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The history of Gradient Boosting in 3 references

m Invention of Adaboost, the first algorithm of boosting
Freund and Schapire, 1997 2

m Formulating Adaboost as a gradient descent with a special
loss function,
Breiman 1998 3

m Generalization of Adaboost to Gradient Boosting to manage a
variety of loss functions,
Friedman et al., 2000 *

*Freund, Y. and Schapire, R. E. (1997). A decision-theoretic generalization
of on-line learning and an application to boosting. Journal of computer and
system sciences, 55(1):119-139.

*Breiman, L. (1998). Arcing classifiers. Annals of statistics, 26(3):801-849.

*Friedman, J., Hastie, T., and Tibshirani, R. (2000). Additive logistic
regression: A statistical view of boosting. Annals of statistics, 337-374.
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Adaboost in classification
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Framework: the binary classification

Ln={(X1,Y1),...,(Xn, Yn)} i.i.d. random variables, with the
same distribution as (X, Y).

X € X = RP (explanatory variables); we can also consider

X eX =R ®Q mixed.

Y € Y (response) : Y = {—1,1} : binary classification

Goal: build a classifier (predictor) h: X — {—1,1}
Sets of weak predictors (typically shallow trees) Freund, Schapire
(1997)

m family of ensemble methods

m algorithm of adaptive statistical learning, successive models
are built to correct the weaknesses of previous models
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Weak classifiers

m We use a set of H weak classifiers h: X — {—1,1} very
simple, which predict y just a little better than chance (i.e.
with small ) :

€= P(h(x) #y) < 5~ 77 >0

m For example :
m shallow CART trees;
m stumps (CART trees of depth 1).
m How can a strong classifier (very low error) be built from weak
classifiers (error barely smaller than 0.5) using adaptive
sampling, using an iterative (rather than parallel) approach?
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Adaboost: from Bagging to Boosting

Lhn
Bootstrap
LO1 LE?I .................. ?q
CART
h( ,@1) AAAAAAAAAAAAA h(.,@/) ............. /7( 79‘7)
Agrégation
heac(.)

m Bagging: classifiers are built in parallel

m Boosting: the approach is iterative
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Adaboost: a simple illustration with stumps

Original data set, D, Update weights, D, Update weights, D,
. e = +
= o R kT . Combined classifier
=t § N - . =
+ + + B . .
Trained classifier Trained classificr @ i +
- - - i =1 p.
= = i+
=¥ = 1
+ + H
S + - 4
+

m weak rules: stump on the abscissa or ordinate;

m the weight of misclassified individuals is increased at each
iteration;

m the final classifier is a linear combination of the classifiers built
iteratively.
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Adaboost: the algorithm

Input | L,, H of weak classifiers, M iterations
Initialization | w; = 1/n, i from 1 to n
Iteration | for m from 1 to M,
- Draw a bootstrap sample from L, according to weights w;
- Fit a weak classifier Em(x) using the sample £}
- Compute the error rate
n

=3 Wil o}
i=1
- Compute the coefficient of h,, in the output

am=log+/(1—€m)/€m
- Reweight the observations (increasing the weight
of misclassified obs. and renormalising)

Wi & w; eXp(—Oém}/i/l;m(Xf))/C
M

Output | it is the sign of Zamhm x), i.e. HM = sign Z amhm(x))

i=1 i=1

Table: Algorithm Adaboost
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Adaboost: the algorithm (weight-based classifier version)

Input
Initialization
Iteration

Output

Ly, H of weak classifiers, M iterations
w; =1/n, i from 1 to n
for m from 1 to M,

Weight the sample £, with the w;: L]
Fit a weak classifier hn(x) using the sample £}
Compute the error rate

n

=3 Wil o}
i=1
Compute the coefficient of hy, in the output

am=log+/(1—€m)/€m
Reweight the observations (increasing the weight
of misclassified obs. and renormalising)

