
Introduction to Graph Databases

Neo4j

Alejandro Vaisman
avaisman@itba.edu.ar

1Introduction to Graph Databases1/4/25

Querying Neo4j Databases with Cypher

2Introduction to Graph Databases1/4/25

Introduction to Graph Databases 3

V1

V2

V3

manager_of

V4

knows

knows

knows

[
ID: 1112,
Name: Martin,
Salary: 10000

]

[
ID: 6666,
Name: Juan,
Salary: 8000

]

[
ID: 3333,
Name: Uma,
Salary: 3000

]

[
ID: 2323,
Name: Irma,
Salary: 5000

]

[
From: 10/10/2000

]

Property graphs revisited

1/4/25

Introduction to Graph Databases 4

• Open Source

• Versions for Linux, Win, Mac. Implemented in Java

• High-level query language: Cypher

GDBMS: Neo4j www.neo4j.com

1/4/25

Introduction to Graph Databases 5

(N, E)

A set of nodes

Directed edges (probably with cycles)

A node has:
1) Zero or + properties: boolean, string, numeric, arrays of the former
2) Zero or + Labels: Give a name to a node

An edge has:
1) Zero or + properties: Same as for nodes
2) Exactly one Label: To distinguish a relationship between nodes

A Neo4j graph

1/4/25

Introduction to Graph Databases 6

To create nodes

To update/delete information

To query graphs

Cypher

1/4/25

Introduction to Graph Databases 7

To create graphs

To update/delete that
information

Cypher

Different from the relational model where:

1) First, the structure is created, to store tuples.
2) FKs are defined at the structural level.
3) Then, tuples are inserted/updated/deleted, and must conform to the structure.

1/4/25

Introduction to Graph Databases 8

To create graphs

To update/delete that
information

Cypher

1/4/25

Nodes and edges are created. Properties, labels, types, are the informational structure, but
no schema is defined.

Topology can be thought as analogous to the FK in the relational model. Defined at the
instance level.

Introduction to Graph Databases 9

A node variable goes between“()”. Identifies a node in an expression.

(v :Label1:Label2…:LabelN { Prop1: Value1, Prop2: Value2, … Propk: Valuek })

A list of N labels (optional) associated with the node, prefixed by “:”

A list of K properties (optional) associated with the node.
Each property has a name and a value, separated by the
symbol “:”

Cypher - nodes

1/4/25

Create another one.

$ CREATE ();
If RETURN is not written, nodes are not displayed

Create a node with no properties/labels:

$ CREATE (v)
RETURN v;

Introduction to Graph Databases 10

ID assigned internally, with a different number
each time. Can be reused by the system. Do
not use it in applications.

<id>: 0

<id>: 0 <id>: 1

Cypher - nodes

1/4/25

Introduction to Graph Databases 11

Create a node with two labels:

$ CREATE (v :Student:ITBA)
RETURN v;

Create a node with one label and 3 properties:

$ CREATE (n :Student {Name: 'Juan Polo',
DateOfBirth: '12/04/2000',
Mails: ['jmpolo@itba.edu.ar', 'juan@yahoo.com'] })

RETURN n;

Student ITBA <id>: 2

Student <id>: 3
• Name: Juan Polo
• DateOfBirth: 12/04/2000
• Mails: jmpolo@itba.edu.ar,juan@yahoo.com

Cypher - nodes

1/4/25

Introduction to Graph Databases 12

Add labels “English” and “Spanish” to all nodes previously created.
$ MATCH (n)

SET n :English:Spanish
RETURN n;

<id>: 0 <id>: 1

Student ITBA <id>: 2 Student <id>: 3
• Name: Juan Polo
• DateOfBirth: 12/04/2000
• Mails: jmpolo@itba.edu.ar,juan@yahoo.com

Cypher - nodes

1/4/25

Add labels “English” and “Spanish” to all nodes previously created.
$ MATCH (n)

SET n :English:Spanish
RETURN n;

Introduction to Graph Databases 13

English Spanish <id>: 0 English Spanish <id>: 1

Student ITBA English Spanish <id>: 2 Student English Spanish <id>: 3
• Name: Juan Polo
• DateOfBirth: 12/04/2000
• Mails: jmpolo@itba.edu.ar,juan@yahoo.com

