Boosting: from Adaboost to Gradient Boosting

Jean-Michel Poggi U. Paris Cité & LMO, Orsay, U. Paris-Saclay

Master 2 Course in Statistics Universidad de la República – Facultad de Ingeniería, Montevideo, Uruguay

February 2025

1 Introduction and references

- 2 Adaboost in classification
- **3** Boosting Generalization
- 4 Gradient Boosting

- Hastie, T., Tibshirani, R., Friedman, J. The elements of statistical learning: data mining, inference, and prediction. Springer (2009)
- James, G., Witten, D., Hastie, T., Tibshirani, R.
 An introduction to statistical learning: with applications in R.
 Springer (2013)

¹This document is also based on the course "Introduction au boosting" from Jean-Marc Lasgouttes (INRIA Paris) course of Mastere ESD, INSA Rouen, 2021

The history of Gradient Boosting in 3 references

- Invention of Adaboost, the first algorithm of boosting Freund and Schapire, 1997²
- Formulating Adaboost as a gradient descent with a special loss function, Breiman 1998 ³
- Generalization of Adaboost to Gradient Boosting to manage a variety of loss functions, Friedman et al., 2000⁴

²Freund, Y. and Schapire, R. E. (1997). A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences, 55(1):119-139.

³Breiman, L. (1998). Arcing classifiers. Annals of statistics, 26(3):801-849.
 ⁴Friedman, J., Hastie, T., and Tibshirani, R. (2000). Additive logistic regression: A statistical view of boosting. Annals of statistics, 337-374.

1 Introduction and references

2 Adaboost in classification

3 Boosting Generalization

4 Gradient Boosting

Jean-Michel Poggi

Boosting

5 / 28

 $\mathcal{L}_n = \{(X_1, Y_1), \dots, (X_n, Y_n)\} \text{ i.i.d. random variables, with the same distribution as } (X, Y).$ $X \in \mathcal{X} = \mathbb{R}^p \text{ (explanatory variables); we can also consider}$ $X \in \mathcal{X} = \mathbb{R}^{p'} \otimes \mathcal{Q} \text{ mixed.}$ $Y \in \mathcal{Y} \text{ (response) : } \mathcal{Y} = \{-1, 1\} \text{ : binary classification}$ Goal: build a classifier (predictor) $\hat{h} : \mathcal{X} \to \{-1, 1\}$

Sets of weak predictors (typically shallow trees) Freund, Schapire (1997)

- family of ensemble methods
- algorithm of adaptive statistical learning, successive models are built to correct the weaknesses of previous models

Weak classifiers

We use a set of H weak classifiers h : X → {−1,1} very simple, which predict y just a little better than chance (i.e. with small γ) :

$$\epsilon = P(h(x) \neq y) \leq \frac{1}{2} - \gamma, \gamma > 0$$

For example :

- shallow CART trees;
- stumps (CART trees of depth 1).
- How can a strong classifier (very low error) be built from weak classifiers (error barely smaller than 0.5) using adaptive sampling, using an iterative (rather than parallel) approach?

Adaboost: from Bagging to Boosting

- Bagging: classifiers are built in parallel
- Boosting: the approach is iterative

Adaboost: a simple illustration with stumps

- weak rules: stump on the abscissa or ordinate;
- the weight of misclassified individuals is increased at each iteration;
- the final classifier is a linear combination of the classifiers built iteratively.

Adaboost: the algorithm

Input	\mathcal{L}_n , \mathcal{H} of weak classifiers, M iterations		
Initialization	$w_i = 1/n$, <i>i</i> from 1 to <i>n</i>		
Iteration	for <i>m</i> from 1 to <i>M</i> ,		
	- Draw a bootstrap sample from \mathcal{L}_n according to weights w_i		
	– Fit a weak classifier $\widehat{h}_m({\sf x})$ using the sample \mathcal{L}_n^m		
	- Compute the error rate		
	$\epsilon_m = \sum_{i=1}^n w_i \mathbb{1}_{\{y_i \neq \widehat{h}_m(x_i)\}}$		
	- Compute the coefficient of \widehat{h}_m in the output		
	$\alpha_m = \log \sqrt{(1 - \epsilon_m)/\epsilon_m}$		
	- Reweight the observations (increasing the weight		
	of misclassified obs. and renormalising)		
	$\mathbf{w}_i \leftarrow \mathbf{w}_i \exp(-lpha_m y_i \widehat{h}_m(x_i))/C$		
Output	it is the sign of $\sum_{i=1}^{M} \alpha_m \widehat{h}_m(x)$, i.e. $\widehat{H}_M(x) = sign(\sum_{i=1}^{M} \alpha_m \widehat{h}_m(x))$		

Table: Algorithm Adaboost

Jean-Michel Poggi	Boosting	10 / 28

Adaboost: the algorithm (weight-based classifier version)

