
Boosting: from Adaboost to Gradient Boosting

Jean-Michel Poggi
U. Paris Cité & LMO, Orsay, U. Paris-Saclay

Master 2 Course in Statistics
Universidad de la República – Facultad de Ingeniería,

Montevideo, Uruguay

February 2025

Jean-Michel Poggi Boosting 1 / 28

Plan

1 Introduction and references

2 Adaboost in classification

3 Boosting Generalization

4 Gradient Boosting

Jean-Michel Poggi Boosting 2 / 28

References 1

Hastie, T., Tibshirani, R., Friedman, J.
The elements of statistical learning: data
mining, inference, and prediction.
Springer (2009)

James, G., Witten, D., Hastie, T.,
Tibshirani, R.
An introduction to statistical learning:
with applications in R.
Springer (2013)

1This document is also based on the course "Introduction au boosting"
from Jean-Marc Lasgouttes (INRIA Paris) course of Mastere ESD, INSA
Rouen, 2021

Jean-Michel Poggi Boosting 3 / 28

The history of Gradient Boosting in 3 references

Invention of Adaboost, the first algorithm of boosting
Freund and Schapire, 1997 2

Formulating Adaboost as a gradient descent with a special
loss function,
Breiman 1998 3

Generalization of Adaboost to Gradient Boosting to manage a
variety of loss functions,
Friedman et al., 2000 4

2Freund, Y. and Schapire, R. E. (1997). A decision-theoretic generalization
of on-line learning and an application to boosting. Journal of computer and
system sciences, 55(1):119-139.

3Breiman, L. (1998). Arcing classifiers. Annals of statistics, 26(3):801-849.
4Friedman, J., Hastie, T., and Tibshirani, R. (2000). Additive logistic

regression: A statistical view of boosting. Annals of statistics, 337-374.

Jean-Michel Poggi Boosting 4 / 28

Plan

1 Introduction and references

2 Adaboost in classification

3 Boosting Generalization

4 Gradient Boosting

Jean-Michel Poggi Boosting 5 / 28

Framework: the binary classification

Ln = {(X1, Y1), . . . , (Xn, Yn)} i.i.d. random variables, with the
same distribution as (X , Y).
X ∈ X = Rp (explanatory variables); we can also consider
X ∈ X = Rp′ ⊗Q mixed.
Y ∈ Y (response) : Y = {−1, 1} : binary classification

Goal: build a classifier (predictor) ĥ : X → {−1, 1}

Sets of weak predictors (typically shallow trees) Freund, Schapire
(1997)

family of ensemble methods
algorithm of adaptive statistical learning, successive models
are built to correct the weaknesses of previous models

Jean-Michel Poggi Boosting 6 / 28

Weak classifiers

We use a set of H weak classifiers h : X → {−1, 1} very
simple, which predict y just a little better than chance (i.e.
with small γ) :

ϵ = P(h(x) ̸= y) ≤ 1
2 − γ, γ > 0

For example :
shallow CART trees;
stumps (CART trees of depth 1).

How can a strong classifier (very low error) be built from weak
classifiers (error barely smaller than 0.5) using adaptive
sampling, using an iterative (rather than parallel) approach?

Jean-Michel Poggi Boosting 7 / 28

Adaboost: from Bagging to Boosting

Bagging: classifiers are built in parallel
Boosting: the approach is iterative

Jean-Michel Poggi Boosting 8 / 28

Adaboost: a simple illustration with stumps

weak rules: stump on the abscissa or ordinate;
the weight of misclassified individuals is increased at each
iteration;
the final classifier is a linear combination of the classifiers built
iteratively.

Jean-Michel Poggi Boosting 9 / 28

Adaboost: the algorithm

Input Ln, H of weak classifiers, M iterations
Initialization wi = 1/n, i from 1 to n

Iteration for m from 1 to M,
- Draw a bootstrap sample from Ln according to weights wi

- Fit a weak classifier ĥm(x) using the sample Lm
n

- Compute the error rate

ϵm =
n∑

i=1

wi 1l{yi ̸=̂hm(xi)}

- Compute the coefficient of ĥm in the output
αm = log

√
(1− ϵm)/ϵm

- Reweight the observations (increasing the weight
of misclassified obs. and renormalising)

wi ← wi exp(−αmyi ĥm(xi))/C

Output it is the sign of
M∑

i=1

αmĥm(x), i.e. ĤM(x) = sign(
M∑

i=1

αmĥm(x))