Cypher - nodes

1/4/25

Introduction to Graph Databases 14

Delete labels English and Spanish from the node labelled “ITBA”
$
MATCH (n :ITBA)
REMOVE n :English:Spanish

English Spanish <id>: 0 English Spanish <id>: 1

Student ITBA English Spanish <id>: 2 Student English Spanish <id>: 3
• Name: Juan Polo
• DateOfBirth: 12/04/2000
• Mails: jmpolo@itba.edu.ar,juan@yahoo.com

Cypher - nodes

1/4/25

Introduction to Graph Databases 15

Delete labels English and Spanish from the node labelled “ITBA”

$ MATCH (n :ITBA)
REMOVE n :English:Spanish

English Spanish <id>: 0 English Spanish <id>: 1

Student ITBA <id>: 2 Student English Spanish <id>: 3
• Name: Juan Polo
• DateOfBirth: 12/04/2000
• Mails: jmpolo@itba.edu.ar,juan@yahoo.com

Cypher - nodes

1/4/25

Introduction to Graph Databases 16

Delete properties DateOfBirth, Mails and Name from the nodes labelled “Student”.
Properties are referred to as: node.propertyName
$ MATCH (n :Student)

REMOVE n.DateOfBirth, n.Name, n.mails
RETURN n

English Spanish <id>: 0 English Spanish <id>: 1

Student ITBA <id>: 2 Student English Spanish <id>: 3
• Name: Juan Polo
• DateOfBirth: 12/04/2000
• Mails: jmpolo@itba.edu.ar,juan@yahoo.com

Cypher - nodes

1/4/25

Introduction to Graph Databases 17

Delete properties DateOfBirth, Mails and Name from the nodes labelled “Student”.
Properties are referred to as: node.propertyName
$ MATCH (n :Student)

REMOVE n.DateOfBirth, n.Name, n.mails
RETURN n

English Spanish <id>: 0 English Spanish <id>: 1

Student ITBA <id>: 2 Student English Spanish <id>: 3
• Mails: jmpolo@itba.edu.ar,juan@yahoo.com

Cypher - nodes

Undefined properties are ignored, the do
not produce errors when trying to delete
them. The same for labels.

Note that property “mails” was not
deleted, language is case sensitive.

1/4/25

Introduction to Graph Databases 18

An edge is placed between brackets []. It is defined between to nodes (here, n and v). If
the edge goes from n to v, this is indicated as “- [] ->”, conversely, it is indicated as “ <- [
] –”. A variable name, with local scope, must also be included.

(n)- [e :Type { Prop1: Value1, Prop2: Value2, … Propk: Valuek }] -> (v)

Exactly one Type (mandatory) prefixed by “:”

A list of K properties (optional) associated with the node.
Each property has a name and a value, separated by the symbol “:”

Cypher - Edges

1/4/25

Introduction to Graph Databases 19

Consider a Neo4j database. The nodes already created are:

$ CREATE (n :Employee { Name: 'Ariel Casso',
Salary: 10000,
Mails: ['acasso@itba.edu.ar', 'acasso@yahoo.com'] });

CREATE (n :Employee { Name: 'José Pan',
Salary: 12000,
Mails: ['jpan@itba.edu.ar'] });

CREATE (n :Employee { Name: 'Luna García',
Salary: 16000,
Mails: ['lgarcia@itba.edu.ar'] });

CREATE (n :Employee { Name: 'Vilma Casso',
Salary: 8000,
Mails: ['vcasso@itba.edu.ar'] });

Cypher - Edges

1/4/25

Introduction to Graph Databases 20

$ MATCH (n :Employee {Name: 'José Pan'}), (b :Employee {Name: 'Vilma
Casso'}), (c :Employee {Name: 'Ariel Casso'})

CREATE (b) <- [r1 :manager_of] - (n) - [r2 :manager_of] -> (c)
RETURN r1, r2

Luna
Garcia

José
Pan

Ariel
Casso

Vilma
Casso

Employee <id>: 1
• Name: José Pan
• Salary: 12000
• Mails: jpan@itba.edu.ar

Employee <id>: 0
• Name: Ariel Casso
• Salary: 10000
• Mails: acasso@itba.edu.ar,acasso@yahoo.com

Employee <id>: 3
• Name: Vilma Casso
• Salary: 8000
• Mails: vcasso@itba.edu.ar

Employee <id>: 2
• Name: Luna García
• Salary: 16000
• Mails: lgarcia@itba.edu.ar

