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Post-hoc interpretability methods

* Techniques to extract explanations from pre-trained black k,,‘g‘:ggge;ab"'t//’:x
box models

* Explanations can take different forms: SisicBio
e variable importance Wode!
e partial dependence plots
* |local linear model or tree, etc.

e Methods can be

* specific to a model (adapted to a specific family of
models)

* agnostic (applicable to any black box model)

[Credits: Molnar (2022)]
Interpretable Machine Learning. 2nd ed




Random Forests (RF)
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* Improve simple trees by reducing variance

* Breiman's random forests (2001) :

* Each tree is built from a bootstrap sample

e The best split at each node is chosen from a number of inputs (mtry) selected

(locally) at random



Random forests: strengths and weaknesses

e Strengths:
* Universal approximation
* Robustness to outliers
* Robustness to irrelevant variables (to a certain extent)
* |nvariant to input scale
* Good computational efficiency and scalability
* Very good predictive accuracy

* Weakness:
* |oss of interpretability compared with standard single trees



Importance scores: principle

A numerical score that reflects the (relative) contribution of predictor variables
to the model
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* Used to evaluate the usefulness of a variable and to compare the contributions
of two variables.

e Different categories of variable importance:
* Model-specific or model-agnostic
* Global (explaining the model as a whole) or local (explaining a specific
prediction or set of predictions)



Importance of variables: what for?

* There is no single formal definition of the variable importance (VI), because the
reasons for using them are diverse.

* Some common uses of VI measures:
1. Inspection/debugging of an existing black box model (Model inspection)
2. Find all the variables related to the response (sensitivity)

3. Find the smallest subset of variables leading to optimal performance
(variable selection for prediction)

* To assess the extent to which these objectives are being met, we need to
understand the interaction between variable importance measures and the way
in which the model is trained



Importance for RF
Global measures



Importance of variables for RF: why and how?

RF (and more generally tree methods) are good candidates for deriving

variable importances

* Node splitting is a variable selection mechanism
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Importance of variables for RF: why and how?

Two main measures of importance:

 Mean Decrease Impurity (MDI) :
sum of the total reductions in the impurity at all the nodes of the tree where the
variable is present (Breiman et al., CART, 1984)

 Mean Decrease Accuracy (MDA) :

measure of the reduction in prediction error on OOB samples when the values of
the variables are randomly permuted (Breiman, RF, 2001)
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Global MDI



Mean Decrease Impurity (MDI)

* Originally proposed for single decision trees (Breiman et al., CART,
1984), it naturally applies to RF. Also known as the Gini Importance
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* RF model-specific and global

* Purely heuristic at the beginning, but there are theoretical
justifications
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Mean Decrease Impurity (MDI)

The idea is simple:

* sum the impurity reductions on all the nodes of a tree where the variable is
used to split (in red)

* then average over all trees (en bleu)

Q

Vinp(Xm) = Z > p(D)Ai(t)

T teT:v(t)=Xm
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Global MDA



Mean Decrease Accuracy (MDA)

* An alternative measure proposed by Breiman (2001) in his article on random
forests

Model independent (agnostic) and global

ldea: measure the degradation of the model's performance when the variable is
permuted

There are different variants depending on how performance is estimated and
how importances are aggregated across trees.

Intuitive and heuristic, but there are also theoretical justifications
More widely used than MDI

15



Mean Decrease Accuracy (MDA)

* |dea: measure the degradation of the model's performance when the
variable is permuted

Original dataset D Permuted dataset D,,
X1 Xo v Xp Y Xi Xo oo Xp Y
14 34 ... ... b8 23 14 34 ... ... b8 23
95 80 ... ... 78 5.4 95 80 ... ... 7.8 54
52 98 ... ... 19 6.3 52 9.8 ... ... 19 6.3
0.7 76 ... ... 64 33 0.7 7.6 ... ... 64 33
47 2.0 ... ... 45 99 47 2.0 ... ... 45 99

1

VinpA (Xm: f, D, R) = [ﬁ >

R
1

r=




Mean Decrease Accuracy (MDA): how can it be
improved?

