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Analyze ensemble aggregation through diversity-based MSE decomposition
(Krogh, Vedelsby, 1995), (Brown et al., 2005)

▶ Regression yt = f (xt) + ϵt , consider f1, . . . , fM different individual predictors

▶ Let ŷt = f (t) =
M∑

m=1
cmfm(t) be the aggregated predictor (weighted mean)

▶ Then: squared error = weighted average error of the predictors - diversity term

(f (t) − yt)2 =
M∑

m=1
cm(fm(t) − yt)2 −

M∑
m=1

cm(fm(t) − f (t))2

▶ Decomposes an instantaneous error (no expectation taken)
▶ Adding relatively accurate diverse predictors reduces the error
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A modified cost function to incorporate diversity in the boosting sequence

▶ Starting from the L2−gradient boosting for regression problems y = f (x) + ϵ
Buhlmann and Yu, 2003, Friedman et al., 2000, Mason et al., 2000

▶ we propose to modify the cost function able to enhance diversity during the
learning iterations generating the individual experts

▶ Take uniform weights cm = 1/M for f̄

C(y , f ) = 1
2(y − f )2 − κ

2 (f − f̄ )2

where:
▶ κ modulates the importance given to the diversity of the predictor to the mean of

the previous.
▶ f̄ is seen as a constant (in practice it is the mean of past individual predictors)
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BOosting DIversity (BoDi algorithm)
L =

{
(y1, x1), . . . , (yn, xn)

}
a sample, F a family of functions, κ > 0 and δ > 0.

Randomly split the data in two disjoint parts I = I1 ∪ I2 (not mandatory)
1. Fit an initial learner f̂0 = F̂0 ∈ F over I1 such that F̂0 = Argmin

f ∈F

∑
i∈I1

(
yi − f (xi)

)2.

Set F̂ ∗
0 (x) = F̂0(x).

2. For m ∈ {1, . . . , M}:
2.1 ∀ i ∈ I2, evaluate the negative diversity gradient of the cost function at F̂m−1(xi):

ui =
(
yi − F̂m−1(xi)

)
+ κm

(
F̂m−1(xi) − F̂ ∗

m−1(xi)
)

with κm = κ
(
1 − 1

m
)

if m > 1, κ1 = κ and f̂m = Argmin
f ∈F

∑
i∈I2

(
ui − f (xi)

)2

2.2 Update boosting predictor as F̂m(x) = F̂m−1(x) + δf̂m(x).
Compute F̂ ∗

m(x) = 1
m

m∑
i=1

F̂i(x) and update I2 = I \ I1 with a new subsample I1 of I

Outputs: family of experts f̂0, f̂1, f̂2, . . . , f̂M and aggregated predictors F̂m and F̂ ∗
m
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Comments and a theoretical result

▶ With κ = 0 we get L2−gradient boosting

▶ If κ is non negative and κ ≤ 1 the new cost function is strongly convex and
Lipschitz (with associated regularity L)

▶ Under these conditions, a result from Biau and Cadre (2019) warranties that:

Theorem
If δ the step of BoDi is such that 0 < δ < 1/(2L), then the optimisation strategy
converges to a global optimum

lim
t→∞

E(C(y , Ft)) = inf
F∈lin(F)

E(C(y , F ))

where lin(F) is the linear span of the family of functions F we reach (typically,
the collection of all CART trees with k terminal nodes)
▶ This is an optimization warranty but not a statistical one
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Numerical experiments on simulated data

▶ Well-known simulated data set Friedman 1991 used in Breiman 1996 for bagging
▶ 10 independent variables uniformly distributed on [0,1], only 5 are active:

yi = 10 sin(πx1,ix2,i) + 20(x3,i − 0.5)2 + 10x4,i + 5x5,i + εi

where εi is N(0, σ2)
▶ As in Breiman 1996 we simulated a learning set of size n0 = 200 and a test set of

size n1 = 1000 observations with σ = 1

▶ Three base-learners (see Hastie, Tibshirani, Friedman 2009) offering increasing
"diversifiability" ):
▶ stumps which are very simple CART trees
▶ two types of Random Forests RF the Breiman’s original ones and PRF a purely

random variant
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About CART trees (figure from The Elements of Statistical Learning, HTF)