Create an edge of type «manager_of» with no properties, from José Pan to Vilma and Ariel Casso:

Cypher - Edges

1/4/25

Introduction to Graph Databases 21

$ MATCH (n :Employee {Name: 'José Pan'}), (b :Employee {Name: 'Vilma
Casso'}), (c :Employee {Name: 'Ariel Casso'})

CREATE (b) <- [r1 :manager_of] - (n) - [r2 :manager_of] -> (c)
RETURN r1, r2

Luna
Garcia

José
Pan

Ariel
Casso

Vilma
Casso

Employee <id>: 1
• Name: José Pan
• Salary: 12000
• Mails: jpan@itba.edu.ar

Employee <id>: 0
• Name: Ariel Casso
• Salary: 10000
• Mails: acasso@itba.edu.ar,acasso@yahoo.com

Employee <id>: 3
• Name: Vilma Casso
• Salary: 8000
• Mails: vcasso@itba.edu.ar

Employee <id>: 2
• Name: Luna García
• Salary: 16000
• Mails: lgarcia@itba.edu.ar

nb

c

Create an edge of type «manager_of» with no properties, from José Pan to Vilma and Ariel Casso:
:

Cypher - Edges

1/4/25

Introduction to Graph Databases 22

$ MATCH (n :Employee {Name: 'José Pan'}), (b :Employee {Name: 'Vilma
Casso'}), (c :Employee {Name: 'Ariel Casso'})

CREATE (b) <- [r1 :manager_of] - (n) - [r2 :manager_of] -> (c)
RETURN r1, r2

Luna
Garcia

manager_of

manager_of

José
Pan

Ariel
Casso

Vilma
Casso

Employee <id>: 1
• Name: José Pan
• Salary: 12000
• Mails: jpan@itba.edu.ar

Employee <id>: 0
• Name: Ariel Casso
• Salary: 10000
• Mails: acasso@itba.edu.ar,acasso@yahoo.com

Employee <id>: 3
• Name: Vilma Casso
• Salary: 8000
• Mails: vcasso@itba.edu.ar

Employee <id>: 2
• Name: Luna García
• Salary: 16000
• Mails: lgarcia@itba.edu.ar

Create an edge of type «manager_of» with no properties, from José Pan to Vilma and Ariel Casso:

Cypher - Edges

1/4/25

Introduction to Graph Databases 23

$ MATCH (n :Employee {Name: 'José Pan'}),(b :Employee {Name: 'Luna García'})
CREATE (n) <- [r :manager_of {From: '10/10/2000'}] - (b)
RETURN n, r, b

Luna
Garcia

José
Pan

Ariel
Casso

Vilma
Casso

Employee <id>: 1
• Name: José Pan
• Salary: 12000
• Mails: jpan@itba.edu.ar

Employee <id>: 0
• Name: Ariel Casso
• Salary: 10000
• Mails: acasso@itba.edu.ar,acasso@yahoo.com

Employee <id>: 3
• Name: Vilma Casso
• Salary: 8000
• Mails: vcasso@itba.edu.ar

Employee <id>: 2
• Name: Luna García
• Salary: 16000
• Mails: lgarcia@itba.edu.ar

Cypher - Edges
Create another edge of type «manager_of» with property “from”, from L. García to José Pan

1/4/25

manager_of

manager_of

Introduction to Graph Databases 24

$ MATCH (n :Employee {Name: 'José Pan'}),(b :Employee {Name: 'Luna García'})
CREATE (n) <- [r :manager_of {From: '10/10/2000'}] - (b)
RETURN n, r, b

Luna
Garcia

José
Pan

Ariel
Casso

Vilma
Casso

Employee <id>: 1
• Name: José Pan
• Salary: 12000
• Mails: jpan@itba.edu.ar

Employee <id>: 0
• Name: Ariel Casso
• Salary: 10000
• Mails: acasso@itba.edu.ar,acasso@yahoo.com

Employee <id>: 3
• Name: Vilma Casso
• Salary: 8000
• Mails: vcasso@itba.edu.ar

Employee <id>: 2
• Name: Luna García
• Salary: 16000
• Mails: lgarcia@itba.edu.ar

b

n

manager_of

<id>: 2
From: 10/10/2000

Cypher - Edges
Create another edge of type «manager_of» with property “from”, from L. García to José Pan