MDA for RF: choice of dataset
* Estimating the MDA on the learning set can lead to overestimated importances

(overfitting)

* There are two ways of estimating it more accurately:
* on an independent test set
* with the OOB sample. In the latter case, the permutation is performed only
on the OOB sample

Original OOB sample D Permuted OOB sample D,
X]_ X2 Xn-, Xp Y Xl X2 Xp Y
14 34 ... 83 ... 58 23 14 34 ... 83 ... 58 23
95 80 ... 69 ... 78 b4 905 80 ... ... 1.8 5.4
52 98 ... 09 ... 19 63 52 98 ... 09 ... 19 63
oy 76 ... 45 ... 64 33 07 7.6 ... ... 6.4 33

47 20 ... 21 ... 45 099 47 20 ... 21 ... 45 99
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Main features of MDI and MDA measures

* MDI :

* RF model specific. Very closely connected to the tree construction algorithm. No
additional computational cost

 Suffers from certain known biases, probably more so than MDA

* MDA

* Model agnostic. Does not take into account tree specificities. Slower than MDI
but still quick to calculate (no need to re-train a model)

e Suffers from some known biases

* The two importances are mainly heuristic and lack a clear theoretical
characterisation (although research is progressing)



Importance for RF
Local measures



Local (or individual) measures

So far, we have only talked about global measures (explaining the model as a whole)

The MDI or MDA of a variable is calculated for a previously estimated RF

Local versions of these importance measures can be defined for
e explain a specific prediction
e explain a set of predictions

We calculate the MDI or MDA of an observation

20



Local MDA



Local MDA

MDA global

VIMDA(xm;f,D,R):[EY: S LF). )= Y L(f(x).y)

« MDA local

VIiDA(Xm. ; £.D. R) = [% SOL(F( ). )] = L(F().y).

r=1

* The sum of the individual MDAs over the learning sample = the overall MDA
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Local MDI



Local MDI
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Local MDI X,

v N /N v N\
Xaq
/N /4N /N LN T LN LN
Xaq

JNVIVIVENIN SV IV INY SV VIV D

VIMDl(Xa,X) = %Z Z I(t) o i(tXa)

T teT:v(t)=X,Axet

* The sum over the learning sample of the individual MDlIs = the overall MDI

> ViMpi(Xm. x) = Vipp)(Xm)

(x,¥)eD
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Partial dependence plots (pdp)

Two packages:
pdp and randomForestExplainer




pdp

Package ‘pdp’

October 14, 2022
Type Package
Title Partial Dependence Plots
Version 0.8.1

Description A general framework for constructing partial dependence (i.e.,
marginal effect) plots from various types machine learning models
in R.



RF (in regression) on Boston data

The Boston Housing Dataset is a derived from information collected by the U.S. Census Service concerning housing in the area of

Boston MA. The following describes the dataset columns:

* CRIM - per capita crime rate by town

e 7N - proportion of residential land zoned for lots over 25,000 sq.ft.
* INDUS - proportion of non-retail business acres per town.

» CHAS - Charles River dummy variable (1 if tract bounds river; 0 otherwise)
* NOX - nitric oxides concentration (parts per 10 million)

* RM - average number of rooms per dwelling

* AGE - proportion of owner-occupied units built prior to 1940

* DIS - weighted distances to five Boston employment centres

e RAD - index of accessibility to radial highways

» TAX - full-value property-tax rate per $10,000

e PTRATIO - pupil-teacher ratio by town

e LSTAT - % lower status of the population

* MEDV - Median value of owner-occupied homes in $1000's




RF (in regression) on Boston data

## 'data.frame': 506 obs. of 14 variables:

## $ crim  : num 0.00632 0.02731 @0.02729 @.03237 ©0.06905 ...

# % zn :hum 18 @0 @ © @ 12.5 12.5 12.5 12.5 ...

## $ indus : num 2.31 7.07 7.07 2.18 2.18 2.18 7.87 7.87 7.87 7.87 ...
## $ chas : logi FALSE FALSE FALSE FALSE FALSE FALSE ...

