-[:ROUTE*]-(p2:PointOfInterest {type:'bicycle rental'}))
WITH p1, p2, relationships(path) AS rels
UNWIND rels AS rel //unwind the array of relationships
RETURN p1.name, p2.name, sum(rel.distance) AS dist ORDER BY dist

Introduction to Graph Databases 4527/3/25

Problem 4 – OSM

5. Compare the outputs of shortestPath() against weighted shortest path with the Dijkstra APOC function

MATCH path = (p1:PointOfInterest {type:'cafe'}),(p2:PointOfInterest {type:'bicycle rental'})
CALL apoc.algo.dijkstra(p1, p2, 'ROUTE', 'distance') YIELD weight AS dist
RETURN p1.name, p2.name, dist ORDER BY dist

• The shortestPath() Cypher function returns the first shortest path by #of relationship hops it finds between two
 specified points.
• The apoc.algo.dijkstra() APOC function returns the shortest weighted path, based on a specified property on relati

onships between two specified points, regardless the number of hops between them.
• Thus, we can see that the shortest path traversing the minimum number of nodes may not be the

shortest distance path considering the actual trajectory.