Wi & w; eXp(—Oém}/i/l;m(Xf))/C
M

it is the sign of Zamhm x), i.e. HM = sign Z amhm(x))

i=1 i=1

Table: Algorithm Adaboost
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Boosting Generalization
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Additive linear modeling

m The framework is the same as that of Adaboost but there are
two differences:

m The 1st difference is that to obtain h,,, instead of minimizing
the misclassification rate € at each iteration, we will minimize
a more general loss function (also called deviance) noted
L(y, h), often assumed to be convex and differentiable. The
new framework is therefore more general.

m The 2nd difference is in the algorithm: at each iteration,
instead of changing the data weights, we model the residuals
from the previous step, so that the model is built additively:

Z/Bm m(x) = Hy—1(x) + Bmhwm(x)
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Examples of loss functions

24 —— Misclassification .
© —— Exponential m Exponential
~—— Binomial Deviance
] = Shearvesr L(y; h) = exp(=yh)
" m Logistic
E @ L(Ya h) =
o | log(1 + exp(—2yh))
eh m Quadratic
gi\ T T T T L(y,h)z(y—h)z
-2 -1 0 1 2
yf

Jean-Michel Poggi Boosting



Additive linear modeling: the algorithm

Input | L,, H of weak classifiers, M iterations

Initialization | the initial predictor is ﬁo(x) =0

Iteration | for m from 1 to M,

- Fit a weak classifier F,,,(x) and a coefficient Sm
which minimize in H

n
o~

Z L(yi, Hn—1(x) + Bmhm(xi))

i=1
- Add the resulting new term:

Hon(x) = Hin—1(x) + Brnhim(x)

Output | it is sign of I/‘\IM(X)

Table: Additive linear modeling: the algorithm
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Loss functions for classification

m Exponential

L(y, h) = exp(—yh)

it can be shown that it is
Misdlassification equivalent to Adaboost
Exponential

Binomial Deviance (nothing obvious at first

Squared Error

3.0
1

25
L

Support Vector Slght) .
) S m Logistic
8 o L(y, h) = log(1+exp(—2yh))

Similar to AdaBoost, but
less sensitive to misclassified
observations.

1.0

0.5
1

Quadratic
-2 - 0 1 2 L(y,h)=(y — h)2. Not
suitable here, the cost

0.0
L
u

function is not decreasing.
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Additive linear modeling: the algorithm

Input | L,, H of weak predictors, M iterations

Initialization | the initial predictor is ﬁo(x) =0

Iteration | for m from 1 to M,

- Fit a weak predictor R,,(x) and a coefficient S,
which minimize (for L adapted for regression)

n

> L0 Hnea () + Bimbin ()

i=1
- Add the resulting new term:

Hon(x) = Hin—1(x) + Brnhim()

Output | it is the value of FIM(X)

Table: Additive linear modeling for regression
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Loss functions for regression (y € R)

m Quadratic L(y, h) = (y — h)?
Perfectly suitable, but
penalizes error outliers.

Squared Error
—— Absolute Error
—— Huber

° m Linear (absolute value)
L(y,h) =ly — h

More robust against error
outliers, but less accurate
for small values.

Loss

o m Huber's function (see green

curve) makes it possible to

‘ ‘ ‘ : ‘ ‘ ‘ reconcile the two previous

7 7 Sy functions and combine their
qualities.
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Gradient Boosting
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Gradient descent algorithm

Starting

f(x) A /Poinl

Iteration 3

m Problem: minimize the
function f : R — R
assumed to be convex and
differentiable

Iteration 4

Convergence

m We fix A > 0 and use the
iterative algorithm

/
—— A%HIi > Xm:Xm_]_—Af (Xm_]_)
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Gradient descent algorithm

m Minimize the function
E:R—R

m We fix A > 0 and use
E(o) E(o) Xm = Xm—1 — )\E/(mel)