## $ nox : hun 0.538 0.469 0.469 0.458 0.458 0.458 0.524 0.524 0.524 0.524 ...
# % rm : num 6.58 6.42 7.18 7 7.15 ...

## $ age : num 65.2 78.9 61.1 45.8 54.2 58.7 66.6 96.1 100 85.9 ...
# % dis :num 4.09 4.97 4.97 6.06 6.06 ...

# $ rad :int 1223335555 ...

# $ tax : hum 296 242 242 222 222 222 311 311 311 311 ...

## $ ptratio: num 15.3 17.8 17.8 18.7 18.7 18.7 15.2 15.2 15.2 15.2 ...
## $ lstat : num 4.98 9.14 4.03 2.94 5.33 ...

# $ medv  : num 24 21.6 34.7 33.4 36.2 28.7 22.9 27.1 16.5 18.9 ...
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Figure 1: Dotchart of variable importance scores for the Boston housing data based on a random forest

with 500 trees.



Partial dependence plots (pdp): principle

Letx = {x1,Xy,...,Xp } represent the predictors in a model whose prediction function is f(x). If
we partition x into an interest set, z;, and its compliment, z, = x \ z;, then the "partial dependence” of
the response on z; is defined as

E (35) = L., [f(zs:zc‘)] — ff(zs: ze) Pe (zc) dze, (2)

where p. (z.) is the marginal probability density of z.: p.(z.) = f p (x)dzs. Equation (2) can be
estimated from a set of training data by

3)




The marginal effects
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Figure 2: Partial dependence of cmedv on 1stat based on a random forest. Left: Default plot. Right:
Customized plot obtained using the plotPartial function.



Partial dependence plots
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Figure 3: Partial dependence of cmedv on 1stat and rm based on a random forest. Left: Default plot.
Middle: With contour lines and a different color palette. Right: Using a 3-D surface.



randomForestExplainer

Package ‘randomForestExplainer’

October 14, 2022

Title Explaining and Visualizing Random Forests in Terms of Variable
Importance

Version 0.10.1

Description A set of tools to help explain which variables are most important in a random forests. Var-
ious variable importance measures are calculated and visualized in different settings in or-
der to get an idea on how their importance changes depending on our criteria (Hemant Ish-
waran and Udaya B. Ko-
galur and Eiran Z. Gorodeski and Andy J. Minn and Michael S. Lauer (2010) <doi:10.1198/jasa. 2009.tm08622>, Leo Breim



RF (in regression) on Boston data

## 'data.frame': 506 obs. of 14 variables:

## $ crim  : num 0.00632 0.02731 @0.02729 @.03237 ©0.06905 ...

# % zn :hum 18 @0 @ © @ 12.5 12.5 12.5 12.5 ...

## $ indus : num 2.31 7.07 7.07 2.18 2.18 2.18 7.87 7.87 7.87 7.87 ...
## $ chas : logi FALSE FALSE FALSE FALSE FALSE FALSE ...

## $ nox : hun 0.538 0.469 0.469 0.458 0.458 0.458 0.524 0.524 0.524 0.524 ...
# % rm : num 6.58 6.42 7.18 7 7.15 ...

## $ age : num 65.2 78.9 61.1 45.8 54.2 58.7 66.6 96.1 100 85.9 ...
# % dis :num 4.09 4.97 4.97 6.06 6.06 ...

# $ rad :int 1223335555 ...

# $ tax : hum 296 242 242 222 222 222 311 311 311 311 ...

## $ ptratio: num 15.3 17.8 17.8 18.7 18.7 18.7 15.2 15.2 15.2 15.2 ...
## $ lstat : num 4.98 9.14 4.03 2.94 5.33 ...

# $ medv  : num 24 21.6 34.7 33.4 36.2 28.7 22.9 27.1 16.5 18.9 ...



Variable

The ‘minimum depth’ of a variable

Distribution of minimal depth and its mean
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The minimum depth of a variable
in a tree is equal to the depth of
the node that splits on that
variable and is closest to the root
of the tree.