1/4/25

manager_of

manager_of

Introduction to Graph Databases 25

Query graphs expressing
informational and/or topological

conditions

Cypher – queries

High-level query language based on
pattern matching

1/4/25

MATCH

OPTIONAL MATCH

WHERE

RETURN

ORDER BY

LIMIT

SKIP

Introduction to Graph Databases 26

«Match» expresses a pattern that DBMS will try to match.
OPTIONAL MATCH Works like an «outer join», in SQL, i.e., if
dores not find a match, puts nulls.
The WHERE clause is part of the «MATCH or OPTIONAL
MATCH». No order can be assumed for the evaluation of the
conditions in the WHERE clause, this is decided by the
DBMS.

LIMIT returns only part of the result. SKIP skips the first
results. Unless ORDER BY used, no assumption can be
done for the discarded results.

The evaluation produces subgraphs, and any portion of the match could be returned.
«RETURN DISTINCT» eliminates duplicates.

Cypher – queries

1/4/25

Introduction to Graph Databases 27

In addition to the above:

1) If we don’t need to refer to a node, we can use “()”, with no variable, e.g., () – [:manager_of] -> ()
2) If we don’t need to refer to an edge, we can omit it, e.g.: (a) --> (b) indicates an edge between a and b.
3) If we don’t need to consider the direction of the edge, just use “- -” (without the arrow end)
4) If a mattern matches more tan one label, write the OR condition as, e.g., (a) - [:manager_of | :Student] -> (b)
5) To express a path of any length, use [*]. For a fixed length, e.g., 3, use [*3]

(a:Employee) – [:reportsTo*] ->(b:Employee)
(a:Person) – [:friendOf*2] -> (b:Employee)

6) To indicate boundaries to the length of a path use [*2..4] . To limit only one end, use : [*2 ..]

Cypher – queries

1/4/25

Introduction to Graph Databases 28

Consider the query:

$ MATCH (p)-[]->(s)-[]->(x)
 RETURN Count(p), s.URL, Count(x)

Cypher – Example

1/4/25

A

B

C

D

E

F

Introduction to Graph Databases 29

Consider the query:

$ MATCH (p)-[]->(s)-[]->(x)
 RETURN Count(p), s.URL, Count(x)

Returns the following. Why???

Cypher – Example

1/4/25

A

B

C

D

E

F

Introduction to Graph Databases 30

$ MATCH (p)-[]->(s)-[]->(x)
 RETURN Count(p), s, Count(x)

Cypher – Example

The first clause computes paths where a node
(s) has an incoming and an outgoing edge.
E.g., for «c», these paths are:

(a) -- (c) –> (f)
(f) -- (c) --> (f)
(b) -- (c) --> (f)
(e) -- (c) --> (f)
The second clause groups these 4 paths and returm how many
nodes are connected on each side, to node (c)., and we
obtain:
4 c 4

1/4/25

A

B

C

D

E

F

Introduction to Graph Databases 31

A page X gets a score computed as the sum of
all votes given by the pages that references it.

If a page Z references a page X, Z gives X a
normalized vote computed as the inverse of
the number of pages referenced by Z. To
prevent votes of cross-referencing pages, if Z
references X and X references Z, Z gives 0
votes to X.

Compute the page rank for each web page.

Cypher – Example

1/4/25

A

B

C

D

E

F

Possible solution:
$ MATCH (p) --> (r)
 WITH p, 1.0 / count(r) as vote
 MATCH (p) --> (x)
 WHERE NOT ((x) --> (p))
 RETURN x.URL, SUM(vote) AS Rank
 ORDER BY x.URL

Introduction to Graph Databases 32

«p» «vote»

A 0.333

B 0.333

C 1

D 0.5

E 0.5

F 0.333

Cypher – Example

The first MATCH - WITH pair computes, for each
node, the inverse of the number of outgoing
edges, and passes this number on to the next
clause.