Table: Algorithm Adaboost

Jean-Michel Poggi Boosting 10 / 28

Adaboost: the algorithm (weight-based classifier version)

Input Ln, H of weak classifiers, M iterations
Initialization wi = 1/n, i from 1 to n

Iteration for m from 1 to M,
- Weight the sample Ln with the wi : Lm

n

- Fit a weak classifier ĥm(x) using the sample Lm
n

- Compute the error rate

ϵm =
n∑

i=1

wi 1l{yi ̸=̂hm(xi)}

- Compute the coefficient of ĥm in the output
αm = log

√
(1− ϵm)/ϵm

- Reweight the observations (increasing the weight
of misclassified obs. and renormalising)

wi ← wi exp(−αmyi ĥm(xi))/C

Output it is the sign of
M∑

i=1

αmĥm(x), i.e. ĤM(x) = sign(
M∑

i=1

αmĥm(x))

Table: Algorithm Adaboost

Jean-Michel Poggi Boosting 11 / 28

Plan

1 Introduction and references

2 Adaboost in classification

3 Boosting Generalization

4 Gradient Boosting

Jean-Michel Poggi Boosting 12 / 28

Additive linear modeling

The framework is the same as that of Adaboost but there are
two differences:
The 1st difference is that to obtain hm, instead of minimizing
the misclassification rate ϵ at each iteration, we will minimize
a more general loss function (also called deviance) noted
L(y , h), often assumed to be convex and differentiable. The
new framework is therefore more general.
The 2nd difference is in the algorithm: at each iteration,
instead of changing the data weights, we model the residuals
from the previous step, so that the model is built additively:

ĤM(x) =
M∑

i=1
βmĥm(x) = ĤM−1(x) + βM ĥM(x)

Jean-Michel Poggi Boosting 13 / 28

Examples of loss functions

Exponential
L(y , h) = exp(−yh)
Logistic
L(y , h) =
log(1 + exp(−2yh))

Quadratic
L(y , h) = (y − h)2

Jean-Michel Poggi Boosting 14 / 28

Additive linear modeling: the algorithm

Input Ln, H of weak classifiers, M iterations

Initialization the initial predictor is Ĥ0(x) = 0

Iteration for m from 1 to M,
- Fit a weak classifier ĥm(x) and a coefficient βm

which minimize in H
n∑

i=1

L(yi , Ĥm−1(xi) + βmĥm(xi))

- Add the resulting new term:
Ĥm(x) = Ĥm−1(x) + βmĥm(x)

Output it is sign of ĤM(x)

Table: Additive linear modeling: the algorithm

Jean-Michel Poggi Boosting 15 / 28

Loss functions for classification

Exponential
L(y , h) = exp(−yh)
it can be shown that it is
equivalent to Adaboost
(nothing obvious at first
sight).
Logistic
L(y , h) = log(1+exp(−2yh))
Similar to AdaBoost, but
less sensitive to misclassified
observations.
Quadratic
L(y , h) = (y − h)2. Not
suitable here, the cost
function is not decreasing.

Jean-Michel Poggi Boosting 16 / 28

Additive linear modeling: the algorithm

Input Ln, H of weak predictors, M iterations

Initialization the initial predictor is Ĥ0(x) = 0

Iteration for m from 1 to M,
- Fit a weak predictor ĥm(x) and a coefficient βm

which minimize (for L adapted for regression)
n∑

i=1

L(yi , Ĥm−1(xi) + βmĥm(xi))

- Add the resulting new term:
Ĥm(x) = Ĥm−1(x) + βmĥm(x)

Output it is the value of ĤM(x)

Table: Additive linear modeling for regression

Jean-Michel Poggi Boosting 17 / 28

Loss functions for regression (y ∈ R)

Quadratic L(y , h) = (y − h)2

Perfectly suitable, but
penalizes error outliers.
Linear (absolute value)
L(y , h) =|y − h|
More robust against error
outliers, but less accurate
for small values.
Huber’s function (see green
curve) makes it possible to
reconcile the two previous
functions and combine their
qualities.

Jean-Michel Poggi Boosting 18 / 28

Plan

1 Introduction and references

2 Adaboost in classification

3 Boosting Generalization

4 Gradient Boosting

Jean-Michel Poggi Boosting 19 / 28

Gradient descent algorithm

Problem: minimize the
function f : R→ R
assumed to be convex and
differentiable

We fix λ > 0 and use the
iterative algorithm

xm = xm−1 − λf ′(xm−1)

Jean-Michel Poggi Boosting 20 / 28

Gradient descent algorithm

Minimize the function
E : R→ R
We fix λ > 0 and use
xm = xm−1 − λE ′(xm−1)
λ determines the speed of
convergence (or even
convergence)
you can also make λ
evolve over the iterations
(large at the beginning to
speed up convergence,
small at the end to
improve accuracy).