The lower it is, the greater the
number of observations divided
into groups on the basis of this
variable.



Importance measures

Importance measures

Below you can explore the measures of importance for all variables in the forest:

Show entries

10

11

12

variable
age
chas
crim
dis
indus
Istat
nox
ptratio
rad

rm

tax

zn

Showing 1 to 12 of 12 entries

mean_min_depth

3.2400

6.2991

2.4320

2.4720

3.2700

1.1980

2.3540

2.6860

4.8414

1.4440

3.3840

5.9259

no_of _nodes

10062

890

10591

10426

4431

12624

6919

4803

2812

12745

4953

1655

mse_increase

3.6901

0.4949

8.9529

7.3728

6.3945

60.1779

10.9807

7.5179

1.1381

33.7212

3.8943

0.5324

Search:
node_purity_increase no_of_trees
1,065.3133 500
258.56535 427
2,417.3690 500
2,608.5888 500
2,618.9056 500
12,829.4472 500
2,996.0430 500
2,712.0078 500
301.6931 499
12,302.2741 500
1,276.1128 500
260.3035 482
Previous 1 Next

times_a_root

0

16

73

143

52

67

127

19

p_value
0.0000
1.0000;
0.0000]
0.0000]
1.0000;
0.0000]
0.4489
1.0000;
1.0000;
0.0000
1.0000]

1.0000

37



Multi-way importance plot (1)

Multi-way importance plot This 1st multi-way importance plot
Istat focuses on three measures of
1201 importance that derive from the
| structure of the trees in the forest:
-
(ptratio ¢ top ) )
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;I 40 nox no_of nodes .
o o oo the variable
-§ F @ 5000
@ 500 .
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Multi-way importance plot (2)

Multi-way importance plot
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The 2nd multi-way importance plot
shows two measures of importance
which derive from the role played by a
variable in the prediction

with p-value information based on a
binomial distribution of the number of
nodes split on the variable, assuming
that variables are randomly selected to
form splits

(i.e. if a variable is significant, this
means that the variable is used for
splitting more often than if the
selection was random)



Relations between measures of importance

Compare V| measures using ggpailrs
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Compare different rankings

Relations between rankings according to different measures

mean_min_depth mse_increase node_purity_increase no_of_nodes times_a_root
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Interactions between variables

Mean minimal depth for 30 most frequent interactions

_depth
W

mean_min de
N

«\@\ Cb b\o" & o'\‘f\@v{b Cb & é\g@oo-"\\ob\)o"\’b\'o (\Po_, k\o

L &L PR &L
BN b(aa,atz,\ \ﬂ\(\’\
Lo el
\e"’.:o (a\gx'i@\%(a «‘i@ e ST <<’\‘ Q\&\o&@ «5° ‘QQ\ \’:é‘ & <5>“ OIS (\«\\Ob\ o+°0+

mteractlon

. unconditional
occurrences
480
460
440

420

== minimum

Once we have selected a set of
the most important variables,
we can study the interactions in
relation to them, i.e. the splits
appearing in the maximum sub-
trees in relation to one of the
selected variables



Forest forecast on a grid

Prediction of the forest for different values of Istat and rm

prediction

.

30

I20

To further study the most
frequent interaction 1stat:rm,

we use the
plot predict interaction

function to plot the forest
prediction on a grid of values for
the components of each
interaction



Forest forecast on a grid (2)

Prediction of the forest for different values of Istat and age
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To further study another frequent
interaction 1stat:age, we use
again the

plot predict interaction
function
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