About RF



Influence of the diversity weight and the gradient step (for PRF)
▶ MSE as a function of m for diversity weights (κ = 0 (green); 0.5 (blue); 0.9 (red))

and gradient step δ = 0.08 (dotted);0.15 (solid) with PRF as base learner
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▶ Best results for κ = 0.9 showing the interest of encouraging diversity
▶ Influence of δ on the rate of convergence as in classical boosting
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Influence of the base learner
▶ MSE of aggregated predictors F (dotted) and F ∗ (solid) as a function of boosting

steps for 3 base learners: Stumps (red), PRF (blue) and RF (green)
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▶ Best results for RF. But the relative improvement is far more important for PRF
which can generate more diversity than RF

▶ Good convergence of the algorithm and its robustness regarding the choice of m
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More about the diversity term
▶ Diversity term 1

m
∑m

k=1(Fk(xi) − F ∗
k (xi))2 averaged for i ∈ I1, as a function of m

for PRF (solid) and RF (dotted) for classical boosting (κ = 0) and diversity
boosting (κ = 0.5; 0.9)
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▶ Diversity increases quickly with m before decreasing slowly, increases with κ

▶ PRF allows to generate more diversity than RF
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Numerical experiments on electricity consumption data

▶ French electricity consumption provided by the system operator RTE (Réseau de
Transport d’Electricité)

▶ from the 1st of January 2012 to the 15th of March 2020 with a 30 minutes
sampling period

▶ we add a covariate: the national averaged temperature from the French weather
forecaster Meteo-France

▶ We train the models on historical data from January 2012 to the end of August
2019 and test on the last year.

▶ To avoid outliers we drop the holidays periods and bank holidays



RF as base learner
▶ RMSE of F and F ∗ as a function of m for κ = 0.5 (left) κ = 0.9 (right) and for a

gradient step (δ = 0.08) with RF (ntree=100 and mtry=3) as base learner
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▶ The best RMSE are obtained for Fκ, followed by F ∗
κ

▶ κ close to 1 improves forecasting performance as the learner can generate diversity
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PRF as base learner: more diversity
▶ RMSE of F and F ∗ as a function of m for κ = 0.5 (left) κ = 0.9 (right) and for a

gradient step (δ = 0.08) with PRF (ntree=100) as base learner
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▶ Best RMSE for Fκ=0.9 with PRF a good base learner for diversity boosting
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More comparisons on benchmark datasets

Data set No. of observations No. of expl. variables Source and reference
Carseats 400 10 ISLR2
Ozone 366 12 mlbench
College 777 17 ISLR2

Airquality 153 5 ISLR2
Boston Housing 506 13 mlbench

Bikeshare 8645 12 ISLR2
Hitters 322 19 ISLR2



Median RMSE of the different learners +boosted +BoDi

Ozone Bikeshare Hitters Airquality BostonHousing Carseats College

Stump 5.6 107.47 353.35 26.85 7.12 2.43 2330.58
+boost 5.03 90.75 327.86 19.13 5.53 2 1906.95
+BoDi 5.08 87.91 336 19.36 5.14 1.94 1919.95

CART 4.91 67.11 337.35 21.06 4.68 2.12 1415.45
+boost 4.74 54.06 307.02 17.36 3.78 1.72 1273.76
+BoDi 4.92 53.76 311.68 17.39 3.98 1.74 1247.74

PRF 4.28 70.89 301.82 17.41 4.95 2.27 1460.54
+boost 3.96 60.13 272.66 15.35 3.46 1.72 1130.4
+BoDi 3.91 52.26 268.21 15.65 3.2 1.5 1058.55

RF 3.99 47.73 267.89 15.02 3.1 1.71 994.73
+boost 3.97 42.66 267.46 14.8 2.92 1.43 1027.18
+BoDi 4.04 37.98 273.86 15.22 2.9 1.36 1010.88
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Table: Winners: +boosted or +BoDi?
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These experiments exhibit two situations:
1. if the dataset and the learner enable the generation of diversity, diversity boosting

performs better than boosting and better than the base learners
2. if the dataset or the learner allow only limited diversity generation, the diversity

boosting is very close to classical boosting



CRAN package Bodi



Some perspectives

1. Which base learners?
▶ Enlarge the family: RF, stumps, GAM, ...
▶ Consider biased experts as base learners? (e.g. qGAM)

2. In the forecasting context, explore sequential aggregation strategies to combine
the sequence of boosting predictors

3. Explore ensemble strategies used
▶ in meteo (different scenarios)
▶ in optimization (different tuning parameters or initialization) to generate diversity
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For more details, see the paper



Thank you for your attention!
Questions?

Contact:
jean-michel.poggi@universite-paris-saclay.fr