Jean-Michel Poggi Boosting 21 / 28

Gradient descent algorithm

Problem: minimize the
function f : R→ R
assumed to be convex and
differentiable
We fix λ > 0 and use the
iterative algorithm
xm = xm−1 − λf ′(xm−1)

Adaptation to the
problem (functional
gradient, calculate the
gradient at any point):
we use a weak rule to
model the gradient.

Jean-Michel Poggi Boosting 22 / 28

Gradient descent algorithm

Source: http://en.wikipedia.org/wiki/Gradient_descent

The basic principle is therefore the
same as for AdaBoost, build a
sequence of models so that each
step, each model added to the
combination, appears as a step
towards a better solution.
The first idea is that here this step
is taken in the direction of the
gradient of the loss function, to
improve the convergence
properties.
The second idea is to approach the
gradient using a regression tree to
avoid overfitting.

Jean-Michel Poggi Boosting 23 / 28

http://en.wikipedia.org/wiki/Gradient_descent

Gradient Boosting in Least Square Regression

Input Ln, H of weak predictors, M iterations, λ > 0

Initialization the initial predictor Ĥ0(x) = argmin
h∈H

n∑
i=1

(yi − h(xi))2

Iteration for m from 1 to M,
- Compute the residuals ui = yi − Ĥm−1(xi)
- Fit a weak predictor ĥm(x) minimizing in H the

n∑
i=1

(ui − h(xi))2

- Add the new term obtained:
Ĥm(x) = Ĥm−1(x) + λĥm(x)

Output it is simply ĤM(x)

Table: Gradient Boosting in Least Square Regression

Jean-Michel Poggi Boosting 24 / 28

Gradient Boosting in Least Square Regression: interpret
the residuals as the opposite of the gradient

How does this relate to gradient descent?
residual ←→ the opposite of the gradient;
in fact, the gradient is the derivative of L(y , h) = (y − h)2/2

with respect to h : ∂L(y , h)
∂h

∣∣∣∣
h

= h − y = −(y − h)

fit h to residual ←→ Fit h the opposite of the gradient
update H as a function of the residual ←→ update H as a
function of the opposite of the gradient

So we’re actually updating our model using gradient descent!
But the concept of gradient is better suited and more useful
than the concept of residue for generalizing

Jean-Michel Poggi Boosting 25 / 28

Gradient Boosting for Regression

Input Ln, H of weak predictors, M iterations, the loss function L, λ > 0

Initialization the initial predictor Ĥ0(x) = argmin
h∈H

n∑
i=1

L(yi , h(xi))

Iteration for m from 1 to M,
- Compute the opposite of the gradient (w.r.t. H)

at the observation points ui = − ∂L(yi , H)
∂H

∣∣∣∣
H=Ĥm−1(xi)

- Fit a weak predictor ĥm(x) minimizing in H the
n∑

i=1

L(ui , ĥm(xi))

- Add the new term obtained:
Ĥm(x) = Ĥm−1(x) + λĥm(x)

Output it is simply ĤM(x)

Table: Gradient Boosting for regression

Jean-Michel Poggi Boosting 26 / 28

Gradients of loss functions for regression

Quadratic L(y , h) = (y − h)2/2

The gradient is the derivative of L(y , h)

w.r.t. h, ∂L(y , h)
∂h

∣∣∣∣
h

= −(y − h)

Linear (absolute value)
L(y , h) =|y − h|
∂L(y , h)

∂h

∣∣∣∣
h

= sign(y − h)

Jean-Michel Poggi Boosting 27 / 28

Settings

The cost function L: see above;
The set H of weak predictors:

We restrict ourselves to trees;
We then choose the depth of CART decision trees (without
pruning) or even a stump which is very quick to calculate (but
often too imprecise).

The coefficient λ > 0 which sets the importance of the most
recent predictor in the final predictor:

λ must (depending on the situation) be < 1 or more or less
close to 1 if λ > 1 otherwise there is a risk of divergence;
when λ is small (relative to 1), the algorithm is slower but
limits the risk of overfitting;
for Adaboost, we have λ = 1.

Number of iterations M.

Jean-Michel Poggi Boosting 28 / 28

	Introduction and references
	Adaboost in classification
	Boosting Generalization
	Gradient Boosting