Input	\mathcal{L}_n , \mathcal{H} of weak classifiers, M iterations		
Initialization	$w_i = 1/n$, <i>i</i> from 1 to <i>n</i>		
Iteration	for <i>m</i> from 1 to <i>M</i> ,		
	– Weight the sample \mathcal{L}_n with the w_i : \mathcal{L}_n^m		
	– Fit a weak classifier $\widehat{h}_m({\sf x})$ using the sample \mathcal{L}_n^m		
	- Compute the error rate		
	$\epsilon_m = \sum_{i=1}^n w_i \mathbb{1}_{\{y_i \neq \widehat{h}_m(x_i)\}}$		
	– Compute the coefficient of \widehat{h}_m in the output		
	$\alpha_m = \log \sqrt{(1 - \epsilon_m)/\epsilon_m}$		
	- Reweight the observations (increasing the weight		
	of misclassified obs. and renormalising)		
	$w_i \leftarrow w_i \exp(-lpha_m y_i \widehat{h}_m(x_i))/\mathcal{C}$		
Output	it is the sign of $\sum_{i=1}^{M} \alpha_m \widehat{h}_m(x)$, i.e. $\widehat{H}_M(x) = sign(\sum_{i=1}^{M} \alpha_m \widehat{h}_m(x))$		

Table: Algorithm Adaboost

Jean-Michel Poggi	Boosting	11 / 28

1 Introduction and references

2 Adaboost in classification

3 Boosting Generalization

4 Gradient Boosting

Jean-Michel Poggi

- The framework is the same as that of Adaboost but there are two differences:
- The 1st difference is that to obtain h_m , instead of minimizing the misclassification rate ϵ at each iteration, we will minimize a more general loss function (also called deviance) noted L(y, h), often assumed to be convex and differentiable. The new framework is therefore more general.
- The 2nd difference is in the algorithm: at each iteration, instead of changing the data weights, we model the residuals from the previous step, so that the model is built additively:

$$\widehat{H}_M(x) = \sum_{i=1}^M \beta_m \widehat{h}_m(x) = \widehat{H}_{M-1}(x) + \beta_M \widehat{h}_M(x)$$

Examples of loss functions

Boosting

Additive linear modeling: the algorithm

Input	\mathcal{L}_{p} , \mathcal{H} of weak classifiers, M iterations
Initialization	the initial predictor is $\widehat{H}_0(x) = 0$
Iteration	for <i>m</i> from 1 to <i>M</i> ,
	- Fit a weak classifier $\widehat{h}_m(x)$ and a coefficient β_m which minimize in \mathcal{H} $\sum_{i=1}^n L(y_i, \widehat{H}_{m-1}(x_i) + \beta_m \widehat{h}_m(x_i))$ - Add the resulting new term: $\widehat{H}_m(x) = \widehat{H}_{m-1}(x) + \beta_m \widehat{h}_m(x)$
Output	it is sign of $\widehat{H}_{\mathcal{M}}(x)$

Table: Additive linear modeling: the algorithm

Loss functions for classification

Exponential L(y, h) = exp(-yh) it can be shown that it is equivalent to Adaboost (nothing obvious at first sight).

Logistic

 $L(y, h) = \log(1 + \exp(-2yh))$ Similar to AdaBoost, but less sensitive to misclassified observations.

Quadratic

 $L(y, h) = (y - h)^2$. Not suitable here, the cost function is not decreasing.

Additive linear modeling: the algorithm

Input	\mathcal{L}_n , \mathcal{H} of weak predictors, M iterations
Initialization	the initial predictor is $\widehat{H}_0(x)=0$
Iteration	for <i>m</i> from 1 to <i>M</i> ,
	– Fit a weak predictor $\widehat{h}_m(x)$ and a coefficient eta_m
	which minimize (for L adapted for regression)
	$\sum_{i=1}^{n} L(y_i, \widehat{H}_{m-1}(x_i) + \beta_m \widehat{h}_m(x_i))$
	- Add the resulting new term:
	$\widehat{H}_m(x) = \widehat{H}_{m-1}(x) + \beta_m \widehat{h}_m(x)$
Output	it is the value of $\widehat{H}_M(x)$

Table: Additive linear modeling for regression

Loss functions for regression $(y \in \mathbb{R})$

- Quadratic L(y, h) = (y h)²
 Perfectly suitable, but penalizes error outliers.
 - Linear (absolute value) L(y, h) = |y - h|More robust against error outliers, but less accurate for small values.
- Huber's function (see green curve) makes it possible to reconcile the two previous functions and combine their qualities.

1 Introduction and references

- 2 Adaboost in classification
- **3** Boosting Generalization
- 4 Gradient Boosting

• Problem: minimize the function $f : \mathbb{R} \to \mathbb{R}$ assumed to be convex and differentiable

We fix \u03c6 > 0 and use the iterative algorithm

$$x_m = x_{m-1} - \lambda f'(x_{m-1})$$

Gradient descent algorithm

- Minimize the function $E : \mathbb{R} \to \mathbb{R}$
- We fix $\lambda > 0$ and use $x_m = x_{m-1} - \lambda E'(x_{m-1})$
- *λ* determines the speed of convergence (or even convergence)
- you can also make λ evolve over the iterations (large at the beginning to speed up convergence, small at the end to improve accuracy).