U m )\ determines the speed of
\ convergence (or even

A< Aot A= Aot convergence)
E(o) E(o) . m you can also make A
S~ — evolve over the iterations
— (large at the beginning to
- speed up convergence,
A> Aot r> 20
small at the end to

improve accuracy).
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Gradient descent algorithm

m Problem: minimize the
SI:‘“SLTQ function f : R — R
e / assumed to be convex and
differentiable

m We fix A > 0 and use the
iterative algorithm
Xm = Xm—1 — Af,(Xm—l)

Iteration 3

Iteration 4

Convergence

m Adaptation to the
problem (functional
gradient, calculate the

gradient at any point):

T we use a weak rule to

model the gradient.

Y
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Gradient descent algorithm

m The basic principle is therefore the
same as for AdaBoost, build a
sequence of models so that each
step, each model added to the
combination, appears as a step
towards a better solution.

| m The first idea is that here this step
is taken in the direction of the
gradient of the loss function, to
improve the convergence
properties.

m The second idea is to approach the
gradient using a regression tree to

Source: http://en.wikipedia.org/wiki/Gradient_descent avoid overfitti ng.
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http://en.wikipedia.org/wiki/Gradient_descent

Gradient Boosting in Least Square Regression

Input | L,, H of weak predictors, M iterations, A > 0

Initialization | the initial predictor Ho = argmin Z — h(x)
heH  “—

Iteration | for m from 1 to M,

- Compute the residuals u; = yi — Hm—1(x)

- Fit a weak predictor hp,(x) minimizing in H the
n

> (u = h(a))’

i=1
- Add the new term obtained:

Hon(x) = Hm-1(x) 4+ Mam(x)

Output | it is simply ﬁm(X)

Table: Gradient Boosting in Least Square Regression
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Gradient Boosting in Least Square Regression: interpret

the residuals as the opposite of the gradient

m How does this relate to gradient descent?
m residual <— the opposite of the gradient;
in fact, the gradient is the derivative of L(y, h) = (y — h)?/2
OL(y, h
with respect to h : % =h—y=—(y—h)
h
m fit h to residual «<— Fit h the opposite of the gradient
m update H as a function of the residual +— update H as a

function of the opposite of the gradient
m So we're actually updating our model using gradient descent!

m But the concept of gradient is better suited and more useful
than the concept of residue for generalizing
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Gradient Boosting for Regression

Input | L,, H of weak predictors, M iterations, the loss function L, A > 0

n
Initialization | the initial predictor Ho(x) = argmin Z L(yi, h(xi))
s ——
Iteration | for m from 1 to M,
- Compute the opposite of the gradient (w.r.t. H)
OL(}/,‘, H)

. oH H=Hpm_1(x;)
- Fit a weak predictor hm(x) minimizing in H the

n

> Llwi, hu(x))

i=1
- Add the new term obtained:

Hon(x) = Ham1(x) 4+ Nhm(x)

at the observation points u; = —

Output | it is simply ﬁ/\//(x)

Table: Gradient Boosting for regression
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Gradients of loss functions for regression

® Quadratic L(y, h) = (y — h)?/2

The gradient is the derivative of L(y, h)
OL(y, h)
— (y—h
on | (y —h)

w.r.t. h,

Loss

m Linear (absolute value)
Ly, h) =ly — hi
OL(y, h)
Oh

— sign(y — h)
h
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m The cost function L: see above;

m The set H of weak predictors:
m We restrict ourselves to trees;
m We then choose the depth of CART decision trees (without
pruning) or even a stump which is very quick to calculate (but
often too imprecise).

m The coefficient A\ > 0 which sets the importance of the most
recent predictor in the final predictor:
m )\ must (depending on the situation) be < 1 or more or less
close to 1 if A > 1 otherwise there is a risk of divergence;
m when )\ is small (relative to 1), the algorithm is slower but
limits the risk of overfitting;
m for Adaboost, we have A = 1.

m Number of iterations M.
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