1/4/25

A

B

C

D

E

F

«p» «vote»

A 0.333

B 0.333

C 1

D 0.5

E 0.5

F 0.333

Introduction to Graph Databases 33

«p» «x»

A C

A F

B C

B D

D A

D E

E A

E C

F E

Possible solution:
$ MATCH (p) --> (r)
 WITH p, 1.0 / count(r) as vote
 MATCH (p) --> (x)
 WHERE NOT ((x) --> (p))
 RETURN x.URL, SUM(vote) AS Rank
 ORDER BY x.URL

Now, for each of these 6 “p”
nodes, look for the paths of
length 1 where no reciprocity
exists (e.g., delete A ->B and
B -> A)

Cypher – Example

1/4/25

A

B

C

D

E

F

«p» «x»

A C

A F

B C

B D

D A

D E

E A

E C

F E

Introduction to Graph Databases 34

«x» «Rank»

A ½ + ½

C 1/3 + 1/3
+ 1/2

D 1/3

E ½ + 1/3

F 1/3

Cypher – Example
Possible solution
$ MATCH (p) --> (r)
 WITH p, 1.0 / count(r) as vote
 MATCH (p) --> (x)
 WHERE NOT ((x) --> (p))
 RETURN x.URL, SUM(vote) AS Rank
 ORDER BY x.URL

Finally, group results by the
second component and sorts.

1/4/25

A

B

C

D

E

F

«p» «vote»

A 0.333

B 0.333

C 1

D 0.5

E 0.5

F 0.333

«p» «x»

D A

E A

A C

B C

E C

B D

D E

F E

A F

«p» «vote»

A 0.333

B 0.333

C 1

D 0.5

E 0.5

F 0.333

«p» «x»

A C

A F

B C

B D

D A

D E

E A

E C

F E

Introduction to Graph Databases 35

«x» «p»
grouped

A D, E

C A, B, E

D B

E D, F

F A

«x» «Rank»

A ½ + ½

C 1/3 + 1/3
+ 1/2

D 1/3

E ½ + 1/3

F 1/3

Cypher – Example
Possible solution
$ MATCH (p) --> (r)
 WITH p, 1.0 / count(r) as vote
 MATCH (p) --> (x)
 WHERE NOT ((x) --> (p))
 RETURN x.URL, COLLECT (p.URL), SUM(vote) AS Rank
 ORDER BY x.URL

Finally, groups results by the second
component and sorts.

1/4/25

A

B

C

D

E

F

«p» «vote»

A 0.333

B 0.333

C 1

D 0.5

E 0.5

F 0.333

«p» «x»

A C

A F

B C

B D

D A

D E

E A

E C

F E

Introduction to Graph Databases 36

«x» «p»
grouped

A D, E

C A, B, E

D B

E D, F

F A

Cypher – Example
Alternative solution
$ MATCH (p) --> (r)
 WITH p, 1.0 / count(r) as vote
 MATCH (p) --> (x)
 WHERE NOT ((x) --> (p))
 RETURN x.URL, COLLECT (p.URL), SUM(vote) AS Rank
 ORDER BY x.URL

1/4/25

A

B

C

D

E

F

Introduction to Graph Databases 37

A

B

C

D

E

F

Cypher – Example
Alternative solution
$ MATCH (p) --> (r)
 WITH p, 1.0 / count(r) as vote
 MATCH (p) --> (x)
 WHERE NOT ((x) --> (p))
 WITH x.URL as x, COLLECT(vote) as votelist
 RETURN x, reduce(totalvotes = 0.0, n IN votelist| totalvotes + n) AS totvotes
 ORDER BY x

1/4/25

A

B

C

D

E

F

Cypher – Example
Alternative solution using the APOC library
$ MATCH (p) --> (r)
 WITH p, 1.0 / count(r) as vote
 MATCH (p) --> (x)
 WHERE NOT ((x) --> (p))
 WITH x.URL as x, COLLECT(vote) as votelist
 // APOC library
 RETURN x, votelist, apoc.coll.sum(votelist) as votes
ORDER BY x

1/4/25

A

B

C

D

E

F

Cypher – Example
Query: Who gives “x” less than 0.5 votes?
$ MATCH (p) --> (r)
 WITH p, 1.0 / count(r) as vote
 MATCH (p) --> (x)
 WHERE NOT ((x) --> (p))
 WITH x.URL as x, COLLECT([p.URL,vote]) as votelist
 // COMPREHENSION LIST
 RETURN x, [p in votelist WHERE p[1] < 0.5|p[0]] AS lowvotes
 ORDER BY x

1/4/25