- Problem: minimize the function $f : \mathbb{R} \to \mathbb{R}$ assumed to be convex and differentiable
- We fix $\lambda > 0$ and use the iterative algorithm $x_m = x_{m-1} - \lambda f'(x_{m-1})$
- Adaptation to the problem (functional gradient, calculate the gradient at any point): we use a weak rule to model the gradient.

Gradient descent algorithm

Source: http://en.wikipedia.org/wiki/Gradient_descent

- The basic principle is therefore the same as for AdaBoost, build a sequence of models so that each step, each model added to the combination, appears as a step towards a better solution.
- The first idea is that here this step is taken in the direction of the gradient of the loss function, to improve the convergence properties.
- The second idea is to approach the gradient using a regression tree to avoid overfitting.

Gradient Boosting in Least Square Regression

Input	\mathcal{L}_n , \mathcal{H} of weak predictors, M iterations, $\lambda > 0$	
	n	
Initialization	the initial predictor $H_0(x) = \operatorname{argmin} \sum (y_i - h(x_i))^2$	
	$h \in \mathcal{H}$ $\overbrace{i=1}{}$	
Iteration	for m from 1 to M ,	
	– Compute the residuals $u_i = y_i - \widehat{H}_{m-1}(x_i)$	
	– Fit a weak predictor $\widehat{h}_m(imes)$ minimizing in ${\mathcal H}$ the	
	$\sum_{n=1}^{n} (1, 1)^{2}$	
	$\sum (u_i - h(x_i))^2$	
	<i>i</i> =1	
	 Add the new term obtained: 	
	$\widehat{H}_m(x) = \widehat{H}_{m-1}(x) + \lambda \widehat{h}_m(x)$	
Output	it is simply $\widehat{H}_{M}(x)$	

Table: Gradient Boosting in Least Square Regression

Gradient Boosting in Least Square Regression: interpret the residuals as the opposite of the gradient

How does this relate to gradient descent?

- residual \longleftrightarrow the opposite of the gradient; in fact, the gradient is the derivative of $L(y, h) = (y - h)^2/2$ with respect to h: $\frac{\partial L(y, h)}{\partial h}\Big|_{L} = h - y = -(y - h)$
- fit h to residual \longleftrightarrow Fit h the opposite of the gradient
- update *H* as a function of the residual → update *H* as a function of the opposite of the gradient
- So we're actually updating our model using gradient descent!
- But the concept of gradient is better suited and more useful than the concept of residue for generalizing

Input	\mathcal{L}_n , \mathcal{H} of weak predictors, M iterations, the loss function L , $\lambda > 0$
Initialization	the initial predictor $\widehat{H}_0(x) = \operatorname*{argmin}_{h \in \mathcal{H}} \sum_{i=1}^n L(y_i, h(x_i))$
Iteration	for m from 1 to M ,
	- Compute the opposite of the gradient (w.r.t. H)
	at the observation points $u_i = - \left. \frac{\partial L(y_i, H)}{\partial H} \right _{H = \widehat{H}_{m-1}(x_i)}$
	– Fit a weak predictor $\widehat{h}_m(x)$ minimizing in $\mathcal H$ the
	$\sum_{i=1}^{n} L(u_i, \hat{h}_m(x_i))$ - Add the new term obtained:
	$\widehat{H}_m(x) = \widehat{H}_{m-1}(x) + \lambda \widehat{h}_m(x)$
Output	it is simply $\widehat{H}_{M}(x)$

Table: Gradient Boosting for regression

Jean-Michel Poggi	Boosting	26 / 28

Gradients of loss functions for regression

• Quadratic $L(y, h) = (y - h)^2/2$

The gradient is the derivative of L(y, h)w.r.t. $h, \left. \frac{\partial L(y, h)}{\partial h} \right|_{h} = -(y - h)$

• Linear (absolute value) L(y, h) = |y - h| $\frac{\partial L(y, h)}{\partial h}\Big|_{h} = sign(y - h)$

Settings

- The cost function L: see above;
- The set \mathcal{H} of weak predictors:
 - We restrict ourselves to trees;
 - We then choose the depth of CART decision trees (without pruning) or even a stump which is very quick to calculate (but often too imprecise).
- The coefficient λ > 0 which sets the importance of the most recent predictor in the final predictor:
 - λ must (depending on the situation) be < 1 or more or less close to 1 if $\lambda > 1$ otherwise there is a risk of divergence;
 - when λ is small (relative to 1), the algorithm is slower but limits the risk of overfitting;
 - for Adaboost, we have $\lambda = 1$.
- Number of iterations *M*.